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Abstract

We present several applications governed by geometric PDE, and their parametric finite
element discretization, which might yield singular behavior. The success of such discretization
hinges on an adequate variational formulation of the Laplace-Beltrami operator, which we
describe in detail for polynomial degree 1. We next present a complete a posteriori error
analysis which accounts for the usual PDE error as well as the geometric error induced by
interpolation of the surface. This leads to an adaptive finite element method (AFEM) and
its convergence. We discuss a contraction property of AFEM and show its quasi-optimal
cardinality.

1 Introduction

Besides its intrinsic interest in differential geometry [31, 30, 55], the Laplace-Beltrami operator
(or surface Laplacian) has received a great deal of attention also in the applied and numerical
communities. Basic geometric partial differential equations (PDE) such as the mean curvature
flow and surface diffusion appear naturally in materials science modeling [53], whereas Willmore
flow is a building block in the dynamics of membranes governed by bending energy [34]. This
article is about applications, formulation, Galerkin approximation, and adaptivity for a PDE on a
surface γ governed by the Laplace-Beltrami operator ∆γ , such as

−∆γu = f. (1.1)

One of the major goals of this paper is the design and analysis of parametric adaptive finite element
methods (AFEM) for (1.1) of polynomial degree 1. Our discussion is based on [12].

The first FEM for the Laplace-Beltrami operator on parametric surfaces is due to G. Dziuk
[35], who also developed an optimal a priori error analysis accounting for the approximation of the
surface and PDE by piecewise linear polynomials. This seminal work was followed by parametric
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FEM for time dependent problems such as the mean curvature flow [36], capillary surfaces [2],
surface diffusion [4, 7], Willmore flow [7, 17, 37, 50], fluid biomembranes [16], and fluid membranes
with orientational order [9, 10]. The analysis of these methods is largely open, except for graphs
[5, 24, 25, 26, 27]. We refer to the survey by K. Deckelnick, G. Dziuk, and Ch. Elliott [27] for
some of the early work, including level set and phase field approaches.

A. Demlow and G. Dziuk gave the first a posteriori error analysis for piecewise linear polyno-
mials [29], and later A. Demlow extended it to higher polynomial degree [28]. This extension is
important in light of applications in fluid dynamics [2] and biomembrane dynamics [17, 16]. O.
Lakkis and R.H. Nochetto formulated an a posteriori error analysis for the mean curvature flow of
graphs in [44].

Even though adaptivity theory for linear elliptic PDE on flat domains in any dimensions and the
energy norm is now mature [21, 48, 47, 51], much less is known for elliptic problems on manifolds;
we refer to the survey [49] for the state of the art of AFEM on flat domains. For the Laplace-
Beltrami operator on graphs we mention the convergence theory of K. Mekchay, P. Morin and R.H.
Nochetto [46], whereas for general parametric surfaces and polynomial degree we are only aware
of [12]. We expose here results from [12] and restrict them to the particular case of polynomial
degree 1 for the sake of clarity.

The purpose of this paper is threefold. We first discuss in §2 several applications of the Laplace-
Beltrami operator we have recently developed. This serves as a motivation for the rest of the paper
as well as illustration of the significance of adequate formulations and discretizations of rather
complex problems which look seemingly untractable. We next discuss parametric FEM for (1.1)
on piecewise C1 surfaces which are merely globally Lipschitz. This is inspired by singularities
observed in geometric flows, such as pinching [4, 6, 7, 17], point defects [9], and line tension
[38]. This in turn makes it unfeasible to use the signed distance function as in [35, 29, 28]. Our
approach, developed in §3 and §4, allows for kinks aligned with the initial mesh, and yields optimal
convergence rates even for surfaces which are not piecewise C2. Our third goal is to present a
rather complete discussion of adaptivity theory for AFEM on surfaces. The algorithm reads

AFEM: Given an initial surface-mesh pair (Γ0, T0), and parameters ε0 > 0, 0 < ρ < 1, and ω > 0,
set k = 0 and iterate

[T +
k ,Γ+

k ] = ADAPT SURFACE (Tk, ωεk)
[Tk+1,Γk+1] = ADAPT PDE (T +

k , εk)
εk+1 = ρεk; k = k + 1.

AFEM consists of two main modules: ADAPT PDE is the usual adaptive cycle for flat domains
driven by the a posteriori PDE error estimator, whereas ADAPT SURFACE is a new module that
accounts for and controls surface interpolation error. In §5 we discuss the a posteriori error analysis
for (1.1) on parametric surfaces, with emphasis on C1 parametric representations X : Ω → R

d+1

of γ and their piecewise linear interpolants FT : Ω → Rd+1, which describes the polyhedral
counterpart Γ = FT (Ω) of γ; hereafter Ω ⊂ Rd is the parametric domain. This interpolation is
governed by the geometric error estimator

λΓ := ‖∇(X − FT )‖L∞(Ω). (1.2)

The module ADAPT SURFACE guarantees that its output satisfies λT +

k
≤ ωεk, with ω a param-

eter small relative to 1. This is critical for ADAPT PDE to contract, a fundamental property
of AFEM shown in §7. We embark on the study of cardinality of AFEM in §8: we first prove
that AFEM delivers the best asymptotic convergence rate possible for the given regularity of data
γ, f and solution u (Theorem 8.3), and secondly we construct a greedy algorithm that realizes
ADAPT SURFACE (Proposition 8.4). The role of ω is crucial for the theory of §7 and §8. We
conclude in §9 with a computational investigation showing that ω must be small indeed to achieve
optimal performance of AFEM.
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2 Motivation: Geometric PDE

The Laplace-Beltrami operator is ubiquitous in applications involving surfaces that evolve and/or
are the domain of an underlying PDE. In order to motivate the study of this operator we mention
a few applications where it appears naturally.

2.1 Biomembranes: Modeling and Simulations

Predicting the shape of a cell bounded by a lipid bilayer membrane has inspired a significant
body of research in the past forty years ranging from purely mechanical descriptions to advanced
mathematical analysis. We consider the Helfrich model for geometric biomembranes [41], which
associates to a closed surface γ, describing the biomembrane, the bending (or Willmore) energy

J(γ) =
1

2

∫

γ

(H −H0)
2. (2.1)

Hereafter H stands for the mean curvature of γ and H0 is the spontaneous curvature induced by
the surrounding medium.

Fluid Membranes. We start with H0 = 0. The first variation (or shape derivative) of J(γ),
subject to volume and area constraints, is given in strong form by [33, 55]

δγJ(γ) =
(
∆γH +

1

2
H3 − 2κH

)
ν +

(
λHν + pν

)
, (2.2)

where κ is the Gaussian curvature of γ, and λ, p are the Lagrangemultipliers for the area and volume
constraints, respectively. It is important to notice that δγJ(γ) is a vector field perpendicular to
γ because ν is the unit normal to γ. A (geometric) gradient flow consists of deforming γ in the
direction opposite to the shape gradient, namely prescribing a vector velocity v to γ according to

v = −δγJ(γ). (2.3)

Figure 1: Evolution of an initial axisymmetric ellipsoid of aspect ratio 5x5x1. For each frame the picture
on the bottom is a 3D view of the surface mesh and that on the top is a 2D cut through a symmetry
plane. The equilibrium is characterized by the formation of an extreme depression of the center to the
point of almost pinching (red blood cell). During the evolution the thickening of the outer circular edge
occurs faster than the motion on the center, producing a depressed circular ring in between the outer edge
and the center (first frame). This in turn is responsible for the appearance of a center bump instead of
a depression. Later the evolution continues to squeeze this bump to a depression at the expense of more
thickening and rounding of the outer circular edge.

This flow decreases the energy J(γ) while keeping area and volume constant, and thus leads to
equilibrium configurations such as that in Figure 1, which mimics a red blood cell. The simulations
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in Figure 1 were performed with the finite element method of A. Bonito, R.H. Nochetto, and M.S.
Pauletti [17], which replaces H in (2.2) by the vector curvature H = Hν (see also §2.2).

We now consider the more physically realistic model that couples the membrane with a fluid.
In order to do this, we assume the simplest situation in which the fluid is Newtonian, and thus is
governed by the Navier-Stokes equation for incompressible fluids in the deformable domain Ωt

ρDtv − div (−pI + µD(v)) = 0 in Ωt,

div v = 0 in Ωt,
(2.4)

where D(v) = 1
2 (∇v +∇vT ) is the symmetric part of the gradient and Σ = −pI + µD(v) is the

Cauchy stress tensor. The membrane interacts with the fluid only through the boundary condition,
which represents a balance of forces at the interface γ = γt = ∂Ωt:

Σν = k δγJ(γ), (2.5)

where k is the membrane bending rigidity coefficient. In [16] A. Bonito, R.H. Nochetto, and M.S.
Pauletti couple the FEM of [17] with a Taylor-Hood discretization of (2.4) in an ALE framework
involving a semi-implicit Euler method in time. Figure 2 displays the complex behavior of the
fluid membrane and quite noticeable inertial effects, which lead to a more singular pinching than
in Figure 1. We give a comparison in Figure 3.

Figure 2: Evolution of a fluid membrane with initial axisymmetric ellipsoidal shape of aspect ratio 5×5×1
and final shape similar to a red blood cell. Each frame shows the membrane mesh and a symmetry cut
along a big axis. The fluid flow is quite complex, creating first a bump in the middle and next moving
towards the circumference and producing a depresion in the center with flat pinching profile. The inertial
effects are due to unrealistic physical parameters.

Figure 3: Comparison of final configuration of the geometric biomembrane of Figure 1 and the fluid
biomembrane of Figure 2 with unrealistic (left) and realistic (right) physical parameters. For the latter the
inertial effects are not significant and the purely geometric evolution is similar to the fluid driven one. The
pinching on the left occurs with a much flatter and thinner neck in the center and thicker torus outside.

Director Fields on Flexible Surfaces. The orientation of the bilipids is about 32o relative
to the unit normal to γ for living cells. In order to describe this situation we consider the simple
model introduced by S. Bartels, G. Dolzmann, and R.H. Nochetto [9], which is in turn inspired
on the model by M. Laradji and O.G. Mouritsen [45] for flat membranes. The starting point is to
modify the energy (2.1) to incorporate the effect of a director field n so that

J(γ,n) =
1

2

∫

γ

|divγν − δdivγn|2 +
λ

2

∫

γ

|∇γn|2 +
1

2ε

∫

γ

f(n · ν), (2.6)
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with |n| = 1 everywhere in γ. Here divγ ,∇γ stand for the tangential divergence and gradient to
γ, H = −divγν, and δ, λ > 0. We thus see that H0 = −δdivγn acts as a spontaneous curvature
term induced by the director field n. The function f(x) := (x2 − ξ20)

2 in the last term of (2.6)
penalizes the deviation of the angle between n and ν from arccos ξ0. It is worth stressing now that
if this angle were constant everywhere on γ, then the projection of n on γ would have a constant
length, which in turn would lead to the creation of defects (or singularities) of n. This is due
to the topological obstruction that there cannot be a smooth tangential vector field with nonzero
constant length defined on a closed surface. Therefore the study of defects and their influence on
membrane shape becomes an intriguing matter.

This is precisely what has been accomplished in [9], via an L2-gradient flow (or relaxation
dynamics) for J(γ,n):

v = −δγJ(γ,n), ∂tn = −δnJ(γ,n), (2.7)

where v is the velocity of γ. The expression of δγJ(γ,n), the first variation of J with respect to
γ (or shape derivative) is now much more involved than (2.2), whereas δnJ(γ,n) is rather simple;
we refer to [9] for details. This dynamics involves again the Laplace-Beltrami operator ∆γ .

We display in Figure 4 the evolution of a sphere γ (first row) along with the director field n on
a plane cutting through north and south poles. The initial director field n0 has a couple of defects
±eiθ of degree +1, which persist through the evolution and lead to the formation of cone-like
singularities at the poles, one pointing inwards (north pole) and the other outwards (south pole).
This configuration shows some analogies to echinocyte shapes observed in lab experiments [42].
We refer to [9] for other examples and discussion, including defects of degree ±1.

Figure 4: Biomembrane case with inward and outward pointing defects of positive degree one: Snapshots
of the surface and the director field along a (deformed) geodesic through the north and south pole after
n = 50, 500, 1400 time steps. The surface develops inward and outward cones at the poles while the director
field remains nearly unchanged during the evolution.

2.2 The Laplace-Beltrami Operator and Curvature

The Laplace-Beltrami operator makes yet another fundamental appearance in the definition and
calculation of curvature. If x is the identity on γ, then the following relation for the vector curvature
H = Hν is well known in differential geometry [30, 31]:

H = −∆γx. (2.8)
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This crucial formula was first used for computation by G. Dziuk [35] with piecewise linear finite
elements. In the context of geometric evolution of §2.1 we advance in time from tn to tn+1 via a
semi-implicit Euler method xn+1 = xn + τnvn+1, which keeps the geometry explicit,

∫

γn

Hn+1 ·Ψ− τn

∫

γn

∇γn
vn+1 : ∇γn

Ψ =

∫

γn

∇γn
xn : ∇γn

Ψ. (2.9)

This equation for Hn+1 is coupled with the equation for velocity vn+1, which comes from the
gradient flows (2.3) or (2.7), or the Navier-Stokes equations (2.4)-(2.5). Getting separate equations
forHn+1 and vn+1 is effectively an operator splitting technique, introduced by G. Dziuk [36], which
has been used in a number of papers; see e.g. [2, 3, 5, 6, 7, 8, 9, 16, 17, 32, 37, 38, 50].

The mean curvature flow of a surface γ is governed by V = −H , with V being the scalar normal
velocity of γ. On the basis of (2.8), this geometric PDE can be reformulated as a heat equation
for the position x on γ, following a seminal idea of G. Dziuk [36]:

∂tx = V ν = −H = ∆γx.

This allows for a simple and efficient finite element discretization [36]. The analysis of the resulting
FEM is still open, except for the case of graphs [24, 25, 27].

Expression (2.8) is also a crucial building block in the approach of E. Bänsch to Navier-Stokes
equations with free capillary surfaces [2]. On the free surface γ, the Cauchy stress tensor Σ satisfies
the Young-Laplace equation

νΣ = H,

which allows for the following simple and elegant weak formulation of the boundary term

∫

γ

νΣwT =

∫

γ

HwT = −
∫

γ

∆γxw
T =

∫

γ

∇γx : ∇γw, (2.10)

where w is a suitable test function. This leads again to a simple and efficient FEM [2].

2.3 Surface Diffusion and Epitaxial Films

Surface diffusion is a 4th order geometric driven motion of a surface with normal velocity propor-
tional to the surface Laplacian of mean curvature:

V = ∆γH. (2.11)

This PDE corresponds to the H−1 gradient flow of the area functional J(γ) =
∫
γ 1, and has been

studied by J. Cahn and J. Taylor [20] among others. E. Bänsch, P. Morin, and R.H. Nochetto
proposed a parametric FEM upon combining (2.9) and (2.10) [4]. Other related schemes have been
developed by J. Barrett, H. Garcke and R. Nürnberg [6, 7]. The analysis of this problem is still
open, except for the graph case [5, 27].

Surface diffusion may lead to singularity formation in finite time, depending on the initial
configuration. This is depicted in Figures 5-6 which display the evolution of an initial 8 × 1 × 1
prism [4]. This simulation shows that adaptivity is essential to approximate singular situations
produced by the flow.

Modeling the deformation of the free surface γ of stressed epitaxial films leads to a variant of
(2.11). The stress accounts for the misfit between the crystalline structure of the substrate and
epitaxial film, and causes a plastic deformation of γ. This morphological instability of the free
surface may eventually lead to crack formation and fracture, an issue of paramount importance in
Materials Science. The dynamics of γ is governed by

V = ∆γ(H + ε),
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t = 0 t = 0.125

t = 0.395 t = 0.413

Figure 5: Pinch-off in finite time. Evolution by surface diffusion of an 8 × 1 × 1 prism at various time
instants leading to a dumbbell and cusp formation.

t = 0.3991 t = 0.4118 t = 0.4132 t = 0.4134 t = 0.4135

Figure 6: Detailed view of the pinch-off produced by surface diffusion of the 8× 1× 1 prism. Adaptivity
becomes essential when approaching the pinch-off configuration.

ε being the elastic energy density of the bulk enclosed by γ (see [4, 5, 32] and the references therein).
Applications to material science are given in [3, 8].

Consider now a simplified situation where elasticity is replaced by the Laplace operator in the
bulk Ω enclosed between the free surface γ and the substrate Σ (see Figure 7). We let ε = |∇u|2,
where u solves the problem

−∆u = 0 in Ω, ∂νu = 0 on γ,

and u = x on the bottom Σ and lateral boundary. This yields interesting configurations including
mushroom-like formations, thereby leading to defects in materials such as inclusions [32].

2.4 Geometrically Consistent Accuracy Preserving Algorithm

The chief geometric identity (2.8) turns out to play an important role when performing mesh
modifications (refinement/coarsening/smoothing) on manifolds with incomplete information on
their geometry, yet preserving position and curvature accuracy. This is typically the case when the
surface γ is unknown as in the examples provided in Sections 2.1 and 2.3: γ is known only through
its approximation Γ and the approximation of its vector curvature H, still labeled H.

The naive approach when performing mesh modification consists of (i) apply the mesh modi-
fication to Γ; (ii) compute the corresponding curvature H according to a discrete version of (2.8)
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Figure 7: Domain dynamics governed by coupling surface diffusion with the Laplace operator in the bulk.
This leads to a mushroom-like free surface that gives rise to an inclusion in finite time.

ensuring geometric consistency (here X is the identity on Γ). It turns out that the last step yields
loss of accuracy on the approximation of the curvature regardless of polynomial degree, which is
inherent to computing two derivatives numerically – an unstable process.

To circumvent this issue, A. Bonito, R.H. Nochetto, and S.M. Pauletti [15] propose a Geomet-
rically Consistent Accuracy Preserving Algorithm (GCAP) which reverses the above process: X is
dissociated from Γ itself in that it is no longer the identity on Γ. In essence, the GCAP algorithm
proceeds as follows: (i) the mesh modifications are performed on Γ to give the new surface Γ∗; (ii)
the new approximation H∗ of vector curvature is obtained projecting the existing one H on Γ∗;
(iii) the approximation X∗ of the identity vector on Γ∗ is obtained by solving the Laplace-Beltrami
equation (2.8) discretely with the curvature H∗ given in (ii). We stress that the concatenation of
projection and inversion of (2.8) is numerically stable.

To compare the naive and GCAP algorithms, Figure 8 depicts the effect of a global refinement
on a square approximation Γ of a circle γ; here Γ∗ = Γ. We refer to [15] for similar results
for two dimensional surfaces, higher polynomial approximations, and coarsening as well as mesh
smoothing.

Figure 8: Refinement procedures on a uniform partition of the unit circle using piecewise linear curves.
The arrows on the piecewise linear curve represent the approximation of the curvature H, all scaled down
by the same multiplicative factor 0.3. We depict the starting approximation of the curvature (first), that
after one global bisection of the surface approximation using the naive approach (second), and that with the
GCAP method (third). In contrast with them GCAP algorithm, the standard algorithm does not preserve
the accuracy of the geometric approximations. The last picture (fourth) depicts the new approximation of
curvature over the surface parametrized by the vector X∗ obtained in step (iii) of the GCAP algorithm.

3 Parametric Surfaces

In this section we discuss both how to represent and interpolate a parametric surface. This is
instrumental for the design, analysis, and implementation of AFEM on parametric surfaces.
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3.1 Representation of Parametric Surfaces

We assume that the surface γ is described as the deformation of a d dimensional polyhedral surface
Γ0 by a globally Lipschitz homeomorphism P0 : Γ0 → γ ⊂ Rd+1. If Γ0 =

⋃I
i=1 Γ

i
0 is made up of I

(closed) faces Γi
0, i = 1, . . . , I, we denote by P i

0 : Γi
0 → Rd+1 the restriction of P0 to Γi

0. We refer
to Γi

0 as a macro-element which induces the partition {γi}Ii=1 of γ upon setting

γi := P i
0(Γ

i
0).

In order to avoid technicalities, we assume that all the macro-elements are simplices, i.e. there is a
(closed) reference simplex Ω ⊂ Rd, from now on called the parametric domain, and an affine map
F i

0 : Rd → Rd+1 such that Γi
0 = F i

0(Ω); Figure 9 sketches the situation when d = 2. We thus let
X i := P i

0 ◦F i
0 : Ω → γi be a local parametrization of γ which is globally bi-Lipschitz, namely there

exists a universal constant L ≥ 1 such that for all 1 ≤ i ≤ I

L−1|x̂− ŷ| ≤ |X i(x̂)−X i(ŷ)| ≤ L|x̂− ŷ|, ∀x̂, ŷ ∈ Ω. (3.1)

This minimal regularity of γ, to be soon strengthened out locally in each macro-element, implies
the more familiar condition, valid for a.e. x̂ ∈ Ω,

L−1|w| ≤ |∇̂X i(x̂)w| ≤ L|w| ∀ w ∈ R
d; (3.2)

hence L ≥ 1 is the Lipschitz constant of X i and so of γi. We further assume that P0(v) = v for
all vertices v of Γ0, so that F i

0 is the nodal interpolant of X i into linear polynomials.

Ω

F i
0

Γi
0

P i
0

γi

Figure 9: Representation of each component γi when d = 2 as a parametrization from a flat triangle Γi

0
⊂ R3 as

well as from the master triangle Ω ⊂ R2. The map F i

0
: Ω → Γi

0
is affine.

The structure of the map P0 depends on the application. For instance, if γi is described on Γi
0

via the distance function dist(x) to γ, then

γi ∋ x̃ = x− dist(x)∇ dist(x) = P0(x) ∀ x ∈ Γi
0,

provided dist(x) is sufficiently small so that the distance is uniquely defined. If, instead, γi is the
zero level set φ(x) = 0 of a function φ, then

Γi
0 ∋ x = x̃+

∇φ(x̃)

|∇φ(x̃)| |x− x̃| = P−1
0 (x̃), ∀ x̃ ∈ γi,

is the inverse map of P0. In both cases, dist and φ must be C2 for P0 to be C1(Γi
0). Yet another

option is to view γi as a graph on Γi
0, in which case P i

0 is a lift in the normal direction to Γi
0 and
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P0 is C1(Γi
0) if and only if γi is; we refer to [46]. Notice that the inverse mapping theorem implies

(P i
0)

−1 ∈ C1(γi).
The regularity of γ is expressed in terms of the regularity of the maps X i. If s ≥ 0, 2 ≤ p ≤ ∞,

we say that γ is piecewise W s
p , and write γ ∈ W s

p (Γ0), whenever X i ∈ [W s
p (Ω)]

d+1, i = 1, . . . , I.
We denote the associated semi-norm by

|γ|W s
p (Γ0) :=

(
I∑

i=1

|X i|pW s
p (Ω)

)1/p

.

Note that this non-overlapping parametrization allows for piecewise smooth surfaces γ with possible
kinks matched by the decomposition {γi}Ii=1. Similarly, we say that γ ∈ C1,α(Γ0), 0 ≤ α ≤ 1,
whenever X i ∈ [C1,α(Ω)]d+1, i = 1, . . . , I and define

|γ|C1,α(Γ0) := max
i=1,..,I

|X i|C1,α(Ω).

Finally, we note that a function v : γi → R defines uniquely two functions v̂ : Ω → R and
v̄ : Γi

0 → R via the maps X i and P0, namely

v̂(x̂) := v(X i(x̂)) ∀ x̂ ∈ Ω and v̄(x̄) := v(P0(x̄)) ∀ x̄ ∈ Γi
0; (3.3)

we set x̃ = X i(x̂) for all x̂ ∈ Ω. Conversely, a function v̂ : Ω → R (respectively, v̄ : Γi
0 → R) defines

uniquely the two functions v : γi → R and v̄ : Γi
0 → R (respectively, v : γi → R and v̂ : Ω → R).

We will always denote by v the two lifts ṽ or v̂ of v : γi → R.

3.2 Interpolation of Parametric Surfaces

The initial partition of Γ0 in macro-elements (or faces) induces a conforming triangulation T0 of
Γ0. We only discuss the class of conforming meshes T(T0) created by successive bisections of this
initial mesh T0. However, our results remain valid for any refinement strategy satisfying Conditions
3, 4 and 6 in [14]. In particular, successive bisections, quad-refinement and red-refinement all with
hanging nodes are admissible refinement strategies. For more details, we refer to [14, Section 6].

Ω

T̂

F0

F

T
P0

X

Figure 10: Effect of one bisection of the macro-element F0(Ω) when d = 2 (left). The parametric domain Ω is
split into two triangles in R2 via the affine map F−1

0
(bottom), whereas γ is interpolated by a new piecewise linear

surface Γ = F(Ω) (right), with F = IT X the piecewise linear interpolant of the parametrization X defined in Ω.
The superscript i is omitted for simplicity.

Given T0, we define a shape regular forest T(T0), and for each T ∈ T(T0), a piecewise affine
approximation Γ = Γ(T ) of γ, and a finite element space V(T ) on Γ as follows. Note first that
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conforming graded bisections of each macro-element Γi
0 induce a family of shape regular partitions

T i(Ω) of the parametric domain Ω ⊂ R
d. Let V(T i(Ω)) be the finite element space of C0 piecewise

linear polynomials on T i(Ω), and let IT i : C0(Ω) → V(T i(Ω)) be the corresponding Lagrange
interpolation operator. Let FT i = IT iX i be the interpolant of X i in V(T i(Ω)), Γi := FT i(Ω) and

T i :=
{
T = FT i(T̂ ) | T̂ ∈ T i(Ω)

}
;

the set Γi is a piecewise affine interpolation of γi. The global mesh T , piecewise affine surface Γ,
and parametrization FT of Γ are given by

T := ∪I
i=1T i, Γ := ∪I

i=1Γ
i, FT := {FT i}Ii=1 .

We need a few properties before discussing shape regularity of T(T0) = {T }. We define

V(T ) :=

{
V ∈ C0(Γ)

∣∣ V |Γi is the lift of some V ∈ V(T i(Ω)) via FT i ,

V = 0 on ∂Γ, or

∫

Γ

V = 0 if ∂Γ = ∅
}
,

and note that V(T ) is not a subspace of V(T0), which is a lack of consistency we must account for.
Since most properties discussed below are valid independently of the superscript i, we omit it from
now on. Figure 10 depicts one bisection refinement for d = 2.

If T̂ ∈ T (Ω) and T = FT (T̂ ) ∈ T , we define the geometric element indicator

λΓ(T ) :=
∥∥∥∇̂(X − FT )

∥∥∥
L∞(T̂ )

, (3.4)

and the corresponding geometric estimator

λΓ := max
T∈T

λΓ(T ). (3.5)

Note that two different meshes giving rise to the same surface Γ yield the same λΓ, which is thus
of pure geometric nature; this explains the subscript Γ. Moreover, λΓ(T ) is evaluated in T̂ , which
belongs to the parametric domain Ω instead of the polyhedral surface Γ. The geometric estimator
may not decrease upon each refinement, especially in the pre-asymptotic regime, but the following
quasi-monotonicity property is valid instead: there exists a constant Λ0 ≥ 1, depending on T0, and
dimension d, such that

λΓ∗
≤ Λ0λΓ (3.6)

for all conforming refinements T∗ of T [12, Lemma 3.1]. This result is also valid elementwise.
We recall that T(T0) is the forest of all conforming refinements T of T0, denoted T ≥ T0,

obtained by the aforementioned bisection procedure. We say that T(T0) is shape regular if there is

a constant C0 only depending on T0, such that for all T̂ ∈ T (Ω)

C−1
0 |x̂− ŷ| ≤ |FT (x̂)−FT (ŷ)| ≤ C0|x̂− ŷ| ∀ x̂, ŷ ∈ T̂ . (3.7)

Since the forest induced by bisection on the flat parametric domain Ω is shape regular [11, 49, 52],

we observe that (3.7) states that the deformation of T̂ ∈ T (Ω) leading to T ∈ T does not degenerate.

We also point out that (3.7) implies the usual condition on the Jacobian ∇̂FT , valid for a.e. x̂ ∈ Ω

C−1
0 |w| ≤ |∇̂FT (x̂)w| ≤ C0|w| ∀w ∈ R

d, (3.8)

and that ∇̂FT happens to be constant on T̂ for an affine map FT [22].
We stress that a bi-Lipschitz parametrization satisfying (3.1) does not guarantee that T(T0) is

shape regular. This pathological situation is depicted in Figure 11. This issue has been tackled
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by A. Bonito and J. Pasciak [18] assuming that the surface γ is W 2
∞ and T0 is sufficiently fine.

We now present a similar result, invoking piecewise C1-regularity of γ, which hinges on (3.6): the
forest T(T0) is shape-regular with C0 = 2L provided

λΓ0
≤ 1

2Λ0L
, (3.9)

where L > 1 is the constant in (3.1) [12, Lemma 3.2]. Figure 11 illustrates an intermediate
degenerate situation in which a triangle T ∈ T is split into two triangles T1, T2 ∈ T∗ with λΓ∗

(T1) >
(2Λ0L)

−1 and (3.9) being violated. This thereby leads to refinement of T1, which opens up and
gives rise to nondegenerate descendents eventually satisfying (3.9).

T111

p q

r

mT

P0(m) p q

r

m

T1

T2

P0(m)

Figure 11: Smooth surface leading to a degenerate triangle. The point P0(m) is (almost) aligned with p and q.
When the triangle T = pqr ∈ T is split into pqm and rpm, the new elements of T∗ are T1 = pqP0(m), T2 = rpP0(m).

The triangle T1 is degenerate and λΓ∗
(T̂1) > (2Λ0L)−1, thus violating (3.9). This forces ADAPT SURFACE to refine

further, which in turn opens up T1 leading eventually to nondegenerate descendents of T1.

4 The Laplace-Beltrami Operator

4.1 Basic Differential Geometry

In this subsection we give a matrix formulation of some basic differential geometry facts. We
assume γ to be piecewise C1, namely γi ∈ C1(Γi

0) for all 1 ≤ i ≤ I, and Γ to be piecewise affine.

Our first task is to relate the gradient ∇̂ in the parametric domain Ω with the tangential
gradient ∇γ on γ. To this end, let T ∈ R(d+1)×d be the matrix

T := Tγ := [∂̂1X , . . . , ∂̂dX ],

whose i-th column ∂̂iX ∈ Rd+1 is the vector of partial derivatives of X with respect to the ith

coordinate of Ω. Since X is a diffeomorphism, the set {∂̂iX}di=1 of tangent vectors to γ is well
defined, linearly independent, and expands the tangent hyperplane to each γj at interior points
for all 1 ≤ j ≤ I. The first fundamental form of γ is the symmetric and positive definite matrix
g ∈ Rd×d defined by

g =
(
gγ,ij

)
1≤i,j≤d

:=
(
∂̂iX T ∂̂jX

)
1≤i,j≤d

= TTT. (4.1)

Given v̂(x̂) = v(x̃), the tangent gradient ∇γv(x̃) =
∑d

i=1 αi(x̂)∂̂iX (x̂) satisfies the relation

∂̂iv̂(x̂) = ∇γv(x̃) ∂̂iX (x̂) for 1 ≤ i ≤ d,

whence
∇̂v̂ = ∇γvT (4.2)

12



and (αi)
d
i=1 = g−1(∂̂iv̂)

d
i=1. To get the reverse relation, we augment T to the matrix T̃ ∈

R
(d+1)×(d+1) by adding the (outer) unit normal ν = (ν1, · · · , νd+1) ∈ R

(d+1) to the tangent hyper-

plane span{∂̂Xi}di=1 to γ as the last column, namely

T̃ :=
[
T,νT

]
=
[
∂̂1X , . . . , ∂̂dX ,νT

]
.

Since T̃ is invertible, we let D̃ = T̃−1. We thus realize that

∇γv = ∇γv T̃ D̃ =
[
∇̂v̂, 0

]
D̃ = ∇̂v̂ D, (4.3)

where D ∈ Rd×(d+1) results from D̃ by cutting off its last row. Moreover, writing

I(d+1)×(d+1) = T̃−1T̃ =

[
D

v

] [
T νT

]
=

[
DT DνT

vT vνT

]

with v ∈ Rd+1, we deduce DT = Id×d and vT = 0 whence v is parallel to ν and v = ν because
vνT = 1. Reverting the order of multiplication, we also infer that

I(d+1)×(d+1) = T̃T̃−1 =
[
T νT

] [ D

ν

]
= TD+ νTν,

and TD = I(d+1)×(d+1) − νTν. This shows that TD is symmetric and

TDDTTT = TDTD = TD = I(d+1)×(d+1) − νTν, (4.4)

as well as
DDTTTT = DTDT = Id×d.

Therefore, the first fundamental form g has inverse g−1 = DDT . We let

q :=
√
detg (4.5)

be the elementary area of γ and point out the change of variables formula for ω ⊂ Ω
∫

ω

v̂q =

∫

X (ω)

v. (4.6)

The discussion above applies as well to the piecewise affine surface Γ. We denote the corre-
sponding matrices TΓ = ∇̂FT and DΓ associated with FT : Ω → Γ, and get

∇Γv = ∇̂v̂DΓ. (4.7)

The first fundamental form GΓ of Γ and its elementary area QΓ are defined by

GΓ := TT
Γ TΓ, QΓ :=

√
detGΓ. (4.8)

It is worth noticing that, since FT is affine, GΓ and QΓ are constant on each T̂ ∈ T (Ω) (T ∈ T ).

4.2 Variational Formulation and Galerkin Method

We now introduce basic Lebesgue and Sobolev spaces on the surface γ. Let

L2
#(γ) :=

{
v ∈ L2(γ)

∣∣
∫

γ

v = 0 if ∂γ = ∅
}

be the space of L2 functions, with vanishing meanvalue whenever the surface γ is closed, and

H1
#(γ) :=

{
v ∈ L2

#(γ)
∣∣ ∇γv|γi ∈ [L2(γi)]d+1, v|γi = v|γj on γi ∩ γj 1 ≤ i, j ≤ I, v = 0 on ∂γ

}
,

13



where ∇γ and traces are well defined in each component γi due to (4.3). We define the weak form
of the Laplace-Beltrami operator ∆γv for any function v ∈ H1

#(γ) to be

〈−∆γv, ϕ〉 :=
I∑

i=1

∫

γi

∇γv∇T
γ ϕ ∀ϕ ∈ H1

#(γ), (4.9)

where 〈·, ·〉 denotes the (H1
#(γ))

∗-H1
#(γ) duality product. In order to derive a strong form of ∆γ ,

we now assume that X i is C2 and v ∈ H2(γi) for each 1 ≤ i ≤ d. In view of (4.3), integrating by
parts in Ω we obtain

∫

γi

∇γv∇T
γ ϕ =

∫

Ω

∇̂v̂DDT ∇̂ϕ̂T q =

∫

Ω

−1

q
d̂iv
(
q∇̂v̂g−1

)
ϕ̂q +

∫

∂Ω

q∇̂v̂g−1n̂T ϕ̂,

where n̂ is the unit outer normal to Ω. We thus discover that inside γi the following expression for
the Laplace-Beltrami operator holds

∆γv =
1

q
d̂iv
(
q∇̂v̂g−1

)
. (4.10)

The boundary term instead leads to jumps across the boundary ∂γi with other pieces γj of γ and
can be equivalently written as

∫

∂Ω

q∇̂v̂g−1n̂T ϕ̂ =

∫

∂γi

∇γvn
Tϕ, (4.11)

where n in the unit outer normal to γi in the tangent plane to γi. Combining (4.10) with (4.11)
yields ∫

γi

∇γv∇T
γ ϕ =

∫

γi

−∆γv ϕ+

∫

∂γi

∇γv n
Tϕ, (4.12)

which is the Gauss-Green formula for C2 surfaces.
Expression (4.11) is not obvious and, since it is quite important for the subsequent discussion,

we prove it now. Recall that Ω ⊂ Rd is the canonical unit simplex and notice that a change of
variables in Ω dictated by a rotation leaves the left-hand side of (4.11) unchanged. We exploit this
property to assume, for convenience, that an arbitrary x̂ ∈ ∂Ω belongs to the (d − 1)-subsimplex

Ŝ with outer normal given by n̂ = [−1, 0, · · · , 0]. We observe that the affine function φ̂(x̂) = x̂n̂T

vanishes on Ŝ and ∇̂φ̂ = n̂ = ∇γφT, according to (4.2), whence

∇γφ ∂̂1X = −1, ∇γφ ∂̂iX = 0 2 ≤ i ≤ d;

moreover, ∇γφ = |∇γφ|n. We now introduce the auxiliary matrix S ∈ R
(d+1)×(d−1)

S = [∂̂2X , · · · , ∂̂dX ], r =
√
det(STS),

and point out that the quantity r is the elementary area associated with the subsimplex Ŝ at x̂.
Since the (d− 1)-dimensional space span{∂̂iX}di=2 is tangent to the curvilinear simplex S̃ = X (Ŝ),

we can decompose ∂̂1X orthogonally as follows

∂̂1X = αn+ Sb, α ∈ R, b ∈ R
d−2,

where b is the least squares solution b = (ST S)−1 ST ∂̂1X T and |∂̂1X|2 = α2 + |Sb|2. Hence,

−1 = ∇γφ ∂̂1X = α|∇γφ| ⇒ α = −|∇γφ|−1.
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We compute q2 = detg using the expression for block matrices

g =

[
|∂̂1X|2 ∂̂1X S

ST ∂̂1X T ST S

]
=⇒ detg = det(ST S)

(
|∂̂1X|2 − ∂̂1X S(ST S)−1 ST ∂̂1X T

)
,

to infer that
q2 = r2α2 =⇒ |∇γφ| =

r

q
=⇒ n̂ = nT

r

q
.

To finally derive (4.11), we recall that TD = I(d+1)×(d+1) − νTν and observe that

∫

Ŝ

q∇̂v̂g−1n̂T ϕ̂ =

∫

Ŝ

q∇̂v̂DDT n̂T ϕ̂ =

∫

Ŝ

r∇γvD
TTTnTϕ =

∫

S̃

∇γv n
Tϕ.

We now build on (4.9) and write the weak formulation of−∆γu = f as follows: given f ∈ L2
#(γ),

we seek u ∈ H1
#(γ) satisfying

I∑

i=1

∫

γi

∇γu∇T
γ ϕ =

∫

γ

f ϕ, ∀ ϕ ∈ H1
#(γ). (4.13)

Existence and uniqueness of a solution u ∈ H1
#(γ) is a consequence of the Lax-Milgram theorem

provided γ is Lipschitz. Combining (4.13) with (4.12) and (4.11) yields for each component γi,

−∆γiu = f 1 ≤ i ≤ I, (4.14)

together with vanishing jump conditions at the interfaces γi ∩ γj

J (u)|γi∩γj = ∇γiuni +∇γjunj = 0 ∀ 1 ≤ i, j ≤ I, (4.15)

because f ∈ L2
#(γ) cannot balance this singular term otherwise.

We next formulate an approximation to the Laplace-Beltrami operator on a piecewise affine
approximation Γ of γ supported by a mesh T ∈ T(T0). If FΓ ∈ L2

#(Γ) is a suitable approximation
of f , then the finite element solution U : Γ → R solves

U ∈ V(T ) :

∫

Γ

∇ΓU∇T
Γ V =

∫

Γ

FΓ V ∀ V ∈ V(T ). (4.16)

To this end we choose FΓ to be

FΓ := f
q

QΓ
, (4.17)

because this specific choice of FΓ satisfies the compatibility property
∫

Γ

FΓ =

∫

γ

f = 0, (4.18)

whenever γ is closed, and allows us to handle separately the approximation of surface γ and forcing
f . In particular, (4.16) admits a unique solution U as a consequence of the Lax-Milgram theorem.

Since Γ is piecewise affine, the quantities ∇̂Û ,GΓ, QΓ are piecewise constant, whence

∆ΓU |T = 0 ∀T ∈ T . (4.19)

We refer to [12] where we account for piecewise polynomial Γ and the fact that ∆ΓU |T 6= 0. The
formula (4.12) extends to every element T ∈ T :

∫

T

∇ΓU∇T
ΓV =

∫

T

−∆ΓU V +

∫

∂T

∇ΓU nT
TV ∀V ∈ V(T ). (4.20)
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5 A Posteriori Error Analysis

In order to study the discrepancy between u and U we need to agree on comparing them in a
common domain, say γ. Our goal is thus to obtain a posteriori error estimates for the energy error
‖∇γ(u − U)‖L2(γ). This requires developing an a priori error analysis for the interpolation error
committed in replacing γ by Γ in (4.16), which is a sort of consistency error, and its impact on the
PDE error. We are concerned with these issues in this section and refer to [28, 29, 46].

5.1 Geometric Error and Estimator

We now quantify the error arising from approximating γ, the so-called geometric error. To this
end we resort to the matrix formulation of §4.1 to relate the geometric error with the geometric
estimator λΓ of (3.4).

Given T ∈ T , we will deal with the regions T̂ ∈ T (Ω) and T̃ ∈ T (γ) given by

T̂ :=
{
F−1

T (x) | x ∈ T
}

and T̃ :=
{
X (x̂) | x̂ ∈ T̂

}
. (5.1)

On mapping back and forth to T̂ , and using (4.6), we easily see that
∫

T

v =

∫

T̃

v
QΓ

q
. (5.2)

We are now able to quantify the consistency error alluded to at the beginning of this section.

Lemma 5.1 (consistency error). For all v, w ∈ H1(γ) there holds
∫

Γ

∇Γv∇T
Γ w −

∫

γ

∇γv∇T
γ w =

∫

γ

∇γvEΓ∇T
γ w,

where EΓ ∈ R(d+1)×(d+1) stands for the following error matrix

EΓ :=
1

q
T(QΓG

−1
Γ − qg−1)TT . (5.3)

Proof. We first note that combining (4.2) with (4.3), we get

∇γv = ∇Γv TΓD and ∇Γv = ∇γv TDΓ, (5.4)

which together with (5.2) gives
∫

Γ

∇Γv ∇T
Γ w =

∫

γ

∇γv TDΓD
T
ΓT

T ∇T
γ w

QΓ

q
∀v, w ∈ H1(γ). (5.5)

Since (4.4) allows us to write
∫

γ

∇γv ∇T
γ w =

∫

γ

∇γv TDDTTT ∇T
γ w ∀v, w ∈ H1(γ), (5.6)

which is a counterpart of (5.5), the assertion follows immediately from (4.1) and (4.8).

Our next task is to estimate EΓ in (5.3), which entails dealing with g,GΓ and q,QΓ.

Lemma 5.2 (properties of GΓ and QΓ). The matrices g and GΓ have eigenvalues in the interval
[L−2, L2] and [ 12L

−2, 3
2L

2], respectively, provided the initial mesh T0 satisfies

λΓ0
≤ 1

6Λ0L3
. (5.7)

Moreover, the forest T(T0) is shape regular, L−d . q,QΓ . Ld, and for all T ∈ T(T0)
‖q −QΓ‖L∞(γ) + ‖g−GΓ‖L∞(γ) . λΓ. (5.8)
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Proof. Since L ≥ 1, (5.7) yields (3.9), which in turn gives shape regularity of the forest T(T0) and
(3.8) with constant C0 = 2L. Hence, using the definitions of g andGΓ, we deduce ‖g−GΓ‖L∞(γ) ≤
3LλΓ. On the other hand, invoking (3.2) we see that ξTgξ =

∣∣∇Xξ
∣∣2 for all ξ ∈ Rd, whence

L−2|ξ|2 ≤ ξTgξ ≤ L2|ξ|2.

Since λΓ ≤ 1
6L3 , due to (5.7) and (3.6), then the previous estimates readily imply

1

2
L−2|ξ|2 ≤

(
L−2 − 3LλΓ

)
|ξ|2 ≤ ξTGΓξ ≤

(
L2 + 3LλΓ

)
|ξ|2 ≤ 3

2
L2|ξ|2,

as well as L−d . q,QΓ . Ld because q2 = detg, Q2
Γ = detGΓ are products of the d eigenvalues of

g,GΓ. Moreover, since

q −QΓ =
detg − detGΓ

q +QΓ
,

it only remains to obtain an estimate for the numerator. The definition of determinant readily
yields

∣∣det g− detG
∣∣ . L2d−1λΓ, and completes the proof.

We stress that if T0 does not satisfy (5.7) but ε0 ≤ (6Λ0L
3ω)−1, then the algorithm AFEM of

§1 will first refine T0 to make it comply with (5.7) without ever solving the PDE. In this sense,
(5.7) is not a serious restriction for AFEM, although necessary for the subsequent theory.

Corollary 5.3 (estimate of EΓ). If λΓ0
satisfies (5.7), then we have for all T ∈ T(T0) and

corresponding Γ
‖EΓ‖L∞(T̂ ) . λΓ(T ) ∀ T ∈ T ,

where the hidden constant depends on T0 and the Lipschitz constant L of γ.

Proof. According to (5.3), and ‖T‖L∞(γ) = ‖TT ‖L∞(γ) ≤ L, we infer that

‖EΓ‖L∞(T̂ ) .
∥∥QΓG

−1
Γ − qg−1

∥∥
L∞(T̂ )

.

The lower bounds on the eigenvalues of g and GΓ imply ‖g−1‖L∞(T̂ ), ‖G−1
Γ ‖L∞(T̂ ) . L2, which

together with the expression

QΓG
−1
Γ − qg−1 = (QΓ − q)G−1

Γ + qG−1
Γ (g −GΓ)g

−1

and (5.8) gives the asserted estimate.

We now give a constructive expression for unit normals in Rd+1, thereby generalizing the usual
vector product in R

3, and next use it to derive an error estimate for DΓ.

Lemma 5.4 (unit normal). Let {ej}d+1
j=1 be the canonical unit vectors of Rd+1. For each x̂ ∈ Ω,

and x = X (x̂) ∈ γ, let N(x̂) =
∑d+1

j=1 Aj(x̂)ej , where Aj stands for the determinant

Aj(x̂) := det
(
ej , ∂̂1X (x̂), · · · , ∂̂dX (x̂)

)

We then have |N(x̂)| = q(x̂) and the unit normal vector ν(x) to γ at x is given by ν(x) =
N(x̂)/

∣∣N(x̂)
∣∣. Moreover, a similar result holds true also for Γ, upon replacing X by FT , provided

λΓ0
satisfies (5.7), i. e., |NΓ(x̂)| = QΓ(x̂) and νΓ(x) = NΓ(x̂)/|NΓ(x̂)|.

Proof. We fix x̂ ∈ Ω and drop it from the notation. Since T is full rank, some Aj must be non-zero
whence N 6= 0. Moreover, the vector N is orthogonal to the tangent hyperplane to γ at x because

N · ∂̂iX =

d+1∑

j=1

Ajej · ∂̂iX = det
(
∂̂iX , ∂̂1X , · · · , ∂̂iX , · · · , ∂̂dX

)
= 0.
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Hence, ν = N/|N| is well defined. To prove that |N| = q recall that T =
[
∂̂1X , · · · , ∂̂dX

]
to write

|N|2 =

d+1∑

j=1

A2
j =

d+1∑

j=1

Aj det
(
ej , ∂̂1X , · · · , ∂̂dX

)
= det

(
N, ∂̂1X , · · · , ∂̂dX

)

=
{
det
(
[N,T]

T
[N,T]

)}1/2

=

{
det

[
NTN 0
0 TTT

]}1/2

= |N| q.

This implies |N| = q because |N| 6= 0. The same argument applies to Γ.

Lemma 5.5 (error of ν and D). If (5.7) holds for the initial mesh T0, then for all T ∈ T(T0)

‖ν − νΓ‖L∞(γ) + ‖D−DΓ‖L∞(γ) . λΓ. (5.9)

Proof. Lemmas 5.2 and 5.4 imply L−d . |N(x̂)|, |NΓ(x̂)| . Ld for all x̂ ∈ Ω, whence

ν − νΓ =
N

|N| −
NΓ

|NΓ|
=

1

|N| (N−NΓ) +

(
1

|N| −
1

|NΓ|

)
NΓ ⇒

∣∣ν − νΓ

∣∣ . Ld
∣∣N−NΓ

∣∣.

To estimate N − NΓ =
∑d+1

j=1

(
Aj − AΓ,j

)
ej, we observe that each Aj (resp. AΓ,j) is a sum of

factors of the form ∂̂iX · em (resp. ∂̂iFT · em), whence

∣∣Aj −AΓ,j

∣∣ . Ld−1λΓ ⇒ |ν − νΓ| . L2d−1λΓ.

For the remaining estimate for D−DΓ we recall the definition T̃ = [T,νT ] to infer that

‖T̃− T̃Γ‖L∞(γ) ≤ ‖T−TΓ‖L∞(γ) + ‖ν − νΓ‖L∞(γ) . λΓ.

We now show that D̃ = T̃−1 is uniformly bounded. To see this, we write T̃w̃ = Tw+wd+1ν
T for

w̃ = (w, wd+1) ∈ Rd+1 and recall (3.2) to get

L−2|w̃|2 ≤ L−2|w|2 + |wd+1|2 ≤
∣∣T̃w̃

∣∣2 ≤ L2|w|2 + |wd+1|2 ≤ L2|w̃|2,

as well as ‖T̃−1‖L∞(Ω), ‖T̃−1
Γ ‖L∞(Ω) . L2. Since D̃−D̃Γ = T̃−1

(
T̃Γ−T̃

)
T̃−1

Γ , the desired estimate

follows immediately from the previous one for T̃− T̃Γ.

We finally point out the equivalence of norms on γ and Γ provided (5.7) is valid [12, Lemma
5.6]

‖v‖L2(T̃ ) ≈ ‖v‖L2(T ), |v|L2(T̃ ) ≈ |v|L2(T ) ∀T ∈ T . (5.10)

5.2 Upper and Lower Bounds for the Energy Error

We now derive an error representantion formula leading to lower and upper bounds for the energy
error. Given T ∈ T(T0), we let the usual interior and jump residual for V ∈ V(T ) be

RT (V ) := FΓ|T +∆ΓV |T = FΓ|T ∀T ∈ T ,

JS(V ) := ∇ΓV
+|S · n+

S +∇ΓV
−|S · n−

S ∀S ∈ S,

where n+
S and n−

S are outward unit normals to S with respect to T+ and T−, on the supporting
planes containing T+ and T− respectively; T+ and T− are elements in T that share the side
S ∈ S where S denotes the set of interior faces of T ∈ T . We stress that, in contrast to flat
domains, n+

S 6= n−
S because the vector may have different supporting hyperplanes. Similarly,
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∇ΓV
+|S = ∇̂V +DΓ|Ŝ and ∇ΓV

−|S = ∇̂V −DΓ|Ŝ are tangential gradients of V on T+ and T−

restricted to S, respectively. Note that, according to (4.14),

∆ΓV |T = Q−1
Γ d̂iv

(
QΓ∇̂V̂G−1

Γ

)
|T̂ = 0 ∀T ∈ T ,

provided V and Γ are piecewise linear. We refer to [12, 29] for the case ∆ΓV |T 6= 0.
Subtracting the weak formulations (4.13) and (4.16), and employing (4.12) to integrate by parts

elementwise, we obtain for all v ∈ H1(γ):

∫

γ

∇γ(u− U) · ∇γv = I1 + I2 + I3, (5.11)

with

I1 :=
∑

T∈T

∫

T

FΓ(v − V )−
∑

S∈S

∫

S

JS(U)(v − V ),

I2 :=

∫

Γ

∇ΓU · ∇Γv −
∫

γ

∇γU · ∇γv =

∫

γ

∇γUEΓ∇T
γ v,

I3 :=

∫

γ

fv −
∫

Γ

FΓv.

The choice FΓ = q
QΓ

f of(4.17) implies I3 = 0 so that only I1 and I2 need to be estimated. Observe
that I1 is the usual residual term, whereas I2 is the geometry consistency term studied in §5.1
which accounts for the discrepancy between γ and Γ.

We focus now on I1. The PDE error indicator is defined as follows for any V ∈ V(T )

ηT (V, T )
2 := h2

T ‖FΓ‖2L2(T ) +
1

2

∑

S⊂∂T

hT ‖JS(V )‖2L2(S) ∀T ∈ T ,

where hT := |T0|
1
d and T0 is the preimage of T in the initial triangulation T0, ie. T0 = F0◦F−1

T (T ).
This definition of hT guarantees the strict reduction property

hT ′ ≤ 2−b/dhT (5.12)

for all T ′ obtained from T after b bisections. We also introduce the data oscillation

oscT (f, T ) := hT ‖FΓ − FΓ‖L2(T ) ∀T ∈ T , (5.13)

where FΓ stands for the meanvalue of FΓ on T ∈ T . Finally, for any subset τ ⊂ T we set

ηT (V, τ)
2 :=

∑

T∈τ

ηT (V, T )
2, and oscT (f, τ)

2 :=
∑

T∈τ

oscT (f, T )
2,

and simply write ηT (V ) and oscT (f) whenever τ = T .
Standard arguments [1, 54] to derive upper and lower bounds for the energy error on flat

domains can be extended to this case; see [29, 46, 12]. We thus sketch the proof.

Lemma 5.6 (a posteriori upper and lower bounds). Assume that λΓ0
satisfies (5.7). Let u ∈ H1(γ)

be the solution of (4.13), (Γ, T ) an approximating surface-mesh pair, and U ∈ V(T ) be the Galerkin
solution of (4.16). Then there exist constants C1, C2 and Λ1 depending only on T0, the Lipschitz
constant of γ, and ‖f‖L2(γ), such that

‖∇γ(u− U)‖2L2(γ) ≤ C1ηT (U)2 + Λ1λ
2
Γ, (5.14)

C2ηT (U)2 ≤ ‖∇γ(u− U)‖2L2(γ) + oscT (f)
2 + Λ1λ

2
Γ. (5.15)
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Proof. Our departing point is (5.11) with v ∈ H1
#(γ) arbitrary and V ∈ V(T ) its Scott-Zhang

interpolant, built over the parametric domain Ω [19]. Using interpolation estimates and (5.10)
yields

|I1| . ηT (U)‖∇γv‖L2(γ).

Since ‖∇ΓU‖L2(γ) . ‖f‖L2(γ), invoking Corollary 5.3 gives

|I2| . λΓ‖∇γv‖L2(γ).

Since I3 = 0 we obtain the upper bound (5.14). To prove (5.15) we resort to a local argument due
to R. Verfürth [54]. Let T ∈ T and bT be corresponding cubic bubble. If v = FΓbT ∈ H1

0 (T ), then

‖∇γv‖L2(T ) . h−1
T ‖FΓ‖L2(T ).

Therefore, inserting v into (5.11) and taking V = 0 leads to

‖FΓ‖2L2(T ) .

∫

T

FΓv . h−1
T

(
‖∇γ(u − U)‖L2(T ) + λΓ(T )

)
‖FΓ‖L2(T ).

This combined with the triangle inequality gives part of (5.15). It remains to deal with the jump,
for which we select an arbitrary side S ∈ S with adjacent elements T±. Let bS be a piecewise
quadratic bubble with value 1 at the midpoint of S and 0 at any other quadratic node. Let
v = JS(U)bS ∈ H1

0 (ωS) where ωS = T+ ∪ T−. Replacing v into (5.11) and taking V = 0 yields

‖JS(U)‖2L2(S) .

∫

S

JS(U)v ≤
(
‖∇γ(u− U)‖L2(ωS) + hS‖FΓ‖L2(ωS) + λΓ(ωS)

)
‖∇γv‖L2(ωS).

To conclude the proof we invoke the property ‖∇γv‖L2(ωS) . h
−1/2
S ‖JS(U)‖L2(S) along with the

previous estimate for hS‖FΓ‖L2(ωS).

To prove optimality of AFEM we need a localized upper bound for the distance between two dis-
crete solutions. This bound measures ‖∇γ(U∗ −U)‖L2(γ) in terms of the PDE estimator restricted
to the refined set and geometric estimator [12, Lemma 4.13].

Lemma 5.7 (localized upper bound). Assume that λΓ0
satisfies (5.7). For (T ,Γ), (T∗,Γ∗) pairs

of mesh-surface approximations with T ≤ T∗, let R := RT →T ∗ ⊂ T be the set of elements refined
in T to obtain T ∗. Let U ∈ V(T ) and U ∈ V(T∗) be the corresponding discrete solutions of (4.16)
on Γ and Γ∗, respectively. Then the following localized upper bound is valid

‖∇γ(U∗ − U)‖2L2(γ) ≤ C1ηT (U,R)2 + Λ1λΓ(R)2, (5.16)

with constants C1,Λ1 as in Lemma 5.6.

Proof. We start from the error representation formula (5.11) by replacing γ by Γ∗ and taking as a
test function v = E∗ := U − U∗ ∈ H1

#(γ)

‖∇γ(U∗ − U)‖2L2(γ) ≃
∫

Γ∗

∇Γ∗
(U∗ − U) · ∇Γ∗

E∗ = I1 + I2 + I3.

To estimate I1, we proceed as in the flat case [21, 49, 51]. We first construct an approximation
V ∈ V(T ) of E∗ ∈ V(T∗). Let ω be the union of elements of T which are refined in T∗, and denote
by ωi one of the connected components of its interior. Let Ti be the subset of T contained in ωi

and let V(Ti) be the restriction of V(T ) to ωi. We now can construct the Scott-Zhang operator on
the corresponding flat domains ω̂i = F−1

T (ω) and then lift them to Γ via FT . We denote these lifts
by Pi : H

1(ω̂i) → V(Ti). Let V ∈ V(T ) be the following approximation of the error E∗ ∈ V(T∗):

V := PiE∗ in ωi, V := E∗ elsewhere.
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By construction, V has conforming boundary values on ∂ωi, is continuous in Γ, i.e V ∈ V(T ) and
is an H1-stable approximation to E∗. Since V = E∗ in Γ\ω we obtain by standard argument

|I1| ≤ C1ηT (U,R)‖∇ΓE∗‖L2(Γ).

To estimate I2, we first note that I2|Γ\ω = 0 because Γ and Γ∗ coincide in the unrefined region

Γ\ω. Adding and subtracting
∫
ω̃ ∇γU∇γE∗, with ω̃ = X ◦ F−1

T (ω), we obtain

I2 =

∫

ω̃

∇γUEΓ∇T
γ E∗ −

∫

ω̃

∇γUEΓ∗
∇T

γE∗.

Combining Corollary 5.3 with (5.10) and (3.6), in its elementwise form, we obtain

|I2| . (λΓ(R) + λΓ∗(R)) ‖∇ΓE∗‖L2(γ) . (1 + Λ2
0)‖f‖L2(γ)λΓ(R).

We note that the choice (4.17) of discrete forcing terms FΓ∗
and FΓ implies I3 = 0. Finally,

collecting the estimates above we conclude (5.16).

5.3 Properties of the PDE Estimator and Data Oscillation

As indicated in (5.14)-(5.15), we have access to the energy error ‖∇γ(u−U)‖L2(γ) only through the
PDE estimator ηT (U), the geometric estimator λΓ, and data oscillation oscT (f). As is customary
for flat domains, (5.13) guarantees that oscT (f) is dominated by ηT (U) locally:

oscT (f, T ) ≤ ηT (U, T ) ∀T ∈ T . (5.17)

The main novelty in (5.14)-(5.16) with respect to flat domains, which is also the chief challenge of
the present analysis, is the presence of λΓ. In this respect, we show now the equivalence of ηT (U)
and the total error

ET (U, f) :=
(
‖∇γ(u− U)‖2L2(γ) + oscT (f)

2
) 1

2

(5.18)

provided λΓ is small relative to ηT (U). We refer to [21] for a similar result for flat domains.

Lemma 5.8 (equivalence of estimator and total error). Let C1, C2,Λ1 be given in Lemma 5.6. If

λ2
Γ ≤ C2

2Λ1
ηT (U)2, (5.19)

then there exist explicit constants C3 ≥ C4 > 0, depending on C1, C2, such that

C4ηT (U) ≤ ET (U, f) ≤ C3ηT (U). (5.20)

Proof. Combining (5.14) with (5.19), we infer that

‖∇γ(u− U)‖2L2(γ) ≤
(
C1 +

C2

2

)
ηT (U)2. (5.21)

This, together with (5.17), gives the upper bound in (5.20). We next resort to (5.15) and (5.19) to
obtain

C2ηT (U)2 ≤ ‖∇γ(u− U)‖2L2(γ) + oscT (f)
2 +

C2

2
ηT (U)2,

which implies the lower bound in (5.20) and concludes the proof.

It turns out that the usual reduction property of ηT (U) [21, Corollary 3.4], which is instrumental
to prove a contraction property of AFEM, is also polluted by the presence of λΓ as stated below.
The following result is proved in [46, Lemma 4.2] for any polynomial degree.
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Lemma 5.9 (reduction of residual error estimator). Let λΓ0
satisfy (5.7). Given a mesh-surface

pair (T ,Γ), let M ⊂ T be a subset of elements bisected at least b ≥ 1 times in refining T to obtain

T∗ ≥ T . If ξ := 1 − 2−
b
d , then there exist constants Λ2 and Λ3, solely depending on the shape

regularity of T0, the Lipschitz constant L of γ, and ‖f‖L2(γ), such that for any δ > 0

ηT∗
(U∗)

2 ≤ (1 + δ)
(
ηT (U)2 − ξηT (U,M)2

)

+ (1 + δ−1)
(
Λ3‖∇γ(U∗ − U)‖2L2(γ) + Λ2λ

2
Γ

)
.

(5.22)

Proof. Let S ∈ S∗ be an interior side and T+, T− ∈ T ∗ be two elements sharing S. The component
of ∇Γ∗

U∗ tangential to S does not jump, because U∗ is continuous across S, whence
∣∣JS(U∗)

∣∣ =
∣∣∇Γ∗

U+
∗ −∇Γ∗

U−
∗

∣∣.

where U±
∗ = U∗|T± . Therefore

∣∣JS(U∗)− JS(U)
∣∣ ≤

∣∣∇Γ∗
(U+

∗ − U+)
∣∣+
∣∣∇Γ∗

(U−
∗ − U−)

∣∣
+
∣∣∇Γ∗

U+ −∇ΓU
+
∣∣+
∣∣∇Γ∗

U− −∇ΓU
−
∣∣.

Employing an inverse estimate together with (5.10), the first two terms can be bounded as follows:

hS‖∇Γ∗
(U±

∗ − U±)‖2L2(S) . ‖∇Γ∗
(U±

∗ − U±)‖2L2(T±) ≈ ‖∇γ(U
±
∗ − U±)‖2

L2(T̃±)
.

For the next two terms we use (4.7), in conjunction with (5.9) and (3.6), to write

hS‖∇Γ∗
U± −∇ΓU

±‖L2(S) . ‖∇̂Û±
(
DΓ∗

−DΓ

)
‖L2(T̂±) . λΓ,

where the hidden constant depends on ‖f‖L2(γ).

We now turn our attention to the interior residual. Let T∗ ∈ T∗ and T = FT ◦ F−1
T∗

(T∗), T̂ =

F−1
T∗

(T∗) be the corresponding sets in Γ and Ω. Since FΓ = q
QΓ

f we infer that

∣∣∣
∫

T∗

|FΓ∗
|2 −

∫

T

|FΓ|2
∣∣∣ =

∫

T̂

|qf |2
∣∣QΓ −QΓ∗

∣∣
QΓQΓ∗

. λΓ‖f‖2L2(T̃ )
,

because of (5.8) and the lower bounds for QΓ and QΓ∗
, as well as (3.6).

Collecting the estimates above, we realize that we have derived the bound

ηT∗
(U∗)

2 ≤ (1 + δ)ηT (U, T∗)2 + (1 + δ−1)
(
Λ3‖∇γ(U∗ − U)‖2L2(γ) + Λ2λ

2
Γ

)
.

It remains to deal with the set M, namely to prove

ηT (U, T∗)2 ≤ ηT (U)2 − ξηT (U,M)2.

This is exactly the same argument as for flat domains because of the definition of meshsize hT and
(5.12) [21, Corollary 3.4]. This concludes the proof.

Another difference with the theory of adaptivity for flat domains is the behavior of data os-
cillation under refinement. The usual situation is that oscT (f) does not increase upon refinement
from T to T∗ [48]. This is no longer true because oscT (f) and oscT∗

(f) are defined on different
domains Γ and Γ∗. Instead, we have the following substitute.

Lemma 5.10 (quasi-monotonicity of data oscillation). Let λΓ0
satisfy (5.7). Let (T ,Γ), (T∗,Γ∗)

be mesh-surface pairs with T ≤ T∗ and discrete forcing functions defined according to (4.17). Then,
there exists a constant C5 ≥ 1, depending only on T0 and the Lipschitz constant L of γ, such that

oscT∗
(f) ≤ C5 oscT (f). (5.23)
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Proof. Let T∗ ∈ T∗ and so in Γ∗, and let T = FΓ ◦ F−1
Γ∗

(T∗) be the corresponding set in Γ, but
perhaps not in T . Using (4.17) and the fact that QΓ is piecewise constant, we realize that

∫

T∗

∣∣FΓ∗
− FΓ∗

∣∣2 ≤
∫

T

∣∣∣f q

QΓ∗

− FΓ
QΓ

QΓ∗

∣∣∣
2QΓ∗

QΓ
=

∫

T

∣∣FΓ − FΓ

∣∣2 QΓ

QΓ∗

≤ C2
5

∫

T

∣∣FΓ − FΓ

∣∣2,

where C2
5 is the maximum of the ratios QΓ/QΓ∗

|T∗
for all T∗ ∈ T∗ and is bounded by L2d.

6 AFEM: Design and Properties

Since λΓ and ηT (U) account for quite different effects, the algorithm AFEM is designed to handle
them separately via the modules ADAPT SURFACE and ADAPT PDE:

AFEM: Given Γ0, T0, and parameters ε0 > 0, 0 < ρ < 1, and ω > 0, set k = 0.

1. [T +
k ,Γ+

k ] = ADAPT SURFACE(Tk, ωεk)
2. [Tk+1,Γk+1] = ADAPT PDE(T +

k , εk)
3. εk+1 = ρεk; k = k + 1
4. Goto 1.

We notice the presence of the factor ω, which is employed to make the geometric error small relative
to the current tolerance εk. This turns out to be essential for both contraction and optimality of
AFEM, and is further discussed in §§7–9.

6.1 Module ADAPT SURFACE

Given a tolerance τ > 0 and admissible subdivision T , [T +,Γ+] = ADAPT SURFACE(T ,Γ, τ)
improves the surface resolution until

λΓ+ ≤ τ (6.1)

where λΓ is the geometric estimator introduced in (3.4). This module is based on a greedy algorithm

[T +,Γ+] = ADAPT SURFACE(T ,Γ, τ)
while M := {T ∈ T |λT (T ) > τ} 6= ∅

T := REFINE(T ,M)
Γ := FT (Ω)

end while
return(T ,Γ)

where REFINE(T ,M) refines all elements in the marked set M and keeps conformity; more details
are given in §6.2. To derive convergence rates for AFEM, we require that ADAPT SURFACE is
t-optimal, i.e. there exists a constant C such that the set M+ of all the elements marked for
refinement in a call to ADAPT SURFACE(T ,Γ, τ) satisfies

#M+ ≤ Cτ−1/t, (6.2)

whenever γ belongs to a suitable approximation class, Bt with 0 < t ≤ 1/d (see §8.1). In §8.3 we
show that this assumption is satisfied provided that γ ∈ W 1+td

p (Γ0) for some tp > 1.

6.2 Module ADAPT PDE

Given a tolerance ε > 0 and admissible subdivision T +, [T , U ] = ADAPT PDE(T +, ε) outputs a
refinement T ≥ T + and the associated finite element solution U ∈ V(T ) such that

ηT (U) ≤ ε. (6.3)
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The module ADAPT PDE is the standard adaptive sequence:

[T ,Γ] = ADAPT PDE(T , ε)
U = SOLVE(T )
{ηT (U, T )}T∈T = ESTIMATE(T , U)
while ηT (U) > ε

M := MARK(T , {ηT (U, T )}T∈T )
T := REFINE(T ,M)
Γ := FT (Ω)
U = SOLVE(T )
{ηT (U, T )}T∈T = ESTIMATE(T , U)

end while
return(T ,Γ)

We describe below the modules SOLVE,ESTIMATE,MARK and REFINE separately.

Procedure SOLVE. This procedure solves the SPD linear system resulting for (4.16). For simplic-
ity we assume that the linear system is solved exactly. In this context, the approximate solution of
the discrete problem can be handled as in [51]. We refer to [43] for a hierarchical basis multigrid
preconditioner and to [18] for standard variational and non-variational multigrid algorithms.

Procedure ESTIMATE. Given the Galerkin solution U ∈ V(T ) of (4.16) ESTIMATE computes
the PDE error indicators {ηT (U, T )}T∈T . We emphasize that this procedure does not compute the
oscillation terms, which are only needed to carry out the analysis.

The equivalence stated in Lemma 5.8 is critical to deduce that the ADAPT PDE strategy based
on the reduction of the error indicators ηT (U) is successful in reducing the total error ‖∇γ(u −
U)‖L2(γ) + oscT (f). To see this we impose the constraint on the parameter ω

ω ≤ ω1 :=

√
C2

2Λ2
0Λ1

, (6.4)

and observe that the input T + to ADAPT PDE as well as all inner iterates satisfy, in view of (3.6),

λ2
Γ ≤ Λ2

0λ
2
Γ+ ≤ C2

2Λ1
ε2k.

Since ηT (U) > εk, we deduce the validity of (5.19) whence that of (5.20) within ADAPT PDE.

Procedure MARK.We rely on an optimal Dörfler’smarking strategy for the selection of elements.
Given the set of indicators {ηT (U, T )}T∈T and a marking parameter θ ∈ (0, 1], MARK outputs a
subset of marked elements M ⊂ T such that

ηT (U,M) ≥ θηT (U). (6.5)

In contrast to [46], MARK only employs the error indicators and does not use the oscillation nor
surface indicators. We will see that quasi-optimality of AFEM requires that M be minimal and θ
sufficiently small.

Procedure REFINE. Given a triangulation T and a subset M of marked elements, the call T∗ =
REFINE(T ,M) bisects all elements in M at least b ≥ 1 times while maintaining mesh conformity,
to obtain a new mesh T∗. The new surface Γ∗ is obtained by piecewise linear interpolation of the
parametrization X via FT∗

= IT∗
X , namely, Γ∗ = FT∗

(Ω).
To ensure conformity of T∗ some additional elements of T \M need to be refined. The complexity

of the overall refinement algorithm is controlled in a cumulative way, as was proved by P. Binev,
W. Dahmen, and R. DeVore for d = 2 [11] and R. Stevenson [52] for d > 2; see also the survey
[49]. The precise statement of this result is in the following lemma.
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Lemma 6.1 (Complexity of REFINE). Assume that T0 is suitably labeled (condition (b) of §4 in
[52]). Let {Tk}k≥0 be any sequence of meshes produced by succesive calls Tk+1 = REFINE(Tk,Mk).
Then, there exists a constant C6 solely depending on T0 and the refinement depth b such that

#Tk −#T0 ≤ C6

k−1∑

j=0

#Mj , ∀ k ≥ 1. (6.6)

It is worth noticing that the user parameter b ≥ 1 only entails a minimal refinement, which
does not force an interior node property [48, 47] or an extra refinement to improve the surface
approximation [46].

Remark 6.2 (alternative subdivision strategies). For simplicity we only discuss the refinement
strategy based on simplex bisection. However, all the results obtained can be extended to any
strategy satisfying Conditions 3, 4 and 6 in [14], such as quadrilaterals with hanging nodes.

7 Conditional Contraction Property

The procedure ADAPT PDE is known to yield a contraction property in the “flat” case. In the
present context, however, the surface approximation is responsible for lack of consistency in that
the sequence of finite element spaces is no longer nested. This in turn leads to failure of a key
orthogonality property between discrete solutions, the Pythagoras property. We have, instead, a
perturbation result referred to as quasi-orthogonality below. Its proof follows the steps of that for
graphs [46, Lemma 4.4]. In this section, we use the notation

ej := ‖∇γ(u − U j)‖L2(γ), Ej := ‖∇γ(U
j+1 − U j)‖L2(γ),

ηj := ηT j (U j), ηj(Mj) := ηT j (U j ,Mj), λj := λΓj ,

where T j are meshes obtained after each inner iteration of ADAPT PDE, starting with T 0 = T +,
and Γj , U j are the corresponding discrete surfaces and Galerkin solutions.

Lemma 7.1 (Quasi-orthogonality). Let Λ2 > 0 be the constant of Lemma 5.9, which solely depends
on the Lipschitz constant L of γ and ‖f‖L2(γ). Then, for i = j, j + 1 with j ≥ 0, we have

(ej)2 − 3

2
(Ej)2 − Λ2(λ

i)2 ≤ (ej+1)2 ≤ (ej)2 − 1

2
(Ej)2 + Λ2(λ

i)2. (7.1)

Proof. Since the symmetry of the Dirichlet form implies

(ej)2 = (ej+1)2 + (Ej)2 + 2

∫

γ

∇γ(u− U j+1)∇T
γ (U

j+1 − U j),

we just have to examine the last term. Combining (4.13), (4.16), and (4.17) with Lemma 5.1 yields

∣∣∣
∫

γ

∇γ(u − U j+1)∇T
γ (U

j+1 − U j)
∣∣∣ . ‖f‖L2(γ)λ

jEj ,

which gives (7.1) after applying Young’s inequality.

Remark 7.2 (validity of (7.1)). Relation (7.1) is also true for any pair of triangulations (T , T∗),
with T∗ ≥ T , discrete solution U∗ ∈ V(T∗) on the finer space, and any discrete function V ∈ V(T ).

Theorem 7.3 (Conditional Contraction Property). Let θ ∈ (0, 1] be the marking parameter of
MARK and let {T j ,Γj , U j}Jj≥0 be a sequence of meshes, piecewise affine surfaces and discrete
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solutions generated by the procedure ADAPT PDE (T 0, ε) within AFEM with tolerance ε, i.e. λ0 ≤
ωε. Assume that the AFEM parameter ω satisfies

ω ≤ ω2 :=
ξθ2

Λ0

√
32Λ2(2Λ3 + 1)

, (7.2)

where ξ = 1− 2−b/d is defined in Lemma 5.9. There exist constants 0 < α < 1 and β > 0 such that

(ej+1)2 + β(ηj+1)2 ≤ α2
(
(ej)2 + β(ηj)2

)
∀ 0 ≤ j < J. (7.3)

Moreover, the number of inner iterates J of ADAPT PDE is uniformly bounded.

Proof. 1 Let β > 0 be a scaling parameter to be found later. We combine (7.1) and (5.22) to
write

(ej+1)2 + β(ηj+1)2 ≤ (ej)2 +
(
− 1

2
+ β(1 + δ−1)Λ3

)
(Ej)2

+ Λ2

(
1 + β(1 + δ−1)

)
(λj)2 + β(1 + δ)

(
(ηj)2 − ξηj(Mj)2

)
.

Here Mj is the set of elements in T j marked for refinement at the j-th subiteration. To remove
the factor of Ej we now choose β dependent on δ, to be

β(1 + δ−1)Λ3 =
1

2
⇒ β(1 + δ) =

δ

2Λ3
, (7.4)

and thereby obtain

(ej+1)2 + β(ηj+1)2 ≤ (ej)2 + Λ2

(
1 + β(1 + δ−1)

)
(λj)2 + β(1 + δ)

(
(ηj)2 − ξηj(Mj)2

)
.

2 Invoking Dörfler marking (6.5), we deduce

(ηj)2 − ξηj(Mj)2 ≤ (1− ξθ2)(ηj)2.

Since the initial mesh T 0 comes from ADAPT SURFACE we know that λ0 ≤ ωε ≤ ωηj for all inner
iterations 1 ≤ j ≤ J of ADAPT PDE. Using (3.6) yields λj ≤ Λ0ωη

j , whence

(ej+1)2 + β(ηj+1)2 ≤(ej)2 − β(1 + δ)
ξθ2

2
(ηj)2

+ β
(
(1 + δ)

(
1− ξθ2

2

)
+ Λ2

(
1 +

1

2Λ3

)Λ2
0ω

2

β

)
(ηj)2.

Applying the simpler upper bound (5.21), which is valid for the inner iterates of ADAPT PDE, and
replacing β according to (7.4), we obtain

(ej+1)2 + β(ηj+1)2 ≤ α1(δ)(e
j)2 + α2(δ)β(η

j)2

with

α1(δ)
2 := 1− δ

ξθ2

4Λ3C3
, α2(δ)

2 := (1 + δ)

(
1− ξθ2

2

)
+ Λ2

(
1 +

1

2Λ3

)
Λ2
0ω

2

β
.

It remains to prove that δ can be chosen so that α2(δ)
2 < 1. We then fix the parameter δ so that

(1 + δ)
(
1− ξθ2

2

)
= 1− ξθ2

4
⇒ δ =

ξθ2

4− 2ξθ2
,
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Now, according to (7.4), we obtain β = ξθ2

2Λ3(4−ξθ2) ≥
ξθ2

8Λ3
and since ω ≤ ω2 we infer that

Λ2

(
1 +

1

2Λ3

)
Λ2
0ω

2

β
≤ 4Λ2(2Λ3 + 1)

ξθ2
Λ2
0ω

2 ≤ ξθ2

8
.

Hence α2
2 ≤ 1− ξθ2

8 < 1, and the choice α := max{α1, α2} < 1 yields the desired estimate (7.3).

3 The contraction property (7.3) guarantees that ADAPT PDE stops in a finite number of itera-
tions J . To show that J is independent of the iteration counter k of AFEM, take k ≥ 1 and note
that before the call ADAPT PDE(T +

k , εk) we have

ηk = ηTk
(Uk) ≤ εk−1 =

εk
ρ
, λk = λΓk

≤ Λ0λΓ+

k−1

≤ Λ0ω

ρ
εk.

We next combine (5.22), with δ = 1, and (7.1) to get

ηT +

k
(U+

k )2 . η2k + λ2
k + ‖∇γ(U

+
k − Uk)‖2L2(γ) . η2k + λ2

k + ‖∇γ(u− Uk)‖2L2(γ),

where the hidden constants depend on Λ2,Λ3. The bounds on ηk, λk, together with (5.14), yield

(η0)2 = ηT +

k
(U+

k )2 . η2k + λ2
k . ε2k.

Since the stopping condition of ADAPT PDE is ηJ ≤ εk, (7.3) implies that J is bounded indepen-
dently of k, as asserted.

That J is uniformly bounded dictates the complexity of ADAPT PDE because the most expen-
sive module SOLVE is run just J times. However, this property is not required for the study of
cardinality of §8.

8 Optimal Cardinality

In this section we study the cardinality of AFEM, which is dictated by the regularity of u, f and γ.
We first discuss in §8.1 the best approximation error achievable with piecewise linear polynomials
for both surface and PDE solution. We show next in §8.2 that AFEM delivers the best convergence
rate provided the procedure ADAPT SURFACE is t-optimal, namely it satisfies (6.2). We conclude
in §8.3 with a greedy algorithm for ADAPT SURFACE that is t-optimal.

8.1 Approximation Classes

We define classes of functions and surfaces in terms of decay rate of the approximation error as a
function of the number of degrees of freedom N . Let TN ⊂ T := T(T0) be the set of all possible
conforming triangulations, generated on γ with at most N elements more than T0 by successive
bisection of T0:

TN :=
{
T ∈ T | #T −#T0 ≤ N

}
.

Given v ∈ H1
#(γ), f ∈ L2(γ), the notion of total error ET (V, f)2 = ‖∇γ(v − V )‖2L2(γ) + oscT (f)

2 is

defined in (5.18). In view of Lemma 5.8 and the fact that AFEM is driven by ηT (U) and λΓ, we
assess the quality of the best approximation (v, f) with N degrees of freedom in terms of

σ(N ; v, f, γ) := inf
T ∈TN

inf
V ∈V(T )

ET (V, f).

This is consistent with the approach taken for flat domains in [21, 49]. For s > 0, we define the
nonlinear (algebraic) approximation class As(γ) to be

As(γ) :=
{
(v, f) | |v, f |As

:= sup
N≥1

(
Ns σ(N ; v, f, γ)

)
< ∞

}
.
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We emphasize that the approximability of the surface γ only appears implicitly by measuring the
errors on γ. In fact, the definition of data oscillation (5.13), and in particular the specific choice
of FΓ, implies that osc2T (f) entails the approximation of f by piecewise constants on γ but does
not include the approximation of γ by Γ; this is quite different for higher order approximations of
γ, as is shown in [12]. On the other hand, the generic range of s is dictated by polynomial degree,
namely 0 < s ≤ 1/d.

An alternative and useful definition to (u, f) ∈ As(γ) is as follows: given ε > 0, there exists a
mesh Tε ∈ T(T0) with Tε ≥ T0 and a discrete function Vε ∈ V(Tε) so that

‖∇γ(u− Vε)‖2L2(γ) + oscTε
(f)2 ≤ ε2, #Tε −#T0 ≤ |u, f |

1
s

As
ε−

1
s ; (8.1)

Γε = FTε
(Ω) might not be a good approximaton of γ. In fact, approximations of (u, f) and γ are

handled separately. The characterization of As(γ) in terms of Besov regularity is an open issue.
Similarly, for surfaces and t > 0, we define the approximation class as follows:

Bt :=
{
γ ∈ W 1

∞ | |γ|Bt
:= sup

N≥1
N t inf

T ∈TN

λΓ < ∞
}
.

This means that surfaces in Bt are parametrized by Lipschitz maps X : Ω → R
d+1 which can in

turn be approximated with rate N−t in W 1
∞ over Ω with N degrees of freedom. In section 8.3,

we give a constructive greedy algorithm that realizes this rate provided γ belong to a suitable
Sobolev space in the nonlinear scale of W 1

∞. The generic range of exponents t for linear elements,
or equivalently polyhedral surfaces Γ, is 0 < t ≤ 1/d.

8.2 Convergence Rates

We now prove that AFEM achieves the asymptotic decay rate min{s, t}, dictated by the classes
As(γ) and Bt, but without ever using either s or t in its formulation. We establish the link between
the performance of AFEM and the best possible error by adapting a clever idea of R. Stevenson
[51] for the Laplace operator, further extended by J.M. Cascón et al [21] to general elliptic PDE,
in flat domains; we refer to the survey [49] for a thorough discussion. The insight is that

any marking strategy that reduces the total error relative to its current value must contain
a substantial portion of the error estimator, and so it can be related to Dörfler Marking.

(8.2)

Exploiting next the minimality of Dörfler marking enables us to compare meshes generated by
AFEM with the best meshes within T. The approach of [21, 49, 51] does not apply directly in the
present context because of the consistency error due to surface interpolation. We account for this
discrepancy below upon making the parameter ω of ADAPT SURFACE sufficiently small. Let

ω3 :=
C4

Λ0

√
3Λ1 + 2Λ2

, ω4 :=
C4

2Λ0

√(
1− θ2

θ2∗

) 1

Λ2
(8.3)

be two thresholds for ω to be used next and θ∗ be a threshold for the Dörfler parameter θ

θ∗ :=
C4√

2 + 3C1

; (8.4)

since C4 =
√
C2/2 and C2 ≤ C1, we see that θ∗ < 1.

Lemma 8.1 (Dörfler marking). Let λΓ0
satisfy (5.7), and the parameters θ and ω satisfy

0 < θ < θ∗, 0 < ω ≤ min{ω1, ω3}, (8.5)
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where θ∗, ω3 are defined in (8.3), (8.4), and ω1 in (6.4). Let µ = 1
2

(
1 − θ2

θ2
∗

)
and (Γ, T , U) be the

approximate surface, mesh and discrete solution produced by an inner iterate of ADAPT PDE. If
(Γ∗, T∗, U∗) is a surface-mesh-solution triple with T∗ ≥ T , such that the total error satisfies

ET∗
(U∗, f) ≤ µ ET (U, f), (8.6)

then the refined set R := RT →T∗
satisfies Dörfler property with parameter θ, namely

ηT (U,R) ≥ θηT (U). (8.7)

Proof. We proceed as in [21, Lemma 5.9] using the notation e(U) = ‖∇γ(u − U)‖L2(γ). Since
ω ≤ ω1, we combine the lower bound of (5.20) with (8.6) to write

(1 − µ)C2
4ηT (U)2 ≤ (1− µ)

(
e(U)2 + oscT (f)

2
)

≤ e(U)2 − e(U∗)
2 + oscT (f)

2 − oscT∗
(f)2.

We now estimate separately error and oscilation terms. According to (7.1) and (5.16), we obtain

e(U)2 − e(U∗)
2 ≤ 3

2
‖∇γ(U∗ − U)‖2L2(γ) + Λ2λ

2
T ≤ 3

2
C1ηT (U,R)2 +

(3
2
Λ1 + Λ2

)
λ2
Γ.

On the other hand, the data oscillation terms verify

oscT (f)
2 − oscT∗

(f)2 ≤ oscT (f,R)2 ≤ ηT (U,R)2

because they coincide over T \R and the estimator dominates the oscillation locally (see (5.17)).
Since (Γ, T ) is produced within ADAPT PDE, we have ηT (U) > ε and λΓ+ ≤ ωε, whence

λΓ ≤ Λ0λΓ+ ≤ Λ0ωε ≤ Λ0ωηT (U).

Collecting these three estimates, and using that ω ≤ ω3, we infer that

(
1 +

3

2
C1

)
ηT (U,R)2 ≥

(
(1 − µ)C2

4 − Λ2
0ω

2

(
3

2
Λ1 + Λ2

))
ηT (U)2 ≥ (1− 2µ)

C2
4

2
ηT (U)2.

Finally, the asserted estimate (8.7) is a consequence of the definition of θ∗, µ and θ < θ∗.

Lemma 8.2 (cardinality of M). Let λΓ0
satisfy (5.7) and the procedure MARK select a set M

with minimal cardinality. Let the parameters θ and ω satisfy

0 < θ < θ∗, 0 < ω ≤ min{ω1, ω4} (8.8)

with θ∗, ω4, ω1 given in (8.4), (8.3), and (6.4), respectively. Let u be the solution of (4.13), and let
(Γ, T , U) be produced within ADAPT PDE. If (u, f) ∈ As(γ), then

#M . |u, f |
1
s
s ET (U, f)−

1
s .

Proof. We set

δ2 = µ̂ET (U, f)2 = µ̂
(
e(U)2 + oscT (f)

2
)
,

for 0 < µ̂ < µ = 1
2

(
1 − θ2

θ2
∗

)
< 1 sufficiently small to be determined later. Since (u, f) ∈ As(γ),

there exists a pair (Γδ, Tδ) with Tδ ≥ T0 and a Vδ ∈ V(Tδ) such that

#Tδ −#T0 . |u, f |
1
s
s δ

− 1
s , e(Vδ)

2 + oscTδ
(f)2 ≤ δ2. (8.9)
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Let T∗ = T ⊕ Tδ be the overlay of T and Tδ, which satisfies [21, Lemma 3.7], [49]

#T∗ ≤ #T +#Tδ −#T0. (8.10)

Let U∗ ∈ V(T∗) be the corresponding Galerkin solution. We observe that T∗ ≥ Tδ, T , and invoke
the upper bound of (7.1) in conjunction with (5.23) to write

e(U∗)
2 + oscT∗

(f)2 ≤ e(Vδ)
2 + Λ2λ

2
Γ + C2

5 oscTδ
(f)2.

We recall that λΓ ≤ Λ0λΓ+ < Λ0ωε, in view of (3.6) and (6.1), and ηT (U) > ε because of (6.3).
Combining this with (5.20), we arrive at

λ2
Γ ≤ Λ2

0ω
2

C2
4

(
e(U)2 + oscT (f)

2
)
=

Λ2
0ω

2

µ̂C2
4

δ2.

Using the fact that C5 ≥ 1 and ω ≤ ω4, we choose µ̂ = µ
2C2

5

to end up with

e(U∗)
2 + oscT∗

(f)2 ≤
(
C2

5 +
Λ2
0Λ2ω

2

µ̂C2
4

)
δ2 = µ

(
e(U)2 + osc2T (f)

)
.

We thus deduce from Lemma 8.1 that the subset R := RT →T∗
⊂ T satisfies Dörfler property (8.7).

Since the set M ⊂ T also satisfies this property, but with minimal cardinality, we infer that

#M ≤ #R ≤ #T∗ −#T ≤ #Tδ −#T0 . |u, f |
1
s
s δ

− 1
s .

The asserted estimate finally follows upon using the definition of δ.

The quasi-optimal cardinality of AFEM is a direct consequence of Lemma 8.2 and Theorem
7.3. We prove this next.

Theorem 8.3 (convergence rate of AFEM). Let γ ∈ Bt and (u, f) ∈ As(γ) for some 0 < t, s ≤ n/d.
Let ε0 ≤ (6ωΛ0L

3)−1 be the initial tolerance, and the parameters θ, ω satisfy

0 < θ ≤ θ∗, 0 < ω ≤ ω∗ := min{ω1, ω2, ω3, ω4}, (8.11)

where θ∗, ω1, · · · , ω4 are given in (8.4), (6.4), (7.2), and (8.3), respectively. Let the procedure
MARK select sets with minimal cardinality, and the procedure ADAPT SURFACE be t-optimal on
the surface γ. Let u be the solution of (4.13) and {Γk, Tk, Uk}k≥0 a sequence of approximate
surfaces, meshes and discrete solution generated by the outer loop of AFEM.

Then there exists a constant C, depending on the Lipschitz constant L of γ, ‖f‖L2(γ), the
refinement depth b, the initial triangulation T0, and AFEM parameters (θ, ω, ρ) such that

e(Uk) + oscTk
(f) + ω−1λΓk

≤ C
(
|u, f |

r
s

As
+ ω−r|γ|

r
t

Bt

)(
#Tk −#T0

)−r
, (8.12)

with r = min{s, t}.
Proof. We start by noting that since ωε0 ≤ 1

6Λ0L3 the first output of ADAPT SURFACE fulfills

λΓ+

0

≤ 1
6Λ0

which is (5.7) and implies that T(T +
0 ) is shape regular.

There are two instances where elements are added, inside ADAPT SURFACE and ADAPT PDE.
For ADAPT SURFACE we make the assumption (6.2) of t-optimality:

#M+
k . ω− 1

t |γ|
1
t

Bt
ε
− 1

t

k .

For ADAPT PDE, Lemma 8.2 yields

#Mj
k . |u, f |

1
s

As

(
e(U j

k) + oscT j

k

(f)
)− 1

s

0 ≤ j < J,
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with j denoting the inner loop iteration counter. Since the inner iterates of ADAPT PDE satisfy
Theorem 7.3 and

e(U j
k) + oscT j

k
(f) ≈ e(U j

k) + ηT j

k
(U j

k),

we deduce that

(
e(U j

k) + oscT j

k
(f)
)− 1

s

. α
J−j−1

s

(
e(UJ−1

k ) + ηT J−1

k
(f)
)− 1

s ≤ α
J−j−1

s ε
− 1

s

k .

This implies
J−1∑

j=0

#Mj
k . |u, f |

1
s

As
ε
− 1

s

k

J−1∑

j=0

α
J−j−1

s . |u, f |
1
s

As
ε
− 1

s

k .

To do a full counting argument, we resort to the crucial estimate (6.6), which combined with
the estimates above and the relation εk+1 = ρεk of step 3 of AFEM gives

#Tk −#T0 ≤ C6

k−1∑

i=0

(
#M+

i +

J−1∑

j=0

#Mj
i

)
. C6

(
ω− 1

t |γ|
1
t

Bt
+ |u, f |

1
s

As

) k−1∑

i=0

ε
− 1

r

i ,

where r = min{s, t}. Since ρ < 1, we obtain
∑k−1

i=0 ε
− 1

r

i = ε
− 1

r

k−1

∑k−1
i=0 ρ

i
r . ε

− 1
r

k , whence

#Tk −#T0 . C6

(
ω− 1

t |γ|
1
t

Bt
+ |u, f |

1
s

As

)
ε
− 1

r

k .

Moreover, the stopping criteria (6.1) and (6.3) guarantee that

e(Uk) + oscTk
(f) + ω−1λΓk

≤ Cεk,

which implies the desired estimate (8.12).

Besides the condition ω ≤ ω∗ in (8.11), the right-hand side of (8.12) suggests that ω should not
be too small to optimize this bound. An optimal choice of ω for the case s = t, which unfortunately
is not computable, appears to be

ω = min
{
ω∗, |u, f |As

|γ|−1
Bs

}
.

8.3 Greedy Algorithm

To conclude we show that ADAPT SURFACE is t-optimal provided γ belongs to W 1+td
p , which is

just above the nonlinear Sobolev scale of W 1
∞ for polynomial degree 1 in dimensions d:

sob(W 1
∞) = 1− d

∞ = 1 < sob(W 1+td
p ) = 1 + td− d

p
⇒ tp > 1.

Proposition 8.4 (greedy algorithm). Let γ be piecewise of class W 1+td
p (Γ0), with tp > 1, t ≤ 1/d,

and globally of class W 1
∞. Then module [T +,Γ+] = ADAPT SURFACE(T ,Γ, τ) terminates in a

finite number of steps and the set M+ of marked elements satisfies

#M+ ≤ C|γ|1/t
W 1+td

p (Γ0)
τ−1/t,

where |γ|W 1+td
p (Γ0)

=
(∑I

i=1 |X i|p
W 1+tp

p (Ω)

)1/p
. Moreover, γ ∈ Bt and

|γ|Bt
. |γ|W 1+td

p (Γ0)
.
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Proof. We first observe that W 1+td
p ⊂ W 1

∞ ⊂ C0 so that the Lagrange interpolation operator IT
is well defined. In addition, for an approximation pair (Γ, T ) local interpolation estimates give

λΓ(T ) . hr
T |X |W 1+td

p (T̂ ), ∀T ∈ T = T (Γ), (8.13)

for r = sob(W 1+td
p ) − sob(W 1

∞) = td − d
p > 0. This shows that ADAPT SURFACE terminates in

finite number of steps, say m.
To prove that ADAPT SURFACE is t-optimal, namely to show (6.2), let M+ = M0∪· · ·∪Mm−1

be the set of marked elements. We organize the elements in M+ by size in such a way that allows
for a counting argument. Let Pj be the set of elements T of M+ with size

2−(j+1) ≤ |T | < 2−j ⇒ 2−(j+1)/d ≤ hT < 2−j/d.

We recall that |T | is the measure of T , the preimage of T in the initial triangulation T0. We proceed
in several steps.
1 We first observe that all T ’s in Pj are disjoint. This is because if T1, T2 ∈ Pj and T̊1 ∩ T̊2 6= ∅,
then one of them is contained in the other, say T1 ⊂ T2, due to the bisection procedure. Thus
|T1| ≤ 1

2 |T2|, contradicting the definition of Pj . This implies

2−(j+1) #Pj ≤ |Γ0| ⇒ #Pj ≤ |Γ0| 2j+1. (8.14)

2 In light of (8.13), we have for T ∈ Pj

τ ≤ λΓ(T ) . 2−(j/d)r|X |W 1+td
p (T̂ ).

Therefore τp #Pj . 2−(j/d)rp
∑

T∈Pj

|X |p
W 1+td

p (T̂ )
≤ 2−(j/d)rp |γ|p

W 1+td
p (Γ0)

, whence

#Pj . τ−p 2−(j/d)rp |γ|p
W 1+td

p (Γ0)
. (8.15)

3 The two bounds for #Pj in (8.14) and (8.15) are complementary. The first is good for j small
whereas the second is suitable for j large (think of τ ≪ 1). The crossover takes place for j0 such
that

2j0+1|Γ0| = τ−p 2−j0rp/d|X |p
W 1+td

p (Ω)
⇒ 2j0 ≈ τ−1/t

|γ|1/t
W 1+td

p (Γ0)

|Γ0|1/tp
.

4 We now compute

#M+ =
∑

j

#Pj .
∑

j≤j0

2j |Γ0|+ τ−p |γ|p
W 1+t

p (Γ0)

∑

j>j0

(2−rp/d)j .

Since
∑

j≤j0
2j ≈ 2j0 ,

∑
j>j0

(2−rp/d)j . 2−(rp/d)j0 = 2(1−tp)j0 we can write

#M+ .
(
τ−1/t + τ−pτ−1/t+p

)
|Γ0|1−1/tp |γ|1/t

W 1+td
p (Γ0)

≈ τ−1/t |Γ0|1−1/tp |γ|1/t
W 1+td

p (Γ0)
.

5 Upon termination, λΓ+ ≤ τ and #M+ . τ−1/t|γ|1/t
W 1+td

p (Γ0)
, which is valid regardless of the

input T of ADAPT SURFACE. If we take T = T0 and invoke Lemma 6.1 we deduce that

#T + −#T0 . τ−1/t|γ|1/t
W 1+td

p (Γ0)
⇒ λΓ+

(
#T + −#T0

)t
. |γ|W 1+td

p (Γ0)
,

and that γ ∈ Bt. This concludes the proof.
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9 Asymptotics: Role of ω

In order to analyze the role of ω in the convergence rate of AFEM and its performance, we solve
the problem

−∆γu = 1, in γ, u = 0, on ∂γ,

where γ is the graph of class C1,α given by

z(x, y) =
(
0.75− x2 − y2

)1+α

+
,

over the flat domain Ω = (0, 1)2, and consider two cases α = 3/5 and α = 2/5.
It turns out that z ∈ W 1+2t

p (Ω) for t < (α+ 1
p )/2. Moreover, to enforce the gap sob(W 1+2t

p )−
sob(W 1

∞) > 0 with sob(W 1+2t
p ) = 1 + 2t− 2

p and sob(W 1
∞) = 1 we need tp > 1. These conditions

can be achieved provided (see §8.3)
α = 3/5 : t = 1/2, p > 2, ⇒ z ∈ B 1

2

α = 2/5 : t < 2/5, p > 5/2, ⇒ z ∈ Bt, ∀t < 2/5.

On the other hand (u, f) ∈ A 1
2
in both cases. This is a consequence of the fact that ∆γu = f

can be written in the parameter domain Ω as 1
q d̂iv(qg

−1∇̂Tu) = f , with coefficient matrix A =

qg−1 ∈ Cα(Ω̄) ∩W 1
p (Ω) and 1 < p < 1

1−α ; see (5.5). Extending u and qf by odd reflection and

A by even reflection to the unit squares around Ω, u is a solution to −div
(
A∇Tu

)
= qf on the

ball B centered at (1/2, 1/2) and radius 1, with coefficient A ∈ Cα and right-hand side in L∞. By
Theorem 3.13 in [40] this implies ∇u ∈ Cα(B̄), and thus

A : D2u = f + divA · ∇u ∈ Lp(B).

Applying Calderón-Zygmund theory we obtain u ∈ W 2
p (Ω) [39, Theorem 9.11], whence (u, f) ∈ A 1

2

[49, §5.4].
In the following, we use the notation ηk := ηTk

(Uk), and λk := λΓk
.

9.1 Case α = 3/5

We recall that in this case γ ∈ B1/2. Since the pair (u, f) ∈ A1/2 we expect a decay of ηk + λk/ω

proportional to N
−1/2
k , where Nk = #Tk −#T0. In Figure 12 we plot ηk +λk/ω (left) and ηk +λk

(right) versus the number of elements in logarithmic scale for ω = 0.1, 1, 10, and observe that in
the three cases both notions of error decay (asymptotically) as N−1/2.

In Figure 13 we show the behavior of the different indicators ηk, λk/ω and their sum, for the
three values of ω considered above. We observe the following:

ω = 0.1. At the beginning ηk ≪ λk/ω, thus λk in ADAPT SURFACE guides the refinement initially,
and ηk decreases very slowly because ADAPT PDE exits without refining. The indicators ηk
and λk/ω are of comparable size when the number of elements is around 2 · 105, when the
refinement starts to occur due to both λk and ηk and both quantities decrease as N−0.5.

ω = 1. At the beginning ηk < λk/ω and the behavior is similar to the case ω = 0.1. When the
meshes have about 103 elements the curves for ηk and λk/ω meet and they both start to
decrease at the optimal rate N−0.5.

ω = 10. At the beginning λk/ω < ηk, and the situation is opposite to the case of ω small. The
refinement is initially guided by ηk in ADAPT PDE, and λk decreases very slowly because
ADAPT SURFACE exits without refining. The two curves for ηk and λk/ω meet when the
meshes have about 104 elements, and they both start to decrease at the optimal rate N−0.5.

In Figure 14 we show three meshes after 10, 20 and 30 refinements have been performed, with
192, 1216 and 5564 elements, respectively.
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Figure 12: ηk+λk/ω (left) and ηk+λk (right) versus the number of elements in logarithmic scale for ω = 0.1, 1, 10.
We observe that ηk + λk/ω decays as N−0.5 right from the beginning, whereas ηk + λk shows the same decay after
the meshes have some refinement, depending on the value of ω. Our theory predicts the decay of N−0.5 for both
notions of total error if ω is sufficiently small, but the best relation between the error ηk+λk and #DOFs is obtained
for w = 1, which is not so small.
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Figure 13: ηk, λk/ω and ηk + λk/ω for ω = 0.1 (left) ω = 1 (middle) and ω = 10 (right).

Figure 14: Meshes after 10, 20 and 30 refinements have been performed, C1.6-surface, with ω = 1. They are
composed of 192, 1216 and 5564 elements, respectively.

9.2 Case α = 2/5

We recall that in this case γ ∈ B0.4, whereas the pair (u, f) ∈ A1/2. We thus expect a decay of
ηk + λk/ω proportional to N−0.4. In Figure 15 we plot ηk + λk/ω (left) and ηk + λk (right) versus
the number of elements in logarithmic scale for ω = 0.1, 1, 10, and observe that in the three cases
both notions of error decay (asymptotically) as N−0.4.

In Figure 16 we show the behavior of ηk, λk/ω and their sum, for the same values of ω. We
observe the following:
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Figure 15: ηk+λk/ω (left) and ηk+λk (right) versus the number of elements in logarithmic scale for ω = 0.1, 1, 10.
We observe that ηk + λk/ω decays as N−0.4 right from the beginning, whereas ηk + λk shows the same decay after
the meshes have some refinement, depending on the value of ω. Our theory predicts the decay of N−0.4 for both
notions of total error if ω is sufficiently small. The best relation between the error ηk + λk seems to occur for ω = 1
and ω = 10.
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Figure 16: ηk, λk/ω and ηk + λk/ω for ω = 0.1 (left) ω = 1 (middle) and ω = 10 (right).

ω = 0.1. At the beginning ηk ≪ λk/ω, thus λk in ADAPT SURFACE guides the refinement initially,
and ηk decreases very slowly because ADAPT PDE exits without refining. The asymptotic
regime starts when both indicators have a comparable magnitude, and both quantities de-
crease as N−0.4. This instance is reached when the meshes have more than 106 elements,
because λk/ω decreases more slowly than in the previous example, and takes longer to reach
the initial value of ηk.

ω = 1. This case is similar to the previous one, with the change of behavior occuring when the
meshes have 104 elements.

ω = 10. The situation now is opposite to the previous cases of ω small. At the beginning the
refinement is initially guided by ηk in ADAPT PDE, and λk decreases very slowly because
ADAPT SURFACE exits without refining. It is interesting to notice that ηk decreases asN−0.5

in this transient initial phase. When the meshes have about 103 elements both indicators
are of comparable size, and the overall rate seems to be a little bit better than N−0.4. This
happens because λk is divided by 10 and its effect is not so visible in the picture. In the long
run the decay cannot be better than N−0.4.

It is also interesting to notice that λk does not decrease monotonically, mainly because the
strongly curved part of γ is not aligned to the grid. This behavior is consistent with (3.6) and,
in fact, shows that we cannot expect monotonicity of λΓ(T ) upon refinement, thereby justifying
(3.6).
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10 Conclusions and Comments

We finish the paper with the following remarks about this and related work.

• Coupling PDE-Geometry: This is a new feature in adaptivity and leads to separate handling
of geometry and PDE resolution with specific relative tolerances. The current algorithm is
different from that for graphs [46] studied by K. Mekchay, P. Morin, and R.H. Nochetto. The
present paper studies polynomial degree 1, but the theory for parametric surfaces extends to
higher polynomial degree [12].

• Convergence rates: We show optimal convergence rates in the energy norm

‖∇(u− Uk)‖L2(γ) . (#Tk −#T0)−s

provided this is the rate of the best approximation of u in H1 and that of γ in W 1
∞. This

optimal result is consistent with that derived for flat domains by R. Stevenson [51] for the
Poisson equation with data in H−1 and by J.M. Cascón et al [21] for elliptic PDE with variable
coefficients. None of them involve coarsening as the seminal paper [11] by P. Binev, W. Dahmen
and R. DeVore. The present estimates extend those in [21] to the Laplace-Beltrami operator.

• Weaker conditions on f : We refer to A. Cohen, R. DeVore, and R.H. Nochetto [23] for
convergence rates of elliptic PDE in flat domains with f ∈ H−1 and A piecewise constant:

div (A∇u) = f. (10.1)

Paper [23] shows that approximability of u is sufficient for a complete theory. Whether this is
true for the Laplace-Beltrami operator is still an open question.

• Weaker conditions on γ: We assume γ is W 2
p with p > d, which implies γ is C1. In the

flat case, this corresponds to piecewise continuous A. We refer to A. Bonito, R. DeVore, and
R.H. Nochetto [13] for optimal convergence rates of AFEM for (10.1) with weaker regularity
assumptions on A. This could be especially relevant to perform adaptivity on problems where
the singularity location is not known beforehand, such as those in §2.
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