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Abstract

This note is based on my practice about Atiyah-MacDonald’s book [3]. There may be a lot of errors
on it. Use it at your own risk.
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1 Rings and Ideal

Proposition 1.1. There is a one-to-one order-preserving correspondence between the ideals b of A which
contains a, and the ideals b of A/a, given by b = φ−1(b).

Proof. Let
Λ := { ideal containing a},∆ := { ideal of A/a.},

and φ : A → A/a canonical projection. Then, first of all we should check that φ(b) is ideal when b is an
ideal.

• If x ∈ A/a, y ∈ φ(b),
xy = x · y = φ(x)φ(y) = φ(xy) ∈ φ(b)

since x ∈ A, y ∈ b implies xy ∈ b.
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• Also, it is closed under addition since x+y ∈ φ(b) implies x, y ∈ b implies x+y ∈ b implies x+ y ∈ φ(b).

From this we induce a map from Λ to ∆. WTS it is 1-1 and order preserving.

• Suppose ∃b, b′ ∈ Λ such that φ(b) = φ(b′). If b 6= b′, then without loss of generality, ∃x ∈ b such that
x 6∈ b′. This implies φ(x) ∈ φ(b) = φ(b′), thus ∃y ∈ b′ such that φ(x) = φ(y), x 6= y. Thus,

φ(y − x) = 0 =⇒ y − x ∈ a =⇒ y − x = a ∈ a

for some a, thus
x = y + a.

Since y ∈ b′, a ∈ a ⊆ b′, so x ∈ b′,contradiction. Hence φ is 1-1 map on Λ.

• If b ⊇ b′, then ∀x ∈ b′ ⊆ b, φ(x) ∈ φ(b) =⇒ φ(b′) ⊆ φ(b). Thus φ is order preserving.

Also note that φ−1(b) is an ideal containing a; since kerφ = a, and if x, y ∈ φ−1(b), φ(x+y) = φ(x)+φ(y) ∈
b =⇒ x+ y ∈ φ−1(b), and if x ∈ A, y ∈ φ−1(b), then φ(xy) = φ(x)φ(y) ∈ b =⇒ xy ∈ φ−1(b).

Statement in p.3. f : A→ B ring homomorphism, q be a prime ideal of B. Then, f−1(q) is prime in A.

Proof. Let f̄ : A/f−1(q) → B/q in a natural way. Then it is well-defined since x̄ = ȳ in A/f−1(q) if and
only if x = a+ y for some a ∈ f−1(q) if and only if f(x) = f(a) + f(y) in B if and only if f̄(x̄) = f̄(ȳ). Also,
it is injective since f̄(x) = 0̄ implies f(x) ∈ q implies x ∈ f−1(q), thus x̄ = 0. Hence Im(f̄) is a subring of
B/q, which is integral domain, thus image is also integral domain, hence A/f−1(q) is integral domain, thus
f−1(q) is prime.

Statement in p.4. Let {aα}α∈I is a chain, i.e. any two elements has inclusion relationship. Let a =
⋃
α aα.

Then, a is ideal.

Proof. • Let x, y ∈ a. Then, x ∈ aα, y ∈ aβ for some α, β ∈ I. From chain conditoin, either aα ⊆ aβ or
aα ⊇ aβ . Without loss of generality, assume aα ⊆ aβ . Then, x+ y ∈ aβ ⊆ a.

• If x ∈ A, y ∈ a. Then, y ∈ aα for some α, thus xy ∈ aα ⊆ a.

Corollary 1.4. If a 6= (1) is an ideal of A, there exists a maximal ideal of A containing a.

Proof. A/a has maximal ideal by Theorem 1.3, say m. Then, if we let φ : A→ A/a as canonical projection,
then m := φ−1(m) is an ideal in A containing a, from proposition 1.1. If it is not maximal, then ∃b such
that m ( b ( A. By proposition 1.1, φ(b) is a proper ideal of A/a containing m, contradicting maximality
of m.

Corollary 1.5. Every non-unit of A is contained in a maximal ideal.

Proof. Let x be a nonunit. Then (x) is a proper ideal of A, apply corollary 1.4.

Principal ideal is an ideal generated by 1 element. f is an nilpotent element if ∃n ∈ N such that
fn = 0.

Proposition 1.11. 1) Let p1, · · · , pn be prime ideals and let a be an ideal comtained in ∪ni=1pi. Then, a ⊆ pi
for some i.

Proof. Its contrapositive form is

a 6⊆ pi for all i ∈ [n] =⇒ a 6⊆
n⋃
i=1

pi.

So if n = 1, then the RHS of the contrapositive form is equal to LHS, done. Suppose it is true for n− 1, and
supposet that a 6⊆ pi for all i ∈ [n]. Then, for each i, we have

a 6⊆ pj for j ∈ [n] \ {i} =⇒ a 6⊆
n⋃
j 6=i

pj .
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Hence, there exist xi ∈ a such that xi 6∈
⋃n
j 6=i pj . If xi 6∈ pi for some i ∈ [n], then xi 6∈

⋃n
i=1 pi, so done.

Otherwise, xi ∈ pi for all i. Let

y =

n∑
i=1

n∏
j 6=i

xi.

Then, y ∈ a but y 6∈ pi since each monomial is not in any pi. Done.

Exercise 1.12. 1. a ⊆ (a : b)

2. (a : b)b ⊆ a

3. ((a : b) : c) = (a : bc) = ((a : c) : b)

4. (∩iai : b) = ∩i(ai : b).

5. (a :
∑
i bi) = ∩i(a : bi).

Proof. 1. ∀x ∈ a, xb ⊆ a, since ideal is multiplicatively closed.

2. Let x ∈ (a : b). Then xb ⊆ a by definition of (a : b). Thus, (a : b)b ⊆ a.

3. Let x ∈ ((a : b) : c). Then, xc ⊆ (a : b). So

xbc = xcb ⊆ a

where first equality comes from commutativity and the inclusion comes from xc ⊆ (a : b) which implies
x ∈ ((a : b) : c). The inclusion gives x ∈ (a : bc).

Also, if x ∈ (a : bc), then for any y ∈ c,

xyb ⊆ xcb = xbc ⊆ a.

Thus xc ⊆ (a : b), which implies x ∈ ((a : b) : c). And x ∈ ((a : c) : b) is clear from

(xb)c ⊆ a.

Lastly, let x ∈ ((a : c) : b). Then,
(xb)c ⊆ a

holds, so x ∈ (a : bc), which implies x ∈ ((a : b) : c) by above argument.

4. Let x ∈ (∩iai : b). which is equivalent to xb ⊆ ai for all i, which is equivalent to x ∈ ∩i(ai : b).

5. x ∈ (a :
∑
i bi) implies

xbi ⊆ x
∑
i

bi ⊆ a

which implies x ∈ ∩i(a : bi). Conversely, x ∈ ∩i(a : bi) implies x ∈ (a : bi) for all i, which implies
x
∑
i bi ⊆ a, done.

Exercise 1.13. 1. r(a) ⊇ a

2. r(r(a)) = r(a).

3. r(ab) = r(a ∩ b) = r(a) ∩ r(b).

4. r(a) = (1) ⇐⇒ a = (1).

5. r(a + b) = r(r(a) + r(b))

6. if p is prime, then r(pn) = p for all n > 0.
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Proof. 1. If x ∈ a, then x1 ∈ a, thus done.

2. It suffices to show that r(r(a)) ⊆ r(a). Let x ∈ r(r(a)). Then, xn ∈ r(a) for some n > 0, thus (xn)m ∈ a
for some m > 0, which implies x ∈ r(a) since xmn ∈ a.

3. From ab ⊆ a ∩ b, we know r(ab) ⊆ r(a ∩ b). Also, if x ∈ r(a ∩ b), then ∃n ∈ N such that xn ∈ a ∩ b,
which implies x ∈ r(a) ∩ r(b). Also, if x ∈ r(a) ∩ r(b), then xn ∈ a, xm ∈ b for some n,m > 0, thus
xnxm ∈ ab, hence x ∈ r(ab). This implies

r(ab) ⊆ r(a ∩ b) ⊆ r(a) ∩ r(b) ⊆ r(ab)

done.

4. if r(a) = (1), then 1n = 1 ∈ a, so a = (1). Conversely, use r(a) ⊇ a.

5. From first one we know a ⊆ r(a), b ⊆ r(b), thus

a + b ⊆ r(a) + r(b)

which implies xn ∈ a + b ⊆ r(a) + r(b) implies xn ∈ r(r(a) + r(b)). Conversely, if x ∈ r(r(a) + r(b)),
then there exists n ∈ N such that xn ∈ r(a) + r(b). This implies xn = ca + db for some c, d ∈ A, a ∈
r(a), b ∈ r(b), thus ∃na, nb ∈ N such that ana ∈ a, bnb ∈ b. Hence, by investigating terms in binomial
expansion of (xn)na+nb+1, we can conclude, (xn)na+nb+1 ∈ r(a + b).

6. Let x ∈ r(pn) implies xk ∈ pn for some k > 0, this implies x or xk−1 is in p, do the same thing at most
k − 1 time, we can conclude that x ∈ p. Thus, r(pn) ⊆ p. And since any n-th power of element in p
should be in pn, so r(pn) ⊇ p, done.

Proposition 1.14. The radical of an ideal a is the intersection of the prime ideals which contain a.

Proof. We already know r(a) = φ−1(RA/a), where R is nilradical, and φ : A→ A/a a canonical projection.
Since RA/a is the intersection of all prime ideals in A/a, from the one-to-one correspondence and theorem
1.8 (preimage of prime ideal is prime), r(a) is intersection of prime ideals containing a.

Proposition 1.15 (part of proof). D = r(D) =
⋃
x 6=0Ann(x)

Proof. D ⊆ r(D) is clear from above exercise. If f ∈ r(D), then fn ∈ D, so fnh = 0 for some h ∈ A, so
f(fn−1h) = 0 implies f ∈ D.

Also, f ∈ D implies fx = 0 for some x ∈ A \ {0} implies f ∈ Ann(x). Conversely, if f ∈ Ann(x), then
f ∈ D. Since x was chosen arbitrarily, done.

Proposition 1.17. f : A→ B.

1. a ⊆ aec, b ⊇ bce.

2. ae = aece, bc = bcec.

Proof. 1) Since f(a) ⊆ ae,
a ⊆ f−1(f(a)) ⊆ f−1(ae) = aec.

Also, since f(f−1(b)) ⊆ b from multiplicative closedness of ideal, f(f−1(b))e ⊆ b.
2)

bc ⊆ (bc)ec

by 1) and b ⊇ bce =⇒ bc ⊇ bcec since f−1 preserve order of ideal. Similarly,

ae ⊇ (ae)ce

by 1) and a ⊆ aec implies f(a) ⊆ f(aec) which implies ae ⊆ aece.

Exercise 1.18. 1. (a1 + a2)e = ae1 + ae2,
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2. (b1 + b2)c ⊇ bc1 + bc2,

3. (a1 ∩ a2)e ⊆ ae1 ∩ ae2

4. (b1 ∩ b2)c = bc1 ∩ bc2,

5. (a1a2)e = ae1a
e
2,

6. (b1b2)c ⊇ bc1b
c
2,

7. (a1 : a2)e ⊆ ae1 : ae2,

8. (b1 : b2)c = bc1b
c
2,

9. r(a)e ⊆ r(ae)

10. r(b)c = r(bc).
The set of ideals E is closed under sum and product, and C is closed under the other three operations.

Proof. 1. y ∈ (a1 + a2)e ⇐⇒ y =
∑
cif(αi) +

∑
djf(βj) ∈ ae1 + ae2

2. x ∈ bc1 + bc2 implies x = cx1 + dx2, thus f(x) = cf(x1) + df(x2) ∈ b1 + b2 implies x ∈ f−1(f(x)) ⊆
f−1(b1 + b2) = (b1 + b2)c.

3. y ∈ (a1∩a2)e implies y =
∑
cif(xi) with xi ∈ a1∩a2. Hence, f(xi) ∈ ae1∩ae2, which implies y ∈ ae1∩ae2.

4. x ∈ (b1 ∩ b2)c ⇐⇒ f(x) ∈ b1 ∩ b2 ⇐⇒ f(x) ∈ b1 and f(x) ∈ b2 ⇐⇒ x ∈ bc1, b
c
2 ⇐⇒ x ∈ bc1 ∩ bc2.

5. y ∈ (a1a2)e ⇐⇒ y =
∑
cif(xiyi) where xi ∈ a1, yi ∈ a2 ⇐⇒ y =

∑
cif(xi)f(yi). Notes that

f(xi)f(yi) ∈ ae1a
e
2, so it is equivalent to say that y ∈ ae1a

e
2.

6. x ∈ bc1b
c
2 =⇒ x =

∑
i cixiyi for some xi ∈ bc1, yi ∈ bc2 implies f(x) =

∑
i cif(xi)f(yi) ∈ b1b2, thus

x ∈ f−1(f(x)) ⊆ (b1b2)c.

7. y ∈ (a1 : a2)e implies y =
∑
cif(xi) for some xi ∈ (a1 : a2). Then, xia2 ⊆ a1 implies f(xi)f(a2) =

f(xia2) ⊆ f(a1) implies f(xi)a
e
2 ⊆ ae1 since (·)e is just idealization, so inclusion of generating set implies

inclusion of ideal.

8. x ∈ (b1 : b2)c =⇒ f(x)b2 ⊆ b1 =⇒ f−1(f(x))bc2 ⊆ bc1 =⇒ xbc2 ⊆ bc1 =⇒ x ∈ (bc1 : bc2). The other
way is not true since f(bc1) may not be b1.

9. y ∈ r(a)e =⇒ y =
∑l
i=1 cif(xi) where xmii ∈ a for some mi ∈ N, thus all terms in the expansion of

y
∑
imi+1 should contain xmii , which implies y

∑
imi+1 ∈ ae =⇒ y ∈ r(ae).

10. x ∈ r(b)c ⇐⇒ f(x) ∈ r(b) ⇐⇒ f(x)m ∈ b for some m ∈ N ⇐⇒ f(xm) ∈ b ⇐⇒ xm ∈ bc ⇐⇒
x ∈ r(bc).

1.1 Exercises in Section 1

1. Let x be a nilpotent element. Then xn = 0 for some n ∈ N. Then

(1 + x)(1− x+ x2 − · · ·+ (−1)nxn) = 1 + (−1)nxn+1 = 1

Let u be a unit. Then, u−1x is still nilpotent, since (u−1x)n = u−nxn = 0. Thus 1 +u−1x is unit, thus
u+ x is unit.
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2. (a) If f is unit, then fg = 1 for some g = b0 + b1x+ · · ·+ bmx
m. (Without loss of generality, assume

n > m.) Thus,

anbm = 0

an−1bm + anbm−1 = 0 =⇒ anan−1bm + a2
nbm−1 = 0 =⇒ a2

nbm−1 = 0

an−2bm + an−1bm−1 + anbm−2 = 0 =⇒ a2
nan−2bm + a2

nan−1bm−1 + a3
nbm−2 = 0 =⇒ a3

nbm−2 = 0

· · ·

So if ar+1
n bm−r = 0 for some r = s− 1, then for r = s, the coefficient of fg with degree s is

an−sbm + an−s+1bm−1 + · · ·+ anbm−s = asnan−sbm + asnan−s+1bm−1 + · · ·+ as+1
n bm−s = 0

and by inductive hypothesis, anbm = 0, a2
nbm−1 = 0, · · · , asnbm−s+1 = 0 implies as+1

n bm−s = 0,
done. Hence, we can say that

am+1
n b0 = 0

Since b0 is unit (since a1b1 = 1 in the fg = 1) it means am+1
n = 0 so an is nilpotent, which implies

−anxn is nilpotent (since (−anxn)m+1 = (−1)m+1am+1
n xm+n+1 = 0,) thus f − anxn is nilpotent

since it is sum of unit and nilpotent element, which is nilpotent by exercise 1. Thus, by applying
the same argument on f − anxn, we get an−1 is nilpotent, and applying it n − 1 times, we get
an, an−1, · · · , a1 are nilpotent, done.

Conversely, if f = a0 +a1x+ · · ·+anx
n is an element in A[x] such that a0 is a unit, and a1, · · · , an

are nilpotent. This implies aix
i, i = 1, · · · , n are nilpotent, thus f − a0 is nilpotent, since set of

all nilpotent element is an ideal, thus it is closed under addition. Then, f is sum of unit and
nilpotent element, which is a unit by the exercise 1.

Note that there is more abstract version of the answer for if direction. Let p be any prime ideal.
Then, A/p is an integral domain, and we know that f ∈ (A/p)[x] is a unit if and only if f = u
for some unit in A/p; to see this, otherwise, suppose f = anx

n + · · ·+ a1x+ a0 with an 6= 0 is a
unit in A/p[x]. Then, there exists g = b0 + b1x + · · · + bmx

m with bm 6= 0 for m > 0 such that
fg = 1 implies bm = 0, contradiction. Thus inverse element of f should be in A/p, and in this

case, f
−1
an 6= 0 if f

−1
, so there is no such inverse element, contradiciton.

So, f is unit implies f is unit ( from 1 = φ(1) = φ(f ·f−1) = φ(f)φ(f−1)), which implies f = u for
some u ∈ A/p, and p is chosen arbitrarily implies a0 is unit and a1, · · · , an are in the intersection
of all prime ideals, i.e., nilradical, which implies they are nilpotent.

(b) Suppose a0, · · · , an is nilpotent. Then, aix
i is nilpotent by the same argument used in the above

proof, so f is nilpotent. Conversely, if f is nilpotent, then fm = 0 for some m ∈ N, and fm has the
highest degree term amn x

mn = 0, thus an is nilpotent. Since nilradrical is closed under addition,
f − anxn is also nilpotent, and apply the same argument to conclude that an−1 is nilpotent. Do
the same argument on f − anxn − an−1x

n−1, · · · , so that we can get an, · · · , a0 are nilpotent.

Or, we can say that f is nilpotent, thus φ(f) is nilpotent for any prime ideal p and φ : A[x] →
A/p[x]. Since A/p is integral domain, so does A/p[x], hence φ(f) = 0. This implies a0, · · · , an ∈ p.
Since p was arbitrarily chosen, a0, · · · , an are nilpotent.

(c) only if part is just definition of zero divisor. So suppose f is zero divisor. Then, ∃g = b0 + b1x+
· · ·+bmx

m such that fg = 0 and deg(g) is minimal for all other zero divisor of f . Then, anbm = 0
thus deg(ang) = deg(g)− 1 and f(ang) = anfg = 0, thus ang = 0 from the minimality of g. Now
suppose that an−sg = 0 for s = 0, 1, · · · , r − 1. Then,

fg = (a0+a1x+· · ·+an−s−1x
n−s−1)g+(an−sx

n−s+· · ·+anxn)g = (a0+a1x+· · ·+an−s−1x
n−s−1)g

thus an−s−1bm = 0, which implies deg(an−s−1g) = deg(g)− 1 and an−s−1g is also zero divisor of
f , thus an−s−1g = 0, which implies an−rg = 0. This implies aibm = 0 for all i ∈ [n] ∪ {0}, which
implies bmf = 0.
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(d) Let a = (a0, · · · , an), b = (b0, · · · , bm), and let c = (a0b0, a1b0 + a0b1, · · · , ) an ideal generated by
coefficients of fg. Then the statement is equivalent to say that

a = (1) = b ⇐⇒ c = (1)

Note that all generator of c is in a and b. Thus, c ⊆ a ∩ b. Thus, if c = (1) then a = (1) = b.
Conversely, suppose a = (1) = b, but to get a contradiction, c 6= (1). Then, take a maximal ideal
m containing c. Then, by sending fg from A[x] to A/m[x], fg 7→ 0 since m contains all coefficient
of fg. However, f and g are not zero in A/m[x], since if those are zero, then coefficients of f or
those of g should be in m, contradicting the assumption that a = (1) = b. Thus f, g are zero
divisor in A/m[x]. However, A/m is a field, so A/m[x] is an integral domain, which implies no
zero divisors exist, contradiction.

3. (a) In multivariate case, use abstract argument; Let p be any prime ideal. Then, A/p is an integral
domain, and we know that f ∈ A/p[x1, · · · , xn] is a unit if and only if f = u for some unit in A/p;
to see this, suppose f contains a term c~x~m with ~m is not a zero vector in Nn and c 6= 0. Then
for any g with g 6= 0, let a highest degree term of g as d~x~m

′
and d 6= 0, then fg should contain

cd~x ~m+m
′

= 0, which implies cd = 0. However, A/p is an integral domain, this implies either c or
d is zero, contradiction. Thus, coefficients of f which is not a constant term should be in p, and
the constant term should be unit. Since p was arbitrarily chosen from the set of all prime ideals
of A, and the intersection of prime ideal is nilradrical, we can conclude that all coefficients of f
except constant term are nilpotent, and the constant term is a unit.

Conversely, if f has a unit constant term and all nilpotent coefficients, then note that nilpotent
coefficient times ~x~m is also nilpotent, so f is sum of unit and nilpotent in A[x], thus f is a unit
by the exercise 1.

(b) Still, the only if part is just derived from that nilradrical is an ideal, thus closed under addition.
So suppose f is a nilpotent. Then, for any p, a prime ideal, f on A/p[~x] should be zero, since f
is nilpotent implies fn = 0 for some n ∈ N, therefore φ(f)n = 0 implies f = φ(f) = 0. Hence, all
coefficients of f should be in p, and since p is arbitrarily chosen, all coefficients of f should be in
nilradrical.

(c) Still, only if part is just satisfy definition of zero-divisor. Suppose f is zero divisor. We use
induction. Note that the statement holds for A[x1]. Now suppose the statement holds for
A[x1, · · · , xn−1]. Then, let f ∈ A[x1, · · · , xn] is a zero divisor. SinceA[x1, · · · , xn] = A[x1, · · · , xn−1][xn]
hence we can think of f as a polynomial of xn having coefficients from A[x1, · · · , xn−1]. So let

f =

m∑
i=0

ci(x1, · · · , xn−1)xin.

Then from the inductive hypothesis, for each ci, there exists bi ∈ A such that bici = 0. Thus let
b =

∏m
i=0 . Then, bf = 0 since bci = 0 for all i.

(d) Still, if we let a, b be an ideal generated by coefficients of f and g respectively, and let c be an ideal
generated by coefficients of fg. Then by construction, c ⊆ a∩ b, thus c = (1) implies b = (1) = a.
Conversely, suppose b = (1) = a but c 6= (1). Then, by applying the same argument above, we
can get a contradiction.

4. From the fact that every maximal ideal is prime ideal, the Jacobson radical in A[x] should contain
nilradrical. So suppose f is in the Jacobson radical. It suffices to show that f is nilpotent. From
proposition 1.9, 1 + xf is a unit in A[x]. By the exercise 2, all nonzero coefficients of xf should be
nilpotent. This implies all coefficients of f is nilpotent, hence f is nilpotent by the exercise 2, done.

5. (a) If f(x) is unit in A[[x]], then ∃g ∈ A[[x]] such that fg = 1. Thus if we let g =
∑∞
i=0 bix

i, then
a0b0 = 1. Hence, a0 is unit in A.

Conversely, suppose a0 is unit. Then notes that for any g =
∑∞
i=0 bix

i,

fg =

∞∑
i=0

 i∑
j=0

ajbi−j

xi.
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Thus it suffices to find some g such that
∑i
j=0 ajbi−j = 0 for all i > 0. Notes that

0 =

i∑
j=0

ajbi−j = a0bi +

i−1∑
j=0

ajbi−1 =⇒ bi = a−1
0

i−1∑
j=0

ajbi−1.

So recursively we can determine bi from b0 = a−1
0 and the above equation.

(b) To do this, we claim

Claim I. If R is integral domain, so does R[[x]].

Proof. If f, g ∈ R[[x]] with nonzero coefficient, then let axn and bxm are the smallest nonzero
elements in supports of f and g respectively. Then fg = abxn+m+ highest order terms, thus
fg 6= 0.

Suppose f is nilpotent. Then fn = 0 for some n ∈ N. Fix p a prime ideal and φ : A[[x]]→ A/p[[x]].
Then, φ(f) is zero since φ(f) should be nilpotent. Since p was arbitrarily chosen, all coefficients
of f are nilpotent.

Converse is not true in general. See [1].

(c) Suppose f is in the Jacobson radical of A[[x]]. This is equivalent to say that for any g ∈ A[[x]],
1−fg is unit, by Proposition 1.9. This is equivalent to say that 1−a0c is unit for all c ∈ A which
is constant part of g, by exercise 5 i). This is equivalent to say that a0 is in the Jacobson radical.

(d) Notes that A = A[[x]]/(x). Hence φ : A[[x]]→ A is canonical projection, thus there is one-to-one
correspondence from ideal of A and ideal of A[[x]] containing (x). Now we claim that x ∈ R, the
Jacobson radical of A[[x]]. This is because for any f ∈ A[[x]], 1 − xf is unit by Exercise 5 i).
Hence every maximal ideal m of A[[x]] contains x.

Also, we claim that if ψ : A → A[[x]] as canonical injection, then ψ−1(m) = φ(m). To see this,

notes that for any f ∈ A[[x]] with f = a0 +
∑∞
i=1 aix

i, φ(f) = a0 and ψ−1(f) =

{
a0 if f = a0

0 o.w.
.

This implies ψ−1(m) ⊆ φ(m). Now let f ∈ m, with f = a0+
∑∞
i=1 aix

i. Then,
∑∞
i=1 aix

i ∈ (x) ⊆ m
implies a0 ∈ m, hence a0 ∈ ψ−1(m). This implies ψ−1(m) ⊇ φ(m), done.

Thus, from these claim, mc = ψ−1(m) = φ(m), and since φ preserves order of ideals by inclusion,
mc is still maximal. Also, m contains mc by above construction, and also contains x, thus m ⊇
(mc, x). Conversely, if f ∈ m, then it has constant part and xg part for some g ∈ A[[x]], thus
f ∈ (mc, x). This shows m = (mc, x).

(e) Let p be a prime ideal of A. We claim that (p, x) is a prime ideal in A[[x]]. To see this, think
about A[[x]]/(p, x). If φ : A[[x]]] → A[[x]]/(p, x), then for any f =

∑∞
i=0 aix

i, φ(f) = φ(a0), and
φ(a0) = 0 if and only if a0 ∈ p. We claim that A[[x]]/(p, x) ∼= A/p; notes that all elements in
A[[x]]/(p, x) can be denoted by φ(a0) for some a0 ∈ A, so take a map φ(a0) 7→ a0. It is well-defined
since if φ(a) = φ(b) for some a, b ∈ A, then a + f = b for some f ∈ (p, x), thus f ∈ p, otherwise
a+ f is not in A. This implies a = b. Also it is injective since b = 0 implies b ∈ p, thus φ(b) = 0.
Also surjectivity is clear.

Hence, from this isomorphism, we know that A[[x]]/(p, x) is integral domain. Thus (p, x) is prime
ideal. And contraction of (p, x) is p, since (p, x)c = (p, x) ∩A = p. ,

6. Let J be the Jacobson radical and R be nilradical. Suppose J ) R. Then, it contains e ∈ J \R such
that e2 = e. Now e(1− e) = 0, and 1− e has a form 1 + xe for some x = −1 ∈ A, thus 1− e is unit in
A by Proposition 1.9. Hence, e = 0, contradiction. This implies J = R.

7. Let J be the Jacobson radical and R be nilradical. Suppose J ) R. Then, it contains x ∈ J \ R
such that xn = x for some n ∈ N. Now x(1 − xn−1) = 0, and 1 − xn−1 has a form 1 + xy for some
y = −xn−1 ∈ A, thus 1 − xn−1 is unit in A by Proposition 1.9. Hence, x = 0, contradiction. This
implies J = R. It implies all prime ideals are maximal ideal, otherwise J 6= R.
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8. Let σ be the set of all prime ideals. Then 0 ∈ σ, so it is nonempty. Give inverse inclusion as an order.
Then, a chain of prime ideals has maximal element, which is the intersection of all prime ideals in the
chain. Actually, the stating that intersection is prime is not trivial; let {pi}i∈I is such a chain for some
index set I, and let xy ∈

⋂
i∈I pi but x, y 6∈

⋂
i∈I pi. This implies that there exists pj , pk such that

x 6∈ pj , y 6∈ pk. From the chain condition, we can assume that j < k, thus x, y 6∈ pj . This implies
xy 6∈ pj , thus xy 6∈

⋂
i∈I pi ⊂ pj , contradiction. Thus the intersection of all prime ideals in the chain

is prime. Thus each chain has the upper bound. By Zorn’s lemma, σ has a maximal element, which is
a minimal element in the set of all prime ideals, i.e., SpecA.

9. If a = r(a), then by Proposition 1.14, done. If a is intersection of prime ideals, say a =
⋂
i pi, then

xn ∈ a implies xn ∈ pi for all i, thus x ∈ pi for all i, thus x ∈
⋂
i pi = a. This implies r(a) = a.

10. i) implies ii): i) implies nilradical is the only one prime ideal, say p. Also it implies that Jacobson
radical is equal to nilradical. Thus, if x ∈ p, then x is nilpotent; otherwise, x ∈ A \ p. If x is not a
unit, then x is contained in some maximal ideal which is p, contradiction. Hence x is unit.

ii) implies iii): notes that nilradical has all nilpotents elements, so outside of the nilradical, every
elements is a unit. Apply Proposition 1.6 i) to get the nilradical is maximal ideal and A is local ring.

iii) implies i): Notes that nilradical is maximal ideal. Thus if p is prime ideal in A, then p should be
nilradical; thus there is only one prime ideal.

11. (a) (−x) = (−x)2 = x2 = x.

(b) Let p be an ideal that is not contained in the nilradical. Then it has a nonzero element which is
not in nilradical. Also, such element is nonzero idempotent, since it is Boolean ring. By Exercise
6, nilradical is equal to the Jacobson radical, thus every prime ideal is maximal.

(c) Let a = (a, b) and c = (a+ b+ ab). Then, c ⊆ a. Now notes that a(a+ b+ ab) = a2 + ab+ a2b =
a+ 2ab = a, and b(a+ b+ ab) = b2 + ab+ ab2 = b+ 2ab = b. Hence c = a. Now use induction; let
a = (a1, · · · , an) and suppose that any ideal generated by at most n − 1 elements are principal.
Then, a = (a1 + a2 + a1a2, a3, · · · , an) by the same argument. Now apply inductive hypothesis.

12. If the local ring contains a nonzero idempotent except 1, say e, then e is nonunit, since it is zero
divisor, i.e., e(e − 1) = 0; so if it is unit, then e−1e(e − 1) = 0 =⇒ e = 1, contradiction. Thus by
Corollary 1.5, it is contained in a maximal ideal. Since A is local ring, it is contained in the maximal
ideal, which is also a Jacobson radical. However, this implies that 1− e is unit, since 1− e has a form
1 + xe with x = −1, and Proposition 1.9 says that element with such form is unit. This also gives us
e(e− 1)(e− 1)−1 = 0 implies e = 0, contradiction.

13. We use Proposition V. §2, 2.3. in [2], which stating that for f ∈ K[x] where k is a field, there exists a
field extension such that f has a root.

If α = (1), then

1 =

n∑
i=1

fi(xfi)gfi

for some fi ∈ K[x] and gfi ∈ A. Since each gfi are also polynomials, they are in some polynomial ring
with finite number of variables. So we can assume that gfi = gfi(xf1 , · · · , xfN ) for some fn+1, · · · , fN ∈
K[x]. Just write fi to i for simplicity. Then,

1 =

n∑
i=1

fi(xi)gi(x1, · · · , xN ).

Now by applying Proposition 2.3 in [2] n times, we can get a finite field extension such that f1, · · · , fn
has a roots. Say roots of fi be αi. Also let αi = 0 if n < i ≤ N . Then, replacing xi with αi gives
1 = 0, contradiction.

The rest step is to show that L is a field. If a, b ∈ L, then there exists n such that a, b ∈ Kn so any
operation on fields well-defined in L. Also, every f ∈ σ has all of its roots in L by construction, so
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it splits into linear factors. Now take subset of L having all algebraic elements over K. Say it K.
Then definitely, every polynomial in K[x] splits into linear form, since each of this polynomial can be
regarded as polynomial over Kn[x] for some n. Thus it is algebraic closure of K.

14. Notes that 0 ∈ σ, so it is nonempty. Now take a chain {ai}i∈I for some index set I. Then, their union
is also an ideal in which every element is a zero divisor; to see this, let x, y be in the union. Then,
from total ordering, there exists i ∈ I such that x, y ∈ ai, hence their sum is also in ai, done. Thus, by
the Zorn’s lemma, there exists a maximal element in Σ.

Let m be a maximal element of Σ. To see that it is a prime ideal, let xy ∈ m. Notes that xy is zero
divisor, so there exists nonzero element a such that xya = 0. This implies x and y are zero divisors,
since x(ya) = 0 and y(xa) = 0 with nonzero ya and xa respectively. Thus, m+(x),m+(y) are an ideal
in which every elements are zero divisors, but from maximality of m, m + (x) = m = m + (y), which
implies x ∈ m or y ∈ m, hence m is prime.

15. (a) From definition of a = (E), any prime ideal containing E also contain a and vice versa. Thus,
V (E) = V (a). And any prime ideal containing r(a) also contain a. So it suffices to show that
V (a) ⊇ V (r(a)). Let p ∈ V (a). If x ∈ r(a) , then xn ∈ a ⊆ p for some n. This implies x ∈ p from
the property of prime ideal. Done.

(b) V (0) = X is clear; every ideal contains 0 as its subideal. V (1) = is also clear; since no prime ideal
contains 1 as its element.

(c) Let p contains
⋃
i∈I Ei. Then it contains Ei for all I, thus p ∈

⋂
i∈I V (Ei). Conversely, let

p ∈
⋂
i∈I V (Ei). Then it contains Ei for all I, done.

(d) Follows from Exercise 1.13 ii) stating that r(ab) = r(a ∩ b) = r(a) ∩ r(b).

16. Notes that

Spec(Z) = {(p) : p is prime in Z or p = 0} = {(0), (2), (3), (5), · · · }
Spec(R) = {(0)}

For Spec(C[x]), notes that C is a field, hence C[x] is a principal ideal domain. Thus, let (f) be a prime.
If f is reducible, then f = gh for some g, h ∈ C[x] thus (f) is not a prime; since f is polynomial with
minimal degree in (f), and g and h has a degree less than f . Now if deg f = 0, then f = 0, otherwise
(f) = (1), done. If deg f ≥ 2, then f splits into linear forms, since C is algebraically closed field. Thus,
(f) is not prime. Hence only nonzero prime ideal occurs when f is linear form (x− a). Thus,

Spec(C) = {(x− a) : a ∈ C} ∪ {(0)}.

We can think it as C with big points (0) whose (Zariski) closure is whole Spec(C).

For Spec(R[x]), also it is PID. Hence (f) is prime ideal if and only if f is irreducible. And their are
two irreducible polynomials with respect to degree; f is linear form x− a, or f is degree 2 polynomial
f = x2 + px + q such that p2 − 4q < 0. Hence we can think it as a picture of R with big points (0),
and {(p, q) ∈ R2 : p2 − 4q < 0}.
For Spec(Z[x]), take two maps φ : Z→ Z[x] and ψ : Z→ Z/(p) for each p = 0 or prime. Then, it gives
us a below commuting diagram

Spec(k(p)[x]) Spec(Z/(p))

Spec(Z[x]) Spec(Z)

ψ∗

φ∗

where k(p) is a residue fields of (p). (To see that Spec(k(p)[x]) is a pull back of two maps φ∗ and ψ∗, if
p 6= 0, then k(p) = Zp. Hence, there is a natural projection Z[x]→ Zp[x] and an injection Zp → Zp[x].
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Thus from the map

Z Zp

Z[x] Zp[x]

ψ

φ

which are commutes and a pullback, we can get above pullback. (To see this concretely, let a be an
ideal in Zp[x]. Then, sending a to Zp gives a∩Zp, which is 0 if a contains no constant, or (1) if it has a
nonzero constant. Also sending a to Z[x] gives an ideal b containing a and containing (p). Notes that
if a contains a nonzero constant c, then (p) + (c) is contained in b, thus b = (1) since (p) + (c) = 1 by
Bezout’s theorem. Otherwise, b ∩ Z = (p). So b sends to an ideal containing (p) or Z, and a ∩ Zp also
sent to an ideal (p) or Z. Thus Spec(Zp[x]) satisfies the condition as a pullback of two maps φ∗, ψ∗.

Similarly, if p = 0, then k(p) = Q, thus we can do the same analysis.

Hence, Spec(Z[x]) = {(p, f) : f ∈ Z[x] and irreducible at Zp[x]}(p)∈SpecZ∪{f ∈ Z[x] : irreducible over Q[x]}.
Notes that the first contains zero ideal and corresponding to pullback Spec(Zp[x]). The second part
corresponds to pullback Q[x], a fiber of the zero ideal.

17. To see Xf form a basis of open sets for Zariski topology, first of all, they cover Spec(A); just take f
be a unit, then

Xf = V (f)c = V (1)c = ∅c = Spec(A).

Thus, we need to check that for any two open sets Xf and Xg has nonzero intersection and if p is in
the intersection, then there exists Xi containing h and contained in the intersection. To get this, notes
that p do not contain f and g. So take Xfg; then from V (f), V (g) ⊆ V (fg), Xf , Xg ⊇ Xfg, which
implies Xf ∩Xg contains Xfg. Also, since p do not contain f and g, neither does fg, otherwise from
the prime ideal property, one of f and g should lie in p, contradiction. Hence p ∈ Xfg.

(a) We already show that Xfg ⊆ Xf ∩ Xg. Let p ∈ Xfg. Then, by the same argument, p doesn’t
contain f and g, thus p ∈ Xf ∩Xg. This implies equality.

(b) Suppose Xf = ∅. It is equivalent to say that every prime ideal contains f . It is equivalent to say
that f is in the intersection of all prime ideals, i.e., nilradical.

(c) Xf = X is equivalent to say that no prime ideal contains f . This is equivalent to say that f is
unit; (If f is unit then no prime ideal contains f . Conversely, if no prime ideal contains f but if f
is nonunit, then (f) is proper ideal, thus by Corollary 1.5 there is some maximal ideal containing
f , contradiction.)

(d) Xf = Xg if and only if V (f) = V (g) if and only if r(f) = r(g).

(e) To see this, let {Ui}i∈I be an open cover of Spec(A). Then actually using basis we can find more
finer open cover consisting of Xf s, say {Xf}f∈J for some index set j. This implies

Spec(A) =
⋃
f∈J

Xf =
⋃
f∈J

V (f)c = (
⋂
f∈J

V (f))c

by De Morgan’s law. Which implies ⋂
f∈J

V (f) = ∅.

This implies that (J) = (1). To see this, suppose not; then (J) is proper ideal, so by Corollary
1.5 there exists a maximal ideal containing (J), say m. Then m is prime and contains all f ∈ J ,
which implies m ∈

⋂
f∈J V (f) = ∅, contradiction.

Hence, 1 =
∑n
j=1 ajfj for some fj ∈ J and aj ∈ A. This implies that

n⋂
j=1

V (fj) = V (

n⋃
j=1

{fj}) = ∅,
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where first equality comes from Exercise 15 ii), and second equality comes from the fact that

1 =
∑n
j=1 ajfj . This implies Spec(A) =

(⋂n
j=1 V (fj)

)c
=
⋃n
j=1Xfj , which is finite subcover,

done.

(f) To see that each Xf is quasi-compact, let {Xfi}i∈I be an open cover of Xf . Then, Xf =⋃
i∈I Xfi∩Xf =

⋃
i∈I Xffi . Thus for simplicity, replace ffi with fi so that assume Xf =

⋃
i∈I Xfi .

This implies

V (f)c =
⋃
i∈I

V (fi)
c = (

⋂
i∈I

V (fi))
c =⇒ V (f) =

⋂
i∈I

V (fi) = V (
⋃
i∈I
{fi})

where last equality comes from Exercise 15 ii). This implies that r(f) = r({fi}i∈I , thus fn =∑
j∈J ajfj for some finite subset J of I for some n ∈ N. Thus, for any prime ideal p ∈ V (

⋃
i∈I{fi}),

fn ∈ (
⋃
i∈J{fi}) implies fn ∈ p thus f ∈ p by prime property. Hence, V (f) ⊇ V (

⋃
i∈J{fi}). This

implies

V (f)c = Xf ⊆ V (
⋃
i∈J
{fi})c =

(⋂
i∈J

V (fi)

)c
=
⋃
i∈J

V (fi)
c =

⋃
i∈J

Xfi .

Thus Xf ⊆
⋃
i∈J Xfi ⊆

⋃
i∈I Xfi = Xf implies Xf =

⋃
i∈J Xfi , so Xf has a finite subcover for

any open conver. Hence it is quasi-compact.

(g) Let O be an open subset of X. If O is a finite union of sets Xf , say O =
⋃
j∈J Xfj for some finite

index set J , then finite union of compact set is compact. (Or say that each open cover of O is
also an open cover of Xfj for each j ∈ J , thus pick finitely subcover of Xfj for each j and collect
them.)

Conversely, suppose O is quasi-compact. then since {Xf} is a basis of given topology and O is
open, we can say O =

⋃
i∈I Xfi for some (maybe infinite) index set I. Thus {Xfi}i∈I is an open

cover of O, hence we can take finite subset J of I such that O ⊆
⋃
i∈J Xfi from quasi-compactness.

Hence
O ⊆

⋃
i∈J

Xfi ⊆
⋃
i∈I

Xfi = O

implies O =
⋃
i∈J Xfi , a finite union of sets Xf .

18. Prove ii) first. Then use ii) to prove i). Before begin with this problem, we just mention that from
the exercise 15, the Zariski topology is precisely a topology whose closed sets are of form V (E) for any
subset E of A.

(a) If px is maximal, then V (px) = {x}; if there exists a prime ideal containing maxima ideal px, then
by maximality it should be px itself. Hence, {x} is closed. Conversely, let {x} be closed. Then,
{x} = V (E) for some E ⊆ A. Then px contains E. Also, notes that x ∈ V (px) ⊆ V (E) = {x}
implies V (px) = {x}. Hence if px is not a maximal, then by Corollary 1.5, there is a maximal
ideal m containing px properly, thus m ∈ V (px), which implies m = px, contradiction. Hence px
is maximal.

(b) V (px) contains x and is closed. Thus V (px) ⊇ {x}. Conversely, {x} = V (E) for some subset E.
Then V (px) ⊆ V (E) implies px ⊇ E. Thus for any other prime ideal p containing px, it contains
E, thus V (px) ⊆ V (E) = {x}, done.

(c) If y ∈ {x}, then y ∈ V (px) by ii), thus py contains px. Conversely, if py contains px, then

py ∈ V (px) = {x} by ii).

(d) If x, y are distinct point of X, then either px ( py or py ( px. Without loss of generality, assume

px ( py. Then, y 6∈ {x}. Thus, X \ {x} is an open set containing y but not x.

19. Suppose the nilradical is prime. Let O1 and O2 be two open sets. Then using basis we can take
nonempty Xf1 and Xf2 which are subsets of O1 and O2 respectively. Then, f1, f2 are not nilpotent by
Exercise 1.17 ii), so they are not in nilradical. Thus f1f2 are not in the nilradical. Hence, ∅ 6= Xf1f2 =
Xf1 ∩Xf2 ⊆ O1 ∩O2, done.
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Conversely, suppose X is irreducible. It suffices to show that for any f1, f2 which are not niilpotent,
their product is also not nilpotent. From given not nilpotent condition, Xf1 and Xf2 are nonempty
open sets by Exercise 1.17 ii). From the irreducibility condition, Xf1 ∩Xf2 is also nonempty, thus f1f2

is not nilpotent, done.

20. (a) Let U be a nonempty open set in Y . Then, U ∩ Y is also open in Y by subspace topology, thus
U ∩ Y is dense in Y as a subspace topology. Thus its closure is equal to closure of Y , which
implies

Y = U ∩ Y ⊆ U = Y =⇒ U = Y ,

done.

(b) Let Σ be a set of all irreducible subspace containing Y , which is an irreducible subspace of Y .
Then, Y ∈ Σ, so it is nonempty. Give an ordering by inclusion, and take a chain. Then, union
of all irreducible spaces, say T =

⋃
α Tα for some chain {Tα} irreducible; to see this, let U be an

open set in T . Then, U ∩ Tα is open in Tα for any α, thus closure of U ∩ Tα is Tα for each α.
Then,

T =
⋃
α

Tα =
⋃
U ∩ Tα ⊆ U

implies U = T . Thus by the Zorn’s lemma, Σ has a maximal element.

(c) Let Σ be a set of all maximal irreducible subspaces of X. First of all, it is closed since for any
T ∈ Σ, its closure is also irreducible space, but by maximality, T = T . Also, it covers X, since
a singleton in X is irreducible as a subspace topology. (Notes that topology of singleton {x} is
{∅, {x}}, thus only nonempty open set is {x}, which are definitely dense.) This implies that each
singleton is contained in a maximal irreducible subspaces.

In a Hausdorff space, every irreducible space is singleton; to see this, let Y be any set strictly
containing some singleton {x}. Then, for any z ∈ Y \ {x}, there exists two disjoint open sets Uz
and Ux in X such that z ∈ Uz, x ∈ Ux. Thus, Uz ∩ Y and Ux ∩ Y are two open sets in Y (as
a subspace topology) which are disjoint. Thus Y is not irreducible space. So every irreducible
components of a Hausdorff space is singleton.

(d) We claim that every irreducible closed subset is exactly of form V (p) where p is prime. If it
holds, then for any irreducible space, its closure is of form V (p) from the Exercise 15 saying that
every closed set in the Zariski topology is of form V (E). Thus, the maximal irreducible set is just
maximal irreducible closed subset, which is of form V (p) where p is minimal prime; otherwise,
there is a prime p′ which contained in p thus V (p′) ) V (p), hence not a maximal.

To see the claim, let V (E) be an irreducible closed set. We can assume that V (E) = V (I)
for some radical ideal I generated by E. If I is not prime, let a, b 6∈ I but ab ∈ I. Then
V ((I, a)) ∪ V ((I, b)) = V ((I, a) ∩ (I, b)) = V ((I, ab)) = V (I) from Exercise 15 iv). However,
neither V (I, a) = V (I) nor V (I, b) = V (I). This implies V (I) is not irreducible space.

Notes that I implicitly use the fact that

Claim II. Y is irreducible space in X if and only if Y cannot be covered by two proper closed sets.

Proof. To see this, Suppose Y cannot be covered by two proper closed sets. Let U and V be two
arbitrary non-empty open sets of Y . Suppose U and Y has empty intersection, i.e., disjoint. Then,
their complement are two proper closed subsets whose union is Y by De Morgan Law. Thus one of U c

or V c contains Y , which contradicting the fact that U and V are two nonempty sets.

Conversely, suppose Y is irreducible. Let F,G are two proper closed sets whose union is Y . Then their
complements are two open sets whose union is emptyset, by De Morgan Law, contradiction.

21. (a) Let f ∈ A. Then notes that for any x ∈ Yφ(f) = V (φ(f))c, which implies px does not contain
φ(f), thus φ−1(px) does not contain f . (If f ∈ φ−1(px), then φ(φ−1(x)) ⊆ px contains φ(f),
contradiction.) Hence φ−1(px) = φ∗(x) ∈ Xf . Thus, Yφ(f) ⊆ (φ∗)−1(Xf ).
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Now let y ∈ (φ∗)−1(Xf ). Then, φ∗(y) ∈ Xf . This implies φ−1(py) does not contain f . Thus,
φ(φ−1(py)) ⊆ y does not contain φ(f). This implies py does not contain φ(f). (Otherwise, if
φ(f) ∈ py, then φ−1(py) contain f , contradiction.) Hence py ∈ Yφ(f).

(b) Let x ∈ (φ∗)−1(V (a)). Then, φ−1(px) ∈ V (a), thus a ⊆ φ−1(px). Hence, φ(a) ⊆ φ
(
φ−1(px)

)
⊆ px.

Which implies ae ⊆ px. Hence x ∈ V (ae).

Conversely, let y ∈ V (ae). Then py contains ae, which implies φ−1(py) contains a, thus φ−1(py) ∈
V (a). Thus, φ∗(y) ∈ V (a), which implies y ∈ (φ∗)−1(V (a)).

(c) Let x ∈ φ∗(V (b)). Then there exists y ∈ V (b) such that φ(y) = x. This implies px = pcy. Since py
contains b px = pcy contains bc. Thus x ∈ V (bc). From the closedness of V (bc),

φ∗(V (b)) ⊆ V (bc).

Conversely, from closedness of φ∗(V (b)), φ∗(V (b)) = V (a) for some ideal a of A. Then, by ii),

V (ae) = (φ∗)−1(V (a)) = (φ∗)−1(φ∗(V (b))) ⊇ (φ∗)−1(φ∗(V (b))) ⊇ V (b).

This implies
ae ⊆ r(b).

Thus for any f ∈ a, φ(f) ∈ ae ⊆ r(b), thus φ(fn) = φ(f)n ∈ b for some n ∈ N, which implies
fn ∈ bc. Hence a ⊆ r(bc). Thus

φ∗(V (b)) = V (a) ⊇ V (r(bc)) = V (bc).

(d) First of all we claim that

Claim III. III φ : A→ B is a ring isomorphism, then φ∗ is homeomorphism.

Proof. If φ is a ring isomorphism, then we have an inverse map ψ : B → A. Now φ∗ and ψ∗ are
inverse to each other, since φ∗ ◦ ψ∗(x) = φ−1 ◦ ψ−1(x) = ψ ◦ φ(x) = x. And they are continuous
by i). Thus φ has an inverse map which is also continuous. Thus it is homeomorphism.

By isomorphism theorem, A/ ker(φ) is isomorphic to B as a ring. Hence, φ∗ on B induces a
homeomorphism between Spec(A/ ker(φ)) and Spec(B). (Notes that the given map sends open
to open and closed to closed.) Now Proposition 1.1 implies that Spec(A/ ker(φ)) and V (ker(φ))
has order preserving 1-1 correspondence induced by the projection map. Thus it suffices to show
that this map is homeomorphism. To see this, we can use the fact that bijective continuous map
is homeomorphism iff it is open or closed map.

Let F be closed set in A/ kerφ. Then F = V (ā) for some ideal ā in A/ ker(φ) corresponding to
an ideal a in A by Proposition 1.1. Let π : A → A/ ker(φ) be the canonical projection map. We
claim that π∗(F ) = V (a). If it holds, then π∗ is bijective continuous and closed map, thus it is
homeomorphism.

Let y ∈ π∗(F ). Then, y = π∗(x) for some x ∈ F . This implies py = pcx. Also pcx contains āc = a
since px contains ā. This implies py contains a, hence y ∈ V (a). Conversely, if y ∈ V (a), then py
contains a. Also, by Proposition 1.1 py = pcx for some px in A/ ker(φ). Hence, φ(py) = px and
φ(a) = ā. This implies px contains ā. Thus y = π∗(x) and from x ∈ V (ā) implies y ∈ π∗(V (ā)) =
π∗(F ). Hence π∗ is closed map, thus done.

(e) From iii),
φ∗(Y ) = φ∗(V (0)) = V (0c) = V (ker(φ)).

Thus, φ∗(Y ) is dense if and only if V (ker(φ)) = X if and only if ker(φ) ⊆ p for all p ∈ X if and
only if ker(φ) ⊆ R.

(f)
ψ ◦ φ∗(z) = (ψ ◦ φ)−1(z) = φ−1 ◦ ψ−1(z) = φ∗ ◦ ψ∗(z).

14



(g) Notes that Spec(A) = {p, 0}. Now think about Spec(B); notes that A/p has only 0 as a prime
ideal since it is a field, and so does K. We claim that

Claim IV. IV Every ideal in direct product of (unital commutative) ring is direct product of two
ideals in each ring.

Proof. Let R,S be a two such rings, and let I be an ideal of R × S. Then, IR, a projection of I
onto R is also ideal; to see this, let r, r′ ∈ IR. Then, ∃s, s′ ∈ S such that (r, s), (r′, s′) ∈ I, hence
(r + r′, s+ s′) ∈ I therefore r + r′ ∈ IR. Also, for any a ∈ R and r ∈ Ir, there exists s ∈ S such
that (r, s) ∈ I, hence for any s′ ∈ S, (a, s′) · (r, s) = (ar, s′s) ∈ I, thus ar ∈ IR. We can do the
same argument to show that IS is also an ideal, thus I = IR × IS .

Thus, since all ideals in A/p is (1̄) and (0̄), and all ideals in K is K and (0). Hence B has four
ideals, B, (0), and q1 = (0̄)×K and q2 = (1̄)×(0). Notes that q1 = {(0, k) : k ∈ K}, q2 = {(a, 0) :
a ∈ A/p}.
Also, if (a, k)(a′, k′) ∈ q1, then one of a or a′ should be zero, this implies one of (a, k) o (a′, k′)
lies in q1. Thus q1 is prime. By the similar argument, q2 is prime. Notes that (0) is not a prime
in B; since (a, 0)(0, k) ∈ (0) but a, k are nonzero. Thus,

Spec(B) = {q1, q2}.

Then, φ−1(q1) = p, φ−1(q2) = 0. Hence, φ∗ is bijection. However, it is not homeomorphism. To
see this, notes that Spec(A) has three closed sets, {0, p}, {p}, and ∅. {0} is not a closed set, since
V (p0) = V (0) = Spec(A) since p also contains 0. However, Spec(B) has discrete topology; to see
this, notes that V (q1) = {q1}, V (q2) = {q2}, V (∅) = Spec(B), V (B) = ∅. Thus, (φ∗)({q2}) = {0}
implies that φ∗ is not a closed map, hence φ∗ is not homeomorphism.

Notes that zero ideal is prime if the ring is integral domain.

22. (a) (First problem) Let Xi := {A1 × · · · × Ai−1 × p × Ai+1 × · · · × An : p ∈ Spec(Ai)}. First of
all, we claim that Xi as a subspace of Spec(A) has the topology homeomorphic to Spec(Ai).
Before starting the proof, it is clear that A1 × · · · × Ai−1 × p× Ai+1 × · · · × An is prime in A; if
(a, x, a′)(b, y, b′) is in the prime ideal, then either x or y should lie in p, thus either (a, x, a′) or
(b, y, b′) lies in A1 × · · · ×Ai−1 × p×Ai+1 × · · · ×An, done.

To see this, let φi : Ai → A by x 7→ (1, · · · , 1, x, 1, · · · , 1). Then, φ∗i : Spec(A) → Spec(Ai) is
continuous map, thus φ∗i |Xi : Xi → Spec(Ai) is also continuous map. Now, notes that any closed
set in Xi has a form V (E) ∩Xi for some subset E of A. Hence E =

∏n
j=1Ej for some Ej ⊆ Aj ,

hence V (E) ∩Xi is a set of all prime ideals in Xi containing Ei, which implies φ∗i (V (E) ∩Xi) =
{p ∈ V (Ei)} = V (Ei). Thus, φ∗ is closed map. Moreover, φ∗i is bijection, since φ∗i (A1 × · · · ×
Ai−1 × p × Ai+1 × · · · × An) = p which gives an injection, (two distinct elements in Xi has
two distinct prime ideal part of i-th position, thus their image is different.) Also every prime
ideal in Ai is also image of φ∗ by construction. Hence φ∗ is bijectively continuous and closed
map. Hence it is homeormorphism. (Notes that πi : A → Ai gives the inverse map; since
π−1(p) = A1 × · · · ×Ai−1 × p×Ai+1 × · · · ×An.)

Now we claim that Spec(A) = qni=1Xi. Notes that actually as a subset, Xi ∩ Xj = ∅ if i 6= j,
since Ai and Aj are not prime. Thus it suffices to show that Spec(A) =

⋃n
i=1Xi and to check

its disjoint topology structure, i.e., subset U of Spec(A) is open if and only if π∗−1
i (U) is open in

Spec(Ai), where πi : A→ Ai be canonical projection. This statement is equivalent to saying that
subset F of Spec(A) is closed if and only if π∗−1

i (F ) is closed in Spec(Ai). (To see this, notes that
LHS is equivalent to say that U c is closed, and RHS is equivalent to say that π∗−1

i (U c) is closed,
from the injectivity of the map π∗i .)

To see that every prime ideal in Spec(A) has a form A1 × · · · × Ai−1 × p × Ai+1 × · · · × An, let
P be a prime ideal in A. Let e1, · · · , en be an element such that ek is k-th position is 1 and the
other positions are zeros. Then, if P has all ei, the P = A, not a prime. So P doesn’t have some
ei. Fix the smallest ei which is not in P . Then, for any j 6= i, eiej = 0 ∈ P implies ej ∈ P .
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Hence, P = A1× · · ·×Ai−1× p×Ai+1× · · ·×An where p is projection of P onto Ai. To see that
p is prime ideal in Ai, notes that

A/P ∼= A1/A1 × · · · ×Ai−1/Ai−1 ×Ai/p×Ai+1/Ai+1 × · · · ×An/An ∼= Ai/p

is integral domain. Thus p should be prime ideal.

To see that Spec(A) has a disjoint union topology, let F be a closed set in Spec(A). Then
F = V (E) for some subset E =

∏n
i=1Ei of A. Then

π∗−1
i (V (E)) = π∗−1

i (V (E) ∩Xi) = {πi(x) : x ∈ V (E) ∩Xi} = {p ∈ Spec(Ai) : Ei ⊆ p} = V (Ei).

Conversely, let F be a set such that π∗−1
i (F ) is closed for all i. Then, π∗−1

i (F ) = V (Ei) for some
subset Ei of Ai. We claim that F = V (E). To see this, π∗i is actually homeomorphism between
Spec(Ai) and Xi, thus

π∗i (π∗−1
i (F )) = F ∩Xi

and F ∩ Xi = {A1 × · · · × Ai−1 × p × Ai+1 × · · · × An : E1 ⊂ p ∈ Spec(Ai)} ⊆ V (E). Hence,
F =

⋃n
i=1 F ∩Xi ⊆ V (E). Conversely, if P = A1× · · ·×Ai−1× p×Ai+1× · · ·×An ∈ V (E), then

p contains Ei, thus P ∈ Xi ∩ F . This implies F = V (E), done.

(b) (Second problem) If X = Spec(A) is disconnected, then there is two disjoint clopen sets whose
union is X = Spec(A). Thus X = V (I) ∪ V (J) for some ideal I and J with V (I) ∩ V (J) = ∅.
By exercise 15 iii), V (I + J) = ∅. Hence I + J does not lie in any prime ideal, thus it cannot
be a proper ideal; otherwise it has a maximal ideal containing itself. Thus I + J = A. Also,
X = V (I)∪V (J) = V (IJ). This implies IJ is contained in any prime ideal, hence IJ ⊆ R. Also,
from the coprime condition of I and J , IJ = I ∩ J (see [3][p.7].)

Now we want to see iii). Let a ∈ I, b ∈ J such that a + b = 1. (Notes that a, b are nonzero and
not 1.) Then, ab is nilpotent, thus ∃n ∈ N such that anbn = 0. Now think about (a+ b)2n. Then,
we can let

e1 = a2n+

(
2n

1

)
a2n−1b+· · ·+

(
2n

n− 1

)
an+1bn−1, e2 =

(
2n

n+ 1

)
an−1bn+1+· · ·+· · ·

(
2n

2n− 1

)
ab2n−1+b2n.

Then, e1 + e2 +
(

2n
n

)
anbn = e1 + e2 = 1 and e1e2 = 0 since every term in e1e2 contains anbn.

Hence, e1(1− e1) = 0 implies e1(e1 − 1) = 0 thus e2
1 = e1. Similarly, e2

2 = e2. Also we know that
e1 ∈ I, e2 ∈ J thus they are nontrivial idempotent.

Next, we assume iii) and prove ii). Suppose t be an idempotent. Then, s = 1−t is also idempotent
since s2 = t2− 2t− 1 = 1− t. Hence, let S, T be a subring of A generated by s and t, i.e., S = sA
and T = tA. Let φ : A → S × T by x 7→ (sx, tx). It is surjective, since for any (sx, ty), take
h = sx + ty. Then, sh = s2x + sty = sx, th = ty, done. Also, it is injective, since (sx, tx) = 0
implies that tx = 0, (1 − t)x = 0. Hence, x = tx = 0. Thus it is bijective homomophism, so
isomorphism.

From ii) to i) is just done by First problem part.

(c) In particular, the spectrum of a local ring is connected since Exercise 12 shows that it has no
nontrivial idempotent.

23. (a) Xf is open by Exercise 17. So it suffices to show that Xf = V (f)c is closed. It is equivalent
to say that V (f) is open. To see this, let f ∈ A. Then s = 1 − f is also idempotent. We
claim that V (f) ∩ V (s) = ∅. If p ∈ V (f) ∩ V (s), then p contains f and s = 1 − f , thus p
contains an ideal generated by f and s, which implies f + s = 1 ∈ p, contradiction. Also,
V (f)∪V (s) = V (fs) = V (0) = Spec(A) by exercise 15. Hence, V (s) and V (f) are disjoint closed
sets whose union is Spec(A). Thus V (s) = V (f)c, V (f) = V (s)c. This implies that V (f), V (s)
are clopen. This implies Xf and Xs are clopen, too. Since f was arbitrarily chosen, every basic
open sets are clopen.
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(b) Notes that

Xf1 ∪ · · · ∪Xfn =

n⋃
i=1

V (fi)
c =

(
n⋂
i=1

V (fi)

)c
= (V ({fi}ni=1))

c
,

where last equality comes from Exercise 15 iii). By exercise 11 iii), an ideal generated by {fi}ni=1

is principal, so (f) = ({fi}ni=1) for some f ∈ A. Hence,

Xf1 ∪ · · · ∪Xfn = (V ({fi}ni=1))
c

= V (f)c = Xf .

(c) Let Y ⊆ Spec(A) = X be clopen. Since Y is open, Y is union of basic open sets. Since Y is closed
and X is quasi-compact by Exercise 17 v), Y is quasi-compact. Hence Y is a finite union of basic
open sets by Exercise 17 vii). By above ii), done.

(d) Notes that Spec(A) is quasi-compact by Exercise 17 v). Now take x, y ∈ Spec(A) which are
distinct. Then without loss of generality, assume px 6⊆ py. Then z ∈ px \ py. Then, V (z) contains
px, V (z)c contains py. Since they are open, so Spec(A) is Hausdorff.

24. Notes that join and meets in the lattice are associative. Hence, addition and multiplication are well-
defined. Also, a2 = a ∧ a = a, done.

Conversely, let A be a given boolean ring. Then, a(a + b + ab) = a + 2ab = a implies a ≤ a + b + ab.
Similarly, b ≤ a+ b+ ab. Thus, a ∧ b ≤ a+ b+ ab. Moreover, if a ≤ c and b ≤ c, then (a+ b+ ab)c =
ac + bc + abc = a + b + ab implies that a + b + ab ≤ c. Hence, a ∧ b = a + b + ab. Thus a ∧ b exists.
Conversely, aba = ab and abb = ab implies ab ≥ a, b. Also, for any c ≥ a, b, this implies ac = a, bc = b,
thus abc = ab, which implies c ≥ ab. This shows that ab = a∨b. Now, a∧a′ = a+(1−a)+a(1−a) = 1,
a ∨ a′ = a(1− a) = 0, done.

25. Let B be a Boolean lattice. Then using Execise 24, we can regard it as a Boolean ring, say A. Now
take a map A→ Spec(A) by f 7→ V (f). Then, f ≤ g implies f = fg implies V (f) ⊇ V (g) since f = fg
implies that all p ∈ V (g) contains fg = f , which implies p ∈ V (f). Hence Xf ⊆ Xg, which implies
Xf ≤ Xg if we regard topology as a lattice ordered by inclusion. Also, complement, sup and inf are
preserved, hence lattice of topology of Spec(A) is isomorphic to its Boolean lattice as a lattice. Since
the topology is open and closed subsets of compact Hausdorff topology by Exercise 23 iv), done.

26. This problem shows that if X is compact Hausdorff and C(X) is the ring of all real-valued continuous
function on X, then Max(C(x)) = {mx : x ∈ X} where mx is a set of all functions in C(X) vanishing at
x. In the step iii), we claim that µ(Uf ) = Ũf . Notes that µ(Uf ) = {mx : x ∈ Uf}. Thus if mx ∈ µ(Uf ),

then f 6∈ m̃x since f(x) 6= 0, thus mx ∈ Ũf . Conversely, if m ∈ Ũf , then by bijectivity of µ, m = mx
for some x ∈ X. Hence f(x) 6= 0. This implies m ∈ µ(Uf ).

27. We need the weak Nullstellensatz, stating that

Claim V. V If k is algebraically closed field, and an ideal a of k[t1, · · · , tn] is not (1), then Z(a) 6= ∅.

This is result of Exercise 5.17. Assume this and let m be the maximal ideal of k[t1, · · · , tn]. Then, Z(m)
is nonzero by the weak Nullstellensatz. Hence, ∃x ∈ Z(m). Thus mx contains m. By the maximality
of m, m = mx.

Now for P (X) = k[t1, · · · , tn]/I(X), we know that Spec(P (X)) has 1-1 order preserving correspondence
with ideals containing I(X). Hence if m is the maximal ideal in P (X), then it is just projection of
maximal ideal in k[t1, · · · , tn] containing I(X). By above result, we can assume this maximal ideal is
mx for some x ∈ kn. Since I(X) ⊆ mx, so x ∈ X. Hence, any maximal ideal in P (X) is of the form
mx for x ∈ X.

Also notes that mx = (ξi − xi)ni=1, since the RHS is subideal of mx and maximal from the fact that
P (X)/(ξi − xi)ni=1

∼= k by a map sending ξi 7→ xi.
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28. Let φ# : P (Y )→ P (X) be a map induce by φ. First of all, it is k-algebra homomorphism; to see this,
for any a ∈ k, b, c ∈ P (Y ),

φ#(ab) = ab ◦ φ = a(b ◦ φ) = aφ#(b)

φ#(b+ c) = (b+ c) ◦ φ = (b ◦ φ) + (c ◦ φ) = φ#(b) + φ#(c)

φ#(bc) = (bc) ◦ φ = (b ◦ φ)(c ◦ φ) = φ#(b)φ#(c)

where last equation comes from the fact that bc(y) = b(y)c(y) for any y ∈ Y .

Now let Hom(X,Y ) be a set of all regular maps from X to Y and Homk(P (Y ), P (X)) be set of all
k-algebra homomorphisms from P (Y ) to P (X). As we saw above, (·)# is well-defined. To see it is
injective, let φ∗ = ψ∗. If we let coordinates of φ(x) and ψ(x) as φi : kn → k and ψi : kn → k
respectively for i = 1, · · · ,m, then for any coordinate functions ξi ∈ P (Y ),

φi = ξi ◦ φ = φ#(ξi) = ψ#(ξi) = ξi ◦ ψ = ψi

for all i ∈ [m]. This implies φ = ψ as a polynomial mapping.

Moreover, (·)# is surjective. let λ ∈ Homk(P (Y ), P (X)). Let π : k[t1, · · · , tm] → P (Y ) be canonical
projection. Then λ ◦ π : k[t1, · · · , tm]→ P (X). Hence Let φi := λ ◦ π(ti) ∈ P (X) for all i ∈ [m]. Then
φi : X → k is regular function since it has preimage in k[t1, · · · , tn] from the fact that P (X) is the
quotient ring of k[t1, · · · , tn].

Then, we know that for any ti ∈ k[t1, · · · , tm], λ◦π(ti) = φi. Thus for any η(t1, · · · , tm) ∈ k[t1, · · · , tm],

λ ◦ π(η) = η(λ ◦ π(t1), · · · , λ ◦ π(tm)) = η(φ1, · · · , φm) = η ◦ φ.

since each π and λ are multiplicative homomorphism ( in different sense; λ as k-algebra and π as ring
homomorphism.) Now it suffices to show that for any η′ ∈ η + I(X), η ◦ φ = η′ ◦ φ. If we show this,
then φ# is well-defined on π(η), and λ and φ coincides on every π(η) ∈ P (Y ), so λ = φ. And the
statement for any η′ ∈ η + I(Y ), η ◦ φ = η′ ◦ φ is equivalent to say that ψ ◦ φ = 0 for any ψ ∈ I(Y ).
To see this, notes that

ψ ◦ φ = ψ(φ1, · · · , φm) = ψ(λ ◦ π(t1), · · · , λ ◦ π(tm)) = λ ◦ π(ψ) = λ(0) = 0

since ψ ∈ I(Y ).

Thus (·)# is surjective. Actually, for φ : X → Y and ψ : Y → Z, and for any η ∈ P (Z),

(ψ ◦ φ)#(η) = η ◦ ψ ◦ φ = φ#(η ◦ ψ) = φ#(ψ#(η)) = φ# ◦ ψ#(η).

Hence, this shows that the coordinate ring is contravariant functor from the category of affine algebraic
varieties and regular maps to the category of finitely generated k-algebras and k-algebra homomor-
phism.

2 Modules

Exercise 2.2. 1. Ann(M +N) = Ann(M) ∩Ann(N).

2. (N : P ) = Ann((N + P )/N).

Proof. If x ∈ Ann(M) ∩ Ann(N), then x(M + N) = 0, since M + N is just finite sum on M ∪ N . So
x ∈ Ann(M + N). Conversely, x ∈ Ann(M + N) implies that xm = 0 and xn = 0 for all m ∈ M,n ∈ N
since M,N ⊆M +N .

For the second one, let x ∈ (N : P ). For an arbitrary element z ∈ (N + P )/N , z has representation

z =
∑m
i=1 ni+

∑l
k=1 pi+N for some ni ∈ N, pi ∈ N , hence xz =

∑m
i=1 xni+

∑l
k=1 xpi+xN = 0+N = 0.Thus

x ∈ Ann((N + P )/N). Conversely, if x ∈ Ann((N + P )/N), then xp ∈ N for any p ∈ P , otherwise p+N is
not annihilted by x, contradiction. Thus x ∈ (N : P ).
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Notes that every ideal is subring, but ideal as a subring may not be commutative ring with unity. For
example, think an ideal of direct product generated by elements (0, · · · , 0, a, 0, · · · , 0). This ideal is definitely
a subring of A, but it may not have unity.

Corollary 2.7. Let M be a finitely generated A-module, N a submodule of M , a ⊆ R is an ideal contained
in the Jacobson radical. Then, M = aM +N =⇒ M = N .

Proof. Notes that a(M/N) = (aM +N) /N as a submodule of M/N . To see this, let m + N ∈ a(M/N).
Then, m = am′ for some a ∈ a and m′ ∈ M , thus m + N = am′ + 0 + N for 0 ∈ N , hence m + N ∈
(aM +N) /N . Conversely, let am+ n+N be an element in (aM +N) /N . Then, am+ n+N = am+N ,
thus am+ n+N ∈ a(M/N).

Thus the given condition says that a(M/N) = (aM +N) /N = M/N . Hence by Corollay 2.6, M/N = 0.
This implies M = N .

Proposition 2.9. 1. Let
M ′

u−→M
v−→M ′′ → 0

be a sequence of A-modules and homomorphisms. Then, the sequence is exact if and only if for all
A-module N , the sequence

0→ Hom(M ′′, N)
v−→ Hom(M,N)

u−→ Hom(M ′, N)

is exact.

2. Let
0→ N ′

u−→ N
v−→ N ′′

be a sequence of A-modules and homomorphisms. Then, the sequence is exact if and only if for all
A-module M , the sequence

0→ Hom(M,N ′)
u−→ Hom(M,N)

v−→ Hom(M,N ′′)

is exact.

Proof. Suppose that
M ′

u−→M
v−→M ′′ → 0

is exact. Then, u is injective and v is surjective. Thus v is injective since if f, g ∈ Hom(M ′′, N) such that
f ◦ v = g ◦ v, then for any x ∈M ′′, ∃x′ ∈M such that v(x′) = x, hence f(x) = f ◦ v(x′) = g ◦ v(x′) = g(x).
Also, from exactness of sequence of modules, Im(v) ⊆ ker(u) since for any f ∈ Hom(M ′′, N), f ◦ v ◦ u =
f ◦ 0 = 0. Now let f ∈ ker(u). Then, ker f ⊇ Imu = ker v. Hence, by argument in [3][p.19], f give rise to
f̄ : M/ ker(v) → N . Since M/ ker(v) ∼= M ′′, there exists g : M ′′ → N whose behavior is equal to f̄ . Now
notes that f(x) = f̄(x+ ker(v)) = g ◦ v(x), hence f is in ker(v), done.

Conversely, let

0→ Hom(M ′′, N)
v−→ Hom(M,N)

u−→ Hom(M ′, N)

be exact for any N . Then, to see v is surjective, suppose that v is not surjective. This implies Im(v) is proper
submodule of M ′′. Then, take N = M ′′/ Im(v). Since N is nonzero module, π : M → M ′′/ Im(v), which is
canonical surjection, is nonzero. Hence, v(π) 6= 0. However, π ◦ v = 0 since Im(v) ⊆ ker(π), contradiction.
So v is surjective. Moreover, u◦v = 0 implies f ◦v◦u = 0 for any f ∈ Hom(M ′′, N). Take N = M ′′ and f be
an identity map. Then, f ◦ v ◦ u = 0 implies v ◦ u = 0, since f is isomorphism. This implies Im(u) ⊆ ker(v).
To see equality, let N = M/ Im(u) an let φ : M → N be the projection. Then φ ∈ ker(u), thus ∃ψ : M ′′ → N
such that ψ = φ ◦ v Thus Im(u) = ker(φ) and ker(φ) contains ker(v). This implies Im(u) = ker(v).

For the second one, suppose
0→ N ′

u−→ N
v−→ N ′′

be exact. Then, Im(u) = ker(v) and u is injective. To see u is injective, let f ∈ Hom(M,N ′) such that
u(f) = 0. Then u ◦ f = 0. This implies f = 0 since u is injective. Also, Im(u) ⊆ ker(v) from v ◦ u = 0. If
f ∈ ker(v), then v ◦ f = 0. Thus Im(f) ⊆ ker(v) = Im(u). Hence, define

f̄ = u−1 ◦ f.
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It is well-defined since Im(f) ⊆ Im(u) and u is injective. Also, f̄ ∈ Hom(M,N ′) and u(f̄) = u ◦ u−1 ◦ f = f .
Hence f ∈ Im(u), done.

Conversely, suppose

0→ Hom(M,N ′)
u−→ Hom(M,N)

v−→ Hom(M,N ′′)

be exact for any M . Then, u is injective and Im(u) = ker(v). To see u is injective, let M = Z and x ∈ ker(u).
Then we have a map f : Z → N ′ by 1 7→ x. Then u ◦ f = 0 implies f ∈ ker(u) thus f = 0. Thus x = 0.
Hence ker(u) = 0, so u is injective. Moreover, Im(u) ⊆ ker(v) since v ◦ u = 0 implies v ◦ u ◦ f = 0 for any
f : M → N ′, therefore by taking M = N ′ and f be identitiy, we get v ◦ u ◦ f = 0 implies v ◦ u = 0. Also, to
see Im(u) ⊇ ker(v), let x ∈ ker(v). Then let M = Z and take a map f : Z→ N by 1 7→ x. Then,

Im(v(f)) = Im(v ◦ f) = 0

implies that f ∈ ker(v) = Im(u). Hence there exists g ∈ Hom(Z, N ′) such that u ◦ g = f . Thus, u(g(1)) =
f(1) = x. This implies x ∈ Im(u), done.

Proposition 2.14. Let M,N,P be A-module. Then there exists unique isomorphisms

1. M
⊗
N → N

⊗
M

2. (M
⊗
N)
⊗
P →M

⊗
(N
⊗
P )→M

⊗
N
⊗
P

3. (M
⊕
N)
⊗
P → (M

⊗
P )
⊕

(N
⊗
P )

4. A
⊗
M →M

such that, respectively,

1. x⊗ y 7→ y ⊗ x

2. (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z) 7→ x⊗ y ⊗ z

3. (x, y)⊗ z 7→ (x⊗ z, y ⊗ z)

4. a⊗ x 7→ ax.

Proof. Second one was prove in the book [3]. For the first one, M × N → N × M → N
⊗
M gives

a bilinear map sending (x, y) to y ⊗ x, so by the universal property of tensor product it induces a map
M
⊗
N → N

⊗
M sending x⊗y to y⊗x. Similarly, N ×M →M ×N →M

⊗
N is a bilinear map sending

(y, x) to x⊗ y, so by the universal property, we hvae a map y ⊗ x to x⊗ y. Those two maps are inverse of
each other, done.

For the third one, M
⊕
N × P → M × P ⊕ N × P → M

⊗
P ⊕ N

⊗
P is a bilinear map, so we have

a linear map φ : M
⊕
N
⊗
P → M

⊗
P ⊕ N

⊗
P by (m,n) ⊗ p 7→ (m ⊗ p, n ⊗ p). On the other hand,

M × P → (M ⊕ N)
⊗
P and N × P → (M ⊕ N)

⊗
P by (m, p) 7→ (m, 0) ⊗ p and (n, p) 7→ (0, n) ⊗ p are

bilinear map, so we have two linear maps M
⊗
P → (M ⊕N)

⊗
P and N

⊗
P → (M ⊕N)

⊗
P. Thus its

direct product has a map

ψ : M
⊗

P ⊕N
⊗

P →M
⊕

N
⊗

P by (m⊗ p, n⊗ p′) = (m, 0)⊗ p+ (0, n)⊗ p′.

Notes that its restriction on each side is linear, hence this map itself is bilinear. Now notes that

φ◦ψ(m×p, n⊕p′) = φ((m, 0)⊗p+(0, n)⊗p′) = φ((m, 0)⊗p)+φ((0, n)⊗p′) = (m⊗p, 0⊗p)+(0⊗p′, n⊗p′) = (m⊗p, n⊗p′)

and
ψ ◦ φ((m,n)⊗ p) = ψ(m⊗ p, n⊗ p) = (m, 0)⊗ p+ (0, n)⊗ p = (m,n)⊗ p.
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Hence they are inverse of each other, thus isomorphism.
For the last one, notes that A ×M → M by (a,m) → am is bilinear. Hence it induces a bilinear map

A
⊗
M → M by a ⊗m 7→ am. Hence this map induces a linear map φ : A

⊗
M → M . by a ⊗m → am.

Now think about the map ψ : M → A
⊗
M by m 7→ 1 ⊗ m. Then, φ ◦ ψ(m) = φ(1 ⊗ m) = m and

ψ ◦ φ(a⊗m) = ψ(am) = 1⊗ am = a⊗m, done.

Exercise 2.15. Let A,B be rings, let M be an A-module, P a B-module, N an (A,B)-bimodule (that is,
N is simultaneously an A-module and a B-module and the two structures are compatible in the sense that
a(xb) = (ax)b for all a ∈ A, b ∈ B, x ∈ N). Then M

⊗
A

N is naturally a B-module, N
⊗
B

P an A-module,

and we have
(M

⊗
A

)
⊗
B

P ∼= M
⊗
A

(N
⊗
B

P ).

Proof. Notes that for given p ∈ P , M ×N →M
⊗
A

(N
⊗
B

P ) by (m,n) 7→ m⊗ (n⊗ p) is bilinear. Hence, it

induces a linear map M
⊗
A

N →M
⊗
A

(N
⊗
B

P ) by m⊗ n 7→ m⊗ (n⊗ p) for given p. Also, we can construct

a amp

(M
⊗
A

N)× P →M
⊗
A

(N
⊗
B

P ) by (m⊗ n, p) 7→ m⊗ (n⊗ p).

This is B-linear with respect to fixed (m⊗n) (check.) And also A-linearity on fixed p is just showed. Hence
we can get a (A,B)-linear map

(M
⊗
A

N)
⊗
B

P →M
⊗
A

(N
⊗
B

P ) by (m⊗ n)⊗ p 7→ m⊗ (n⊗ p).

We can do the symmetric argument by interchanging M,N , and P to get an isomorphism as (A,B)-bimodule.

Exercise 2.20. If f : A → B is a ing homomorphism and M is a flat A-module, then MB = B
⊗
A

M is a

flat B-module.

Proof. Let j : N → N ′ be any injective B-module homomorphism. It suffices to show that 1⊗j : MB

⊗
B

N →

MB

⊗
B

N ′ is also injective. Since f : A→ B exists, we can think N,N ′ are A-modules. Then,

j ⊗ 1M : N
⊗
A

M → N ′
⊗
A

M

is injective as A-module map since M is a flat A-module. Then,

N
⊗
B

MB =︸︷︷︸
Def.

N
⊗
B

(B
⊗
A

M) ∼=︸︷︷︸
by 2.15 as bimodule

(N
⊗
B

B)
⊗
A

M ∼=︸︷︷︸
by 2.14 as bimodule

N
⊗
A

M.

Notes that last isomorphism as bimodule comes from the fact that for given f : A→ B a ring homomorphism
and W ∼= Q as a B-module, then they are isomorphism as an A-module since the given isomorphism map is
also can be regarded as A-module homomorphism satisfying surjectivity and injectivity.

Thusm the map j⊗1 : N
⊗
B

MB → N ′
⊗
B

MB is injective if and only if φ : N
⊗
A

M → N ′
⊗
A

M is injective

as a B-module. We already know that as an A-module homomorphism φ is injective by the fact that M is
flat. Since injectivity do not depends on its module structure, this map is also injective as a B-module, since
this map already has a bimodule homomorphism as we’ve shown in the equation.

Claim VI. p.30 Let f : A → B, g : A → C be two ring homomorphisms. Let h : B → C be a ring
homomorphism. Then, h is A-algebra map if and only if h ◦ f = g.
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Proof. Suppose h ◦ f = g. Let x, y ∈ B. Then h is additive since it is ring homomorphism. For any
a ∈ A, b ∈ B,

a.h(b) = g(a)h(b) = h(f(a))h(b) = h(f(a)b) = h(a.b)

Thus h is A-module map. Conversely, suppose h is A-algebra homomorphism. Then, for any a ∈ A,

h(f(a)) = h(a.1) = a.h(1) = g(a)h(1) = g(a).

Thus h ◦ f = g.

Claim VII. p.31 In the last paragraph, the diagram commutes when we set u(b) = b⊗ 1 and v(c) = 1⊗ c.

Proof. u ◦ f(a) = f(a)⊗ 1 = a.(1⊗ 1) = 1⊗ g(a) = v ◦ g(a).

1. By Bezout’s theorem, there exists a, b ∈ Z such that am+ bn = 1. Thus for x⊗y ∈ (Z/mZ)
⊗
Z

(Z/nZ),

x⊗ y = (am+ bn)(x⊗ y) = amx⊗ y + x⊗ bmy = 0⊗ y + x⊗ 0 = 0.

2. Notes that 0→ a→ A→ A/a→ 0 is exact as a sequence of A-modules. By tensoring with M , we can
get

0→ a
⊗

M → A
⊗

M → A/a
⊗

M → 0.

By Proposition 2.18, a
⊗
M

j−→ A
⊗
M

i−→ A/a
⊗
M → 0 is exact. Thus, i is surjective, hence

A/a
⊗

M ∼= A
⊗

M/ ker(i) = A
⊗

M/ Im(j) ∼= M/ Im(j).

Notes that Im(j) = aM , done.

3. Let Mk = k
⊗
A

M ∼= M/mM by Exercise 2. Then Mk = 0 implies M = kM , and by Nakayama lemma

this implies M = 0. However,

M
⊗
A

N = 0 =⇒ (M
⊗
A

N)k = 0

=⇒ k
⊗
A

(M
⊗
A

N) = 0

=⇒ (k
⊗
A

k)
⊗
A

(M
⊗
A

N) = 0

=⇒ k
⊗
A

Mk

⊗
A

N by Proposition 2.14 i) and definition of Mk

=⇒ Mk

⊗
A

k
⊗
A

N by Proposition 2.14 i)

=⇒ Mk

⊗
A

Nk = 0.

Notes that Mk

⊗
A

∼= Nk ∼= Mk

⊗
k

∼= Nk as A-module since for any two representative a and b of the

same equivalence class in k = A/m, a = m+b for some m ∈ m, thus from Mk

⊗
A

Nk = k
⊗
A

M
⊗
A

k
⊗
A

N ,

if we take k1 ⊗m⊗ k2 ⊗ n ∈Mk

⊗
A

Nk,

a(k1 ⊗m⊗ k2 ⊗ n) = ak1 ⊗m⊗ k2 ⊗ n = bk1 ⊗m⊗ k2 ⊗ n = b(k1 ⊗m⊗ k2 ⊗ n).
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Thus, acting by a ∈ A is equivalent to acting by ā ∈ k which is an equivalence class containing a.
Thus, Mk

⊗
A

Nk ∼= Mk

⊗
k

Nk as an A-module. Thus given condition implies that

Mk

⊗
k

Nk = 0

However, Mk
∼= M/mM and Nk ∼= N/mN are naturally k-module, i.e., k-vector space by [3][p.22].

Thus, they are vector space. And Mk

⊗
k

Nk is still k-module, thus it is also a vector space. Its

dimension is dimMk × dimNk as a vector space (See Do Carmo to prove this fact by constructing
basis. Proving that tensors of bases form a basis needs a fact of dual basis.) Hence either Mk = 0 or
Nk = 0. Then by Nakayama’s lemma, either M = 0 or N = 0 .

4. We need a claim for direct sum.

Claim VIII. Let M =
⊕

i∈IMi, N =
⊕

i∈I Ni be two direct sums with the same index. Let fi : Mi →
Ni be a module map. Then, there exists f : M → N a module map such that

πN,j ◦ f ◦ ιM,i =

{
fi if i = j

0 o.w.

Moreover f is injective (or surjective) if and only if all fi’s are injective (or surjective, resp.)

Proof. From the universal property of direct sum, from ιN,i ◦ fi : Mi → N , we can have a map
f : M → N such that f ◦ ιM,i = ιN,i ◦fi. Hence, By applying πN,i for each side, we get πN,j ◦f ◦ ιM,i =
πN,i ◦ ιN,i ◦ fi = fi. If we apply πN,j with j 6= i, then πN,j ◦ ιN,i = 0 implies the second case.

Moreover, f is injective if and only if all fi is injective from the equation f ◦ ιM,i = ιN,i ◦ fi. (Notes
that composition is injective if and only if its rightmost part is injective. Also, from

f ◦ ιM,i = fi =⇒ f ◦ ιM,i ◦ πM,i = fi ◦ πM,i =⇒ f = fi ◦ πM,i,

f is surjective if and only if fi is surjective, since composition is surjective if and only if its leftmost
part is surjective.

Let j : N → N ′ be injective A-module map. Let j ⊗ 1 : N
⊗
A

M → N ′
⊗
A

M . Notes that N
⊗
A

M ∼=⊕
i∈I N

⊗
Mi by Proposition 2.14 iii), we can take a map ji : N

⊗
A

Mi → N ′
⊗
A

Mi by ji = πN ′
⊗
A

M,i ◦

j ⊗ 1 ◦ ιN⊗
A

M,i. Notes also that πN ′
⊗
A

M,j ◦ j ⊗ 1 ◦ ιN⊗
A

M,i = 0 since its M part goes zero. Thus this

construction satisfies above claim. Hence, M is flat if and only if j × 1 is injective if and only if all jis
are injective by above claim if and only if Mi is flat since j was arbitrarily chosen.

For later use, we claim that

Claim IX. Free A-module is flat A-module.

Proof. Free module is direct sum of A as an A-module. And A
⊗
A

(−) is an exact functor since A
⊗
A

M ∼=

M for any M . Thus, A is flat. Therefore any direct sum of copies of A should be flat by Exercise
2.4

5. As an A-module, A[x] ∼=
⊕

i∈NMi where Mi = (xi). To see this, let φ : A[x] →
⊕

i∈NMi by sending
xi to xi ∈Mi. By construction of each elements, it is definitely additive homomorphism. Also, for any
f = a0 + a1x+ · · ·+ akx

k ∈ A[x], φ(af) = (aa0, · · · , aan, 0, · · · ) = a(a0, · · · , an, 0, · · · ) = aφ(f). Hence
φ is module map, and it is clear that φ is bijective. Hence isomorphism.

Now notes that each Mi is free A-module, i.e., (xi) ∼= A as an A-module. Thus by Claim IX, it is flat.
Thus, by Exercise 4, A[x] is flat A-module.
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6. Define an action of A[x] on M [x] as for any (
∑n
i=0 aix

i) ∈ A[x] and (
∑m
j=0mix

i) ∈M [x],

(

n∑
i=0

aix
i)(

m∑
j=0

mix
i) =

m+n∑
k=0

ckx
k

where ck =
∑k
j=0 ajmk−j , and if we regard al,ml′ as zero for l 6∈ [n], l′ 6∈ [m]. Notes that multiplication

am from a ∈ A and m ∈M denotes action of A on M . To check that it gives a module structure, we
need to show that distributivity and associativity holds. For associativity,

(

n∑
i=0

aix
i +

n′∑
l=0

a′ix
i)(

m∑
j=0

mix
i) =

max(n,n′)+m∑
k=0

 k∑
j=0

(aj + a′j)mk−j

xk

=

max(n,n′)+m∑
k=0

 k∑
j=0

ajmk−j

xk +

max(n,n′)+m∑
k=0

 k∑
j=0

a′jmk−j

xk

=

n+m∑
k=0

 k∑
j=0

ajmk−j

xk +

n′+m∑
k=0

 k∑
j=0

a′jmk−j

xk

= (

n∑
i=0

aix
i)(

m∑
j=0

mix
i) + (

n′∑
l=0

a′ix
i)(

m∑
j=0

mix
i).

And the other way is similar. For distributivity, it is usual product on polynomial ring, and just mul-
tiplication of coefficient changed to module action, so it holds. Also 1 ∈ A[x] works as identity. Hence
M [x] is a A[x]-module. Now notes that M [x] ∼=

⊕
i∈NM

′
i where M ′i = xiM . (Showing isomorphism is

exactly the same as we did in the proof of Exercise 5.) Hence, if we use notation A[x] ∼=
⊕

i∈NMi in
the proof of Exercise 5,

A[x]
⊗
A

M ∼=
⊕
i∈N

Mi

⊗
A

M =
⊕
i∈N

xiA
⊗
A

M ∼=
⊕
i∈N

xiM ∼= M [x],

as an A-module. Notes that xiA
⊗
A

M ∼= xiM comes from the fact that each xiA ∼= A as an A-module,

thus xiA
⊗
A

M ∼= A
⊗
A

M ∼= M ∼= xiM as an A-module.

7. Let φ : A[x]→ (A/p)[x] by aix
i 7→ āix

i for any i ∈ N. It is homomorphism by construction. Also, it is
surjective, since A→ A/p is surjective. Thus, ker(φ) ⊇ p[x]. Conversely, if f =

∑n
i=0 aix

i is in ker(φ),
then each ai is in p, thus f ∈ p[x]. Since A/p is an integral domain, its polynomial ring is integral
domain, thus ker(φ) = p[x] is prime ideal in A[x].

Claim X. VI Polynomial ring over integral domain is integral domain.

Proof. Let A be an integral domain. Then, by Exercise 1.2 iii), f ∈ A[x] is zero divisor if and only
if there exists a ∈ A such that af = 0. If f is nonzero zero divisor, then take a zero divisor f of the
smallest degree. Then deg(f) >= 0. (We use convention that deg(0) = −∞ in Lang’s book.) Then, by
mentioned exercise, ∃a ∈ A such that af = 0. However, since A is integral domain, af doesn’t change
degree of f since a is nonzero. Thus, −∞ = deg(0) = deg(af) = deg(f) ≥ 0, contradiction.

However, m[x] is not a maximal ideal in general. Think about Z[x]. Let m = (2). Then, m[x] is a set
of polynomials whose coefficients are even. So, m[x] = 2Z[x]. However, notes that (2, x) from Exercise
1.16 properly contains 2Z[x], since x 6∈ 2Z[x]. So it is not a maximal.

8. (a) Suppose M,N are flat. Fix a short exact sequence 0→ B′ → B → B′′ → 0. Then 0→ B′
⊗
A

M →

B
⊗
A

M → B′′
⊗
A

M → 0 is exact by flatness of M with Proposition 2.15. By flatness of N with
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Proposition 2.15, 0 → (B′
⊗
A

M)
⊗
A

N → (B
⊗
A

M)
⊗
A

N → (B′′
⊗
A

M)
⊗
A

N → 0 is exact. By

proposition 2.14 ii), 0→ B′
⊗
A

(M
⊗
A

N)→ B
⊗
A

(M
⊗
A

N)→ B′′
⊗
A

(M
⊗
A

N)→ 0 is exact. Since

0→ B′ → B → B′′ → 0 was chosen arbitrarily, by Proposition 2.15, M
⊗
A

N is flat.

(b) Let j : M → M ′ be injective A-module map. Let f : A → B be a ring map making B as an
A-algebra. First of all, since B is flat A-algebra, which implies flat as an A-module,

j × 1 : M
⊗
A

B →M ′
⊗
A

B

is injective map.

Also, since N is flat as B-algebra, and j× 1 can be regarded as a B-module injective map. To see
this, since B itself is (A,B)-bimodule, M

⊗
A

B and M ′
⊗
A

B are naturally a B-module by Exercise

2.15, and the map j×1 is B-module homomorphism, since it is additive homomorphism inherited
from A-module homomorphism and for any b ∈ B,m⊗ b′ ∈ N

⊗
A

B,

b.j ⊗ 1(m⊗ b′) = b.(j(m)⊗ b′) = j(m)⊗ bb′ = j ⊗ 1(m⊗ bb′) = j ⊗ 1(b.(m⊗ b′)).

Thus, since N is a flat B-module, by Proposition 2.15,

j × 1 : (M
⊗
A

B)
⊗
B

N → (M ′
⊗
A

B)
⊗
B

N

is injective. Using Exercise 2.15, we have a map

M
⊗
A

N ∼= M
⊗
A

(B
⊗
B

N) ∼= (M
⊗
A

B)
⊗
B

N → (M ′
⊗
A

B)
⊗
B

N ∼= M ′
⊗
A

(B
⊗
B

N) ∼= M ′
⊗
A

N.

Since this map is coposition of isomorphisms and injective maps, thus it is injective. Hence N is
a flat A-module.

9. Notes that M ′′ ∼= M/ ker(M → M ′′), and ker(M → M ′′) ∼= M ′ as an A-module. Hence we can

regard this short exact sequence as 0 → M ′
ι−→ M

π−→ M/M ′ → 0. Now let {xi}i∈I , {yj}j∈J are finite
generating set of M ′ and M/M ′. Then, we can regard yj as lifting of yj . Thus a submodule N of M
generated by {xi, yj}i∈I,j∈J is finitely generated module. Also, N contains M ′ and π(N) = M/M ′.
Thus, by a one-to-one order preserving correspondence between submodules of M containing M ′ and
submodules of M/M ′, this implies that N is the largest submodule of M , which is M itself. Hence M
is finitely generated.

10. Think about the map M � M/aM � N/aN by m 7→ m + aM 7→ u(m) + aN . Then, from the
surjectivity, u(M) + aN = N . Then by Corollary 2.7, u(M) = N . This implies u is surjective.

11. For the first question, let m be a maximal ideal of A, and let φ : Am → An be an isomorphism as
A-module. Then, 1 ⊗ φ : (A/m)

⊗
A

Am → (A/m)
⊗
A

An is also an isomorphism as A-module. (To see

this, we can use Proposition 2.18 with an exact sequence 0→ Am
φ−→ An → 0.) Then, by Proposition

2.14, if we let k = A/m, a residue field, then (A/m)
⊗
A

Am ∼= (A/m)m =
⊕m

i=1 k
∼= km and by the

same argument (A/m)
⊗
A

An ∼= kn. Also, if a, b ∈ A such that a = b + m for some m ∈ m , then for

any x ∈ A/m, (a1, · · · , am) ∈ Am,

a.(x⊗ (a1, · · · , am)) = (b+m).(ax⊗ (a1, · · · , am)) = (bx⊗ (a1, · · · , am)) + (mx, (a1, · · · , am))

= (bx⊗ (a1, · · · , am)) = b.(x⊗ (a1, · · · , am)).
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Thus we can regard (A/m)
⊗
A

Am ∼= kn as a k-module. Hence it has a vector space structure. Also,

the map 1⊗ j is also k-module map, since for any a, b ∈ A such that a = b+m for some m ∈ m,

a.1⊗j(x⊗(a1, · · · , am)) = j(a.(x⊗(a1, · · · , am))) = j(b.(x⊗(a1, · · · , am))) = b.1⊗j(x⊗(a1, · · · , am)).

Hence, 1⊗ j is k-module map, which implies that it is just a vector space map. And we already know
that kn ∼= km as a vector space if and only if n = m, using argument on the basis. Done.

For the second question, if φ : Am → An is surjective, so does 1⊗ j. (We can use Proposition 2.18 with

an exact sequence kerφ→ Am
f−→ An → 0.) And by the above argument, since 1⊗ j is a vector space

homomorphism, this implies 1⊗ j(Am) = An Since dim(1⊗ j(Am)) ≤ m, this implies that n ≤ m.

For the third question, we can use Proposition 2.4. We cannot use the same argument since tensor is
right exact.

Suppose φ : Am → An is injective but m > n. Then, we can regard An as a submodule of Am,
by stating that An = {(a1, · · · , an, 0, ·, 0) ∈ Am : ai ∈ A}. Then, clearly, if we let a = A, then
φ(Am) ⊆ An ⊆ Am = aAm. Also, notes that Am is finitely generated A-module. Then, Proposition
2.4 states that there exists an equation of the form

f(φ) := φn + a1φ
n−1 + · · ·+ an = 0

where the ai are in a = A. If this polynomial has minimal possible degree, then an 6= 0; if an = 0, then
f(φ) = φ(g(φ)) for some polynomial g of φ, hence g(φ) = 0 since injectivity of φ implies that φ is nonzero
for all values a ∈ A\{0}. Now notes that φ(v) ∈ An for any v ∈ Am, thus φ(v) = (v1, · · · , vn, 0, · · · , 0)
for all v ∈ Am. However,

f(φ)(0, · · · , 0, 1) = (φn + a1φ
n−1 + · · · an−1φ)(0, · · · , 0, 1) + an(0, · · · , 0, 1)

= (a1, · · · , an, 0, · · · , 0) + (0, · · · , 0, an) = (0, · · · , 0).

This implies an = 0, contradiction.

12. We need another claim for direct sum of module.

Claim XI. VII If M,N are A-modules such that there exists a module map r : M → N and s : N →M
such that r ◦ s = 1N , then M ∼= N ⊕ coker(s) ∼= N ⊕ ker(r).

Proof. Let φ : M → N ⊕ coker(s) by m 7→ (r(m),m) (since coker(s) = M/ Im(s).) If m ∈ ker(φ), then
r(m) = 0,m ∈ Im(s). Hence ∃n ∈ N such that s(n) = m and 0 = r(m) = r ◦ s(n) = n. Hence m = 0.
This implies injectivity. To see surjectivity, let y ∈ N,m ∈ coker(s). Then, let z = m + s(y − r(m)),
then

φ(z) = (r(m+s(y−r(m))),m+ s(y − r(m))) = (r(m)+r◦s(y−r(m)),m) = (r(m)+y−r(m),m) = (y,m).

Hence, it is surjective map. So isomophism.

Also, take a map ψ : coker(s)→ ker(r) by m 7→ m− s ◦ r(m). First of all, it is well-defined, since for
any two representative m,m′ ∈ m, m = m′ + s(n) for some n ∈ N , hence

ψ(m) = m−s◦r(m) = m′+s(n)−s◦r(m′+s(n)) = m′+s(n)−s◦r(m′)−s(n) = m′−s◦r(m′) = ψ(m′).

Also, r(m − s ◦ r(m)) = r(m) − r ◦ s ◦ r(m) = r(m) − r(m) = 0. Hence this map is well-defined.
Moreover, it is injective since for ψ(m) = 0, m = s ◦ r(m). However, m 6= 0 if and only if m 6∈ Im(s).
Thus the only possible m satisfying m = s ◦ r(m) is when m = 0. Also, it is surjective, since for any
m ∈ ker(r), m− s ◦ r(m) = m. Hence ψ(m) = m, done.

Let e1, · · · , en be a basis of An. Then from surjectivity ∃ui ∈ M such that φ(ui) = ei. Then, let N
be a submodule of M generated by u1, · · · , un. Also define ψ : An → N ⊆ M by ei 7→ ui. Then,
φ◦ψ = 1An . By above claim, M = N⊕ker(φ) with N ∼= An. To show that ker(φ) is finitely generated,
notes that M/N ∼= ker(φ). Then, let {xi}mi=1 be a generating set of M . Then, {xi + N}mi=1 generates
M/N since every element in M/N have a representation which is linear combinationf of xis. Thus
ker(φ) is finitely generated.
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13. Define p : NB → N by p(b⊗ y) = by. Then, p ◦ g(y) = p(1⊗ y) = y. Thus p ◦ g = 1N . This implies g is
injective since composition is injective if and only if the rightmost term is injective. Also, if we define
p′ : NB → g(N) by (b⊗ y) = 1⊗ by, and g′ : g(N)→ NB by 1⊗n 7→ 1⊗n, then p′ ◦ g′ = 1g(N). Hence
by the above claim,

NB ∼= g(N)⊕ ker(p′)

Hence g(N) is direct summands of NB . And in this case, b⊗ y corresponds to (1⊗ by, b⊗ y − 1⊗ by).

14. To see µi = µj ◦ µij for i ≤ j, let xi ∈Mi. Then, xi − µij(xi) ∈ D = ker(µ). Hence,

µi(xi) = µ(xi) = µ(xi + ker(µ)) = µ(µij(xi) + ker(µ)) = µ(µij(xi)) = µj(µij(xi)).

Notes that first and last equality comes from the restriction.

15. Let x ∈M . Then, x has a representative in C =
⊕

i∈IMi. Since it is direct sum x is tuple of finitely
many nonzero elements, say x =

∑
j∈J xj , for |J | <∞. Thus by applying directed set property |J | − 1

times, we can get i ∈ I such that i ≥ j for all j ∈ J . Now let x̃ =
∑
j∈J µji(xj). Then,

x = µ

∑
j∈J

xj

 =
∑
j∈J

µ(xj) =
∑
j∈J

µj(xj) =
∑
j∈J

µi ◦ µji(xj) = µi

∑
j∈J

µji(xj)

 .

Thus if we let xi =
∑
j∈J µji(xj), then xi ∈Mi, and µi(xi) = x ∈M .

For the second statement, suppose µi(xi) = 0 for some i ∈ I. Then, xi ∈ Mi ∩D. Hence, xi is finite
sum of generators of D in Mi, i.e.,

xi =
∑

j,k∈T⊆J2

(yj − µjk(yj)).

for some finite subset J of I, and yj ∈ Mj for each j ∈ J . Now by the same argument in the above
proof, there exists l ∈ I such that l ≥ k for all k ∈ J ∪ {i}. Also, we can apply µil on each yj in the
summands as µjl since yj = 0 if j 6= i, and also apply it on µjk(yj) as µkl since µjk(yj) = 0 if k 6= i.
Hence,

µil(xi) =
∑

j,k∈T⊆J2

µil(yj − µjk(yj)) =
∑

j,k∈T⊆J2

(µjl(yj)− µkl ◦ µjk(yj)) = 0

where the last equality comes from µjl = µjkµkl.

16. We use notation of Exercise 2.14. From the universal property of direct product, ∃α̃ : C =
⊕

i∈IMi →
N such that for each xi ∈Mi, α̃ ◦ ιj = αj . Now check that for any generator xi − µij(xi) ∈ D,

α̃(xi − µij(xi)) = αi(xi)− αj ◦ µij(xi) = αj ◦ µij(xi − xi) = 0

where the last equaltiy comes from the given condition αj ◦ µij = αi. Hence we can lift this map on
C/D = lim−→Mi. Denote α : lim−→Mi → N be the lifting map. Then, for any xi ∈Mi,

α ◦ µi(xi) = α̃(xi) = αi(xi).

To see the homomorphism is unique, let α′ : M → N be another homomorphism satisfying αi = α′ ◦µi.
Then, by Exercise 15, let µi(xi) be an arbitrary elements of Mi. Then, α′(µi(xi) = αi = α ◦ µi(xi).
Hence α′ = α.

Notes that this exercise is about universal property of direct limit. Now for later use, we claim that
direct limit itself is unique, i.e., a module M in Exercise 16 is unique.

Claim XII. VIII Direct limit is unique, in the sense that if there exists (M ′, µ′i : Mi →M ′) such that
for given N and αi : Mi → N , there exists α′ : M ′ → N such that α′ ◦ µi = αi, then M ′ = M and
µ′i = µi.
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Proof. What we’ve shown can be denoted as below diagram.

Mi Mj

lim−→Mi = M

N

µij

µi

αi

µj

αj

∃!α

If we have (M ′, µ′i : Mi → M ′) be another direct limit, i.e., satisfying properties of M in Exercise 16,
then by letting N := M ′ and αi := µ′i, we have a unique map β : lim−→Mi →M ′ such that β ◦ µi = µ′i.
Conversely, since M ′ acting like M , if we let N = M = lim−→Mi and αi = µi in viewpoint of N , the by
the Exercise 16, there exists γ : M ′ → lim−→Mi such that γ ◦ µ′i = ιi. Hence,

β ◦ γ ◦ µ′i = µ′i, γ ◦ β ◦ µi = µi

for all i ∈ I. For the right one, since every elements in lim−→Mi can be denoted as µi(xi) for some i ∈ I,
this implies γ ◦ β = 1lim−→Mi

. For the left one, notes that if we let M = M ′ and N = M ′, αi = µ′i, then

the above universal property gives us unique map ξ : M ′ → M ′ satisfying ξ ◦ µ′i = µ′i, and since 1M ′

also has property that 1M ′ ◦ µ′i = µ′i, thus ξ = 1M ′ . Now the left one implies that β ◦ γ also the map
satisfying β ◦ γ ◦ µ′i = µ′i, hence β ◦ γ = 1M ′ . (Notes that this argument is more categorical than the
previous one using Exercise 15.) Hence, β and γ are inverse to each other, thus M ′ ∼= lim−→Mi, done.

17. First of all,
∑
Mi ⊇

⋃
Mi since each Mi ⊆

∑
Mi. On the other hand, if x ∈

∑
Mi, x =

∑
j∈J xj for

some finite index set J of directed set I. Hence there exists k ∈ I such that j ≤ k for all j ∈ J . Thus
x ∈Mk, which implies x ∈

⋃
Mi.Thus

∑
Mi =

⋃
Mi and

⋃
Mi has a module structure.

Now to see lim−→Mi =
⋃
Mi as a module, if we regard Mi as canonical subset of lim−→Mi, then lim−→Mi ⊇⋃

Mi. To see equality, we use the uniqueness of direct limit. Let N be an A-module having maps
in Exercise 16. Then, construct α :

⋃
Mi → N by xi 7→ αi(xi). Then, if we let µi : Mi →

⋃
Mi

as canonical injection, then α ◦ µi = αi. Since N was arbitrary,
⋃
Mi is also direct limit, thus by

uniqueness, it is isomorphic to lim−→Mi. Since we already identify
⋃
Mi as subset of lim−→Mi, we can say

that they are equivalent.

To see the last statement, for any x ∈ M , x ∈ Ax ⊆ M , thus M is union of finitely generated
submodules. Also, this index of finitely generated submodules is directed, since for any two finitely
generated submodule, their sum is also a finitely generated submodule. Hence with canonical inclusion
maps, it comprise a directed system, and by the statement of this Exercise, M = lim−→Mi.

18. From νi ◦ φi : Mi → N , from the universal property of direct limit (in Exercise 16) we have a map
φ : M → N such that νi ◦ φi = φ ◦ µi.

19. Let φ : M → N and ψ : N → P be a module map induced by homomorphism of directed system.
Let M = (Mi, µij),N = (Ni, νij),P = (Pi, ξij). Also, µi : Mi → M,νi : Ni → N, ξi : Pi → P . Then,
ψi ◦ φi = 0 by exactness of M→ N→ P. Thus,

0 = ξi ◦ ψi ◦ φi = ψ ◦ φ ◦ µi.

Since ψ ◦ φ are induced by the universal property, so it is unique, and 0 also satisfy the condition of
universal property, this implies ψ ◦ φ = 0. Hence Im(φ) ⊆ ker(φ).

To see they are equal, let n ∈ ker(φ). Then, by Exercise 15, n = νi(ni) for some i and ni ∈ Ni. Then,
since

0 = ψ(n) = ψ ◦ νi(ni) = ξi ◦ ψi(ni)
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and ξi is injective, ni ∈ ker(ψi) = Im(φi). Hence ni = φi(mi) for some mi, therefore,

n = νi(ni) = νi ◦ φi(mi) = φ ◦ µi(mi).

This implies n ∈ Im(φ), done.

20. Let gi : Mi ×N → Mi

⊗
A

N be the canonical bilinear mapping defined when we construct the tensor

product Mi × N . Then, let P = lim−→(Mi

⊗
A

N), and R = lim−→Mi × N . Notes that R ∼= lim−→Mi × N ;

to see this, let αi : Mi × N → Q for some A-module Q such that for all i ≤ j, αi = αj ◦ (µij × 1N ).
Now define α : lim−→Mi ×N → Q by (µi(xi), n) 7→ αi(xi, n). Then, this satisfies α ◦ (µi × 1N )(xi, n) =
α(µi(xi), n) = αi(xi, n). Thus, by the uniqueness of direct limit, R ∼= lim−→Mi ×N = M ×N .

Now to see that P ∼= M ×N , notes that gi induces a homomorphism of direct system. To check this,
we already show that (M ×N,µij × 1) is also a direct system. Hence,

µij ⊗ 1N ◦ gi(mi, n) = µij ⊗ 1N (mi ⊗ n) = µij(mi)⊗ n

and
gj ◦ µij × 1N (mi, n) = gj(µij(mi), n) = µij(mi)⊗ n.

Therefore, by Exercise 18, it induces a homomorphism g : M×N → P . Now notes that g is A-bilinear.
To see this, by Exercise 15, every element in M×N can be denoted as µi(mi)×n, thus if we fix n ∈ N ,
then

g((aiµi(mi), n) + (ajµj(mj), n)) = g((µi(aimi), n) + µj(ajmj), n)) = g((µi(aimi), n)) + g(µj(ajmj), n))

= g ◦ µi × 1N (aimi, n) + g ◦ µj × 1N (ajmj , n)

= µi ⊗ 1N ◦ gi(aimi, n) + µj ⊗ 1N ◦ gj(ajmj , n)

= aiµi(mi)⊗ n+ ajµj(mj)⊗ n
= aig(µi(mi), n) + ajg(µj(mj), n).

Also, if we fix M part, then linearity also holds since a⊗n+ b⊗n = (a+ b)⊗n. Thus, by the universal
property of tensor product, we have a map φ : M ⊗N → P . We already have ψ : P → M ⊗N using
Exercise 16. To see they are inverse, fix an arbitrary elements of P as µi ⊗ 1N (mi, n) by Exercise 15.
Then,

φ ◦ ψ(µi ⊗ 1N (mi, n)) = φ ◦ ψi(mi ⊗ n) = φ(µi(mi)⊗ n) = g(µi(mi), n) = µi(mi)⊗ n = µi ⊗ 1N (mi, n).

and for arbitrary element µi(mi)⊗ n in M ×N by Exercise 15,

ψ ◦ φ(µi(mi)⊗ n) = ψ ◦ g(µi(mi), n) = ψ(µi(mi)⊗ n) = ψi(mi ⊗ n) = µi(mi)⊗ n.

Hence they are inverse to each other.

21. First of all, we will show that A is a ring. Let a, b ∈ A. By exercise 2.15, a = αi(xi), b = αj(xj) for
some i, j ∈ I. Since I is direct set, ∃k ∈ I such that i ≤ k, j ≤ k. Hence, from xi −αik(xi), we can get

αi(xi) = α(xi) = α(αik(xi) = αk(αik(xi))

since α(xi − αik(xi) = 0 is projection. Likewise, αj(Xj) = αk(αjk(xj). Hence, define

a · b := αk(αik(xi) · αjk(xj)).

Since αik(xi), αjk(xj) ∈ Ak, this definition is possible. Also, to see it is well-defined, choose another
k′ which is distinct to k. Then from the definition of directed set, ∃l ∈ I such that k′, k ≤ l, hence

αk(αik(xi) · αjk(xj)) = αl(αkl(αik(xi) · αjk(xj))) = αl(αkl(αik(xi) · αjk(xj))) = αl(αil(xi) · αjl(xj))
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and

αk′(αik′(xi)·αjk′(xj)) = αl(αk′l(αik′(xi)·αjk′(xj))) = αl(αk′l(αik′(xi)·αjk′(xj))) = αl(αil(xi)·αjl(xj)).

Hence this definition is independent of choice of k. Also, this definition is independent of choice of
representation of b. To see this, let b = αj′(xj′) for another j′. Then, let k ≥ i, j, j′, thus

a·αj(xj)−a·αj′(xj′) = αk(αik(xi)·αjk(xj))−αk(αik(xi)·αj′k(xj′)) = αk(αik(xi) (αjk(xj)− αj′k(xj′)))

thus it suffices to show that αjk(xj) − αj′k(xj′) = 0. To see this, let c = αjk(xj) − αj′k(xj′). Then,
αk(c) = 0 since they are the same representation of b on the direct limit. By Exercise 2.15, ∃l ≥ k
such that αkl(c) = 0. This implies

0 = αkl(αjk(xj)− αj′k(xj′)) = αjl(xj)− αj′l(xj′) =⇒ αjl(xj) = αj′l(xj′).

Thus,

a · αj(xj)− a · αj′(xj′) = αk(αik(xi) (αjk(xj)− αj′k(xj′))) = αl ◦ αkl(αik(xi) (αjk(xj)− αj′k(xj′)))

= αl(αil(xi) (αjl(xj)− αj′l(xj′))) = αl(0) = 0.

Thus product is well-defined. Hence A has a ring structure.

Also, for any a, b ∈ Ai,
αi(ab) = αi(αii(a)αii(b)) = αi(a)αi(b)

by definition of the product in A. Hence, αi is multiplicative homomorphism. Also, for any b ∈ A with
b = αj(xj) for some j ∈ I, there exists k ≥ i, j so that

αi(1)b = αk(αik(1)αjk(xj)) = αk(1 · αjk(xj)) = αk ◦ αjk(xj) = b

where αik(1) = 1 is from the fact that αik is a ring homomorphism. Hence, this homomorphism
preserves 1. Thus αi is a ring homomorphism.

To verify other axioms of the ring, for any given elements, choose some Ak that they lie and use axioms
of the ring for Ak to get desired result. Now suppose A = 0 ⇐⇒ Ai = 0 for some i ∈ I. If A = 0,
then 1 = 0, thus αi(1) = 0 for all i ∈ I. By exercise 2.15, for fixed i, there exists j ∈ I such that
αij(1) = 0 Since αij is also a ring homomorphism from Ai to Aj , this implies that 1 = 0 in Aj , thus
Aj = 0. Conversely, if Ai = 0, then for any j ≥ i, identity 1 in Aj should be 1 = αij(1) = αij(0) = 0.
Hence Aj = 0 for all j ≥ i. Now for any a ∈ A, a = αk(xk), thus take q ≥ k, i so that

a = αk(xk) = αq ◦ αkq(xk) = αq(0) = 0.

This implies A = 0.

22. Notes that each αij |Ri : Ri → Rj satisfies axioms in Exercise 14 as a Z-module. Thus, we can construct
lim−→R as Z-module. It is clear that lim−→R is submodule of A.

Let a be a nilpotent element of A. Then ∃n ∈ N such that an = 0. By Exercise 2.15, a = αi(x) thus
0 = an = αi(x

n). By Exercise 2.15, αi(x
n) = 0 implies ∃j ≥ i such that αij(x

n) = 0. Hence, αij(x) is
in the nilradical of Aj , and

αj |Rj (αij(x)) = αj(αij(x)) = αi(x) = a

implies a ∈ lim−→R. Thus lim−→R contains nilradical of A. Conversely, if a ∈ lim−→R, by Exercise 2.15,
a = αi(xi) with xi ∈ Ri by construction. Thus ∃n ∈ N such that xni = 0. This implies an = αi(x

n
i ) =

αi(0) = 0 since by Exercise 2.21, αi is a ring homomorphism. Thus a is in nilradical of A. This shows
that lim−→R is nilradical of A.

Suppose that ∃c, d ∈ A such that cd = 0 but c 6= 0, d 6= 0. Then, c = αi(xi), d = αj(xj) with nonzero
xi. (Notes that from c 6= 0, d 6= 0, all of their representation are nonzero; otherwise c = αj(0) for some
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representation, which implies c = 0, contradiction.) Then, there exists k ∈ I such that k ≥ i, j, thus
their product is

ab = αk(αik(xi)αjk(xj)) = 0.

By Exercise 2.15, there exists l ≥ k such that

αkl(αik(xi)αjk(xj)) = 0.

This implies αil(xi)αjl(xj) = 0. However, since c, d are nonzero, so are αil(xi) and αjl(xj). Thus Al
is not integral domain.

Hence, its contrapositive gives us that if each Ai is integral domain, so does A.

23. We already knows that a collection of all finite subsets of Λ form a direct set structure. With the
canonical A-algebra homomorphism λJJ ′ : BJ → BJ′ if J ⊆ J ′ which is given by bj ⊗ · · · ⊗ bj′ 7→
bj⊗· · ·⊗bj′⊗1⊗· · ·⊗1, the given direct limit B forms a ring by Exercise 21. To see that its A-algebra
structure, notes that we have A → C → B where C is direct sum of A-algebras, and C → B is a
projection. Thus if b ∈ B, then b = αJ(x) for some x ∈ BJ . Now we can define A-action as

a.b = αJ(ax).

This is well-defined action since for any other representation b = αJ′(y), we have αJ(x) = αJ∪J′ ◦
αJ,J∪J′(x) and αJ′(y) = αJ∪J′ ◦ αJ′,J∪J′(y), therefore

0 = αJ(x)− αJ′(y) = αJ∪J′ ◦ (αJ,J∪J′(x)− αJ′,J∪J′(y))

implies that (by Exercise 2.15) there exists K ⊇ J∪J ′ such that αJ∪J′,K(αJ,J∪J′(x)−αJ′,J∪J′(y)) = 0.
This implies αJK(x)− αJ′K(y) = 0. Thus,

αJ(ax) = αK ◦ αJK(ax) = αK(aαJK(x)) = αK(aαJ′K(y)) = αK ◦ αJ′K(ay) = αJ′(ay).

Thus, this action is independent of choice of representation, thus B is A-module. Also, we already know
that αJ is a ring homomorphism. Moreover, this definition makes αJ be A-module homormophism
structure, thus it is A-algebra map.

24. Notes that what the hint suggested follows from the balancing Tor theorem. In general TorAn (M,N)
is defined as a derived functor, i.e., applying Hn(−

⊗
A

N) on the given projective (or free) resolution.

The balancing Tor theorem assures that for given any projective sequence P • → M and Q• → N ,
Hn(P •

⊗
A

N) = Hn(M
⊗
A

Q•). It seems that [3] intend the reader to use this theorem as a fact. So we

will follow it.

i)→ ii): Since M is flat, for any free resolution of N , say Q• → N , M
⊗
Q• →M

⊗
N is also exact.

(This is because every long exact sequence can be decomposed with short exact sequence, and M is
flat implies that those all short exact sequence are exact. ) Hence, TorAn (M,N) = 0 for any n > 0.

ii)→ iii) is trivial.

iii)→ i): Let 0→ N ′ → N → N ′′ → 0 be an exact sequence. Then, from the Tor exact seqeunce,

TorA1 (M,N ′′)→M
⊗

N ′ →M
⊗

N →M
⊗

N ′′ → 0

is exact. (Think about definition of left derived functor; it gives such a long exact seqeunce, and
TorA0 (M,N) = M

⊗
A

N .) By iii), TorA1 (M,N ′′) = 0. This gives one of the definition of flatness of M .

Finally, by the Balancing theorem, we can do the same thing with respect to when N is flat.
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25. Suppose N ′ is flat. Then It gives an exact Tor sequence,

TorA2 (M,N ′′)→ TorA1 (M,N ′)→ TorA1 (M,N)→ TorA1 (M,N ′′)→M
⊗

N ′ →M
⊗

N →M
⊗

N ′′ → 0

for any A-moduleM . SinceN ′′ is flat, TorA1 (M,N ′′) = 0 = TorA2 (M,N ′′). This gives us TorA1 (M,N ′) ∼=
TorA1 (M,N). Hence, N ′ is flat if and only if TorA1 (M,N ′) = 0 if and only if TorA1 (M,N) = 0 if and
only if N is flat by above exercise.

26. By Balancing Tor theorem and exercise 24, we already know that N is flat if and only if Tor1(M,N) = 0
for all A-module M . This implies that N is flat implies Tor1(A/a, N) = 0 for all a an ideal of A.
Conversely, suppose Tor1(A/a, N) = 0 for all finitely generated ideal a of A. Suppose M is finitely
generated, by x1, · · · , xn. Let Mi be submodule of M generated by x1, · · · , xi, with M0 = 0. Then,
fi : A→Mi/Mi−1 by a 7→ axi +Mi−1 is surjective homomorphism, thus ker fi is ideal, which implies
Mi/Mi−1

∼= A/ai. for some finitely generated ideal ai. Thus we have an exact sequence

0→Mi−1 →Mi → A/ai → 0.

Notes that Tor1(M0, N) = Tor1(A/(1), N)) = 0 by assumption. Suppose, to use induction, that
Tor1(Mi−1, 0) = 0. Then, by long exact sequence of Tor,

· · · → Tor1(Mi−1, N) = 0→ Tor1(Mi, N)→ Tor1(A/ai, N) = 0→Mi−1 →Mi → A/ai → 0

is exact sequence, which implies Tor1(Mi, N) = 0. From Mn = M , this implies that Tor1(M,N) = 0.
Apply exercise 2.24, to get the result that N is flat.

27. Notes that idempotent ideal is an ideal a such that a2 = a.

i) → ii): Let x ∈ A. Then, A/(x) is a flat A-module, thus (x) → A is injective implies α :
(x)
⊗
A

A/(x) → A
⊗
A

A/(x) ∼= A/(x) is injective. We know the exact map of α using Proposition

2.14, and it sends
α;x⊗ a 7→ x⊗ a 7→ xa

and xa = xa = 0. Hence α is injective zero map. This implies (x)
⊗
A

A/(x) is zero. And since A/(x)

has canonical short exact sequence

0→ (x)→ A→ A/(x)→ 0,

tensoring with (x), which is also a flat module by i), gives us

0→ (x)
⊗
A

(x)→ A
⊗
A

(x) = (x)→ (x)
⊗
A

A/(x) = 0→ 0

This implies (x)
⊗
A

(x) ∼= (x). Since this map sends a⊗ b 7→ ab, this implies that (x) = (x)2. But notes

that (x)2 = {x2ab : a, b ∈ A} ⊆ (x2) and for any ax2 ∈ (x2), ax2 = 1 · ax2 ∈ (x)2, thus (x) = (x2).
Done.

ii) → iii): Since (x) = (x)2 for all x ∈ A, x = ax2 for some a ∈ A, thus e = ax is idempotent, since
e2 = a2x2 = ax = e. Also, (e) = (x) since (e) ⊆ (x) is trivial, and for any bx ∈ (x), bx = bax2 =
(bx)(ax) = bxe implies (x) ⊆ (e). Also, we showed in Exercise 1.11 such that (e, f) = (e + f − ef)
for any two idempotents e, f . Thus, every finitely generated ideal is a principal and generated by
idempotent, say e. Also, A = (e) ⊕ (1 − e) as a module, since ae = b(1 − e) =⇒ (a + b)e = b =⇒
ae + be = be =⇒ ae = 0 =⇒ a = 0. Thus b = 0. And for any x ∈ A, xe + x(1 − e) = x. Thus any
finitely generated ideal (which is principal) is a direct summand of A.

iii) → i). Let a be a finitely generated ideal, N be an arbitrary A-module. Then, A ∼= a ⊕ b as a
module. Then,

N ∼= N
⊗
A

A ∼= N
⊗

a⊕ b ∼= N
⊗
A

a⊕N
⊗
A

b.
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Hence, N
⊗
A

a → N
⊗
A

A is injective map, which is induced by canonical injection a → A. Also, the

short exact sequence
0→ a→ A→ b→ 0

implies that b ∼= A/a as a module, thus the long exact sequence of Tor fucntor is

· · · → Tor1(a, N)→ Tor1(A,N)→ Tor1(A/a, N)→ a⊗N → A⊗N → A/a⊗N → 0.

and since A itself is free module, thus Tor1(A,N) = 0. Thus Tor1(A/a, N) ∼= ker(a⊗N → A⊗N) = 0
since the given map is injective. Since a, N was arbitrarily chosen, by Exercise 26, every A-module is
flat, thus A is absolutely flat.

28. In a Boolean ring, every principal ideal is idempotent. Thus, it is absolutely flat. Also, if A is a ring
such that x = xn for some n ∈ N (depending on x), then x = xn = x2xn−2 implies that x ∈ (x2),
thus (x) = (x2). Hence A is absolutely flat. If B is a homomorphic image of A, then by the first
isomorphism theorem, B ∼= A/a for some ideal a of A. Then, let (x) be a principal ideal of A/a. Since
A is absolutely flat, x = ax2 for some a ∈ A, thus x = ax2. This implies (x) = (x2), done.

Suppose A is a local ring and m is maximal ideal. Then for any x ∈ m, (x) = (e) for some idempotent
e by the proof of Exercise 27, thus e ∈ m. This implies that e = 0 ⇐⇒ x = 0. Then, f = 1− e is also
idempotent, and it is unit by proposition 1.9 with the fact that in the local ring m is Jacobson radical.
Thus, 1 = f−1f = f−1f2 = f , hence e = 0, which implies x = 0. Thus m = (0), which implies that A
is a field.

Also, if A is absolutely flat, let x ∈ A be a nonunit. Then, by 2.27, from (x) 6= 1, there exists b an
ideal of A such that A ∼= (x)⊕ b as an A-module. Thus, bx = 0 for any b ∈ b since b ∩ (x) = 0. This
implies that x is a zero divisor.

3 Rings and Modules of Fractions

Exercise p.37. Verify that these definitions are independent of the choices of representatives (a, s) and
(b, t), and that S−1A satisfies the axiom of commutative ring with identity.

Proof. If a/s = a′/s′ then ∃u ∈ S such that (as′ − a′s)u = 0. Thus

a/s+ b/t = (at+ bs)/st = (at+ bs)s′u/sts′u = ((as′u)t+ bss′u)/s′t(su)

= ((a′su)t+ bss′u)/s′t(su) = (su)(a′t+ bs′)/s′t(su) = (a′t+ bs′)/s′t = a′/s′ + b/t

Also,
(a/s) · (b/t) = ab/st = abs′u/sts′u = a′sub/suts′ = a′b/s′t = (a′/s′) · (b/t).

Hence multiplication and addition are well-defined. Also, it is abelian group with respect to addition (because
of 0/s) and multiplication is associative, as usual multiplication of rational numbers did, and multiplication
is commutative, and s/s has a roll of identity for any s ∈ S. Thus it is commutative ring with unity.

Proposition 3.7. If M,N are A-modules, there is a unique isomorphism of S−1A-modules f : S−1M
⊗
S−1A

S−1N →

S−1(M
⊗
A

N) such that

f((m/s)⊗ (n/t)) = (m⊗ n)/st.

In particular, if p is a prime ideal, then

Mp

⊗
Ap

Np
∼= (M

⊗
A

N)p.
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Proof.

S−1M
⊗
S−1A

S−1N ∼=︸︷︷︸
Pro 3.5

(S−1A
⊗
A

M)
⊗
S−1A

(S−1A
⊗
A

N) ∼=︸︷︷︸
Pro 2.14 i)

(M
⊗
A

S−1A)
⊗
S−1A

(S−1A
⊗
A

N)

∼=︸︷︷︸
Exe 2.15

((M
⊗
A

S−1A)
⊗
S−1A

S−1A)
⊗
A

N) ∼=︸︷︷︸
Exe 2.15

(M
⊗
A

(S−1A
⊗
S−1A

S−1A))
⊗
A

N

∼=︸︷︷︸
2.14 iv)

(M
⊗
A

S−1A)
⊗
A

N ∼=︸︷︷︸
2.14 i)

(S−1A
⊗
A

M)
⊗
A

N ∼=︸︷︷︸
Exe 2.15

S−1A
⊗
A

(M
⊗
A

N)

∼=︸︷︷︸
Pro 3.5

S−1(M
⊗
A

N).

Also, f sends

(m/s)⊗ (n/t) 7→ (1/s⊗m)⊗ (1/t⊗ n) 7→ (m⊗ 1/s)⊗ (1/t⊗ n)

7→ (m⊗ 1/st⊗ n) 7→ 1/st⊗ (m⊗ n) 7→ (m⊗ n)/st

Proposition 3.9. Surjectivity of an A-module homomorphism φ : M → N is local property.

Proof. If φ is surjective, then M → N → 0 is exact, thus Mp → Np → 0 is also exact, thus φp : Mp → Np

is also surjective, for any prime ideal p. If φp is surjective for any prime ideal p, then φm is also surjective
for any maximal ideal m. Now suppose that φm is surjective. Let coker(φ) = N/ Im(φ) =: N ′. Then,
M → N → N ′ → 0 is exact. Thus, Mm → Nm → N ′m → 0 is exact for any maximal ideal m. However, since
φm is surjective, N ′m = 0 for any maximal ideal m. By Proposition 3.8, N ′ = 0. This implies that (φ) = N ,
thus φ is surjective.

Proposition 3.11. a is contracted ideal from the map f : A → S−1A if and only if no elements of S is a
zero divisor in A/a.

Also S−1r(a) = r(S−1a).

Proof. a is contracted ideal if and only if aec ⊆ a by Proposition 1.17 iii). Also, aec ⊆ a holds if and only
if sx ∈ a for some s ∈ S implies x ∈ a. To see this, if aec ⊆ a, suppose sx ∈ a for some s ∈ S. Then,
sx/1 ∈ ae, hence x/1 ∈ ae, therefore x ∈ f−1(ae) = aec ⊆ a. Conversely, if the statement holds, the let
x ∈ aec. Then x/1 ∈ aece = ae by proposition 1.17, x/1 = a/s for some a ∈ a, s ∈ S. (This is because finite
linear combination in ae can be denoted as a form a/s in S−1A.) Hence, sx/1 = a/1, thus t(sx− a) = 0 for
some t ∈ S, this implies (st)x ∈ a, and by the statement, x ∈ a.

Lastly, sx ∈ a for some s ∈ S implies x ∈ a holds if and only if no s ∈ S is a zero divisor in A/a. If the
lefthandside holds, then let s ∈ S such that for some t̄ ∈ A/a, st = 0. This implies that st ∈ a. This implies
st/1 ∈ ae, hence st/1 = a/q =⇒ t/1 = a/q′ for some a ∈ a, q′ ∈ S, thus u(q′t − a) = 0 for some u ∈ S,
hence uq′t ∈ a, and from the fact uq′ ∈ S with the lefthandside implies t ∈ a, thus t = 0. This shows that s
is not the zero divisor in A/a. Conversely, suppose that no s ∈ S is zero divisor of A/a, and let sx ∈ a for
some s ∈ S. Then, sx = 0 implies x = 0 since s is not a zero-divisor.

For the last statement, by Exercise 1.18 we have S−1r(a) ⊆ r(S−1a). Let x/s ∈ r(S−1a). Then,
xn/sn ∈ S−1a. This implies that xn/sn = a/t for some a ∈ a, t ∈ S. Thus, xntu = snau for some u ∈ S.
Hence xntu ∈ a, thus xtu ∈ r(a), therefore xtu/1 ∈ S−1r(a), thus xtu · 1/stu = x/s ∈ S−1r(a), done.

1. Let M be a finitely generated module (generated by x1, · · · , xn such that S−1M = 0. Then, xi/1 = 0/1
for any i, thus ∃si ∈ S such that sixi = 0. Then, s =

∏n
i=1 s annahilates M .

Conversely, suppose sM = 0 for some s ∈ S. Then, m/t = ms/ts = 0/ts = 0/1 for all m/t ∈ S−1M ,
this implies S−1M = 0.

2. Let a/s ∈ S−1a for some a ∈ a, s ∈ S = 1 + a. Then by Proposition 1.9, it suffices to show that for
any y/t ∈ S−1A, 1− (a/s) · (x/t) is a unit in S−1A. To see this, notes that

1− (a/s) · (x/t) = 1− ax/st = 1− (ax)/(1 + b) for some b ∈ a, hence =
1 + (b− ax)

1 + b
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thus b− ax ∈ a implies 1 + (b− ax) ∈ S, thus it is unit. Hence, a/s is in the Jacobson radical of S−1A.

Now we want to show the statements that if M = aM and M is finitely generated, then ∃x ≡ 1 mod
a such that xM = 0.

suppose that M = aM . Then, S−1M = (S−1a)(S−1M) by Proposition 3.11 v). By the above proof,
we know that (S−1a) is in the Jacobson radical of S−1A, and S−1M is still finitely generated; (if M is
generated by xis, then S−1M is generated by xi/1s.) Thus by the Proposition 2.6 Nakayama’s lemma,
S−1M = 0. By above exercise 3.1, ∃x ∈ S such that xM = 0. Since S = 1 + a, x = 1 + a for some
a ∈ a, done.

3. Let f : (ST )−1A→ U−1(S−1A) by x/st 7→ (x/s)/(t/1). First of all, it is well-defined; if x/st = x′/s′t′,
then xs′t′s1t1 = x′sts1t1 for some q ∈ ST .

(x′/s′)/(t′/1) = (x′sts1t1/s
′ss1)/(t1tt

′/1) = (xs′t′s1t1/s
′ss1)/(t1tt

′/1) = (xt′t1/s)/(t
′t1t/1) = (x/s)/(t/1).

where last equality comes from the observation that (x/s)/(t/1) = (x/s)/(t/1) · 1/1 = (x/s)/(t/1) ·
(t′t1/1)/(t′t1/1) = (xt′t1/s)/(t

′t1t/1).

Also, if f mapst x/st to 0, then (x/s)/(t/1) = (0/s)/(t/1), thus (t′/1)(t/1)(x/s − 0/s) = 0 for some
t′ ∈ T , thus tt′x/s − 0/s) = 0, which implies tt′sx = 0. This implies that (x/st) = xtt′s/sttt′s =
0/s2t2t′ = 0. So f is injective. And, for any element in U−1(S−1A) can be denoted as (x/s)/(t/1),
thus it has preimage x/st, which shows that f is surjective. And f sends 1/1 · 1 to (1/1)/(1/1), so it
sends 1 to 1, and

f (x/st+ y/s′t′) = f((xs′t′ + yst)/ss′tt′) = (xs′t′ + yst)/ss′/(tt′/1) = ((xt′/s) + (yt/s′))/(tt′/1) = (x/s)/(t/1) + (y/s′)/(t′/1) = f(x/st) + f(y/s′t′).

f (x/st · y/s′t′) = (xy/ss′)/(tt′/1) = ((x/s) · (y/s′))/((t/1) · (t′/1)) = f(x/st) · f(y/s′t′).

4. Notes that B is an A-algebra along a.b := f(a)b. Thus S−1B = {x/s : x ∈ B, s ∈ S} is an A-module.
Also, T−1B = {x/f(s) : x ∈ B, f(s) ∈ T}. Hence, take φ : S−1B → T−1B as φ(x/s) = x/f(s). First
of all, it is well-defined, since for any x/s = x′/s′, f(t)(xf(s′) − x′f(s)) = 0 for some t ∈ S, thus
x/f(s) = x′/f(s′). Also, it is injective since φ(x/s) = 0 implies f(t′)f(s)x = 0, thus x/s = 0/s since
this is equivalent to say there exists t ∈ S such that xf(s)f(t) = 0. Also, it is surjective, and it is
clearly homomorphism.

5. By Corollary 3.12 and the given condition, Rp = 0 for all prime ideal p. By Proposition 3.8, this
implies R = 0.

The answer for next question is no. Suppose that A =
∏n
i=1 ki, where ki = k an algebraic closed

field. This is not integral domain, since (1, 0, · · · , 0) · (0, 1, 0, · · · , 0) = 0. Then, by Execise 1.22,
Spec(A) = {pi := 0×

∏n
j 6=i kj}. Thus A−pi = k×j

∏n
j 6=iKj . Then, also notes that each ki as embedded

in A is an ideal, thus an A-module, this implies A = ⊕nj=1kj . Hence, if we let S = A− pi, then

S−1kj =

{
kj if i = j

0 o.w..

To see this, if i 6= j, then ei · kj = 0 since we regard kj be an elements in A whose tuple expression
has only nonzero component on j-th position. Since ei ∈ S, by Exercise 3.1, S−1kj = 0. If i = j,
then its elements has a form x/s where x ∈ ki, s is a tuple in A such that i-th components is nonzero.
Now define a map f : S−1kj → kj by (0, · · · , 0, xi, 0, · · · , 0)/(s1, · · · , si, · · · , sn) 7→ xi/si. First of all,
it is well-defined; if x/s = x′/s′, then there exists t ∈ S such that t(xs′ − x′s) = 0. This implies that
tixis

′
i = tix

′
isi, and since all variables in the equation is from the same field, so we can get rid of ti, thus

xis
′
i = x′isi, this implies xi/si = x′i/s

′
i since si, s

′
i are nonzero. Also, it sends 1 to 1, and it is surjective,

since for any xj ∈ kj , f(0, · · · , 0, xj , 0, · · · , 0)/(1, · · · , 1) = xj . Also it is injective, since f(x/s) = 0
implies that xi/si = 0 implies xi = 0. Hence, using Proposition 3.11 saying that S−1 commutes with
finite sums,

S−1A =

n⊕
j=1

S−1kj ∼= kj .
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Hence for any prime ideal pi, the localization at pi is integral domain. But A itself is not integral
domain.

6. First of all {1} ∈ Σ hence it is nonzero. And if C is a chain in Σ, then U =
⋃
c∈C c is also a

multiplicatively closed sets. To see this, if x, y ∈ U , then ∃cx, cy ∈ C such that x ∈ cx, y ∈ cy, and
since C is chain, one of cx or cy is contained in the other. WLOG, suppose cx ⊇ cy. Then, xy ∈ Cx ⊆ U .
Also U is maximal elements of C. Hence, by the Zorn’s lemma, Σ has a maximal element.

Now suppose S ∈ Σ. We claim that A − S has a prime property, i.e., xy ∈ A − S implies x ∈ A − S
or y ∈ A− S. To see this, suppose not. Then, both x, y ∈ S, thus xy ∈ S, contradiction. Also, we see
that A− S is an ideal when S is maximal multiplicative subset. To see this, notes that for any a ∈ A,
the smallest multiplicative set containing a and S is S when a ∈ S, and Sa = {san : s ∈ S, n ∈ N}
when a ∈ A − S. However, since S is maximal in Σ, Sa strictly contains S implies 0 ∈ Sa. Thus,
san = 0 for some n > 0, since 0 6∈ S. Thus, suppose that a, b ∈ A − S. Then, san = 0, tbm = 0
for some s, t ∈ S, n,m ∈ N. This implies that for p = n + m − 1, an|(a + b)p, bm|(a + b)p, hence
st(a + b)p = 0. Thus, a + b ∈ A − S. Also, for any x ∈ A, a ∈ A − S, s(ax)n = (san)xn = 0xn = 0
implies ax ∈ A − S. Hence A − S is a prime ideal. Also, it is minimal since otherwise, if p ⊆ A − S,
this implies T := A − p ⊇ S and 0 6∈ T , hence T ∈ Σ, which implies T = S by maximality of S, thus
A− p = S, thus p = A− S.

Conversely, suppose A−S is a minimal prime ideal of A. Then, there exists T ∈ Σ which is a maximal
elements and S ⊆ T , thus A − T is prime ideal contained in p. However, by minimality of A − S,
A− S = A− T , which implies S = T , thus S is maximal element in Σ. Conversely, if S is a maximal
elements, then A−S is a prime ideal, and if there exists a prime ideal p containing A−S, let T = A−p
, and since 0 ∈ p, T ∈ Σ, and T ⊆ S. Maximality of S implies T = S, thus p = A − S. Hence S is a
maximal element in Σ.

7. (a) Suppose A − S =
⋃
i∈I pi where pi is a prime ideal in A. Since x, y ∈ S =⇒ xy ∈ S is clear by

definition of S, we should verify xy ∈ S implies x, y ∈ S. Suppose x ∈ A−S. Then for any y ∈ A,
since x ∈ pi for some i ∈ I, xy ∈ pi ⊆ A− S. Thus its contrapositive says the desired result.

Conversely, suppose that S is saturated. It suffices to show that for any a ∈ A− S, a prime ideal
containing a is disjoint with S. Now let Σ be a collection of ideal containing a and disjoint with
S. First of all, (a)∩S = 0 since xa ∈ S implies a ∈ S, contradiction. Hence (a) ∈ Σ. And for any
chain of ideals in Σ, its union is a maximal elements of the chain by the usual argument. Hence
this Σ has a maximal elements, say p. Then, for any maximal elements p in Σ, we claim that p
is a prime. To see this, if x, y 6∈ p then (x) + p and (y) + p contains p strictly, but not in Σ, thus
(x)+p∩S 6= ∅ 6= (y)+p. Let s ∈ (x)+p∩S, t ∈ (y)+p∩S. Then, st ∈ ((x)+p)((y)+p) ⊆ (xy)+p,
hence xy 6∈ p.

(b) Define S be a complement of the union of the prime ideals which do not meet S. Then, definitely,
S ⊇ S. Also, if there exists another saturated multiplicative monoid T containing S and subset
of S, then, A−T is union of prime ideals, and each of this ideal do not meet T , thus do not meet
S, hence it is contained in A−S. This implies A−T ⊆ A−S implies T ⊇ S, hence T = S. Thus,
S is the unique smallest saturated multiplicatively closed subsets containing S.

If S = 1 + a, then a prime ideal p meets S if x = 1 + a ∈ p for some a ∈ a. This implies 1 = x− a,
hence a + p = (1), i.e., coprime. Conversely, if a + p = (1), then a + x = 1 implies x = 1 − a,
thus S ∩ p 6= ∅. This implies that S is a complement of the union of all prime ideals which is
not coprime with a. Notes that for each prime ideal p not coprime with a, p + a is contained in
a maximal ideal m, since they are not coprime. Also, definitely, this m is contained in the union.
Thus,

S = A \
⋃

m∈SpecM(A)
m⊇a

m

where SpecM(A) is a set of all maximal ideals of A.

8. i) → ii): For given t ∈ T , φ−1(1/t) exists in S−1A by bijectivity of φ. Hence, φ(t/1 · φ−1(1/t)) =
φ(t/1) · 1/t = t/1 · 1/t = 1/1 and φ(1) = 1 by bijectivity implies that t/1 · φ−1(1/t) = 1/1. Hence, t/1
is a unit.
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ii) → iii): Since t/1 is a unit in S−1A, there exists a/s ∈ S−1A such that at/s = 1/1. Hence,
q(at− s) = 0 for some q ∈ S, thus qat = qs ∈ S. By letting x = qa, done.

iii→ iv): If t ∈ T , by iii), ∃a ∈ A such that at ∈ S ⊆ S, this implies

a ∈ S, t ∈ S.

Hence T ⊆ S.

iv)→ v): If a prime ideal p do not meet S, then it doesn’t meet S by definition, thus it doesn’t meet
T . Its contrapositive is what we want to have.

v)→ i): To see the injectivity, we claim an existence of prime ideal with respect to some ideal outside
of S.

Claim XIII. Let S be a multiplicative subset, and a be an ideal such that a∩S = ∅. Then there exists
a prime ideal p such that p ∩ S = ∅ and p ⊇ a.

Proof. Standard Zorn’s lemma proof. Let Σ be an ideal containing a and contained in A− S ordered
by inclusion. Then a ∈ Σ and any chain has a a maximal element, which is union of all elements in
the chain. Thus, by Zorn’s lemma ∃p ∈ Σ a maximal element.

Then, p is an ideal, and A−p is multiplicative set containing S. Thus, if x, y 6∈ p, then (x)+p, (y)+p are
ideals meeting S by maximality. Hence, take s ∈ ((x)+p)∩S, t ∈ ((y)+p)∩S then st ∈ ((xy)+p)∩S.
This implies xy 6∈ p, thus p is prime ideal.

This induces another claim.

Claim XIV. Let a be an ideal of A. If f 6∈ r(a), then ∃p a prime ideal containing a such that f 6∈ p.

Proof. Let S = {1, f, f2, · · · } and use above claim to get p. Then, p = r(p) ⊇ r(a).

Let φ(a/s) = 0/1 in T−1A. Then ∃t ∈ T such that ta = 0. It suffices to show that a/s = 0/1 in S−1A.
If not, then Ann(a)∩ S = ∅. Hence, Ann(a) ⊆ A− S. By the above claim ∃p a prime ideal containing
Ann(a) and p ∩ S = ∅. This implies p doesn’t meet T by v), so t 6∈ Ann(a), contradiction. Hence
a/s = 0/1 in S−1A. So φ is injective.

To see surjectivity, we claim that ∀t ∈ T , ∃a ∈ A such that at ∈ S. Otherwise, (t) ∩ S = ∅ for any
t ∈ T thus AT ∩ S = ∅, thus by the claim, there is a prime ideal p containing AT , and p∩ S = ∅. This
implies p∩T = ∅ by v), contradiction since p ⊇ AT ⊇ T . Thus the claim is true, and by the claim, for
any b/t. b/t = ab/at thus φ(ab/at) = ab/at = b/t.

9. S0 is saturated is clear; just pick product and assume one of productee is zero divisor. Now we claim
that S0 is contained in any maximal elements in Σ from Exercise 3.6. This shows that D := A − S0

contains A − S, a minimal prime ideal. And by Exercise 3.6, every minimal prime ideal corresponds
to maximal elements in Σ, this shows that D contains every minimal prime ideal.

To see S0 is contained in any S ∈ Σ which is a maximal in Σ, suppose not; then S0S is a multiplicatively
closed subsets containing S strictly. Thus S0S should contain 0 since it is not in Σ. Thus s0s = 0 for
some s0 ∈ S0, s ∈ S, which implies that s0 is a zero-divisor, contradiction.

(a) If S contains S0 strictly, then S contains a zero divisor, say b ∈ S and bc = 0 for some c ∈ A.
Hence, for f : A → S−1A by a 7→ a/1, then f(c) = c/1 = cb/b = 0/c = 0. Thus c ∈ ker f 6= 0,
so f is not injective. Also we should show that f : A → S−1

0 A is injective. To see this, if
f(a) = a/1 = 0, then sa = 0 for some s ∈ S0, but since s is non-zero-divisor, a = 0.

(b) Let a/s ∈ S−1
0 A for some a ∈ A, s ∈ S0. Then, if a ∈ S0, then a/s is unit; since s/a · a/s = 1/1.

If a 6∈ S0, then a is zero-divisor by definition of S0, thus b ∈ A such that ab = 0, hence a/s · b/s =
ab/s2 = 0/s2 = 0/1.
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(c) Let φ : A → S−1
0 A. Then, φ(a) = 0 implies a/1 = 0/1 thus as = 0 for some s ∈ S0. Since S0

consists of all units, as = 0 implies a = 0. Thus φ is injective. Also, surjectivity is clear; for any
a/s ∈ S−1

0 A, as−1/1 = a/s, thus φ(as−1) = as−1/1 = a/s, done.

10. (a)

Claim XV. X Let M be a S−1A module. Then, it can be regarded as A-module in a canonical
way using the canonical map A→ S−1A. Then,

M ∼= S−1M |A as a S−1A-module

where M |A is the same M as an A-module.

Proof. Let φ : M →M |A → S−1M |A be a map sending m to m/1. First of all, φ is injective since
φ(m) = 0 implies m/1 = 0/1 implies ∃s ∈ S such that sm = 0 in M |A. Hence, (s/1) ·m = 0.
Hence (1/s) · (s/1) · m = 0 implies m = 0. Also, it is S−1A − homomorphism, since for any
a/s ∈ S−1A and m ∈M

φ((a/s) ·m) = (am/s)/1 = s(am/s)/s = (am/1)/s = (a/s) · (m/1),

and additivity holds trivially. Now, φ is also surjective homomorphism since for any m/s ∈
S−1(M |A), φ((1/s) ·m) = 1/s · (m/1) = m/s.

Now suppose that A is absolutely flat. Take M be any S−1A module. Then M |A is also flat,
hence, for any injective S−1A-module injective map f : N → N ′,

M
⊗
A

f : N |A
⊗
A

S−1M |A → N ′|A
⊗
A

M |A

is injective as an A-module homomorphism. Then by Proposition 3.3,

S−1(N |A
⊗
A

S−1M |A)→ S−1(N ′|A
⊗
A

S−1M |A)

is injective as a S−1A-module homomorphism. Now By Proposition 3.7,

S−1(N |A
⊗
A

S−1M |A) ∼= S−1N |A
⊗
S−1A

S−1M |A and S−1(N ′|A
⊗
A

S−1M |A) ∼= S−1N ′|A
⊗
S−1A

S−1M |A

as a S−1A-module. Thus, a map

S−1N |A
⊗
S−1A

S−1M |A → S−1(N |A
⊗
A

S−1M |A)→ S−1(N ′|A
⊗
A

S−1M |A)→ S−1N ′|A
⊗
S−1A

S−1M |A

is injective as a S−1A-module homomorphism. Since S−1N |A ∼= N , S−1AS−1M |A ∼= M , and
S−1AS−1N ′|A ∼= N ′, this implies that N

⊗
S−1A

M → N ′
⊗
S−1A

M is injective. Thus M is flat. Since

we take an arbitrary S−1A-module M , S−1A is also absolutely flat.

(b) If A is absolutely flat, then Am is absolutely flat by i). By Exercise 2.28 stating that absolutely
flat local ring is a field, Am is a field. Conversely, suppose that Am is a field for any maximal
ideal m. Let M be an A-module. Then, Mm is Am-module, and since Am is a field, Mm is a free
Am-module. (Since every module over a field is vector space, and vector space always has a basis.)
And every free module is flat. Hence Mm is flat for all m. By Proposition 3.10, M is flat. Since
M was arbitrarily chosen, A is absolutely flat.

11. i) → ii). Suppose that there is a prime ideal p strictly contained in a maximal ideal m. Then, they
are still prime and maximal even if we send it to A/R, since by Proposition 1.1 this correspondence of
ideal is order preserving, and by Exercise 1.21 iv), Spec(A/R)→ Spec(A) is natural homeomorphism.
Denote p and m are image of p and m in A/R. Hence, this implies that pm and mm are prime and
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maximal ideals in (A/R)m by Corollary 3.13. Notes that Corollary 3.13 also implies that image of p
strictly lies in that of m. By Exercise 3.10, (A/R)m is a field, thus (0) = mm,by maximality. This
implies mm = pm, contradiction.

ii)→ iv): Let px 6= py ∈ Spec(A/R). Then, px and py are distinct maximal ideals by ii). Thus px + py
is unit ideal, since it is an ideal strictly containing both maximal ideal. Thus, ∃a ∈ px, b ∈ py such that
a + b = 1. This implies (a) + (b) = 1. By Exercise 2.27 ii), (a) = (e), (b) = (g) for some idempotents
e, g. Thus (e, g) = 1. Hence, let f = e(1 − g). Then, gf = e(g − g2) = 0. But e = eg + f ∈ (g, f).
Hence, (g, f) = (1). Since g ∈ (b) ⊆ py, we have y ∈ Xg. Similarly, since f ∈ px, x ∈ Xf . Now,
Xf ∩ Xg = Xfg = X0 = ∅ by Exercise 1.17. i), ii). Hence, Xf and Xg are two disjoint open
sets in Spec(A/R) separating x and y. Hence Spec(A/R) is Hausdorff, so does Spec(A) by natural
homeomorphism.

iv)→ iii) : Hausdorff is T2 space, so it is T1.

iii)→ ii): If every singleton is closed, this implies that every prime ideal is maximal by Exercise 1.18.

ii)→ i): Suppose that every prime ideal of A is maximal. Then, by order preserving 1-1 correspondence
from Proposition 1.1, every prime ideal of A/R is maximal. Thus, for any maximal ideal m of A/R,
mm is the only maximal ideal of (A/R)m and also the only minimal prime ideal of mm, thus mm is
nilradical in (A/R)m. However, A/R is integral domain, thus there is no nilpotent elements, which
implies mm = (0). Hence (A/R)m is field. Since m was arbitrarily chosen, this implies that A/Ris
absolutely flat by Exercise 3.10.

12. We want to show that T (M) is a submodule of M . Notes that for any torsion elements x, y ∈ T (M),
∃a, b ∈ A such that ax = 0, by = 0 Hence ab(x + y) = 0 implies x + y ∈ T (M). Also, for any a ∈ A,
ax ∈ T (M) since b ∈ Ann(x) also annihilates ax. Thus, T (M) is submodule of M .

(a) Let x ∈ M/T (M) such that x 6= 0. If a ∈ Ann(x), then a.x = ax = 0 implies ax ∈ T (M). Thus
∃b ∈ A such that bax = 0 and b 6= 0. However, since x 6∈ T (M), (otherwise x = 0 ), ba = 0. Since
A is integral domain, a = 0. Thus Ann(x) = 0. Hence M/T (M) is torsion free.

(b) Let x ∈ T (M) and f(x) ∈ N . Then, take nonzero b ∈ Ann(x). Thus bf(x) = f(bx) = f(0) = 0
implies f(x) ∈ T (N).

(c) To see that torsion functor is left exact, By ii), if M ′ → M is injective, then T (M ′) ⊆ T (M) is
also injective. Also, if we let f : M ′ → M and g : M → M ′′, then f |T (M ′) is injective as we’ve
shown and f |T (M ′) ◦ g|T (M) = 0 implies that Im f |T (M ′) ⊆ Im g|T (M). To see the other direction,
let x ∈ ker g|T (M). Then, by exactness of original sequence, ∃y ∈ M ′ such that f(y) = g. Now
we claim that y ∈ T (M ′). To see this, since x ∈ T (M), ∃a ∈ A such that a 6= 0 and ax = 0.
This implies af(y) = 0. Hence, f(ay) = 0 By injectivity of f , ay = 0 Hence y ∈ T (M ′). Thus,
ker g|T (M) ⊆ Im f |T (M ′), done.

(d) If we let S = A−{0}, then K
⊗
A

M ∼= S−1M by Proposition 3.5. with exact map a/b⊗m 7→ am/b.

Thus, 1 ⊗m = 0 if and only if m/1 is zero in S−1M if and only if ∃a ∈ S such that am = 0 by
Exercise 3.1.

13. Notes that both T (S−1M) and S−1(TM) are submodule of S−1M . Now let m/s ∈ T (S−1M). Then,
∃a ∈ A such that a 6= 0 and a ·m/s = am/s = 0. This implies that ∃t ∈ S such that tam = 0 in M .
Since ta 6= 0, m ∈ T (M). Hence m/s ∈ S−(TM). Conversely, let m/s ∈ S−1(TM). Then, ∃a ∈ A
such that a 6= 0 and am = 0 in A. Hence, m/s ∈ T (S−1M) since a ·m/s = am/s = 0/s.

To see the TFAE,

i)→ ii): T (Mp) = (T (M))p = 0p = 0.

ii)→ iii): clear.

iii) → i): Let la : M → M by x 7→ ax. It suffices to show that la is injective for all a ∈ A \ {0}.
Notes that by given condition, (la)m : Mm → Mm by x/s 7→ ax/s is injective for all a ∈ M and
for all maximal ideal m. To see this, suppose that there exists la which is not injective for some
a ∈ A and some maximal ideal m. Then, ∃m/s ∈ Mm such that ax/s = 0. Since Mm is torsion free,
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a.(x/s) = ax/s = 0 implies a = 0, contradiction. Hence, by Proposition 3.19, la is injective for all
a ∈ A \ {0}. This implies that M is torsion free.

14. By Proposition 1.1, every maximal ideal in A/a corresponds to every maximal ideal in A containing a.
Now,

0 = Mm/(aM)m ∼=︸︷︷︸
Cor 3.4 iii)

(M/aM)m ∼=︸︷︷︸
Prop 3.5

Am

⊗
A

M/aM.

as Am-module. Now for any a/s ∈ am,

a/s⊗m = 1/s⊗ am = 0.

This implies that we can regard Am

⊗
A

M/aM as A/a-module isomorphic to (A/a)m
⊗
A/a

M/aM . This

is because all am part in Am is zero, and all action over a is also zero. Hence,

(A/a)m
⊗
A/a

M/aM ∼=︸︷︷︸
Prop 3.5 and some fact

(M/aM)m/a = 0

for any maximal ideal in A/a. By proposition 3.8, M/aM is 0 as A/a-module. This implies that
M = aM .

Now we will prove the “some fact.”

Claim XVI. XI (A/a)m ∼= (A/a)m/a as A/a-module.

Proof. Let φ : (A/a)m → (A/a)m/a by a/s 7→ a/s. First of all, it is well-defined; if a/s = a′/s′, then

∃t ∈ A−m such that tas′ = ta′s, which is equivalent to say that tas′ = ta′s. This is equivalent to say
that a/s = a′/s′.

Also, it is additive homomorphism since

φ(a/s+ b/t) = at+ bs/st = a/s+ a/t.

Also, for any a ∈ A,
a.φ(b/s) = a.(b/s) = ab/s = φ(ab/s)

This implies that φ is A-module homomorphism. Also, we already know that for any b/s ∈ (A/a)m,
and a ∈ a,

a.(b/s) = ab/s = 0/s.

Hence any two representative a and a′ of a, a = a′ + t for some t ∈ a, thus

a.(b/s) = ab/s = a′b/s = a′.b/s.

This implies that (A/a)m has a natural A/a-module structure. Hence, for any c ∈ A/a,

φ(c.b/s) = bc/s = c.(b/s) = cφ(b/s).

Thus φ is A/a-module homomorphism. Finally, surjectivity is clear; just take representatives. Injec-
tivity comes from the observation that

φ(b/s) = b/s = 0/1 =⇒ bs = 0 =⇒ bs ∈ a.

Then, b/s = bs/s2 = 0/s2, thus done.

15. Let x1, · · · , xn be a set of generators and e1, · · · , en be the canonical basis of F . Then, let φ : F → F
by φ(ei) = xi. Then, φ is surjective since any element can be denoted as

∑n
j=1 ajxj , which is image of∑n

j=1 aiei. To show φ is isomorphism, need to show that φ is injective. By Proposition 3.9, it suffices
to show that φm is injective for any maximal ideal m. Assume that A is local ring. (Or, thinking
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about the case Am for a fixed maximal ideal m, and working with maximal ideal mAm. ) Fix m and
let N = kerφ and let k = A/m be the residue field of A. Now notes that Tor sequence over k gives an
exact sequence

· · · → TorA1 (k, F )→ k
⊗
A

N → k
⊗
A

F → k
⊗
A

F → 0.

Since F is flat, TorA1 (k, F ) = 0 by Exercise 2.24 (3) and balancing Tor theorem. Thus,

0→ k
⊗
A

N → k
⊗
A

F → k
⊗
A

F → 0.

is exact. And k
⊗
A

F = k
⊗
A

⊕n
j=1A =

⊕n
j=1(k

⊗
A

A) = kn. Thus, kn has a k-vector space structure.

And given map 1⊗ φ : k
⊗
A

→ F → k
⊗
A

F induces a map φ′ : kn → kn by

q ⊗ xi 7→ q ⊗ φ(xi) = q ⊗ ei 7→ qei.

Also, notes that {1⊗xi} forms a basis of kn since every basic elements in k
⊗
A

F is a sum of the forms

q ⊗ aixi = aiq ⊗ xi, and dim kn = n implies {1 ⊗ xi} is linearly independent. By similar argument,
{1 ⊗ ei} forms a basis of kn. Also, 1 ⊗ φ maps a basis to another basis, and it is linear by definition
of φ, and it is scalar multiple homomorphism since for any q ∈ k, qφ(1 ⊗ xi) = qei = φ(q ⊗ xi).
Thus φ is not only A-module map but also k-vector space homomorphism, i.e., linear transformation.
And, φ is surjective, so does isomorphism since it is finite dimensional vector space map. Thus by
exactness, k ⊗ N should be zero A-module. By Exercise 2.12, we know that N is finitely generated.
Also, 0 = k ⊗N = A/m

⊗
A

N ∼= N/mN implies N = mN . Since we assume A is local ring, thus m is

the Jacobson radical, therefore by Nakayama’s lemma, N = 0.

From this, we know that φ is also injective, thus it is isomorphism as a module map. Now we can
see that {xi} is linearly independent; suppose that

∑n
j=1 ajxj = 0. Then, φ(

∑n
j=1 ajxj) = 0 implies∑n

j=1 ajej = 0. Since {ei} is canonical basis, aj = 0 for all j. This implies {xj} is linearly independent.

Suppose that if {xi}mi=1 with m < n is a generating set of An, than add any elements xm+1, · · · , xn
on the generating set. Then, by above argument, there is a bijection sending {xi}ni=1 to {ei}ni=1 which
induces an automorphism onAn. However, since xm+1 is generated by {xi}mi=1, xm+1 =

∑m
j=1 ajxj with

nonzero ais, thus φ(xm+1) = φ(
∑m
j=1 ajxj) implies {ei}ni=1 is not linearly independent, contradiction.

16. Suppose f : A→ B be a ring homomorphism inducing B as A-algebra.

i) → ii): Let p ∈ Spec(A). Then, by i), pec = p. By Proposition 3.16, p is a contraction of a prime
ideal of B, which implies it is image of f∗. Since p was arbitrarily chosen, f∗ is surjective.

ii) → iii): Since f∗ is surjective, m = f∗(n) for some ideal n ∈ Spec(B). This implies that m = nc.
Thus, me = f(m) ⊆ n ( (1). Hence me 6= (1).

iii)→ iv): Let x ∈M such that x 6= 0. Then M ′ := Ax is a submodule of M . Since B is flat A-module,
notes that 0 → M ′ → M → M/M ′ → 0 implies 0 → M ′B → MB → MB/M

′
B → 0 is exact. Thus,

M ′B 6= 0 implies MB 6= 0, thus it suffices to show that M ′B 6= 0. Notes that A→M ′ = Ax by a 7→ ax is
surjective map, thus M ′ ∼= A/a for some ideal a. (Since M ′ is nonzero module, a 6= (1).) This implies
that B

⊗
A

A/a ∼= B/ae by Exercise 2.2 stating that M ′B
∼= B

⊗
A

A/a ∼= B/aB = B/f(a)B = B/ae.

Since a is proper ideal, it is contained in a maximal ideal m, and by condition iii), me 6= (1). This
implies that M ′B 6= 0. Thus, MB is nonzero.

iv)→ v): Let M ′ = ker(M →MB) where M →MB by x 7→ 1⊗ x. Then, we have an exact sequence

0→M ′ →M →MB

and since B is flat,
0→M ′B →MB → (MB)B
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is also exact. By exercise 2.13 with N = MB shows that this given map MB → (MB)B is injective.
Thus, M ′B → MB is injective zero map, which implies M ′B = 0. Now by below claim, M ′ = 0. Thus
the map is injective.

Claim XVII. Let f : A → B a ring map and B is flat A-algebra, and M is a module. Then,
MB = B

⊗
A

M = 0 implies M = 0

Proof. Suppose M is nonzero. Then, ∃x ∈M which is nonzero elements, thus we have

0→ Ax→M →M/Ax→ 0.

Now by tensoring with B, we get an exact sequence

0→ Bx→MB → B ⊗M/Ax→ 0

and from 0 → Bx → MB → MB/Bx → 0, we know that B ⊗M/Ax ∼= MB/Bx. Since MB is zero,
and Bx → MB is injective map, this implies Bx = 0. Hence x = 1.x = 0 implies x is zero element in
M as an abelian group, contradiction.

v)→ i): Let M = A/a for fixed ideal a. By Exercise 1.17 i), we have a ⊆ aec. So suppose that a ( aec.
Then, ∃f ∈ aec\a. Then, aec/a is nonzero as a submodule of M . By condition v), ψ : M →MB

∼= B/ae

by x→ 1⊗x→ φ(x) is injective where φ is a ring homomorphism A→ B making B as a flat A-algebra.
Thus, ψ(f) 6= 0, however, φ(f) = 0 since aece = ae, contradiction.

17. f is flat means that f induces B be a flat A-algebra.

Let φ : N →M be an injective A-module homomorphism. Think about the diagram

NB MB

NC MC

φB

φC

First of all, φC is injective since g ◦ f is flat. Also notes that

C
⊗
B

(NB) = C
⊗
B

(B
⊗
A

N) ∼=︸︷︷︸
Exercise 2.15

(C
⊗
B

B)
⊗
A

N ∼= NC .

Thus, NB → C
⊗
B

NB by x 7→ 1⊗ x is a map defined in Exercise 3.16 v), and since g is faithfully flat,

so it is injective. Hence in the above diagram, the bottom, left and right maps are injective. Since
they commutes, φB must be injective.

18. Let S = A \ p, and T = B \ q. Then, Bp = S−1B, Bq = and f(s) ∈ T induces a map Ap → Bq by
a/s 7→ f(a)/f(s). Also, Bp = f(S)−1B and from f(S) ⊆ T , Exercise 3.3 gives an isomorphism

Bq = T−1B ∼= U−1(f(S)−1B) = U−1(Bp)

where U = {t/1 ∈ Bp : t ∈ T}. Then, we can take a map

g : Ap → Bp → U−1(Bp) = Bq by x/s 7→ f(x)/f(s) 7→ f(x)/f(s).

Thus this map factor through the map Ap → Bq. Now notes that Ap → Bp is flat over Ap by
Proposition 3.10. In other words, Bp is a flat Ap-algebra. Also, Bq ia a flat Bp-module by Corollary
3.6. Now notes that Ap is a local ring with the maximal ideal pAp. Then, g(pAp) ⊆ qBq. Thus,
(pAp)e 6= (1). Hence g is faithfully flat by Exercise 3.16 iii), thus Spec(Bq) → Spec(Ap) is surjective,
by Exercise 3.16 i).
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19. (a) If Supp(M) = ∅, then Mp = 0 for all prime ideal p, thus M = 0 by Proposition 3.8. Conversely,
if M = 0, then Supp(M) = 0. Now take contrapositive.

(b) Let p be a prime ideal, S = A\p. Then, by 3.4 iii), (A/a)p = S−1A/S−1a. First of all, notes that
p is support of A/a if and only if S−1a 6= s−1A; to see this, since a is proper ideal (thus it has no
unit of A) and contained in Sc, a/1 ∈ S−1A are nonunits, thus ideal generated by S−1a is proper
ideal. It is equivalent to say that 1/1 6= a/s ∈ S−1a for any a/s ∈ S−1a. This is equivalent to
say that there is no t, s ∈ S such that ts = ta ∈ a ∩ S for any a ∈ a. Thus this is equivalent to
saying that a ∩ S = ∅. This is equivalent to saying that a ⊆ p. This is equivalent to saying that
p ∈ V (a).

(c) For any prime ideal p, by Proposition 3.3, 0 → M ′p → Mp → M ′′p → 0 is an exact sequence.
Thus, p ∈ Supp(M) if and only if Mp is nonzero if and only if either M ′p or M ′′p is nonzero.
(If both are zero, the by exactness, Mp = 0, contradiction.) This is equivalent to say that
p ∈ Supp(M ′p) ∪ Supp(M ′′p ).

(d) If p ∈
⋃

Supp(Mi), then the inclusion Mi → M induces another injection (Mi)p → Mp by
Proposition 3.3. Hence, Mp is nonzero, thus p ∈ Supp(M). In other direction, we cannot use
corollary 3.4 directly, since the sum maybe infinite.

To see this, notes that
⊕
Mi →

∑
Mi = M has natural injective map. We claim that

Claim XVIII. Tensor product commutes with arbitrary direct sums. This induces localization
commutes with arbitrary direct sum, i.e.,

S−1(
⊕

Mi) ∼=
⊕

S−1Mi

for arbitrary direct sum (coproduct.)

By this claim the induced map by Proposition 3.3
⊕

(Mi)p ∼= (
⊕
Mi)p → (

∑
Mi)p = Mp is also

injective. Hence, if (Mi)p = 0 for all i, then Mp = 0. Its contrapositive says that if p ∈ Supp(M),
then p ∈

⋃
Supp(Mi).

Proof. Proof of the claim Let
⊕

i∈IMi be direct sum of an arbitary module. Now define a map

f : N ×
⊕
i∈I

Mi →
⊕
i∈I

N ⊗Mi by (n, (mi)i∈I) 7→ (n⊗mi)i∈I .

First of all, it is bilinear since given tensor operation is bilinear. Hence, by the universal property,
this map induces a map f̃ : N

⊗
A

⊕
i∈IMi →

⊕
i∈I N ⊗Mi by n⊗ (mi)i∈I 7→ (n⊗mi)i∈I . Then

we claim that it is isomorphism. To see this, f̃((n⊗mi)i∈I) = 0 implies n⊗mi = 0 for all i, thus
n = 0 or all mis are zeo, which implies n⊗ (mi)i∈I = 0. Also, it is surjective in clear sense.

Now we can apply this fact to show that S−1 commutes with arbitrary direct sum.

S−1(
⊕

Mi) ∼=︸︷︷︸
Prop 3.5

S−1A
⊗
A

⊕
Mi) ∼=

⊕
S−1A

⊗
A

Mi
∼=︸︷︷︸

Prop 3.5

⊕
S−1Mi.

We just leave a claim which will be helpful for future. (Maybe.)

Claim XIX. For any multiplicative subset S of A, we can give a direct system structure on S,
so that S−1M is isormophic to lim−→s∈SM .

Proof. First of all, define order on S. Let s ≤ t if ∃u ∈ S such that t = us. Then S is directed
set, since for any s, t ∈ S, s ≤ st and t ≤ st. Also, for given A-module M , for each s ∈ S
let Ms be a localization of M by {1, s, s2, · · · }. Then for each pair i, j ∈ S with i ≤ j, let
µij : Mi → Mj be an A-homomorphism defined by a/ik 7→ atk/jk where t ∈ S is an element
satisfying j = it. First of all, it is well-defined, since for any two t1, t2 satisfying j = it1 = it2,
ik(jkatk1 − jkatk2) = jka((it1)k − (it2)k) = jka(jk − jk) implies atk1/j

k = atk2/j
k. Then, it satisfies

that
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i. µii is identity mapping by letting t = 1.

ii. µik = µjk ◦ µij whenever i ≤ j ≤ k. To see this, let t, q ∈ S such that j = it, k = qj. Then,

µik(a/in) = a(qntn)/kn = µjk(atn/jn) = µjk ◦ µij(a/in).

Thus, Mi with homomorphisms µij form a direct system M = (Mi, µij) over the directed set S, by
following Exercise 2.14. Hence, it admits a direct limit lim−→s∈SMs by construction of Exercise 2.14.

Let µs : Ms → lim−→s∈SMs be restriction of projection map
⊕

s∈SMs → lim−→s∈SMs. Notes that if

0 ∈ S, then 0 is the maximal element, since for any s ∈ S, 0s = 0 implies s ≤ 0. Thus, the direct
limit is zero, since for any element µs(a/s

k) (by Exercise 2.15), µs(xs) = µ0(a0k/sk) = µ0(0/1) = 0
since ring homomorphism sends 0 to 0.

Now take a map αs : Ms → S−1M by a/sk 7→ a/sk. It is well-defined homomorphism since if
a/sk = a′/sq in Ms, then ∃st such that sta′sq−stasq = 0 thus a′st+q = ast+q. Thus, a/sk = a′/sq

in S−1M since st ∈ S. Also, for i ≤ j there exists u ∈ S such that ui = j , αj ◦ µij(a/ik) =
αj(au

k/jk) = auk/jk and auk/jk = αi(a/i
k) in S−1M since 1(aukik − ajk) = 0. Hence it

satisfies αi = αj ◦ µij whenever i ≤ j. By Exercise 2.16, there exists a unique homomorphism
α : lim−→s∈SMs → S−1M such that αi = α ◦ µi for all i ∈ I.

Now we want to show that α is isomorphism. By Exercise 2.15, every element of lim−→Ms can

be denoted by µi(a/i
k). Then, to see α is injective, suppose α ◦ µi(a/ik) = 0. This implies

αi(a/i
k) = 0, hence a/ik = 0 in S−1M . Thus ∃t ∈ S such that ta = 0. Thus, let q = ti. Then

q ≥ i, thus µi(a/i
k) = µq ◦ µiq(a/ik) = µq(at

k/qk) = µq(0/q
k) = 0. Also, this map is surjective,

since for any a/s ∈ S−1M , α ◦ µs(a/s) = αs(a/s) = a/s. Done.

(e) Let {xi}ni=1 be a set generating M . Then, Axi ∼= A/ai for some proper ideal ai (by taking a
canonical map A→ Axi). Thus, from M =

∑n
i=1Axi,

Supp(M) =︸︷︷︸
iv)

⋃
Supp(Axi) =︸︷︷︸

Prop 3.9

⋃
Supp(A/ai) =︸︷︷︸

ii)

n⋃
i=1

V (ai) =︸︷︷︸
Exercise 1.15 iv)

V (

n⋂
i=1

ai).

Now if a ∈ A annihilates M , then the map A→ Axi sends a to 0, hence a ∈
⋂n
i=1 ai. Conversely,

any elements in
⋂n
i=1 ai goes zero when we multiply it with any generators. Thus this set is in

Ann(M). This implies that
⋂n
i=1 ai = Ann(M).

(f) Suppose that p is not in Supp(M
⊗
A

N). Then, (M ⊗ N)p = 0, which implies Mp ⊗ Np = 0 by

Proposition 3.7. By Exercise 2.3, Mp = 0 or Np = 0, thus p 6∈ Supp(M) ∩ Supp(N). Conversely,
if p 6∈ Supp(M) ∩ Supp(N), then either Mp or Np is zero. By Exercise 2.3, Mp ⊗Np = 0. Hence
by Propositon 3.7, (M ⊗ N)p = 0, which implies p 6∈ Supp(M ⊗ N). Now take contrapositive
what we get.

(g) M/aM ∼= A/a
⊗
A

M by Execise 2.2, so

Supp(M/aM) =︸︷︷︸
vi)

Supp(A/a)∩Supp(M) =︸︷︷︸
by v)

V (a)∩V (Ann(M)) =︸︷︷︸
by Exercise 1.15 iii)

V (a∪Ann(M)).

Notes that every ideal containing a∪Ann(M) contains a+ Ann(M) since it is an ideal generated
by a ∪Ann(M). Hence, we get the desired result.

(h) As a B-module, (B
⊗
A

M)q ∼= Bq

⊗
B

(B
⊗
A

M) by Proposition 3.5. By Exercise 2.15, with the

property thatB is a bimodule, we know thatBq

⊗
B

(B
⊗
A

M) ∼= (Bq

⊗
B

B)
⊗
A

M and by Proposition

3.5, (Bq

⊗
B

B) ∼= Bq, hence

(B
⊗
A

M)q ∼= Bq

⊗
A

M.
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Also, notes that Bq has a Ap-module structure such that for a/s ∈ Ap, define (a/s).(b/t) :=
f(a)/f(s) · b/t. This is well-defined action since if a/s = a′/s′, then ∃t ∈ S such that ts′a = tsa′,
hence f(a)/f(s) = f(a′)/f(s′) since f(t) ∈ A− q because p is preimage of q. Hence, we have

(B
⊗
A

M)q ∼= Bq

⊗
A

M ∼= (Bq

⊗
Ap

Ap)
⊗
A

M

And as we already know, Ap is a bimodule over Ap and A, thus

(B
⊗
A

M)q ∼= (Bq

⊗
Ap

Ap)
⊗
A

M ∼= Bq

⊗
Ap

(Ap

⊗
A

M) ∼= Bq

⊗
Ap

Mp

by Exercise 2.15 and Proposition 3.5.

Now suppose that p /∈ Supp(M). Then, Mp = 0, this implies (B
⊗
A

M)q ∼= Bq

⊗
Ap

Mp = 0 by

Exercise 2.3. Hence, q 6∈ Supp(MB) .

Conversely, suppose q 6∈ Supp(MB). Then 0 = (B
⊗
A

M)q ∼= Bq

⊗
Ap

Mp. Let x1, · · · , xn be gener-

ators of M over A. Then (1/1) ⊗ (xi/1) = 0. By Corollary 2.13 there exists a finitely generated
Ap-submodule Ni of Bq and Mi of Mpsuch that Ni

⊗
Ap

Mi is a finitely generated submodule such

that (1/1) ⊗ (xi/1) = 0. Now notes that Ni
⊗
Ap

Mp is also a finite Ap-submodule of Bq
⊗
Ap

Mp

containing
∑n
i=1Ni

⊗
Ap

Mi, since it is generated by generators of Ni and its tensor product with

{xi}s, which are finite.

Now
∑n
i=1(Ni

⊗
Ap

Mq) is a finite Ap-submodule such that (1/1) ⊗ (xi/1) = 0 for all xi. Since

the sum is finite, so it is actually a direct sum, hence using Proposition 2.14 we can rewrite it
as N

⊗
Ap

Mp where N =
∑n
i=1Ni, which is still finitely generated. Then, N

⊗
M

Mp = 0 since

(1/1)⊗ (x/1) = 0 for all x ∈M , since each x is generated by (1/1)⊗xi/1. Thus N = 0 or Mp = 0
by Exercise 2.3. Since N has 1/1, it is nonzero, this implies Mp = 0.

20. (a) Let p = qc for some q. Then, f∗(q) = f−1(q) = p. Hence if LHS true then f∗ is surjective.
Conversely, if f∗ is surjective, for any prime ideal p ∈ Spec(A), p = f∗(q) = qc, done.

(b) Suppose the LHS. Let q = pe. Then, f∗(q) = pec ⊇ p. Thus, suppose f∗(q) = f∗(q′). Then,
pec = (p′)ec, where q′ = (p′)e, this implies pece = (p′)ece, which implies pe = (p′)e by Proposition
1.17, which implies q = q′.

Converse is not true. Let B = A[x]/(x2) for any ring A. Then, π : B → A by f 7→ f(0) has
kernel (x). Thus, for any prime ideal p of A, its inverse is a prime ideal of B containing x. And
for any prime ideal in B, it contains 0 = x2, thus x is in the prime ideal. Thus all prime ideals
in B are contraction of A. Now let φ : A → B canonical injection. Then pe along φ is not a
prime ideal, since pe = 〈p〉 = pA[x]/(x2) = {a + bx ∈ B : a, b ∈ p}, thus x 6∈ pe. (If it is in,
then p contains 1, contradiction.) Also, π−1(p) contains pe. Hence no extended ideals are prime,
and no prime ideal π−1(p) is extended. However, φ induces a bijection Spec(B)→ Spec(A) since
φ−1(π−1(p)) = (π ◦ φ)−1(p) = 1−1

A (p) = p.

21. (a) By Proposition 3.11, we have a one-to-one correspondence between Spec(S−1A) and S−1X :=
{p ∈ Spec(A) : p ∩ S = ∅} given by φ∗ (contraction) and extension of prime ideal. In particular,
by 3.11 ii), if p ∈ S−1X,

pec =
⋃
s∈S

(p : s) = p

where the last equality comes from the observation that s 6∈ p, thus as ∈ p implies a ∈ p for all
a ∈ A. This implies (p : s) = p for all s ∈ S. (Or just use the one-to-one correspondence to see

45



that ∃q ∈ Y such that qc = p, hence pec = qcec = qc = p.) By the same argument, if q ∈ Y , then
q = pe by 1-1 correspondence, thus

qce = pece = pe = q

Now let X = Spec(A), Y = Spec(S−1A), then for any f ∈ S, we want to show that φ∗−1(Xf ) =
Yφ(f). Suppose that p ∈ Yφ(f). Then φ(f) 6∈ p, thus f 6∈ pc = φ∗(p). Hence φ∗(p) ∈ Xf . Thus
p ∈ φ∗−1(Xf ). Thus by Exercise 1.21 i), φ∗ is continuous.

Also, to show homeomorphism, we want to show that φ∗ is also closed map. Let V (a) be closed
set in Y for some ideal a. Then,

φ∗(V (a)) = {pc : p ∈ V (a)} = {q ∈ S−1X : q ⊇ φ−1(a)} = V (φ−1(a)) ∩ S−1X.

Thus, if a is proper, then φ−1(a) is also a proper ideal, thus V (φ−1(a))∩S−1X is closed in S−1X
as subspace topology. This shows that φ is closed map, thus homeomorphism.

Now for the last statement, let S = {1, f, f2, · · · }. Then, if p ∈ Xf , then f 6∈ p, thus S∩p = ∅ since
p is prime, hence p ∈ S−1X by one-to-one correspondence from Proposition 3.11. Conversely, if
p ∈ S−1X, then p ∩ S = ∅, this implies f 6∈ p, hence p ∈ Xf . This shows that Im(Spec(Af ) =
S−1X = Xf .

(b) What we want to show is that below diagram commutes,

S−1Y S−1X

Spec(S−1B) Spec(S−1A)

π∗−1
B (∼=)

g∗

π∗−1
A (∼=)

S−1f∗

where S−1Y is image of Spec(S−1B) in Spec(B) and S−1X is image of Spec(S−1A) in Spec(A),
and g∗ = f∗|S−1Y ., and S−1f : S−1A→ S−1B by a/s 7→ f(a)/f(s). Homeomorphism is clear by
above exercise. So it suffices to show that it commutes.

Let p ∈ S−1Y . Then, g∗(p) = f−1(p). Also, S ∩ f−1(p) = ∅ otherwise f(s) ∈ p, contradicting
definition of S−1Y . Hence, π∗−1

A ◦ g∗(p) is a prime ideal f−1(p)e, which is an ideal generated by
{a/1 : a ∈ f−1(p)}. Conversely, localization on B by f(S) maps p into {b/1 : b ∈ p}, so an ideal
generated by extension of this set is π∗−1

A (p). Now S−1f∗◦π∗−1
A (p) := {a/s : f(a)/f(s) ∈ π∗−1

A (p)}.
Now we claim that those are equal.

Let a/s ∈ S−1f∗ ◦ π∗−1
A (p), Then, f(a)/f(s) ∈ π∗−1

A (p). Thus, f(a) ∈ p, otherwise, since f(s) 6∈ p
for any s ∈ S, f(a)/f(s) has no representation such that numerator is in p. Hence, a ∈ f−1(p),
thus a/s = a/1 ·1/s is in f−1(p)e. Conversely, if a/s ∈ f−1(p)e, then a/s =

∑
bi/ci ·ai/1 for some

bi/ci ∈ S−1A and ai ∈ f−1(p), a ∈ f−1(p) since every term of numerator in forms of the reduction
of common denominators are in f−1(p). Hence, f(a) ∈ p, therefore f(a)/f(s) = f(a)/1 · 1/f(s) ∈
π∗−1
A (p), an extension of p. This shows that a/s ∈ S−1f∗ ◦ π∗−1

A (p). Hence

S−1f∗ ◦ π∗−1
A (p) = f−1(p)e.

Hence the above diagram commutes.

(c) Let q ∈ V (b). Then, a ⊆ aec = bc ⊆ qc = f∗(q). This implies f∗(V (b)) ⊆ V (a). If we let
πA : A → A/a, πB : B → B/b, then f̃ ◦ πA(a) = f̃(a + a) = f(a) + b = πB ◦ f(a) for any a ∈ A.
Hence, f̃ ◦πA = πB ◦f . This induces (πA)∗ ◦ f̃∗ = f∗ ◦π∗B , which shows the below map commutes.

Spec(B/b) Spec(A/a)

V (b) V (a)

f̃∗

π∗B π∗A

f∗

Since each π∗A, π
∗
B are homeomorphism, so we can say that f̃∗ is restriction of f∗ on V (b).
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(d) If we use result of ii) and iii), then we have a commutative diagram

Spec(Ap/pAp) Spec(Bp/pBp)

Spec(Ap) Spec(Bp)

Spec(A) Spec(B)

fp
∗

f∗p

f∗

By iii), Spec(Ap/pAp) → Spec(Ap) is injective map, and by ii) Spec(Ap) → Spec(A) is injective
map. (Similarly for the right two maps.) Notes that k(p) = Ap/pAp by definition. Thus,
Spec(Ap/pAp) is singleton, hence its image on Spec(Ap) is V (pAp) by iii), which is {pAp} since it
is the maximal ideal in Ap. Also, image of V (pAp) in Spec(A) is {q ∈ S−1 Spec(A) : q ⊇ p} = {p},
since if q ∈ S−1 Spec(A), then by definition q ∩ S = ∅, thus q ⊆ A − S = q. Thus, if we send

Spec(Bp/pBp) along f
∗
p, then it is goes zero map, and its image on Spec(A) is {p}, which is equal

to sending it using Spec(Bp/pBp) → Spec(Bp) → Spec(B) → Spec(A). Thus, f∗−1(p) contains
image of Spec(Bp/pBp). Also, if q ∈ f∗−1(p), then f∗(q) = p, thus f−1(q) = p implies f(p) ⊆ q,
hence q∩ f(S) = ∅. Hence, q is in the image of Spec(Bp) where Bp = f(S)−1B. Let (q)p be such
a preimage of q. Since the map is injective, it is actually the preimage of q. And, since f(p) ⊆ q,
qp contains f(p)Bp, thus qp ∈ V (f(p)Bp), and by iii), qp is image of an element in Spec(Bp/pBp).
This implies that f∗−1(p) = Spec(Bp/pBp) as a subspace of Spec(B), thus the above injections
homeomorphic to its image induces natural homeomorphism.

Now to see that Spec(Bp/pBp) = Spec(k(p)
⊗
A

B), let T be image of S along the map A→ A/p.

Then, since S = A\p, T = (A/p)\{0}. Thus, according to Exercise 3.4, T−1(A/p) ∼= S−1(A/p) =
(A/p)p

k(p)
⊗
A

B ∼= (Ap/pAp)
⊗
A

B ∼=︸︷︷︸
Prop 3.4 iii)

(A/p)p
⊗
A

B ∼=︸︷︷︸
Exercise 3.4

T−1(A/p)
⊗
A

B

∼=︸︷︷︸
Prop 3.5

(T−1(A/p)
⊗
A/p

A/p)
⊗
A

B ∼=︸︷︷︸
Exercise 2.15

T−1(A/p)
⊗
A/p

(A/p
⊗
A

B)

∼=︸︷︷︸
Exercise 2.2

T−1(A/p)
⊗
A/p

B/pB ∼=︸︷︷︸
Prop 3.5

T−1(B/pB) ∼=︸︷︷︸
Exercise 3.4

S−1(B/pB)

∼=︸︷︷︸
Prop 3.4 iii)

Bp/pBp.

This shows equality.

22. Notes that q ∈ Spec(Ap) as a homeomorphic subspace of Spec(A) if and only if q is contained in p if
and only if q∩S = ∅ if and only if q ∈

⋂
f∈S Xf . Hence Spec(Ap) =

⋂
f∈S Xf . Thus it suffices to show

that
⋂
f∈S Xf is the intersection of all open neighborhoods of p.

Also observe that If U contains p, then since {Xf}f∈A forms a base of Zariski topology by Exercise
1.17, U is union of Xf s. Hence, at least one of Xf in the union contains p, this implies that ∃f ∈ S such
that Xf is in a union representation of U . Thus, U ⊇

⋂
f∈S Xf , thus intersectionof all neighborhoods

of p contains
⋂
f∈S Xf . Conversely, if q ∈

⋂
f∈S Xf , then it is contained in any open neighborhoood

of p since U contain at least one of Xf with f ∈ S as its subset. Thus, q is in the intersection of all
open neighborhood of p. Thus, the intersection is

⋂
f∈S Xf .

23. (a) To show this, suppose U = Xf = Xg. Then, it suffices to show that Af ∼= Ag as a ring. Notes
that Xf = Xg gives us r((f)) = r((g)) by Exercise 1.17 iv). Hence, fn = hg and gm = h′f
for some h, h′ ∈ A, n,m ∈ N. Now let φf : A → Af , φg : A → Ag. Then, φf (g) = g/1 is
invertible since h/fn · g/1 = 1/1. Hence, for given Sg = {1, g, g2, · · · }, φf (s) is unit in Af for all
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s ∈ Sg. Thus by Proposition 3.1. (universal property), there exists a unique ring homormophism
ψgf : Ag → Af such that φf = ψgf ◦ φg. By the same argument, we can get the unique ring
homomorphismψfg : Af → Ag such that φg = ψfg ◦ φf . We can draw a commutative diagram

A

Af Ag

φg

φf ψfg

ψgf

From this diagram, we can get
φf = ψfg ◦ ψgf ◦ φf .

Then, for any s ∈ Sf , ψfg ◦ ψgf ◦ φf (s) = φf (s) is unit. Hence by Proposition 3.1., there exists a
unique homomorphism ϕf : Af → Af such that ψfg ◦ ψgf ◦ φf = ϕf ◦ φf . Thus, by uniqueness,
ϕf = ψfg ◦ψgf . Also, since ψfg ◦ψgf ◦ φf = φf = 1Af ◦ φf , by uniqueness of ϕf , ϕf = 1Af . This
induces that ψfg ◦ ψgf = 1Af . By the same argument on the other side, ψgf ◦ ψfg = 1Ag . Thus
Ag ∼= Af .

(b) Let U = Xf , U ′ = Xg such that U ′ ⊆ U . Then, V (f)c ⊆ V (g)c implies V (f) ⊇ V (g), thus
r((f)) ⊇ r((g)). Hence, g ∈ r((f)), therefore ∃n ∈ N and u ∈ A such that gn = uf .

Define ρ : A(U)→ A(U ′) by a/fm 7→ aun/gmn. To see ρ is well-defined, let b/fk = a/fm. Then
∃fq such that fq(afk − bfm). Hence, for given ρ(b/fk) = buk/gnk and ρ(a/fm) = aum/gnm,

fq
(
aumgnk − bukgnm

)
= fq

(
aumukfk − bukumfm

)
= um+kfq(afk − bfm) = 0

Thus ρ is well-defined. Now to see ρ depends only on U and U ′, Let U = Xf = Xf ′ , U
′ = Xg =

Xg′ . Then, there exists n, n′ ∈ N and u, u′ ∈ A such that gn = uf, (g′)n
′

= u′f . Hence, we can

define ρ(a/fm) = aum/gmn and ρ′(a/fm) = a(u′)n
′
/gmn

′
. So we have a diagram

Af Ag

Af ′ Ag′

ρ

ψff′ ψgg′

ρ′

where ψff ′ , ψgg′ are isomorphism induced by the universal property in the above construction
in i). It suffices to show that this diagram commutes. To see this, first, we show that actually,
φg = ρ ◦ φf . To see this, notes that φg(f) = f/1 is unit since f · u/gn = 1. Thus, there exists a
unique homomorphism ρ′′ such that φg = ρ◦φf , by Proposition 3.1. Now notes that φg(a) = a/1,
and ρ ◦ φf (a) = ρ(a/1) = a/1 by definition, thus by uniqueness, ρ = ρ′′. Likewise, we can show
that ρ′ is unique homomorphism satisfying φg′ = ρ′ ◦ φf ′ . Thus, below diagram commutes for
each triangle. It suffices to show that outer square commutes.

Af Ag

A

Af ′ Ag′

ρ

ψff′ ψgg′

φf

φg

φf′

φg′

ρ′

First of all,
ψgg′ ◦ ρ ◦ φf = ψgg′ ◦ φg = φg′ and ρ′ ◦ ψff ′ ◦ φf = ρ ◦ φf ′ = φg′

by commuting triangle. And each map sends g′ to unit, thus there exists unique map ϕ : Ag′ → Ag′

such that ψgg′ ◦ρ ◦φf = ϕ ◦φg′ and ρ′ ◦ψff ′ ◦φf = ϕ ◦φg′ . Since each righthandside of equations
are equal to φg′ , so ϕ = 1Ag′ , and also

ψgg′ ◦ ρ ◦ φf = ρ′ ◦ ψff ′ ◦ φf .
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Now we claim that φf is epimorphism. (Notes that epimorphism is not the same as surjection in
a category of ring.) Hence it is right cancelable, which implies

ψgg′ ◦ ρ = ρ′ ◦ ψff ′ .

Claim XX. Canonical map of localization and quotients are epimorphism.

Proof. Let f : A → A/a be canonical projection. Then, suppose that g, h : A/a → B such that
g ◦ f = h ◦ f . Then,

g(a) = g ◦ f(a) = h ◦ f(a) = h(a)

for any a ∈ A/a. (Actually this is natural since f is surjection.)

Also, let f : A → S−1A be canonical injection. Let g, h : S−1A → B such that g ◦ f = h ◦ f .
Then,

g(a/s) = g(a)g(1/s) = g(a) · g(s)−1 = h(a) · h(s)−1 = h(a/s).

Where g(s)−1 = h(s)−1 comes from the fact that g(s/1) = g◦f(s) = h◦f(s) = h(s/1) and inverse
of an element is unique.

(c) If U = U ′, then we can make ρ : A(U) → A(U ′) and ν : A(U ′) → A(U) satisfying φf = ν ◦ φg
and φg = ρ ◦ φf . (That’s what we showed in ii).) Also we showed that φg, φf are only depends
on U and U ′ respectively, thus U = U ′ induces φg = φf . Since they are epimorphism, so right
cancellable, thus ρ = 1A(U ′) = 1A(U) = ν.

(d) By ii), we can construct the diagram

A(U) A(U ′′)

A,

A(U ′)

ρ

ρ′

φU φU′′

φU′

ρ′′

commuting each triangle. Now notes that

ρ′′ ◦ ρ′ ◦ φU = ρ′′ ◦ φU ′ = φU ′′ and ρ ◦ φU = φU ′′

Hence
ρ′′ ◦ ρ′ ◦ φU = ρ ◦ φU

and since φU is epimorphism we showed in ii), it is right cancellable, thus

ρ′′ ◦ ρ′ = ρ

as desired.

(e) First of all , need to make Ix = {U : U is a basic open set containing x} be a directed set. Define
Xf ≤ Xg if Xg ⊆ Xf . Then, it is directed set since for any Xf , Xg, then r((fg)) ⊆ r((f))∩r((g)),
hence V (fg) ⊇ V (f) ∩ V (g) ⊇ V (f), V (g) implies Xfg ⊆ Xf , Xg, which implies Xfg ≥ Xf , Xg.

From this relation, we can have ρfg : A(Xf ) → A(Xg) if Xf ≤ Xg, i.e., Xf ⊇ Xg using con-
struction of ii). By iii), ρff = 1Af and by iv) ρik = ρjk ◦ ρij whenever Xi ≤ Xj ≤ Xk. Thus,
M = (A(Xf ), ρfg) over the directed set Ix form a direct system. Hence using construction of
Exercise 2.14, we have lim−→U∈Ix

A(U).

Now we want to show that lim−→U∈Ix
A(U) ∼= Ap, where p = x as a prime ideal. To see this, let

φp : A→ Ap be a canonical localization map. Then, for fixed f ∈ S = A\p, φp(f) is unit. Hence,
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by universal property of localization over Sf = {1, f, f2, · · · }, we have a map ϕf : Af → Ap such
that

ϕf ◦ φf = φp

where φf : A → Af is canonical localization map. Now we need to show that ρfg ◦ ϕg = ϕf for
Xf ≤ Xg. We know that triangles in below diagrams commutes, where top triangle commutes
from iv).

Af Ag

A

Ap

ρfg

ϕf
ϕg

φf φg

φp

Thus, we can get
ϕg ◦ ρfg ◦ φf = φp = ϕf ◦ φf .

Since φf is localization map, thus epimorphism. This implies. ϕg ◦ ρfg = ϕf . Hence by Exercise
2.16, there exists a unique homomorphism ϕ : lim−→U∈Ix

A(U) → Ap such that ϕf = ϕ ◦ ρf where

ρf : Af → lim−→U∈Ix
A(U) is a canonical injection of direct limit.

Now we need to show that ϕ is a module isomorphism. To see it is injective, by Exercise 2.15,
take an arbitrary element b ∈ lim−→U∈Ix

A(U) and its representation ρf (a/fk) such that ϕ(b) = 0.

Then,
0 = ϕ(b) = ϕ ◦ ρf (a/fk) = ϕf (a/fk).

Notes that ϕf (a/fn) = a/fn. (You can check that this construction is well-defined map and
satisfying property of ϕf .) Hence, a/fk = 0/1 in Ap, there exists s ∈ S such that sa = 0. Then,
ρf (a/fn) = ρsf ◦ ρf,sf (a/fn). And as we showed in ii) and iv), ρf,sf (a/fn) = asn/(sf)n = 0/1.
Thus,

b = ρf (a/fk) = ρsf ◦ ρf,sf (a/fn) = ρsf (0/1) = 0.

Hence ϕ is injective.

To see ϕ is surjective, then pick a/s ∈ Ap. Then, a/s ∈ As, thus ρs(a/s) is in lim−→U∈Ix
A(U),

therefore ϕ ◦ ρs(a/s) = ϕs(a/s) = a/s, done.

(f) It is not the exercise in 3.23, but we can extend this construction on any open sets in X = Spec(A).
If U is an open set inX then by definition of base of topology, U is union ofXf s. Say U =

⋃
i∈I Xfi .

Then, let Si = {1, fi, f2
i , · · · }, and Si be saturation of Si. By Exercise 3.7 ii), Si = A \

⋃
p∈Xfi

p.

To see this, if a prime ideal p doesn’t meet Si, then f 6∈ p, thus p ∈ Xf . Conversely, if p ∈ Xf , then
f 6∈ p. Thus fk 6∈ p, otherwise f ∈ p by prime property, contradiction. Now just let Xi := Xfi .

Let SU =
⋂
i∈I Si. Then SU is saturated multiplicatively closed set since 1 ∈ SU and each Sis are

saturated. Thus,

SU =
⋂
i∈I

A \ ⋃
p∈Xfi

p

 = A \
⋃

p∈Xfi ,∀i∈I

p = A \
⋃
p∈U

p.

Now define A(U) := S−1
U A. For any open subset V of U , the above construction shows that

SV ⊇ SU , thus by Exercise 3.8, we have ρUV : A(U)→ A(V ). If U = V then ρUU is identity map
of A(U) by construction in Exercise 3.8. And for any U ⊇ V ⊇W ,

A(U) A(W )

A(V )

ρUW

ρUV ρVW
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commutes since those maps are just identifying map. For example, a/s ∈ A(U) can be identified
as an elements in A(W ) by ρUW or can be identified as an elements in A(V ) first then in A(W )
lasts, and those are the same. Hence this construction satisfies iii) and iv). Also, this construction
is consistent with construction in Exercise 3.23 for the basic open sets. Hence, assignments of
ring A(U) for all open sets U of X and the restriction homomorphism ρUV satisfying condition
iii) and iv) are called a presheaf of rings on the open sets. Also the stalk of this presheaf at x ∈ X
is still Ap, since for any ρU (a/s), U is open, then U contains a basic open sets, say Xf , thus
ρU (a/s) = ρf ◦ ρU,f (a/s). Hence any elements in the direct limit of open sets can be identified as
an elements of direct limit of basic open sets. This implies that their direct limits are the same.

In case of U = X, then SU = A \
⋃

p∈Spec(A) p. We claim that SU is a set of all units of A. Notes that

if s ∈ SU is not a unit, then (s) is proper ideal. Hence it is contained in a maximal ideal, which is in
Spec(A), thus s 6∈ SU , contradiction. Hence S−1

U A ∼= A, since for any a/s ∈ S−1
U , a/s = s−1a/1.

24. Since each Uis are basic open sets, Ui = Xfi for some fi ∈ A. Also, by Exercise 1.17 v), X is
quasi-compact, thus take finite subcover from I, saying that U1, · · · , Un covers X. Then,

X =

n⋃
i=1

Ui =

n⋃
i=1

V (fi)
c = X \

⋂
V (fi).

By Exericse 1.15 iii)
⋂
V (fi) = V (

∑
(fi)) and by Exercise 1.15 i), V (

∑
(fi)) = ∅ implies

∑
(fi) = (1).

Now notes that (fi) and
∑
j 6=i(fj) are coprime, thus their radical is coprime. Hence from the fact that

(fmi ) ⊆ r((fi)) for any m ∈ N, (fmi ) +
∑

(fmj ) are coprime since their radical is (fi) and
∑

(fj) and
use Proposition 1.16. Hence, for any m ∈ N, we have representation

1 =

n∑
i=1

aif
m
i .

Now we need to show existence of s. Suppose si ∈ Afi is given by si = ai/f
mi
i for each i. Then

take m = maxmi. Then si = aif
m−mi
i /fmi . Denotes aif

m−mi
i = bi, so si = bi/f

m
i . Now notes that

Xfi ∩ Xfj = Xfifj by Exercise 1.17 i). If Xfifj = ∅, then fifj is nilpotent, thus Afifj = 0 since the
multiplicative set generated by fifj contains 0, by example 2 in [3][p.38]. In that case, they agrees
trivially. So assume that Xfifj 6= ∅. Then, ρfi,fifj (si) = bif

m
j /f

m
i f

m
j and ρfj ,fifj (sj) = bjf

m
i /f

m
i f

m
j .

For economy of notation, let gi = fmi . Then,

ρfi,fifj (si) = bigj/gigj and ρfj ,fifj (sj) = bjgi/gigj .

So they agrees if and only if ∃mij ∈ N such that

(gigj)
mij+1gjbi = (gigj)

mij+1gibj .

(Notes that if we can get power of fifj , then multiply more so that we can get power of gigj form.)
Now let p = max(i,j)∈[n]×[n]mij + 1. Then, for any i, j ∈ [n], we can get always

(gigj)
pgjbi = (gigj)

pgibj . (1)

Then if s exists, then s/1 = bi/gi in Afi . This implies that if such s exists, there exists gki such that
gk+1
i s = gki bi. Also, by multiplying gi arbitrarily many, we can assume that k ≥ p for any i. And from

the fact that 1 can be linear sum of f li for any l ∈ N, and gi = fmi , so we can say that 1 =
∑n
j=1 cjg

m′

i ,
where m′ ≥ p+ 1. Hence

gki bi =

n∑
j=1

cjbig
k
i g
m′

j =

n∑
j=1

cj(big
p
i g
p+1
j )gk−pi gm

′−p−1
j =︸︷︷︸

Eq. 1

n∑
j=1

cj(bjg
p
j g
p+1
i )gk−pi gm

′−p−1
j = gk+1

i

n∑
j=1

cjbjg
m′−1
j .

Thus, let s =
∑n
i=1 cibig

p
i where ci comes from above decomposition of 1 =

∑n
j=1 cjg

p+1
i . Then,

gpi bi = gp+1
i

n∑
j=1

cjbjg
p
j = gp+1

i s,
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where first equality comes from the fact that the above equation holds when k ≥ p,m′ ≥ p+ 1. Hence,
in Afi ,

s/1 = gp+1
i s/gp+1

i = gpi bi/g
p+1
i = bi/gi

as desired. Thus ρX,Ui(s) = si.

Now, let Uk be an open set in the cover which is not Ui for i ∈ [n]. Then, let Vi = Uk ∩ Ui. Thus, by
assumption, for any i ∈ [n],

ρUk,Vi(sk) = ρUi,Vi(sj) = ρX,Vi(s) =︸︷︷︸
Exercise 3.23 iv)

(ρUk,Vi ◦ ρX,Uk(s).

This shows that ρUk,Vi(sk − ρX,Uk(s)) = 0 for any i ∈ [n]. Notes that since {Ui}i∈[n] covers X, thus
Vi covers Uk. If we shows the uniqueness of s, then by applying above existence argument and this
uniqueness argument on Uk = Spec(Ak) with finite cover Vis, we can conclude that sk = ρX,Uk(s).
Thus desired s exists.

Therefore, we need to show that if such s exists, then it is unique. If s, s′ are both global section
satisfying given conditions, then ρX,Ui(s) = si = ρX,Ui(s) for any i ∈ [n]. This implies that ρX,Ui(s−
s′) = 0. Let t = s − s′. Then t ∈ ker(ρX,Ui) for all i ∈ [n], thus t/1 = 0/1 implies tf lii = 0 for some
li ∈ N. Take l = maxi∈[n] li. Then, we have decomposition of 1 by f li s, thus

t = t · 1 =
∑

cif
l
i t =

∑
0 = 0.

This shows that s = s′. Thus if such s exists globally, then it is unique.

In summary, what we did is that 1) such s exists in any finite subscover, 2) if global section exists,
then it is unique, 3) for any basic open set Xk not in subcover, we can make a finite subcover of Xk

using the finite subcover for X, and sk and ρX,Uk(s) are two global section of Spec(Ak), so applying
2) on Spec(Ak) we can get sk = ρX,Uk(s). Thus such s exists globally. 4) Now apply 2) to get such s
is unique.

25. Let p ∈ X and k = k(p) be the residue field at p. By Exercise 21 iv),

h∗−1(p) = Spec((B
⊗
A

C)
⊗
A

k)

g∗−1(p) = Spec(C
⊗
A

k)

f∗−1(p) = Spec(B
⊗
A

k)

And notes that

(B
⊗
A

C)
⊗
A

k ∼=︸︷︷︸
Exercise 2.15

B
⊗
A

(C
⊗
A

k) ∼=︸︷︷︸
Prop 2.14 i)

B
⊗
A

(k
⊗
A

C) ∼=︸︷︷︸
Prop 2.14 iv)

B
⊗
A

((k
⊗
k

k)
⊗
A

C)

∼=︸︷︷︸
Exercise 2.15

B
⊗
A

(k
⊗
k

(k
⊗
A

C)) ∼=︸︷︷︸
Exercise 2.15

(B
⊗
A

k)
⊗
k

(k
⊗
A

C).

Hence,

p ∈ Imh∗ ⇐⇒ Spec((B
⊗
A

k)
⊗
k

(k
⊗
A

C)) 6= 0 ⇐⇒ (B
⊗
A

k)
⊗
k

(k
⊗
A

C) 6= 0

⇐⇒︸ ︷︷ ︸
Exercise 2.3

(B
⊗
A

k) 6= 0 and (k
⊗
A

C) 6= 0 ⇐⇒ Spec(B
⊗
A

k) 6= 0 and Spec(k
⊗
A

C) 6= 0

⇐⇒ g∗−1(p) 6= 0 and f∗−1(p) 6= 0 ⇐⇒ p ∈ Im(f∗) ∩ Im(g∗).
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Thus,
f∗(Y ) ∩ g∗(Z) = Im(f∗) ∩ Im(g∗) = Imh∗ = h∗(T ).

Notes that

Claim XXI. A commutative ring with unity has zero spectrum if and only if it is zero ring.

Proof. Every nonzero ring has a maximal ideal by theorem 1.3., which is prime.

However if a ring doesn’t have 1, then it may happen; think 2Z/8Z = {0, 2, 4, 6} mod 8. Then
(4) = {0, 4} is not a prime since 2 · 6 ≡ 12 ≡ 4 mod 8. Also (2) = (6) = {0, 2, 4, 6} = 2Z/8Z, thus there
is no prime ideal.

26. Let p ∈ Spec(A). Then, f∗−1(p) ∼= Spec(B
⊗
A

k(p)) by Exercise 3.21 iv). By Exercise 2.20,

B
⊗
A

k(p) = lim−→
α

(Bα)
⊗
A

k(p) ∼=︸︷︷︸
Exercise 2.20

lim−→
α

(Bα
⊗
A

k(p))

By Exericise 2.21, lim−→α
(Bα

⊗
A

k(p) = 0 if and only ifBα
⊗
A

k(p) = 0 for some α if and only if f∗−1
α (p) = ∅

for some α by the above claim. Also the above claim implies that lim−→α
(Bα

⊗
A

k(p) = 0 if and only if

Spec(lim−→α
(Bα

⊗
A

k(p)) = ∅.

Hence, p ∈ Im f∗ if and only if f∗−1(p) 6= ∅, if and only if α, f∗−1
α (p) 6= ∅ from the contrapositive of

the result of above paragraph, which is equivalent to saying that p ∈
⋂
α Im f∗α.

27. (a) Let I be an index set of all Bα. Then let P be collection of all finite subsets of I. We showed
that P is directed set. Thus if we let BJ be tensor products of all elements in {Bi : i ∈ J}, then
lim−→J∈P is defined well, by Exercise 2.23.

Then by Exercise 3.26,

f∗(Spec(B)) =
⋂
J∈P

f∗J (Spec(BJ)).

Since each BJ is a finite tensor produtcs, so applying Exercise 3.25 finitely we can get

f∗(Spec(BJ)) =
⋂
α∈J

f∗α(Spec(Bα)).

Hence,

f∗(Spec(B)) =
⋂
J∈P

f∗Jf
∗
J (Spec(BJ)) =

⋂
J∈P

⋂
α∈J

f∗α(Spec(Bα)) =
⋂
α∈I

f∗α(Spec(Bα)).

(b) By Exercise 1.22, Spec(B) is disjoint union of Spec(Bα) as an embedded clopen set. Thus each
prime ideal of Spec(B) can be identified as (

∑
α 6=β Bα)⊕ pβ for some pbeta ∈ Spec(Bβ). Hence,

f∗((
∑
α 6=β

Bα)⊕ pβ) = f−1((
∑
α 6=β

Bα)⊕ pβ) = {a ∈ A : fβ(a) ∈ pβ} = f∗α(pβ).

Since β was arbitrarily chosen, an from the disjoint union,

f∗(Spec(B)) =
⋃
β

f∗({(
∑
α 6=β

Bα)⊕ pβ : pβ ∈ Spec(Bβ)}) =
⋃
β

f∗β(Spec(Bβ),

as desired.
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(c) Let τ := {Cf : f : A → B for any ring B} where Cf := f∗(Spec(B)). Then, intersection of Cf s
are also closed, since we can construct tensor algebra whose f∗(Spec(B)) is the given intersection,
by i). Similarly, for any finite union of Cf , we can construct a direct product whose f∗(Spec(B))
is the given finite union. Thus, it suffices to show that ∅ and X = Spec(A) is in τ. Since C1A = X
and CA→0 = ∅, we are done.

To see that it is finer than Zariski topology, recall that V (a) ∼= Spec(A/a) by Exercise 1.21 with a
surjective ring homomorphism f : A→ A/α, whose kernel is a. Thus V (a) = f∗(Spec(A/a)) ∈ τ .
Notes that it is not always finer; for example, if A has only one prime ideal, then Spec(A) = {•},
thus any image of f∗ is either Spec(A) or ∅.

(d) One of the version of definition of quasi compactness is that every collection of closed sets of X
with empty intersection has some finite subsets of the collection whose intersection is empty.

Suppose that {Cf : f : A → Bf} be a subset of τ whose intersection is empty. And by ii), their
intersection is corresponding to tensor algebras of Bf , say B. Let g : A→ B. Then,

∅ = g∗(Spec(B)).

This implies that Spec(B) = ∅, thus by above claim, B = 0. Then, by Exercise 2.21, there exists
BJ where J is finite subsets of Bf , such that BJ = 0. Thus,

∅ = f∗(BJ) =
⋂
α∈J

f∗α(Spec(Bα))

by i).

28. (a) Xg is set of prime ideals not meeting S = {1, g, g2, · · · }. Hence, by Proposition 3.11, Xg =
f∗(Spec(S−1A)). Hence it is closed. It is open since Xg = V (g)c, where V (g) is still closed in this
topology.

(b) Let p 6= q. Then, there exists f ∈ p \ q. Thus, Xf contains q but not p. Since Xf is clopen, its
complement is clopen, which implies Xc

f contains p but not q. Thus there is two disjoint open
sets separating p and q.

(c) Since this map is identity, it is bijective. Also, by definition of subbase, XC′ is generated by
Xg and X \Xg, thus any closed sets in XC′ is finite union of arbitrary intersection of these Xg

and X \ Xgs. By i), these subbase is still clopen in C, the constructible topology. Thus every
closed sets in XC′ is still finite union of arbitrary intersection of closed sets, thus closed in XC .
Hence it is continuous. Finally, we know that XC′ is Hausdorff by ii), and XC is quasi compact
by Exercise 3.27 iv). And it is well-known that a continuous bijection from compact domain to
Hausdorff codomain is homeomorphism.

(d) Thus XC is compact Hausdorff by homeomorphism in iii). It suffices to see that it is totally
disconnects. As we can see in the proof of ii), for any p 6= q, there exists p ∈ Xf and q ∈ X \Xf .
Since both Xf and Xf are clopen, so they are disjoint. Since we choose q arbitrarily, only
connected component containing p is singleton {p}. Since p was chosen arbitrarily, done.

29. Any closed set in the constructible topology of Spec(B) can be denoted as g∗(Spec(C)) for some ring
homomorphism g : B → C. Thus,

f∗(g∗(Spec(C)) = (g ◦ f)ast(Spec(C))

by Exercise 1.21 vi). Since g ◦ f : A→ C is also a ring homomorphism, so (g ◦ f)ast(Spec(C)) is closed
set in the constructible topology of Spec(A).

30. Let 1X : XC → X where XC is X with constructible topology and X is just with Zariski topology.
Since every closed set in Zariski topology is also closed in XC , so 1X is continuous bijection. If
A/R is abolutely flat, then by Exercise 3.11 iv), X is Hausdorff, thus by the fact in topology stating
that a continuous bijection from compact domain to Hausdorff codomain is homeomorphism, 1X is
homeomorphism.

Conversely, if 1X is homeomorphism, then X is Hausdorff by Exercise 3.28 iv). Hence by Exercise
3.11, A/R is absolutely flat.
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4 Primary Decomposition

Σ is an isolated set of prime ideals belonging to a if it satisfies the following condition: if p′ is a prime ideal
belonging to a and p′ ⊆ p for some p ∈ Σ, then p′ ∈ σ.

Theorem 4.10 (2nd uniqueness theorem). Let a be a decomposable ideal, let a =
⋂n
i=1 qi be a minimal

primary decomposition of a, and let {pi1 , · · · , pim} be an isolated set of prime ideals of a. Then, qi1 ∩ · · · qim
is independent of the decomposition.

Proof. Notes that any associate prime of a is uniquely determined by a, due to the 1st uniqueness theorem
(Theorem 4.5). Now let S = A− pi1 ∪ · · · ∪ pim . Thus, S(a) is also uniquely determined by a Now, suppose
that there is another minimal primary decomposition a =

⋂
i q
′
i. Then, we can assume that p1, · · · , pm′ meets

S, and the other associate primes over this decomposition doesn’t meet S. Then Proposition 4.9 shows that

S(a) =

m′⋂
i=1

q′i

Since S(a) is contraction of S−1a, thus already determined. This implies that

m⋂
j=1

qij =

m′⋂
j=1

q′i.

Hence the intersection is independent of decomposition.

Corollary T. he isolated primary components (i.e., the primary components qi corresponding to minimal
prime ideals pi) are uniquely determined by a.

Proof. Let Σ = {p}, a minimal associate prime of a and apply theorem 4.8

Proposition 4.12∗, [4]. Let A be a ring, S a multiplicatively closed subset of A. Write φS : A → S−1A a
canonical morphism. For any ideal a, let S(a) denote the contraction along φS of S−1a. The ideal S(a) is
called the saturation of a with respect to S.

1.
⋃
s∈S(a : s) = {x ∈ A : ∃s ∈ S s.t. sx ∈ a} = S(a) = aec ⊇ a.

2. S(0) = ker(φS).

3. Let Sp = A \ p for p a prime ideal of A. If q is p-primary, then Sq(q) = q.

4. Sp(0) is contained in every p-primary ideal of A.

5. If S1 ⊆ S2 are multiplicative set of A, then S1(a) ⊆ S2(a).

6. If b is an ideal of A containing a, then S(a) ⊆ S(b).

Proof. For i), First equality is clear by definition. Second equality comes from the fact that

x ∈ {x ∈ A : ∃s ∈ S s.t. sx ∈ a} ⇐⇒ x/1 = a/s for some a ∈ a, s ∈ S ⇐⇒ x/1 ∈ ae ⇐⇒ x ∈ aec.

The third equality comes from definition, and last inclusion comes from Proposition 1.17.
For ii), (0)e = (0). Hence (0)ec = {x ∈ A : φS(x) = 0} = kerφS .
For iii), Use Proposition 4.9 with a = q, thus S doesn’t meet p implies S(a) = q.
For iv), for any x ∈ Sp(0), x/1 = 0/1 implies sx = 0 for some s ∈ Sp, thus sx = 0 ∈ q for any p-primary

ideal q. Since s 6∈ p, x ∈ q.
For v), if x ∈ S1(a), then ∃s ∈ S1 ⊆ S2 such that sx ∈ a, thus x ∈ S2(a) by definition.
For vi),

a ⊆ b =⇒ ae ⊆ be =⇒ aec ⊆ bec

since below claim.
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Claim XXII. Both extension and contaction preserves order of inclusion.

Proof. In case of extension, it is clear since generators of be contains generators of ae. In case of contraction,
it is also clear since it is just preimage.

1. Let a has a minimal primary decomposition a =
⋂n
i=1 qi. In p.52 [3], minimal (isolated) primes of

a must be a subset of all minimal elements of {pi}ni=1 where pi = r(qi). Thus, a set of all minimal
associate primes of a is finite set, since the decomposition is finite.

In other hands, by Exercise 1.20 iv), the irreducible components of Spec(A/a) is the closed sets V (p)
where p is minimal primes of A/a. By Proposition 1.1, those are image of minimal prime ideal p
with respect to set of all prime ideals containing A. By Proposition 4.6, the set of all minimal prime
ideals containing a is the same as the set of all minimal associate primes of a, which is finite. Hence,
Spec(A/a) has also finitely many irreducible components.

2. Suppose that a is decomposable. (Otherwise, this statement is vacuously true.) Then, a =
⋂n
i=1 qi.

Now the 1st uniqueness theorem states that for any minimal primary decomposition of a, say a =⋂k
i=1 q

′
i, its associated primes of a are the same as associate primes given by

⋂n
i=1 qi. In other words,

{pi}ni=1 = {pi}ki=1.

This implies k = n, hence any minimal decomposition of a has the same number of primary components.
Thus,

I = r(I) = r(

n⋂
i=1

qi) =

n⋂
i=1

r(qi) =

n⋂
i=1

pi.

Thus, if there is embedded prime, say p1 ⊆ p2, then I =
⋂n
i=2 pi is another minimal primary decom-

position consisting of n− 1 primary ideals, which contradicting the 1st uniqueness theorem.

3. Let q be a primary ideal of A. Then since A is absolutely flat, A/q is also absolutely flat by Exercise
2.28. By definition of primary ideal, every zero divisor of A/q is nilpotent. Also Exercise 2.28 states
that every non unit in A is a zero divisor. Hence, for any x ∈ A/q, x is unit or nilpotent. By Exercise
1.10, A/q has only one prime ideal. Therefore, A/q is local ring. Then, by Exercise 2.28 stating that
local absolutely flat ring is field, A/q is field. Hence, q is maximal ideal.

4. First of all (2, t) is maximal, since f : Z[t]→ Z/2Z by f(t) 7→ f(0) mod 2 is surjective homomorphism
and (2, t) = ker f . However, g : Z[t]→ Z/4Z by f(t) 7→ f(0) mod 4, is surjective map and (4, t) = ker g.
Thus, Z[t]/(4, t) ∼= Z/4Z, and Z/4Z = {0, 1, 2, 3}. Notes that 1, 3 are unit, and 2, 0 are nilpotent and
zero divisors. Thus, (4, t) is primary. To see it is m-primary, r(4, t) = (2, t). (Definitley, 2 ∈ r(4, t),
thus r(4, t) ⊇ (2, t) and (2, t) is maximal implies the other direction of inclusion.) Notes that (2, t)2 =
(4, t2, 2t) ( (4, t) implies that (4, t) is not power of m.

5. First of all, a = (x2.xz, xy, yz). Since x2, xz, xy, yz ∈ m2, a ⊆ p1∩p2∩m2. Conversely, if f ∈ p1∩p2∩m2,
then since f ∈ m2,

f = ax2 + by2 + cz2 + dxy + exz + gyz

for some a, b, c, d, e, g ∈ K[x, y, z]. Since f ∈ p1, c should divisible by x or y, thus we can rewrite it as

f = ax2 + by2 + dxy + exz + gyz

Also, since f ∈ p2 b should be divisible by x or z. Thus, we can rewrite it as

f = ax2 + dxy + exz + gyz

Thus f ∈ a, this shows the equality. To see it is reduced, notes that

p1 ∩m2 = (x2, y2, xz, yz, xy)

p2 ∩m2 = (x2, z2, xz, yz, xy)

p1 ∩ p2 = (x, yz)
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are not the same as a. Now notes that p1 and p2 are contained in m. Hence m is embedded prime.
However, p1 and p2 doesn’t have inclusion relationship. Thus, those are two minimal associated primes
of a

6. From Exercise 1.16 i), every maximal ideal of C(X) is of forms mx = {f ∈ C(X) : f(x) = 0} for some
x ∈ X. We claim that every primary ideal is contained in a unique maximal ideal. To see this, let
a ⊆ mx ∩ my. Since X is Hausdorff, there exists disjoint open neighborhoods of x and y, say Ux and
Uy. Since X is compact Hausdorff, Urysohn’s lemma implies that there exists a continuous function
fx, fy : X → R such that fx(x) = 1, fx(X \Ux) = 0 and fy(X \Uy) = 0, fy(y) = 1. Hence, fg = 0 ∈ a.
Since a is primary, f ∈ a or gn ∈ a. However, neither is in mx ∩mg ⊇ a which implies a is not primary.

Now notes that X is infinite space, there are infinitely many maximal ideals, therefore there are
infinitely many minimal prime ideals. Now suppose that (0) is decomposable, say (0) =

⋂n
i=1 qi. Then,

by Proposition 4.6, {pi}ni=1 contains a set of minimal prime ideals belonging to (0), and which is the
same as a set of minimal elements of in the set of prime ideals containing (0), Since every prime ideal
contains (0), this implies that a set of all minimal prime ideals of C(X) is finite. Which contradicts
the fact that there are infinitely many minimal prime ideals.

7. (a) Notes that a[x] ⊆ ae, since any polynomial in a[x] is linear combination of elements in a. Con-
versely, any elements in ae can be denoted as

∑n
i=1 aifi where ai ∈ a and fi ∈ A[x]. Since aifi is

a polynomial whose coefficients are in a, thus
∑n
i=1 aifi ∈ a[x].

(b) Let φ : A[x] → A/p[x] by axi 7→ axi. Then, kerφ contains p[x] since every coefficient is mapped
into zero. Conversely, if f ∈ kerφ, then each coefficient of f should lie in p. Thus f ∈ p[x]. Since
it is surjective morphism, A[x]/p[x] ∼= A/p[x]. Since A/p is integral domain, so does A/p[x] by
Exercise 1.2 iii). (If f is zero divisor in A/p[x], then by Exercise 1.2 iii), there exists a ∈ A/p such
that af = 0. If f has degree n, then its n-th coefficient an is nonzero, thus aan is also nonzero
since A/p has no zero divisor. Thus, af also has degree n. Thus af = 0 implies f = 0.) Hence
p[x] is prime ideal in A[x].

(c) By the same reasoning, we know that A[x]/q[x] ∼= A/q[x]. Thus to see that q[x] is primary, we
need to show that A/q[x] 6= 0 (which is already shown) and A/q[x] every zero divisor in A/q[x]
is nilpotent. Let f ∈ A/q[x] be a zero divisor. By Exercise 1.2 iii), ∃a 6= 0 ∈ A such that af = 0.
This implies that a is a zero divisor of A/q since af = 0 implies aan = 0 where an is the leading
coefficient of f . Thus a and an are nilpotent in A/q. Similarly, if ai 6= 0 for i-th coefficient of f ,
then aai = 0 implies that ai are nilpotent in A/q. Thus, all coefficients of f are nilpotent. By
Exercise 1.2 ii), f is nilpotent. This shows that q[x] is primary ideal. Now it suffices to show that
r(q[x]) = p[x]. To see this, let f =

∑n
i=1 aix

i ∈ p[x]. Then, for each ai, ∃ni such that anii ∈ q.
Thus, f

∑n
i=1 ni+1 consists of all terms with a form(∑n

i=1 ni + 1

k1, · · · , kn

) n∏
j=1

akij x
∑n
j=1 kj .

By pigeonhole principle, there exists at least one ki which is greater than ni. Thus the coefficient
is in qi, thus p[x] ⊆ r(q[x]). Conversely, suppose f ∈ r(q[x]). If f is of degree 0, then f ∈ p ⊆ p[x].
Suppose it holds for degree p. Then, if f is of degree p + 1, then from fn ∈ q[x] for some n,
(ap+1)n ∈ q, thus ap+1 ∈ r(q) = p, and ap+1x

p+1 ∈ r(q[x]). Hence, f − ap+1x
p+1 ∈ r(q). By

inductive hypothesis, f − ap+1x
p+1 ∈ p[x]. Since ap+1x

p+1 ∈ p[x], so does f . Done.

(d) First of all, to see a[x] =
⋂n
i=1 qi[x], let f ∈ a[x]. It is equivalent to say that all coefficients of f

is in
⋂n
i=1 qi. This is equivalent to say that f ∈ qi[x] for all i, done.

By iii), a[x] =
⋂n
i=1 qi[x] is primary decomposition. To see it is minimal, delete qj [x]. Then,⋂n

i 6=j qi[x] =
(⋂n

i 6=j qi

)
[x] by the same reasoning as we did for previous paragraph. Then,⋂n

i 6=j qi 6= a since
⋂n
i=1 qi is minimal primary decomposition. Thus,

⋂n
i=1 qi[x] is also minimal

primary decomposition.

(e) If there exists a prime ideal q such that a[x] ⊆ q ⊆ p[x], then its contraction gives us

a ⊆ q ∩A ⊆ p
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with A∩ q prime, by p.9 [3]. By minimality of p, A∩ q = p. Thus, q contains p, hence q contains
pe = p[x]. This shows q = p[x]. Hence, p[x] is minimal prime ideal of a[x].

8. A/pi ∼= k[xi+1, · · · , xn] implies that pi is prime since polynomial ring over field is integral domain. To
see its power is primary, let q = pmi ∩ k[x1, · · · , xi] for fixed m ∈ N, let p = pi ∩ k[x1, · · · , xi].Then,
p is maximal in a similar way we’ve seen in Exercise 4.5 for (x, y, z). Also, p[xi+1, · · · , xn] = pi since

p ⊆ pi implies p[xi+1, · · · , xn] ⊆ p and for any f ∈ p, f =
∑i
j=1 fjxj for some fj ∈ k[x1, · · · , xn], hence

all coefficients of fjxj as a polynomial of xi+1, · · · , xn over k[x1, · · · , xi] contained in xjk[x1, · · · , xi],
hence is in p[xi+1, · · · , xn]. Also, q[xi+1, · · · , xn] = pmi by the similar way.

If q is p-primary, then q[xi+1, · · · , xn] = pmi is p[xi+1, · · · , xn] = p primary by applying Exercise 4.7
iii) n− i times. Thus it suffices to show that q is p-primary. Notes that q = pm in k[x1, · · · , xi]. Thus,
it suffices to show that k[x1, · · · , xi]/q = k[x1, · · · , xi]/pm 6= 0 and all zero divisors are nilpotent.
Suppose that f ∈ k[x1, · · · , xi]/q is zero divisor. Then, ∃g such that fg = 0. If f has nonzero constant,
say f = f0 + c where f0 is a polynomial with zero constant, then 0 = fg = f0g + cg. Since cg 6= 0,
f0g = −cg. However, degree of f0g is zero or greater than that of cg since degree of f is greater than
1. This implies deg f0g = 0, then g = 0, contradiction. (The other case cannot happen since f0g and
cg have the same degree.) Thus, f should have zero constant. And as we know, if we multiply f m
times, then every term in f should have degree m, which is zero. Thu,s f is nilpotent.

9. Suppose x is zero divisor. Then there exists a 6= 0 ∈ A such that xa = 0. Thus, x ∈ (0 : a), and since
a 6= 0, (0 : a) 6= (1). Hence, apply Exercise 1.8 on a ring A/(0 : a) to get an existence of a minimal
prime ideal p on A/(0 : a), and by Proposition 1.1 their contraction p is minimal prime ideal containing
(0; a). Thus there exists p ∈ D(A) such that x ∈ p.

Conversely, if x ∈ p ∈ D(A), then p is a minimal prime ideal containing (0 : a) for some a 6= 0. If
x ∈ (0 : a), done. Otherwise, notes that by Proposition 1.1, p on A/(0 : a) is still minimal prime ideal
containing 0. Let S = A/(0 : a) \ p. By Exercise 3.6, S is a maximal multiplicative closed subset
of A/(0 : a) such that 0 6∈ S. Now since x 6= 0, let S′ = {sxn : s ∈ S, n ∈ N}. First of all, S′ is
multiplicatively closed, since any two elements sxm and s′xl, there product is ss′xm+l ∈ S′. Also,
S′ 6= S since x ∈ p = A/(0 : a) \ S but x ∈ S′. Thus, S′ has 0, which implies sxm = 0 for some m ∈ N
and s ∈ S. This implies sxm ∈ (0 : a), thus sxma = 0. This implies x is zero divisor in A.

For the second statement, notes that Spec(S−1A) as a subset of Spec(A) is

{x ∈ Spec(A) : px ∩ S = ∅}.

Now observe that with respect to a canonical map φ : A→ S−1A,

Ann(x)e = S−1 Ann(x) = S−1(0 : x) = (S−10 : S−1x) = (0/1 : x/1) = Ann(x/1)

by Corollary 3.15. Also notes that Ann(x/1) = Ann(x/s) since if a/t ∈ Ann(x/1), then ax/t = 0
implies ∃q ∈ S such that axq = 0. Then, ax/ts is also zero since this q makes q(ax− ts0) = qax = 0.
Converse is the same.

By Proposition 3.11, every ideal in S−1A is an extended ideal. And by Proposition 3.11 iv), let S−1p
be an arbitrary prime ideal in S−1A induced by p ∈ Spec(A). If S−1p ∈ D(S−1A), then it is a minimal
prime ideal of (0 : a/s) = Ann(a/s) = Ann(a/1). Thus, by 1-1 correspondence (Proposition 3.11 iv)),
p is minimal prime ideal in A containing (0 : a). (First of all, for any x ∈ (0 : a), x/1 ∈ (0 : a/1),
hence x/1 ∈ S−1p, thus its preimage x is in p. And if there is another prime ideal q conatining (0 : a)
but contained in p, then S−1q contains Ann(a/1) but contained in p because of inclusion relationship
of its generating set. It contradicts the fact that S−1p is minimal prime ideal containing Ann(a/1).
This shows that if S−1p ⊆ D(S−1A) then p ∈ D(A). Since p is in the image of D(S−1A) if and
only if S−1p ⊆ D(S−1A), this implies D(S−1A) ⊆ D(A) ∩ Spec(S−1A). Conversely, if p is a minimal
ideal containing (0 : a). Then, S−1p contains Ann(a/1) and minimal by the same argument, and 1-1
correspondence. This implies D(S−1A) ⊇ D(A) ∩ Spec(S−1A).

If zero ideal has primary decomposition, the by the 1st uniqueness theorem, there are finite prime
ideals of form r(0 : x) for some x ∈ Z ⊆ A with |Z| < ∞. Since all prime ideals are radical, a prime
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ideal containing (0 : x) should contain r(0 : x). This shows that all associate primes of zero ideal
should be contained in D(A). Conversely, suppose p is a minimal prime ideal containing (0 : a) for
some a 6= 0 ∈ A. Suppose {pj}nj=1 be set of all associate primes of 0. Since p contain 0, by Proposition

4.6, it contains pj for some j, which is minimal associate prime. If a 6∈
⋃n
i=1 pi, where pi is an associate

primes of 0 (and n is the number of all distinct associate prime ideals of 0), then (0 : a) = 0. Minimality
of p with Proposition 4.6 implies that p = pj .

If a ∈ pi for some i ∈ [n], then by Proposition 4.7, (0 : a) 6= 0. Since every elements in (0 : a) is zero
divisor, (0 : a) ⊆

⋃n
i=1 pi. By Proposition 1.11 i), (0 : a) ⊆ pj for some j. Since p is minimal prime

ideal conatining (0 : a),
pj ⊇ p.

If p is minimal prime ideal containing 0, then it is an associate prime of 0, done. Otherwise, there is a
minimal prime ideal pk contained in p. Thus,

pj ⊇ p ⊇ pk.

Now for given minimal decomposition 0 =
⋂n
i=1 qi, think

q = (

n⋂
i 6=j

qi) ∩ q′ where q′ = p ∩ qi.

First of all, if p = r(qi) for some i, then done. Thus assume that p 6= r(qi) for any i. Now think about
second condition of minimal prime decomposition. First of all, q′ 6⊇

⋂
j 6=i qj since qi doesn’t. For any

l 6= i,
⋂
q 6=l qq 6⊆ ql from the original minimal primary decomposition,

p ∩ (
⋂
q 6=l

qq) 6⊆ ql ∩ q.

Since p ∩ (
⋂
q 6=l qq) = (

⋂
q 6=l,i qq) ∩ q′ and ql ∩ q ⊆ ql, this implies

(
⋂
q 6=l,i

qq) ∩ q′ 6⊆ ql.

Hence q = (
⋂n
i 6=j qi) ∩ q′ is minimal primary decomposition of q. And q = 0 since

(

n⋂
i 6=j

qi) ∩ q′ = (

n⋂
i=1

qi) ∩ p = 0 ∩ p = 0,

thus p, which is r(q′) = r(qi) ∩ r(p) = pi ∩ p = p, is a associate prime of 0. Hence D(A) is the set of
all associate primes of 0.

10. (a) If x ∈ ker(A → Ap), then x/1 = 0/1 implies ∃s ∈ A − p such that sx = 0. Thus sx ∈ p, which
implies x ∈ p since s 6∈ p.

(b) If r(Sp(0)) = p, then from Sp(0) =
⋃
s∈S Ann(s),

r(Sp(0)) = r(
⋃
s∈S

Ann(s)) =
⋃
s∈S

r(Ann(s)).

Hence, r(Sp(0)) ⊇ p if and only if ∀x ∈ p, x ∈
⋃
s∈S r(Ann(s)), if and only if there exists

n ∈ N, s ∈ Sp such that sxn = 0 if and only if S = {sxm : s ∈ Sp} contains 0 for any x ∈ p = A−Sp,
if and only if Sp is a maximal multiplicative set not conatining 0, if and only if p is minimal prime
ideal of A by Exercise 3.6. Since r(Sp(0)) ⊇ p if and only if r(Sp(0)) = p by i), done.

(c) Apply Proposition 4.12 5) in this note.
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(d) 0 is definitely in Sp(0) for all p ∈ D(A).

Let x 6= 0 ∈ Sp(0) for all p ∈ D(A). Then, for any p ∈ D(A), ∃sp ∈ A − p such that xsp = 0.
Thus x is zero divisor since 0 6∈ A − p for any p, thus x ∈ p for some p ∈ D(A) by Exercise 4.9.
However, by given condition x ∈ A \ p, contradiction. Thus x = 0.

11. For the first statement, by 4.10 ii), r(Sp(0)) = p. To see Sp(0) is primary, let xy ∈ Sp(0). Then, ∃n ∈ N
such that xnyn ∈ Sp(0). Thus if x 6∈ Sp(0), then xn 6∈ p, hence yn ∈ p, which implies y ∈ p = r(Sp(0)),
hence ∃m ∈ N such that ym ∈ Sp(0). Since xy just arbitrary chosen, Sp(0) is primary. To see it is the
smallest p-primary, Apply Proposition 4.12 4).

For the second statement, let a =
⋂

p∈min(A) Sp(0) where min(A) is a set of all minimal prime ideals

of A. Notes that by Proposition 1.8,
⋂

p:prime p =
⋂

p∈min(A) p = R nilradical, since every prime ideal

contains at least one prime ideal in min(A). By Exercise 4.10 i),

a =
⋂

p∈min(A)

Sp(0) ⊆
⋂

p∈min(A)

p = R.

For the third statement, if every associate prime ideal is isolated, then min(A) = D(A), thus by
Exercise 4.10 iv), a = 0. Conversely, if a = 0, then 0 = a =

⋂
p∈min(A) Sp(0) is primary decomposition

of 0 by the first statement. Now just get rid of superfluous components so that for a subset Z of
min(A),

0 = a =
⋂
p∈Z

Sp(0)

is the minimal primary decomposition. Thus, Z = Ass(0) ⊆ min(A).

12. (a) By Proposition 4.12 i), S(a) = aec. Thus,

S(a) ∩ S(b) = aec ∩ bec =︸︷︷︸
Exercise 1.18

(ae ∩ be)c =︸︷︷︸
Exercise 1.18

= (a ∩ b)ec = S(a ∩ b)

(b)
S(r(a)) = r(a)ec =︸︷︷︸

Prop 3.11 v)

r(ae)c =︸︷︷︸
Exercise 1.18

r(aec) = r(S(a)).

(c) If s ∈ S ∩ a, then ae contains s/1 · 1/s = 1/1, thus ae = S−1A, thus S(a) = (S−1A)c = A = (1).
Conversely, if S(a) = (1), then 1/1 ∈ ae, thus ∃a ∈ a and s ∈ S such that sa = 1. This implies
s ∈ a since s2a = s and ideal is closed under multiplication.

(d) If x ∈ S1S2(a), then ∃s1 ∈ S1, s2 ∈ S2 such that s1s2x ∈ a. Then, s1x ∈ S2(a), thus x ∈ S1(S2(a)).
Conversely, if x ∈ S1(S2(a)), then ∃s1 ∈ S1 such that s1x ∈ S2(a) which implies ∃s2 ∈ S2 such
that s2s1x ∈ a, thus x ∈ S1S2(a).

(e) For the last statement, if a =
⋂m
i=1 qi be a minimal primary decomposition, then, by Proposition

4.9, for any multiplicatively closed set S, S(a) =
⋂

pi∩S=∅ qi. Since all possible such intersection
is finite, so the set of ideals {S(a) : S is multiplicatively closed set} is finite.

13. (a) Notes that pe is maximal in Ap, thus (pe)n is pe-primary. By Proposition 3.11 v), (pe)n = (pn)e

in this extension case. Also by [3][p.50] contraction preserves primary. thus (pn)ec is primary.
Now it suffices to show that its radical is p. To see this,

S(r(pn)) = r(pn)ec =︸︷︷︸
Prop 3.11 v)

r((pn)e)c =︸︷︷︸
Exercise 1.18

r((pn)ec) = r(S(pn)).

Notes that r(pn) = p since p ⊆ r(pn) is clear and if x ∈ r(pn), then xm ∈ pn, thus x ∈ p by prime
property of p. Thus,

S(p) = r(S(pn))

And S(p) = pec = p by Corollary 3.13, a one-to-one correspondence of prime ideal of Ap and
prime ideals contained in p.
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(b) First of all, we claim that

Claim XXIII. p(n) is the smallest p-primary ideal containing pn.

Proof. If x ∈ p(n) = Sp(pn), then ∃s ∈ Sp such that sx ∈ pn. Thus if q is a p-primary ideal
contains pn, then sx ∈ q. Since s 6∈ p, neither does sn, thus s, sn 6∈ q for any n ∈ N. Thus x ∈ q.
Hence q ⊇ p(n).

Now let pn =
⋂m
i=1 qi be a minimal primary decomposition. Then, p = r(

⋂m
i=1 qi) =

⋂m
i=1 r(qi).

By Proposition 1.11 ii), p ⊇ r(qi) for some i. Since p ⊆ r(qi), this implies p = r(qi). If r(qj) ( p,
then

p =

m⋂
i=1

r(qi) ⊆ r(qj) ( p,

contradiction. Thus p is isolated prime of pn.

Now notes that Sp ∩ pj 6= ∅ for any j 6= i. To see this, since p is isolated prime, any pj strictly
contains p or do not have inclusion relationship with p (from the minimality of decomposition,
there is no case that pj = p.) This implies that Sp = A − p meets pj for all j 6= i. Thus, by
Proposition 4.9, (actually Corollary 4.11), Sp(pn) = qi. This implies p(n) = qi, thus it is p-primary
component.

(c) We claim that

Claim XXIV. p(m+n) is the smallest p-primary ideal containing p(n)p(m).

Proof. Let q ⊆ p(n)p(m) be a p-primary ideal. For any x ∈ p(m+n), there exists s ∈ Sp such that
xs ∈ pm+n = pmpn ⊆ q. From s 6∈ r(q), x ∈ q by primary condition. Thus p(m+n) ⊆ q.

By

Now suppose p(m)p(n) =
⋂m
j=1 qj be a minimal primary decomposition. Then, notes that by

Exercise 1.13,
r(p(m)p(n)) = r(p(m)) ∩ r(p(n)) =︸︷︷︸

Exercise 4.13 i)

p ∩ p = p.

Hence,

p = r(p(m)p(n)) = r(

m⋂
j=1

qj) =

m⋂
j=1

r(qj)

where last equality comes from by Exercise 1.13. By Proposition 1.11 ii), p ⊇ r(qi) for some i.
Since p ⊆ r(qi), this implies p = r(qi). If r(qj) ( p, then

p =

m⋂
i=1

r(qi) ⊆ r(qj) ( p,

contradiction. Thus p is isolated prime of p(m)p(n).

Thus, by the same argument we did in the proof of ii), Sp doesn’t meet p only. Thus Corollary
4.11 implies that qi = Sp(p(m)p(n)) Hence it suffices to show that Sp(p(m)p(n)) = p(m+n). To see
this equality, notes that if x ∈ Sp(p(m)p(n)), then ∃s ∈ Sp such that sx ∈ p(m)p(n) ⊆ p(m+n), but
since s 6∈ r(p(m+n)), x ∈ p(m+n) by primary condition. Conversely, if x ∈ p(m+n), then ∃s ∈ Sp

such that sx ∈ pn+m = pnpm ⊆ p(n)p(m) by claim XXI. This implies that x/1 = a/1 ∈ (p(n)p(m))e,
which implies x ∈ S(p(n)p(m)).

(d) It has a typo. What we actually do is

p(n) = pn ⇐⇒ pn is p− primary.

This is because p(n) is always p-primary by i).

If p(n) = pn, then by i), pn is p-primary. Conversely, if pn is p-primary, then by the above claim
XXI, p(n) is the smallest p-primary ideal containing pn, they coincides.
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14. We claim that

Claim XXV. Suppose q is p′-primary for some prime ideal p′. If (q : x) is a maximal ideal among
all ideals of this form (for x 6∈ q), then r(q) = (q : x).

Proof. By Proposition 4.4 ii), (q : x) is p′-primary ideal containing q. Let y ∈ A \ (q : x). Then by
definition of (q : x), xy 6∈ q. Thus, By Exercise 1.12,

(q : x) ⊆ ((q : x) : y) = (q : xy).

first inclusion comes from 1.12 i), and second equality comes from 1.12 iii). By maximality with xy 6∈ q,
(q : xy) = (q : x). This show that for any z ∈ A, zxy ∈ q =⇒ zx ∈ q. By taking z = yn, yn+1x ∈ q
implies ynx ∈ q. Thus, applying this argument (n + 1)-times, we can conclude that ynx ∈ q implies
x ∈ q. However, we already assume x 6∈ q, thus there is no n ∈ N such that yn ∈ (q : x). Hence,
y 6∈ r((q : x)) = p′. To sum up, y ∈ A \ (q : x) implies y ∈ A \ p′. In a contrapositive form, y ∈ p
implies y ∈ (q : x). Thus

(q : x) ⊆ r(q : x) = p′ ⊆ (q : x)

which implies (q : x) = r(q : x) = p′ = r(q).

Let a =
⋂m
i=1 qi be a minimal primary decomposition with pi = r(qi). Suppose x ∈ A \ a is such that

(a : x) is maximal element. By Exercise 1.12 iv)

(a : x) =

m⋂
i=1

(qi : x).

Also, by Lemma 4.4, (qi : x) is pi-primary or (1). Now take y ∈ (
⋂m
j 6=i qj) \ qi = (

⋂m
j 6=i qj) \ a. Then,

(a : x) ⊆ ((a : x) : y) = (a : xy), and maximality implies (a : xy) = (a : x). Thus, we may assume that
x ∈ (

⋂m
j 6=i qj) \ a. Hence by Lemma 4.4,

(a : x) =

m⋂
i=1

(qi : x) = (qi : x).

Now, if there is y ∈ A \ qi such that (qi : y) ⊇ (qi : x), then by the same argument, we can assume
that y ∈ (

⋂m
j 6=i qj) \ qi, in that case, by the Exercise 1.12 i),

(a : x) = (qi : x) ⊆ (qi : y) ⊇ (qi : xy) = (a : xy) = (a : x)

implies that (qi : y) = (qi : x). (Notes that xy is still in (
⋂m
j 6=i qj) \ qi = (

⋂m
j 6=i qj) \ a, that’s why

(qi : xy) = (a : xy) by Lemma 4.4. ) Thus, (qi : x) is maximal among all such forms, thus by the
above claim, (qi : x) = r(qi) = pi. Hence, p = (a : x) = pi.

15. Notes that
Sf (a) = {x ∈ A : fnx ∈ a for some n} =

⋃
n>0

(a : fn)

implies Sf (a) ⊇ (a : fn) for any n.

Let a =
⋂n
i=1 qi. Assume without loss of generality, let Σ = {p1, · · · , pm}. Then,

Sf ∩ pi 6= ∅ ⇐⇒ fn ∈ pi for any n ∈ N ⇐⇒ f ∈ pi ⇐⇒ pi 6∈ Σ.

Thus, Sf meets only pm+1, · · · , pn. By Proposition 4.9,

Sf (a) =

m⋂
i=1

qi = qΣ.

Thus it suffices to show that (a : fk) contains Sf (a) for some large k. Notes that (a : fn) ⊆ (a : fn+1).
By Exercise 1.12 iv), we know (a : fk) =

⋂n
i=1(qi : fk). Thus it suffices to find n such that ∀x ∈ qΣ,

fnx ∈ qi for all i. Now let ni ∈ N such that ∀x ∈ qΣ, f
nix ∈ qi. When pi ∈ Σ, such ni exists

since x ∈ pi, so ni = 0. If pi 6∈ Σ, then since f ∈ pi = r(qi), thus such ni exists. Hence, by letting
n = maxi ni, done.
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16. For any ideal a, it is decomposable, thus by first three lines of the proof of Proposition 4.9 in [3], S−1a
has a primary decomposition. Since Proposition 3.11 i) says that every ideal in S−1A is extended ideal
of form S−1a, done.

17. To use hint, we need to generalize Exercise 4.11.

Claim XXVI. If p is a minimal prime ideal of a ring A containing a, then Sp(a) is p-primary ideal.

Proof. Let f : A→ A/a. Then, we know that Sp(0) is the smallest p-primary ideal in A/a by Exercise
4.11. Now let q = f−1(Sp(0)). Since contraction of primary ideal is primary by [3][p.50], q is primary.
Also,

r(q) =︸︷︷︸
Exercise 1.18

f−1(r(Sp(0))) = f−1(p) = p

shows that q is p-primary.

Let a1 = a for use of induction. Let p1 be a minimal element of the set of prime ideals containing a.
Then, q1 := Sp1

(a) is p1-primary by above claim. By L1, q1 = (a : x) for some x 6∈ p1. We claim
that a = q1 ∩ (a + (x)). Notes that a ⊆ q1 ∩ (a + (x)) is clear. So, suppose f ∈ q1 ∩ (a + (x)). Then,
f = a+ gx for some a ∈ a, g ∈ A. Also, from q1 = (a : x), fx ∈ a, which implies ax+ gx2 ∈ a. Hence,
gx2 ∈ a. From the condition x 6∈ p1 = r(q1), g ∈ q1 = (a : x), which implies gx ∈ a, thus f ∈ a.

Let a2 be a maximal element of the set of ideal b ⊇ a1 such that a2 ∩ b = a1 and choose a1 so that
x ∈ a2, therefore a2 ⊆ p1. Such a2 exists since (a + (x)) = (a1 + (x)) satisfies all conditions, and if we
take a collection of such ideals, then any chain (by inclusion) has a maximal element, which is union of
all (by inclusion condition this union is actually an ideal) so Zorn’s lemma implies that such maximal
ideal exists. Say a2 be such a maximal ideal. If a2 6= (1), then do the same argument above to get
q2, p2 such that a1 = q1 ∩ q2 ∩ (a2 + (x2)) for some x2 6∈ p2.

Now to use transfinite induction, suppose that a1 =
⋂
β≤α qβ(aα + xα) for some ordinal α and xα 6∈

pα = r(qα), and aα 6⊆ pβ for any β < α. If aα 6= (1), then by the same argument above we have
aα+1 containing (aα + (xα)) maximally and such that a1 = aα+1 ∩ (

⋂
β≤α qβ). Similarly, take pα+1 a

minimal prime containing aα+1 and take qα+1 = Spα+1
(aα+1) which is pα+1-primary, then L1 implies

that qα+1 = (aα+1 : xα+1) for some xα+1 6∈ pα+1. By the same argument above, we have aα+1 =
qα+1 ∩ (aα+1 + (xα+1)). Thus,

a1 = aα+1 ∩ (
⋂
β≤α

qβ) = qα+1 ∩ (aα+1 + (xα+1)) ∩ (
⋂
β≤α

qβ) = (aα+1 + (xα+1)) ∩ (
⋂

β≤α+1

qβ).

This is completion of successor step of the transfinite induction. For the limit step, suppose that for
any α < β,

a1 = aα+1 ∩ (
⋂

γ<α+1

qγ)

holds and aγ ( aα for any γ < α. Then, let aβ =
⋃
γ<β aγ . Then

aβ ∩
⋂
ρ<β

qρ =
⋃
γ<β

(aγ ∩
⋂
ρ<β

qρ) = a1 ∪
⋃

γ+1<β

(aγ+1 ∩
⋂

ν<γ+1

qν ∩
⋂

γ≤ρ<β

qρ)

=︸︷︷︸
From successor step

a1 ∪
⋃

γ+1<β

(a1 ∩
⋂

γ≤ρ<β

qρ) = a1 ∪
⋃

γ+1<β

(a1) = a1.

Hence it holds for any ordinal.

Thus if aα = (1) for some α, then done. Also, since aβ grows at most |A|, so it eventually terminate
at some ordinal β ≤ |A|, with a decomposition a = a1 =

⋂
γ<β qγ , which is (possibly infinitely many)

primary ideals.
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18. i) → L1: Let a =
⋂m
i=1 qi be a minimal primary decomposition and pi = r(qi). Now let p be a prime

ideal and Sp = A \ p. Then, notes that for any x ∈ A, by Exercise 1.12, (a : x) =
⋂m
i=1(qi : x). Then

let I = {i ∈ [m] : qi ⊆ p} and J = [m] \ I. Then, if i ∈ I, Sp doesn’t meet pi. However if i ∈ J , then
Sp ∩ qi 6= ∅. Thus,

Sp(a) =
⋂
i∈I

qi.

Now, Lemma 4.4 shows that (qi : x) = (1) if x ∈ qi and (qi : x) = qi if x 6∈ pi. Thus if we show that
there exists x ∈ (

⋂
j∈J qj) \

⋃
i∈I pi, then done. To get this x, notes that for each j ∈ J , ∃xj ∈ qj \ p,

thus x =
∏
j∈J xj ∈ (

⋂
j∈J qj \ p. Since p contains pi for all i ∈ I (you can see it by taking radical)

done.

i) → L2: Let a =
⋂m
i=1 qi be a minimal primary decomposition. If we let Jn = {i ∈ [m] : pi ∩ Sn =

∅}, then Sn(a) =
⋂
j∈Jn qj by Proposition 4.9. By the inclusion relationship, as n increase, Jn is

nonincreasing sequence of sets. Hence it converges to some set by taking J =
⋂
n>0 Jn.

ii) → i): By Exercise 4.17, we know that a =
⋂
α<β qα for some ordinal β ≤ |A|. Also, for each

finite stage, a = an+1 ∩ qn ∩ · · · ∩ q1, and notes that by construction an+1 contains xn+1 6∈ pn, thus
A− pn = Spn implies Spn ∩ an+1 6= ∅, thus by Exercise 4.12,

Spn(a) = (1) ∩ Spn(qn ∩ · · · ∩ q1) =︸︷︷︸
Exercise 4.12 i)

Spn(qn) ∩ · · · ∩ Spn(q1) = qn ∩ · · · ∩ q1

since each qi is pi-primary and by inclusion relationship of pi implies Spn does not meet pi, with
Proposition 4.9.

Also by construction of Exercise 4.17, qα = Spα(a). Thus, by inclusion relationship of pα, we know
that Sp1

⊇ · · · ⊇ Spα ⊇ · · · is a descending chain of multiplicatively closed subset. Now by L2, we
knows that Sn(a) = Sα(a) for any α ≥ n.

Now to see that Sn(a) =
⋂n
i=1 qn is a primary decomposition, notes that

a = Sn(a) ∩
⋂

α6=0,1,··· ,n,α<β

qα.

Now let γ be an ordinal such that n < γ < β. Then,

Spγ (a) =︸︷︷︸
Exercise 4.12 i)

Spγ (Sn(a)) ∩ Spγ (qγ) ∩
⋂

α6=0,1,··· ,n,α<β

Spγ (qα)

Since Spγ meets pα for α > γ, so Spγ (qα) = (1). Thus,

Spγ (a) = Spγ (Sn(a)) ∩ Spγ (qγ) ∩
⋂

α6=0,1,··· ,n,α<γ

Spγ (qα)

Also, if x ∈ Spγ (qγ), then ∃s ∈ Spγ such that sx ∈ qγ , which implies x ∈ qγ . Conversely, Spγ (qγ) = qecγ
implies Spγ (qγ) ⊇ qγ , thus Spγ (qγ) = qγ . Also, since pγ contains pi for all i ∈ [n], Spγ (Sn(a)) =
Sn(a) =

⋂n
i=1 qi.

Hence, with the fact that Spγ (a) = Sn(a),

n⋂
i=1

qi = (

n⋂
i=1

qi) ∩ qγ ∩ some other terms

thus qγ contains
⋂n
i=1 qi. Since γ was arbitrarily chosen, this implies that

a =
⋂
α<β

qα =

n⋂
i=1

qi.

Hence a has a primary decomposition.
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19. First statement is Proposition 4.12∗ 4. in this note.

For the second one, use proof by induction. If n = 1, then a = p1 is such ideal, done. Suppose n > 1
and let pn be maximal in the set {p1, · · · , pn}. By inductive hypothesis, there exists an ideal with a

minimal primary decomposition b =
⋂n−1
i=1 qi such that r(qi) = pi. We claim that b 6( Spn(0). If we

show this, then by Exercise 4.11 stating that Spn(0) is the smallest pn-primary, we have a nonempty
collection of pn-primary ideals not containing b. So taking any qn from the collection, and let a = b∩qn.
To see it is minimal prime ideal, we need a useful claim

Claim XXVII. Let Q be a P -primary ideal. If IJ ⊆ Q and I 6⊆ Q then J ⊆ P .

Proof. Let x ∈ I \Q. Then for any y ∈ J , xy ∈ Q ⊆ P . Since x 6∈ Q, yn ∈ Q by primary condition for
some n, thus y ∈ P since r(Q) = P .

Now, suppose qi ⊇
⋂n
j 6=i qj . Let J =

⋂n−1
j 6=i qj . Then, J 6⊆ qi by the minimal condition of the primary

decomposition of b. However, Jqn ⊆ J ∩ qn ⊆ qi. This implies qn ⊆ qi, thus by taking radical we get
pn ⊆ pi, contradicting maximality of pn.

Hence it suffices to show that b 6⊆ Spn(0). Suppose not. Let p be a minimal prime ideal of A contained
in pn. Then Spn(0) ⊆ Sp(0) by Proposition 4.12∗ 5 (or Exercise 10 iii)), thus b ⊆ Sp(0). If we take
radical, the by Exercise 10 ii),

n−1⋂
i=1

pi ⊆ p.

By Proposition 1.13 ii), pj ⊆ p, thus pj = p by minimality of p. However this contradicts our assumption
that no pi is minimal prime.

20. Second equality follows from Exercise 2.2 ii) with N +M = M . So it suffices to show the first equality.
Notes that (N : M) = {x ∈ A : xM ⊆ N} by definition. Thus its radical is just rM (N), done.

To get an analogues statements, I refer [4].

(a) If N ⊆ P ⊆M be a submodule of M , then rM (N) ⊆ rM (P ). (Just check that xqM ⊆ P ⊆ N .)

(b) If C ⊆ B are algebras over A, then rB(Cn) = rB(C) for any n ∈ N. ( If xqB ⊆ C, then xq ·1 ∈ C,
thus xqn · 1 ∈ Cn, thus xqnB ⊆ Cn.)

(c) rB(b) ⊇ f−1(b) for any ideal b of B and f : A → B a ring map. ( If x ∈ f−1(b), then f(x) ∈ b,
thus xB = f(x)B ⊆ b.)

(d) r(rM (N)) = rM (N). (If x ∈ r(rM (N)), then xn ∈ rM (N) thus xnqM ⊆ N for some n, q ∈ N,
which implies x ∈ rM (N). The other inclusion is clear.

(e) rM (N ∩ P ) = rM (N) ∩ rM (P ). ( ⊆ is clear. If x ∈ rM (N) ∩ rM (P ), then xnM ⊆ N, xqM ⊆ P ,
thus xnqM ⊆ N ∩ P for some n, q ∈ N.)

(f) rM (N) = (1) ⇐⇒ M = N ( 1M ⊆ N shows =⇒ direction. Other direction is clear.)

(g) rM (N + P ) ⊇ r(rM (N) + rM (P )). ( By the first one, rM (N), rM (P ) ⊆ rM (N + P ) implies
rM (N) + rM (P ) ⊆ rM (N + P ), then taking radical we get desired one.) Converse is false; let A
be nonzero unital commutative ring and M = A ⊕ A. Then, let N = A ⊕ 0, P = 0 ⊕ A, then
rM (N + P ) = (1) but rM (N) = rM (P ) = (0).

21. Let xy ∈ (Q : M) = Ann(M/Q). Suppose y 6∈ (Q : M). Then, xy(M/Q) = 0 but y(M/Q) 6= 0, thus if
we let φ̄x : M/Q→M/Q by m 7→ x ·m, then

φ̄x ◦ φ̄y = φ̄xy = 0.

Since φ̄y is nonzero, ker φ̄x ⊇ Im(φ̄y) 6= 0. Hence φ̄x has nonzero kernel, thus x is zero divisor of Q.
Since Q is primary, x is nilpotent, thus ∃n ∈ N such that φ̄xn = 0. Thus, xnM ⊆ Q, which implies
xn ∈ (Q : M). Thus (Q : M) is primary.
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Lemma 4.3∗. If Qi is p-primary for i = 1, 2, · · · , n submodules of M , then So is Q =
⋂n
i=1Qi.

Proof. Let x ∈M/Q be a zero divisor. Then, ∃y 6= 0 such that xy = 0. This implies xy ∈ Q =
⋂n
i=1Qi.

Since x is zero divisor on each M/Qi, it is nilpotent, thus xniM ⊆ Qi for some ni for each i. Thus, let
n =

∑
i ni, then xnM ⊆ Q, which implies that x is nilpotent on M/Q. To see it is p-primary,

r(Q : M) = r(
⋂
Qi : M) = r(

⋂
(Qi : M)) =

⋂
r(Qi : M) =

⋂
p = p

where
⋂
Qi : M =

⋂
(Qi : M) is application of generalization of 1.12 iv). To see this, if x ∈

⋂
Qi : M ,

then xM ⊆
⋂
Qi, thus x ∈ (Qi : M) for all i. The other direction is similar.

Proposition 4.4∗. Let Q ⊆M be a p-primary submodule of M . Then,

(a) if x ∈ Q then (Q : x) = (1);

(b) if x 6∈ Q then (Q : x) is p-primary, and therefore r(Q : x) = p;

(c) if x 6∈ p then (Q : x) := {m ∈M : xm ∈ Q} = Q.

Proof. i) is clear. For ii), let yz ∈ (Q : x) but y 6∈ (Q : x). Then yz.x ∈ Q but y.x 6∈ Q, so z is zero
divisor of M/Q, hence nilpotent. This implies φ̄zn = 0 as an endomorphism on M/Q. Thus znM ⊆ Q,
thus zn ∈ (Q : x). This implies (Q : x) is primary. To see it is p-primary, notes that (Q : M) ⊆ (Q : x)
implies p ⊆ r(Q : x). Also, if a ∈ r(Q : x), then an ∈ (Q : x) for some n ∈ N, thus anx ∈ Q,
which implies a is zero divisor on M/Q, thus by primary condition a is nilpotent, i.e., φ̄ak = 0 as an
endomorphism on M/Q. This shows that ak ∈ rM (Q) = p, thus a ∈ rM (Q) = p since it is radical.

For iii), if m 6∈ Q but xm ∈ Q, then x is zero divisor on M/Q, thus nilpotent, hence φ̄xn = 0 as an
endomorphism on M/Q. Thus, x ∈ rM (Q) = p, contradiction. Hence (Q : x) ⊆ Q. The other way of
inclusion is clear.

22.

Theorem 4.5∗. If N = Q1 ∩ · · · ∩Qn is a minimal primary decomposition with pi = rM (Qi),then pi
are precisely the prime ideals which occur in the set of ideals {r(N : m)|m ∈M} hence are independent
of the particular decomposition of N .

Proof. Fix i ∈ [n] and let m ∈
⋂
j 6=iQj \Qi. Such m exists since the given decomposition is minimal.

Then,

(N : m) =
⋂
j

(Qj : m) = (Qi : m)

where equality comes from the above argument similar to 1.12 iv). By Proposition 4.4∗, (Qj : m) = (1)
when j 6= i. Thus (N : m) is pi-primary, so each pi = r(N : m) for some m ∈M .

Conversely, let r(N : m) is prime p for some m ∈M . Then, (N : m) =
⋂

(Qi : m) shows that

r(N : m) =
⋂

m 6∈Qi

pi.

By Exercise 1.11 i) and ii), with the assumption that r(N : m) is prime, r(N : m) = pi for some i.

23. Last comments in [3] implies that for any decomposable submodule N of M , with a minimal primary
decomposition N =

⋂n
i=1Qi, Qi/N is rM/N (Qi/N)-primary module with rM/N (Qi/N) = rM (Qi).

To see this, first of all, (Qi/N : M/N) = {x ∈ A : xM/N ⊆ Qi/N} = {x ∈ A : xM ⊆ Qi} =
(Qi : M) gives rM/N (Qi/N) = rM (Qi). And to see Qi/N is primary, let x be a zero divisor on
(M/N)/(Qi/N) ∼= M/Qi. Then, x is zero divisor of M/Qi, thus nilpotent on M/Qi, therefore nilpotent
on (M/N)/(Qi/N), done. By the same argument in different direction, if Qi/N is rM/N (Qi/N)-
primary, then Qi is rM (Qi)-primary.
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Proposition 4.6∗. Let N be a decomposable submodule of M . Then any prime ideal p ⊇ rM (N)
contains a minimal prime ideal belonging to N , and thus the minimal prime ideals of N are precisely
the minimal elements in the set of all prime ideals containing N

Proof. If N =
⋂n
i=1Qi, then rM (N) =

⋂n
i=1 rM (Qi) =

⋂n
i=1 pi where Qi is pi-primary module. By

Proposition 1.11 ii), from p ⊇ rM (N) =
⋂n
i=1 pi, p contains pj for some j ∈ [n]. Hence p contains some

minimal prime ideal of N .

Proposition 4.7∗. Let N be a decomposable submodule of M , let N =
⋂n
i=1Qi be a minimal primary

decomposition, and let rM (Qi) = pi. Then

n⋃
i=1

pi = {x ∈ A : (N : x) 6= N}.

In particular, if the zero module is decomposable, the set D of zero-divisors of M is the union of the
prime ideal belonging to 0.

Proof. By the above generalization argument, and the fact that for any x ∈ A, (0 : x) 6= 0 in M/N
implies (N : x) 6= N in M wh we can assume N = 0 (otherwise we can think everything on M/N .)
Then let D′ = {x ∈ A : (0 : x) 6= 0} the right hand side. If (0 : x) 6= 0 for some x, then there exists
m ∈ (0 : x), with m 6= 0 but xm = 0. Thus x is zero divisor in a sense of Exercise 4.21. Thus,
D ⊇ D′. Conversely, if x is zero divisor, then ∃m 6= 0 ∈M such that xm = 0, thus m ∈ (0 : x) implies
(0 : x) 6= 0, thus x ∈ D′. This shows that D′ = D.

Also, if x ∈ r(D), then xnm = 0 for some nonzero m and some n ∈ N, thus pick n the smallest such
that xnm = 0, we can see that xn−1m 6= 0, which implies x ∈ D. Hence r(D) = D. Thus,

D = r(D) = r(
⋃
m6=0

(0 : m)) =
⋃
m 6=0

r(0 : m).

(Since it is union of set, so we can apply argument on chapter 1. ) By the first uniqueness theorem
(Exercise 4.22), all prime ideal belonging to 0 has a form r(0 : m). Thus D contains union of prime
ideals belonging to 0. Also, by the proof of Exercise 4.22, each r(0 : m) is intersection of some prime
ideals belonging to 0, thus contained in a prime ideal belonging to 0, which shows that D is equal to
union ot prime ideals belonging to 0.

Proposition 4.8∗. Let S be a multiplicatively closed subset of A, and let Q be a p-primary module of
M .

(a) If S ∩ p 6= ∅, then S−1Q = S−1M .

(b) If S ∩ p = ∅, then S−1Q is S−1p-primary and its contraction in M is Q.

Hence primary module of S−1M corresponds to primary modules of M .

Proof. For the first one, if s ∈ S ∩ p, then snM ⊆ Q for some n ∈ N. Hence, for any m/t ∈ S−1M ,
m/t = snm/snt ∈ S−1Q, hence S−1M = S−1Q.

For the second one, let x/s ∈ S−1A is zero divisor of S−1M/S−1Q. Then, there exists nonzero
m/t ∈ S−1M/S−1Q such that xm/st = 0. Thus xm/st ∈ S−1Q, there exists u ∈ S such that
uxm ∈ Q. Since m 6∈ Q, ux is zero divisor of M/Q, thus ux is nilpotent of M/Q since Q is primary.
Hence, m 7→ (ux)km = 0 for any m ∈M/Q. Hence,

xkS−1M = xkukS−1M ⊆ S−1Q.

This implies x is nilpotent in S−1M/S−1Q. Thus S−1Q is primary module.

Let x ∈ p = rM (Q). Then, xkM ⊆ Q for some k. Thus, for any s ∈ S, (x/s)kS−1M = xkS−1M =
S−1(xkM) ⊆ S−1Q. Hence, x/s ∈ rS−1MS

−1Q for any s ∈ S. This implies that S−1p ⊆ rS−1MS
−1Q.
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Conversely, if x/s ∈ rS−1MS
−1Q, then ∃k ∈ N such that (x/s)kS−1M ⊆ S−1Q, which implies that

(x/s)kS−1M = xkS−1M ⊆ S−1Q. Thus for any m ∈ M , xkm/1 ∈ S−1Q implies ∃t ∈ S such that
txkm ∈ Q. Then txk is zero divisor of M/Q, thus nilpotent, i.e., tnxknm ∈ Q for any m ∈ M , thus
tnxkn ∈ rM (Q), which implies txk ∈ rM (Q) = p by radical property. Since t 6∈ q by construction,
xk ∈ p, which implies x ∈ p. Thus, for any x/s ∈ rS−1MS

−1Q, x ∈ p. This implies that rS−1MS
−1Q ⊆

S−1p, thus they are equal. This shows that S−1Q is S−1p-primary.

Lastly, it suffices to show that every submodule of S−1M is extended module, i.e., S−1N for some
submodule N of M . Let N ′ be a submodule of S−1M . Then, let N = {m ∈ M : m/1 ∈ N ′}, i.e.,
contraction of N ′ along M → S−1M . Then, S−1N ⊇ N ′, since for any m/s ∈ N ′, sm/s = m/1 ∈ N ′,
thus m ∈ N , which implies m/s ∈ S−1N . Conversely, if x/s ∈ S−1N , then x ∈ N , thus x/1 ∈ S−1N ,
therefore (1/s) · (x/1) = x/s ∈ N ′. This shows that N ′ = S−1N .

Thus, extension of primary ideal is primary. Conversely, let S−1Q, a submodule of S−1M , be S−1p-
primary ideal. (We can say this since every prime ideal in S−1A is extended form.) Then, it suffices to
show that Q is p-primary ideal. From the map f : M → N and Q is primary ideal of N , then M/Qc is
isomorphic to the submodule of N/Q by map f , thus every zero divisor of M/Qc is also a zero divisor
of N/Q, thus nilpotent in N/Q, which implies nilpotent in M/Qc as a submodule of N/Q. To see it is
p-primary, the above argument exactly applicable in this situation, since it use only property of rM (Q)
and rS−1M (S−1Q).

Proposition 4.9∗. Let S be a multiplicatively closed subset of A and let N ⊆ M be a decomposable
module. Let N =

⋂m
i=1Qi be a minimal primary decomposition of N . Let pi = rM (Qi) and suppose

the Qi numbered so that S meets pm+1, · · · , pn but not p1, · · · , pm. Then,

S−1N =

m⋂
i=1

S−1Qi, S(N) =

m⋂
i=1

Qi.

and these are minimal primary decompositions.

Proof. First equality comes from Corollary 3.4 ii) with Proposition 4.8∗ above. (S−1Qi = S−1M
for any i ∈ {m + 1, · · · , n}. ) Since S−1Qi is S−1pi-primary by Proposition 4.8∗, it is primary
decomposition. Also, each S−1pi are distinct, and if ∃j ∈ [n] such that S−1Qj ⊇

⋂m
i 6=j S

−1Qi, then

Qj = f−1(S−1Qj) ⊇ f−1

 m⋂
i 6=j

S−1Qi

 =

m⋂
i=1

Qi

contradiction. Thus it is minimal primary decomposition.

For S(N) = f−1
(⋂m

i 6=j S
−1Qi

)
=
⋂m
i=1Qi, first of all it is primary decomposition with distinct prime.

Also, if Qj ⊇
⋂m
i 6=j Qi, then Qj contains

⋂n
i 6=j Qi, contradicting the assumption that

⋂n
i=1Qi is the

minimal primary decomposition. Thus,
⋂m
i=1Qi is minimal primary decomposition of S(N).

Theorem 4.10∗. Let N ⊆ M be a decomposable module, let N =
⋂n
i=1Qi be a minimal primary de-

composition of N , and let {pi1 , · · · , pim} be an isolated prime ideal of N . Then
⋂m
j=1Qij is independent

of the decomposition.

Proof. Let S = A \
⋃m
j=1 pij . Then, S doesn’t meet pij for any j = 1, · · · ,m. For any other prime

ideal pk, pk 6∈ {pi1 , · · · , pim} implies pk 6⊆
⋃m
j=1 pij by Proposition 1.11 i), thus S meets pk. This

implies S(N) =
⋂m
j=1Qij by Proposition 4.9∗ and it is independent to the choice of minimal primary

decomposition.

Corollary 4.11∗. The isolate primary components (i.e., the primary components Qi corresponding to
minimal prime ideal pi) are uniquely deteremined by N .

Proof. No associate prime contains the minimal prime ideal except itself, thus by letting S = A \⋃
j 6=i pj , we can get S(N) = Qi by Proposition 4.9∗. It is independent of choice of minimal primary

decomposition.
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5 Integral Dependence and Valuations

We mention some missing steps in the book.
First of all, in [3][p.60], it mentions finite type + integral = finite. We can reveal the details behind it.

Claim XXVIII. Let f : A→ B be a ring homomorphism. Then f is of finite if and only if f is finite type
and integral.

Proof. Suppose f is finite type and integral. Then, there exists b1, · · · , bn ∈ B such that every elements in
B is polynomial of bis with coefficients in A. Thus, B = A[b1, · · · , bn]. Corollary 5.2 says that B is a finitely
generated A-module, thus f is of finite.

Conversely, suppose f is of finite. Then, B is a finitely generated A-module, hence B has a generators
b1, · · · , bn such that every elements of B can be written as linear combination of those. Since linear combi-
nation is also a polynomial, so B is of finite type. To see B is integral over A, notes that A[bi] is contained
in a ring B which is finitely generated A-module for each i. Thus, bi is integral over f(A), for all i. Hence,
B = A[b1, · · · , bn] contained in a set of elements of B which are integral over B by Corollary 5.3. This
implies that B is integral over A.

Proposition 5.15. See book.

In the proof, “The coefficients of the minimal polyonmial of x over K are polynomials in the xi” comes
from Viete’s theorem.

Theorem 5.16. Going down theorem.

In the proof, it assumes that x = Bq1p2∩A. Then, s = yx−1 comes from the fact that 1) s as an elements
of the field of fraction of B, say K ′. Since A ⊆ B, K ′ ⊇ K, thus x, y, x−1 ∈ K ′, therefore s = yx−1, since
x = y/s implies s = y/x in K ′.

Also the book concludes that Bq1
p2 ∩A ⊆ p2 implies they are equal. The other direction comes from the

fact that Bq1
p2 = pec2 and aec ⊇ a by Proposition 1.17.

Lemma 5.19. B is a local ring and m = ker(g) is its maximal ideal.

In the proof, we can identify B as an elements of Bm. Thus, B = Bm implies that every elements 1/s ∈ B
for any s ∈ A− m, which implies that every elements outside of m is unit. Thus, by Proposition 1.6 B is a
local ring.

Lemma 5.20. See the textbook.

If m[x] = B[x], then 1 ∈ m[x], thus 1 =
∑k
j=1mjfj for some fj ∈ B[x], and any fj can be denoted as

polynomial of x over B, thus 1 is sum of polynomials over x whose coefficients are all from m.

Theorem 5.21. Let (B, g) be a maximal element of Σ. Then B is a valuation ring of the field K.

In the proof, notes that unit in 1B 6∈ m′ thus m′ ∩ B is a proper ideal of B containing m, thus by
maximality, m = m′ ∩B.

Also, the author claimed that k′ = k[x] which is a subring generated by k and x implies x. To see this,
we need a claim.

Claim XXIX. Let A be an integral domain that is finitely generated over a field K. If A is a field, then A
is algebraic over K.

Since k[x] is a field, by the claim x is algebraic over k.

Proof. To use induction, let A = k[z1]. If z1 is not algebraic, then it is transcendental, thus k[x] ∼= k[z1]
but k[x] is not a field, contradiction. Now suppose that A = k[z1, · · · , zn]. Then, since A is a field,
A = k[z1][z2, · · · , zn] = k(z1)[z2, · · · , zn]. Hence, by inductive hypothesis, z2, · · · , zn are algebraic over
k(z1). Thus, for any 2 ≤ i ≤ n, there exists fj ∈ k(z1)[x] such that fj(zj) = 0. Now we can rewrite

fj = Bjx
nj + lower order terms
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such that Bj ∈ k(z1). By multiplying their product of all denominators of coefficients, we can assume that
every coefficients of fj is in k[z1]. Let B =

∏n
j=2Bj and define S = k[z1, B]. Notes that Bj ∈ S for all

2 ≤ j ≤ n. Also,
A ⊇ S[z2, · · · , zn] ⊇ k[z1, · · · , zn] = A

implies S[z2, · · · , zn] = A. Thus, fj/Aj = xnj + lower terms ∈ S[x], and fj(zj)/Aj = 0 . Hence, zj is
algebraic over S, which implies that zj is algebraic over A since A = S.

And in the proof of Corollary 5.22, the author needs a claim that

Claim XXX. If A is a subring of a field K with homomorphism f : A → Ω, then there exists a valuation
ring B such that A ⊆ B ⊆ K and homomoprhism g : B → Ω such that g|A = f .

Proof. Let Σ′ = {(B′, f) ∈ Σ : (B′, f) ⊇ (A, f)}. Then, it is nonempty since (A, f) is in Σ′. Also, any chain
in this collection has a maximal one by unioning all elements in the chain. (By given condition they are glued
well.) Thus, by the Zorn’s lemma it has a maximal elements (B.g). Notes that this maximal elements is also
a maximal elemtns of Σ, otherwise ∃(B′, g′) such that (A, f) ≤ (B.g) ≤ (B′, g′), thus (B′, g′) ∈ Σ′, therefore
(B′, g′) = (B, g). Hence by applying theorem 5.21, we know that (B, g) is a valuation ring containing (A, f).
Also, this map g is extension of f .

Thus, using (5.21) in the proof of Proposition 5.23 is actually using the above claim.

Definition . Integral homomorphism f : A→ B is a ring homomorphism such that B is integral over f(A).

1. We can factor through f as
A

r−→ f(A)
s−→ B.

Then, r is surjection and s is injection. By Exercise 1.21 iv), r∗ is homeomorphism of Spec(f(A)) onto
V (ker(r)). Thus, it is closed map. So it suffices to show that s∗ is closed map.

Let b in B. Then, b ∩ f(A) is a contraction of b with respect to i. It suffices to show that s∗(V (b)) =
V (b∩ f(A)). Let p be a prime ideal of B containing b. Then, s∗(p) = p∩ f(C) contains b∩ f(A), thus
s∗(V (b)) ⊆ V (b ∩ f(A)).

Conversely, if p is a prime ideal in Spec(f(A)) containing b∩f(A), p is prime ideal over f(A)/b∩f(A).
Proposition 5.6 says that B/b is integral over f(A)/b ∩ f(A). Thus by Theorem 5.10 ∃q a prime
ideal such that q ∩ f(A)/b ∩ f(A) = p. If we let φ : f(A)/b ∩ f(A) → B/b is a canonical injective
homomorphism, then theorem 5.10 implies that φ∗ is surjective continuous map. Since Spec(B/b) ∼=
V (b) ⊆ Spec(B) and Spec(f(A)/b ∩ f(A)) ∼= V (b ∩ f(A)) ⊆ Spec(f(A)),

V (b) ∼= Spec(B/b)
φ∗−→ spec(f(A)/b ∩ f(A)) ∼= V (b ∩ f(A))

is surjective continuous map. By Exeercise 3.21 iii), this long map is a restriction of s∗ on V (b). Thus,
s∗(V (b)) = V (b ∩ f(A)).

2. Notes that f(A) is a subring of Ω. Thus, f(A) ∼= A/ ker(f), and ker(f) is a maximal ideal of A. Say
m = ker(f). Then, by Theorem 5.10 there exists a prime ideal m′ of B such that m′ ∩ A = m. Hence,
B/m′ is integral over f(A). Thus, if we find out an injective homomorphism g : B/m′ → Ω which is
extension of f : A/m → Ω, then g : B → B/m′ → Ω is an extension of f since for any a ∈ A ⊆ B,
g(a) = g(a+ m′) = f(a+ m) = f(a).

Thus just assume that A,B are integral domain. Let Σ = {(C, h) : A ⊆ C ⊆ B, h|A = f} be a set of
all pair of integral domains C and an extension of f over C. Define order (C, h) ≤ (C ′, h′) if C ⊆ C ′

an h′|C = h. Then, (A, f) ∈ Σ, and for any chain, the union of all rings in the chain and maps give
well-defined integral domain and maps into Ω. Thus, by Zorn’s lemma, there exists a maximal element
(C, h). If C 6= B, then ∃b ∈ B \ C. Since B is integral over A, b is integral over A, thus integral over
C. Hence, 0 =

∑n
i=1 cib

i for some ci ∈ C. Suppose that n is minimal among all possible polynomials
having c as its zero. Then, φ(x) =

∑n
i=1 h(ci)x

i ∈ Ω[x]. Also Ω[x]/(φ(x)) ∼= Ω(c) is a field from the
basic fact about Field extension. Since Ω is algebraically closed, Ω(c) = Ω. Hence,

ρ : C[x]
h−→ Ω[x]→ Ω[x]/(φ(x)) ∼= Ω
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is a homomorphism with a kernel (
∑n
i=1 cix

i), and it is extension of h. Thus induce an injection

C[x]/(

n∑
i=1

cix
i)→ Ω.

Since C[x]/(
∑n
i=1 cix

i) ∼= C[b] as a ring, (since b satisfies
∑n
i=1 cix

i) this induces an injection from
C[b] to Ω extending h. Since C[b] is strictly bigger than C, it contradicts maximality of (C, h). Hence
C = B.

3. Let b ⊗ c ∈ B′
⊗
A

C. Then, since B′ is integral over f(B),
∑n
j=1 bjb

j = 0 for some bj ∈ f(B). Hence,

(
∑n
j=1 bjb

j) ⊗ c = 0, which implies that (
∑n
j=1 bjb

j) ⊗ cn = 0 by acting cn−1 on 0. From this we can
get

(

n∑
j=1

bj ⊗ cn−j) · (b⊗ c)j = 0.

Thus, b⊗ c is integral over f ⊗ 1(B
⊗
A

C) since each coefficient is in the image. By definition of tensor

product, every elements in the tensor product is finite sum of basic elements of a form b ⊗ c, thus
B′
⊗
A

C is integral over B
⊗
A

C with respect to f ⊗ 1.

4. No. Suppose char k 6= 2, let B = k[x], A = k[x2 − 1], then B is integral over A since f(y) = y2 − 1 −
(x2 − 1) is a polynomial over A having x as its zero. Let n = (x − 1) be a maximal ideal of B. Now
1/(x+ 1) is an element in Bn, since x+ 1 6∈ n. If it is integral over Am, where m = n ∩ A = (x2 − 1),
then

n∑
j=1

(
aj
sj

)(x+ 1)−j = 0

for some aj/sj ∈ Am with an = 1. By multiplying (x+ 1) on each side of fraction we can assume that∑n
j=1 aj(x+ 1)n−j

sj(x+ 1)n
= 0

for different aj ’s. Since B is integral domain, antn +
∑n−1
j=1 ajtj(x+ 1)n−j =

∑n
j=1 ajtj(x+ 1)n−j = 0

in B where tj =
∏
i 6=j sj by multiplying (x + 1)n

∏n
j=1 sj . Since sj ∈ A \ m, tj ∈ A \ (x2 − 1), thus

(x+ 1) divides
∑n−1
j=1 ajtj(x+ 1)n−j . This implies that antn ∈ (x+ 1) ⊆ B. And since we assume that

an = 1, this implies tn ∈ (x+ 1). Also, since tn ∈ A, tn ∈ (x+ 1) ∩ A = (x2 − 1), contradiction since
A− (x2 − 1) is multiplicatively closed.

5. (a) Since x−1 ∈ B, then 0 =
∑n
j=1 ajx

−j with aj ∈ A, an = 1. Hence by multiplying xn−1, we get

x−1 +

n−1∑
j=1

ajx
n−1−j = 0

thus x−1 is linear combination of xi over A. Hence, it is in A.

(b) Let max(A) be a collection of all maximal ideals of A. Then, for any m ∈ max(A), Theorem 5.10
implies that ∃n ∈ Spec(B) such that n ∩ A = m. By Corollary 5.8, n is also a maximal ideal.
Conversely, if n ∈ max(B) is a maximal ideal of B, then n ∩ A 6= A since 1 is not in n, thus it is
proper subideal of A (since n ∩ A = nc) therefore it is maximal by Corollary 5.8. Thus, we can
conclude that

Claim XXXI. If A ⊆ B be rings and B is integral over A, then max(B) and max(A) has 1-1
correspondence given by extension and contraction.
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Hence, if we denote RA,RB be the Jacobson radical of A and B respectively, then,

RA =
⋂

m∈max(A)

m =
⋂

n∈max(B)

n ∩A = A ∩

 ⋂
n∈max(B)

n

 = A ∩RB .

6. Let (b1, · · · , bn) ∈
∏n
i=1Bi. Then, for each bi, there exists a monic polynomial

fi(x) = xni +

ni−1∑
j=1

aijx
j = 0.

having bi as zero. Thus, let f(x) =
∏n
i=1 fi(x). Then, f(x) is monic and has b1, · · · , bn as its solutions.

Now we can rewrite f =
∑m
j=1 ajx

j with am = 1. Now, notes that multiplication in
∏n
i=1Bi is

coordinatewise multiplication (thinking aj as scalar.) Thus, we can replace x of f(x) with (b1, · · · , bn).
Then,

f(b1, · · · , bn) = (f(b1), · · · , f(bn)) = (0, · · · , 0)

and (0, · · · , 0) is zero in
∏n
i=1Bi. Thus, (b1, · · · , bn) is integral over A, and was arbitrarily chosen,

thus
∏n
i=1Bi is an integral A-algebra.

7. Let b ∈ B be an element integral over A. Then, it has a monic polynomial f(x) = xn +
∑n−1
j=1 ajx

j

such that f(b) = 0 and aj ∈ A. Since f(b) = 0 and a0 ∈ A, bn + an−1b
n−1 · · ·+ a1b ∈ A. Since B \ A

is multiplicatively closed, either b ∈ A or bn−1 + an−1b
n−2 + · · · + a1 ∈ A. If b ∈ A, done, otherwise,

since a1 ∈ A thus b(bn−2 + · · · + a2) ∈ A thus either b or bn−2 + · · · + a2 ∈ A. Iterating this process,
we can arrive that b+ an−1 ∈ A, thus b ∈ A.

8. (a) Let KB be a field of fraction of B, let Ω be an algebraic closure of KB . Then, f, g ∈ KB [x] split
into linear factors on Ω[x], say f =

∏
i(x− ξi), g =

∏
j(x− ηj). Then, each ξi and ηj are integral

over C since they have a monic polynomial fg ∈ C[x]. Thus, by Viete’s theorem, each coefficients
of f and g is integral over C. Also, by the transitivity of integral dependence, all coefficients of f
and g are integral over A. Since these coefficients are in B, thus they lie in C since C is integral
closure of A. Hence, f, g ∈ C[x].

(b) For the second claim, all we need to do is to show that there exists an extension ring D containing
B containing all ξi and ηj so that f, g split into linear factors in D[x]. Then by applying the same
argument, we are done.

To see this, it suffices to show below claim

Claim XXXII. For any ring B and f ∈ B[x] monic, there exists a ring D such that D ⊇ B and
f can be factorized as a product of degree one monic polynomial.

Proof. Use induction. If deg(f) = 1, done, since every solution is in B. If deg(f) > 1, then
let D1 = B[x]/(f(x)) where (f(x)) is a principal ideal of B[x] generated by f(x). Then for
any h(x) ∈ B[x], let h(x) be a coset in D1 containing h(x). Then we can embed B onto D1

by b 7→ b. Thus, we can identify B as a subring of D1. Also, in D1, x is a root of f . Thus,
D1[t] → D1[t]/(t − x) is surjective ring homomorphism whose kernel contains (f(t)), since f(t)
mapped into f(t) = f(x) = f(x) = 0. Since kernel itself is (t − x), thus there exists f1(t) such
that f1(t)(t − x) = f(t). Hence, deg(f1) < deg(f), by inductive hypothesis, there exists D, an
extension of D1 such that f1(x) splits into linear factors in D[x]. Hence, f as a polynomial in
D[x], f splits into linear factors in D[x] and D contains B, done.

9. If f ∈ B[x] is integral over A[x], then

fm + g1f
m−1 + · · ·+ gm = 0

for some gi ∈ A[x],m ∈ N. Let r be an integer larger than m and the degrees of gi for all i. Let
f1 = f − xr. Then,

(f1 + xr)m + g1(f1 + xr)m−1 + · · ·+ gm = 0.
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Then by expanding all products, we can say that

fm1 + h1f
m−1
1 + · · ·+ hm = 0

where hm = (xr)m + g1(xr)m−1 + · · · gm ∈ A[x]. Thus, fm1 + h1f
m−1
1 + · · · + hm−1f1 = f1(fm−1

1 +
h1f

m−2
1 + · · ·+hm−1) ∈ A[x]. By Exercise 5.8, this implies that f1 ∈ C[x]. Hence, f = f1 +xr ∈ C[x].

10. (a) (a)→ (b): As we did in the proof of Exercise 5.1, we can factor out the map f∗ as

A
r−→ f(A)

s−→ B =⇒ Spec(B)
s∗−→ Spec(f(A))

r∗−→ Spec(A).

Then, f∗ closed if and only if of s∗ is closed, since r∗ is already closed as a homeomorphism
(Exercise 1.21 iv)) of Spec(f(A)) ∼= V (ker(f)). Thus, we can just assume that A ⊆ B with
f = i : A→ B be an inclusion map.

To see f has going-up property, it suffices to show that if there exists chain of prime ideals
p1 ⊆ p2 in A and q1 is a prime ideal of B such that p1 = q1 ∩ A, then ∃q2 ∈ Spec(B) such that
q2 ∩ A = p2. Notes that in this case we do not assume that B is integral over A. Instead, we
assume that f : A → B an inclusion induces a closed mapping f∗ : Spec(B) → Spec(A). Also,
this is equivalent to saying that f∗|V (q1) : V (q1) → V (p1) is surjective map. (Notes that the
contraction of any prime ideal containing q1 contains p1, thus domain and codomain of this map
is well-defined.)

Now, since V (q1) is closed, f∗(V (q1)) is closed set containing f∗(q1) = q1 ∩ A = p1. Hence,
f∗(V (q1)) ⊇ {p1}, a closure of {p1}. Since {p1} = V (p) by Exercise 1.18 ii), f∗(V (q1)) ⊇ V (p).
Thus, the map f∗ is surjective.

(b) ⇐⇒ (c): Notes that f∗|V (q1) : V (q1) → V (p1) is identified by the map f
∗

: Spec(B/q1) →
Spec(A/p1) comes from f : A/p→ B/q, by Exercise 3.21, iii). Thus, if (c) holds, then by letting

p = p1 and q = q1 in (c), f
∗

: Spec(B/q1)→ Spec(A/p1) is surjective, thus by Exercise 3.21, iii),
f∗|V (q1) : V (q1)→ V (p1) is surjective, hence (a) holds, which implies (b).

Conversely, if (b) holds, then f∗|V (q1) : V (q1) → V (p1) is surjective as we’ve seen above for

arbitrary choice of q1. Thus, by Exercise 3.21 iii), f
∗

: Spec(B/q1)→ Spec(A/p1) is surjective for
any q1 in Spec(B). This implies (c).

(b) As we did in the proof of Exercise 5.1, we can factor out the map f∗ as

A
r−→ f(A)

s−→ B =⇒ Spec(B)
s∗−→ Spec(f(A))

r∗−→ Spec(A).

Then, f∗ open if and only if of s∗ is open, since r∗ is already open as a homeomorphism (Exercise
1.21 iv)) of Spec(f(A)) ∼= V (ker(f)). Thus, we can just assume that A ⊆ B with f = i : A→ B
be an inclusion map.

We claim that

Claim XXXIII. If p′ ⊆ p ∈ U for some Zariski open set U of Spec(A), then p′ ∈ U .

Proof. U c is closed set, thus if p′ ∈ C then p′ ⊆ C, thus p′ = V (p′) ⊆ C by Exercise 1.18 ii).
Hence, p ∈ C, contradiction.

Now we will show (a′) =⇒ (c′) and (b′) ⇐⇒ (c′). This is equivalent to saying that (a′) =⇒
(b′) ⇐⇒ (c′).

(a′)→ (c′): By Exercise 3.23, from the construction of presheaf, we know that lim−→q∈U B(U) ∼= Bq,

where U is an open sets in the Zariski topology of Spec(B) containing q. If we define Sq = B − p
as a poset such that f ≤ g iff Xg ⊆ Xf , then we can redefine presheaf A from topology of Spec(B)
to ring as presheaf from Sq = B − q to ring from the map sending f to Xf . Thus, we can rewrite
Bq as

lim−→
t∈Sq

Bt ∼= Bq.
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Hence
f∗(Spec(Bq) =︸︷︷︸

Exercise 3.26

⋂
t∈Sq

f∗(Spec(Bt)) =︸︷︷︸
Exercise 3.21 i)

⋂
t∈Sq

f∗(Xf ).

Since f∗ is open map and Xf is an open neighborhoods of q for any f , f∗(Xf ) is an open
neighborhood of p = f∗(q). Hence, by Exercise 3.22,f∗(Xf ) contains the canonical image of
Spec(Ap) in Spec(A) for all f . Thus f∗(Spec(Bq) contains Spec(Ap). Conversely, for any q′ ∈
Spec(Bq) ⊆ Spec(B), q′ ⊆ q thus f∗(q′) ⊆ f∗(q) = p, thus f∗(q′) ∈ Spec(Ap as the canonical
image in Spec(A), by Proposition 3.11 iv). Hence, f∗(Spec(Bq) ⊆ Spec(Ap). Thus, f∗|Spec(Bq

is
surjective map.

(b′) ⇐⇒ (c′): Suppose (c′) holds. Let p1 = q1 ∩ A for some prime ideal q1 in B. Then, f∗ :
Spec(Bq1

)→ Spec(Ap1
is surjective. Thus, for any p2 ⊆ p1, p2 ∈ Spec(Ap1

, hence ∃q2 ∈ Spec(Bq1
)

such that q2 ∩ A = f∗(q2) = p2. Conversely, suppose (b’) holds. Then, for any prime ideal q
of B, with p = qc, think a map f∗ : Spec(Bq) → Spec(Ap). First of all, it is well-defined since
for any q′ ∈ Spec(Bq), q′ ⊆ q, thus f∗(q′) ⊆ f∗(q) = p, hence f∗(q′) ∈ Spec(Ap). Also, for any
p′ ⊆ p, p′ ∈ Spec(Ap). Going-down property implies that ∃q′ ⊆ q (which implies q′ ∈ Spec(Bq))
such that q′ ∩ A = p′ ∈ Spec(Bq), hence f∗(q′) = p′. Thus, f∗ is surjective map. Since q was
arbitrarily chosen, we can conclude that (c’) holds.

11. By Exercise 3.18, (c’) holds. Thus by Exercise 5.10 ii), (b’) holds.

12. AG is a subring of A, since 1 ∈ AG (every automorphism preserves 1) and if a, b ∈ AG, then ab, a− b ∈
AG by homomorphic property. Thus, AG is closed under subtraction and multiplication. (This is
criteria for subring.)

If x ∈ A, notes that f(t) =
∏
σ∈G(t − σ(x)) has x as a solution since G has identity morphism. Now

all coefficients of f(t) are in AG, since it is symmetric polynomial of σ(x) for all σ ∈ G, thus it is in
AG. Also, f is monic. Hence, x is integral over AG. Since x is arbitrary, done.

For the second statement, define action of σ ∈ G on S−1A as σ(a/s) = σ(a)/σ(s). It is well-defined
since if a/s = b/t, then there exists q ∈ S such that qta = qbs. This implies σ(q)σ(t)σ(s) = σ(qta) =
σ(qbs) = σ(q)σ(b)σ(s). Hence σ(a)/σ(s) = σ(b)/σ(t). Now let (S−1A)G be a subring of G-invariants.
To see it is isomorphic to (SG)−1AG, first of all, we can see (SG)−1AG as an embedded subring of S−1A.
Also, notes that for any a/s ∈ (SG)−1AG, σ(a/s) = σ(a)/σ(s) = a/s, thus (SG)−1AG ⊆ (S−1A)G.
Lastly, if a/s ∈ (S−1A)G, then σ(a/s) = a/s. Now, let s′ :=

∏
σ∈G−{1G} σ(s). Then, ss′ ∈ AG. Hence,

a/s · ss′/1 = as′/1 ∈ (S−1A)G. Now for each σ ∈ G,

σ(as′/1) = as′/1

Hence ∃tσ ∈ S such that
tσσ(as′) = tσas

′.

Now let t =
∏
γ∈G(γ(

∏
σ∈G tσ)). This is in SG since applying any automorphism on t is just permu-

tation of product. Since tσ contained in t as a divisor,

σ(tas′) = tσ(as′) = tas′.

Hence, tas′ ∈ AG. Thus,
a/s = ts′a/ts′s ∈ (SG)−1AG,

done,

13. Let q, q′ ∈ P . Then, take x ∈ q, t =
∏
σ∈G σ

−1(x). Then, t ∈ AG ∩ q = p ⊆ q′ since t is product of x
with some others. Since q′ is prime, at least one y = σ−1(x) should lie in q′. Hence, σ(y) = x, which
implies that x ∈ σ(q′). Since x was chosen arbitrarily, q ⊆

⋃
σ∈G σ(q′). Since σ is autormophism, σ(q′)

is still prime ideals for any σ ∈ G, thus by Proposition 1.11 i), q ⊆ γ(q′) for some γ. Since

γ(q′) ∩AG = γ(q′) ∩ γ(AG) =︸︷︷︸
since σ is automorphism

γ(q ∩AG) = γ(p) = p,
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Corollary 5.9 says that q = γ(q′). Thus, first of all, from the arbitrariness of q and q′ G sends elements
in P to another elements in P . And, definitely, 1G preserves q, and satisfies group action axioms. (For
the composition, notes that acting on P is just action on A, and in this case composition axiom holds.)
Finally, G transitively acts on P , i.e., for any two q, q′ ∈ P , there exists γ ∈ G such that γ(q) = γ(p′),
by above result. To see P is finite, notes that just action of G on P has only one orbit; P itself. By
the orbit-stabilizer theorem,

|P | = |G|/|Stab(q)| ≤ |G| <∞.

14. For any b ∈ B, b is integral over A, i.e.,
n∑
j=1

ajb
j = 0

for some aj ∈ A with an = 1. Choose σ ∈ G. Then,

0 = σ(0) =

n∑
j=1

ajσ(b)j

since σ fixes K ⊇ A. Hence, σ(b) is integral over AG, thus σ(b) ∈ B. This implies σ(B) ⊆ B.

Conversely, by replacing σ to σ−1 we can get σ−1(B) ⊆ B. Hence, B = σ(σ−1(B)) ⊆ σ(B). (This
comes from the fact that every field homomorphism is injective.) Since σ was arbitrarily chosen,
σ(B) = B for all σ ∈ G.

To see A = BG, notes that
BG = B ∩ LG = B ∩K = A

since BG ⊆ LG and K is fixed field of G in Galois theory, and B is integral closure of A in K.

15. As hint suggested, we can assume that L is separable over K or purely inseparable over K, since every
algebraic extension can be decomposed with a separable extension L0 over K and purely inseparable
extension L over L0 [2][Theorem 6.6 in V. §6.]. Thus, if we show this Exercise in two cases, then
Spec(B)→ Spec(B0)→ Spec(A) has finite fiber, where B0 is integral closure of A on L0.

So suppose that L is separable over K. Then, using[2][Corollary 1.6 in VI. §1.], there exists L′ which is
finite Galois over K, i.e., finite normal separable extension over K containing L. Let C be an integral
closure of A in L′. Then, C contains B. and by transitivity of integral dependence, C is integral over
B. Now, let P = {q ∈ Spec(B) : q ∩ A = p}. Then, by Theorem 5.10, for each q ∈ P , ∃q′ ∈ Spec(C)
such that q′∩B = q. Thus, if we let P ′ = {q′ ∈ Spec(C) : q′∩B ∈ P}, then for any q′ ∈ P ′, q′∩A = p.
However, by letting G = Gal(L′/K), which is finite group, we know that A = CG by Exercise 5.14.
Thus, by Exercise 5.13, P ′ is finite. Since |P ′| ≥ |P | by Theorem 5.10, P is finite. Done.

Suppose L be a purely inseparable over K. By [2][p.249, P. Ins. 3], for any x ∈ L, xp
m ∈ K

for some m ∈ N where p = charK. If qc = q ∩ A = p, then for any x ∈ qc, xp
m ∈ K. Thus,

xp
m ∈ q ∩K ⊆ B ∩K = A, since A is integrally closed (in K.) Thus, xp

m ∈ q ∩ A = p. Thus, if we
let q′ := {x ∈ B : xp

m ∈ p for some m ∈ N}, then q ⊆ q′. Conversely, if x ∈ q′, then, xp
m ∈ p ⊆ q for

some m ∈ N, and since q is prime, x ∈ q. Thus, q = q′. Now to see a bijection Spec(B) → Spec(A),
for any p ∈ Spec(A), define q := {x ∈ B : xp

m ∈ p for some m ∈ N}. Then, for any x, y ∈ q, xp
m ∈ p,

yp
n ∈ p for some m,n ∈ N, thus

(x+ y)p
max(m,n)

= (xp
max(m,n)

+ yp
max(m,n)

) ∈ p.

Hence q is closed under addition. Also, for any b ∈ B, it has n ∈ N such that bp
n ∈ K ∩B = A, thus

(bx)p
max(m,n)

= bp
max(m,n)

xp
max(m,n)

∈ p

thus q is ideal. To see it is prime, if xy ∈ q, with xp
n

, yp
m ∈ K ∩ A = B with (xy)p

l ∈ p, then take
q = mnl. Then

(xy)p
q

= xp
q

yp
q

∈ p with xp
q

, yp
q

∈ A.
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Since p is prime, either xp
q

or yp
q ∈ p, thus either x or y in q by construction.

Thus, for any p ∈ Spec(A), there exists q ∈ Spec(B) such that q ∩ A = p. Hence, f∗ : Spec(B) →
Spec(A) is surjective. Also, it is injective since if q ∩A = q′ ∩A = p for some q, q′ ∈ Spec(B), then by
above argument, both q and q′ contains a prime ideal q′′ = {x ∈ B : xp

n ∈ p for some n ∈ N}, then by
Corollary 5.9, q′ = q′′ = q. This shows that f∗ is injective. Thus, f∗ is bijectively continuous.

Now we can claim that

Claim XXXIV. Let A be an integrally closed domain, K its field of fraction and L a finite purely
inseparable extension field of K. Let B be the integral closure of A in L. Then, f∗ : Spec(B)→ Spec(A)
induced by the canonical inclusion f : A→ B is homeomorphism.

Proof. By above argument, we know that f∗ is bijectively continuous map. By Exercise 5.1, f∗ is
closed map. Thus from the topological fact that bijectively continuous map is homeomorphism if and
only if it is closed map, f∗ is homeomorphism.

Thus, any fiber is singleton, i.e., finite.

16. This problem want us to show that

Lemma Noether’s normalization lemma. Let k be a field and let A 6= 0 be a finitely generated
k-algebra. Then there exist elements y1, · · · , yr ∈ A which are algebraically independent over k and
such that A is integral over k[y1, · · · , yr].

To prove this, we need to distinguish a case when k is infinite and k is finite.

(a) Suppose k is infinite. By definition of finitely generated algebra, there exists a surjective k-
module homomorphism (i.e., linear transformation) φ : k[x1, · · · , xn] → A which is onto. (Thus,
just identify φ(xi) with xi for economy of notation.) We can renumber the xi so that x1, · · · , xr
are algebraically independent over k and each of xr+1, · · · , xn is algebraic over k[x1, · · · , xr]. Now
proceed induction. If n = r, done. Suppose n > r and the result is true for n − 1 generators.
Since xn is algebraic over k[x1, · · · , xn], there exists a polynomial f 6= 0 in n variables such
that f(x1, · · · , xn) = 0. Let F be the homogeneous part of highest degree in f , i.e, if we let

f =
∑M
j=0 fj(x1, · · · , xn) where fj is homogeneous of degree j, then F := fM . Since k is infinite,

there exists λ1, · · · , λn−1 ∈ k such that F (λ1, · · · , λn−1, 1) 6= 0. (To see this, notes that F =∑M
j=0 gjx

j
n for some gj ∈ k[x1, · · · , xn−1] which is homogeneous of degree M − j respectively.

Thus, G(x1, · · · , xn−1) := F (x1, · · · , xn−1, 1) =
∑M
j=0 gj is nonzero if F is nonzero. Therefore,

Z(G) 6= kn−1, since only polynomial having kn−1 as a solution set is zero polynomial, by below
Claim XXXV. Thus we can find such lambdas.) Put x′i = xi − λixn for i ∈ [n − 1]. Then, if we
let F =

∑
α∈Nn,|α|=m cαx

α where xα =
∏n
i=1 x

αi
i ,

F =
∑

α∈Nn,|α|=m

cαx
α =

∑
α∈Nn,|α|=m

cα

n∏
i=1

xαii =
∑

α∈Nn,|α|=m

cαx
αn
n

n−1∏
i=1

(x′i + λixn)αi .

Hence, coefficients of xdegF
n in F is F (λ1, · · · , λn−1, 1) 6= 0. (To see this, notes that λixn term

has a power αi, so that it gives a form
∏n
i=1 x

αi
i in F changed with xi = λi.) Hence, by letting

C = F (λ1, · · · , λn−1, 1) and dividing f(x′1 + λ1, · · · , x′n−1 + λn−1, xn) by C, we can get a monic
polynomial with respect to xn. (Since F is the highest degree part of f thus dividing by C gives
monic term xdegF

n , which is the highest term in f(x′1 + λ1, · · · , x′n−1 + λn−1, xn). Thus, f(x′1 +
λ1, · · · , x′n−1+λn−1, xn) = 0 (since we set xi = x′i−λixn), and we can think f(x′1+λ1, · · · , x′n−1+
λn−1, xn) as an element in k[x′1, · · · , x′n−1][xn]. Hence, xn is integral over A′ := k[x′1, · · · , x′n−1].
This implies that A is integral over A′[xn], therefore by transitivity of integral dependence, A is
integral over A′. Hence by the inductive hypothesis, A′ has an elements y1, · · · , yr ∈ A′ which
are algebraically independent over k and such that A′ is integral over k[y1, · · · , yr]. Since A is
integral over A′, hence by the transitivity of integral dependence, A is integral over k[y1, · · · , yr].
Done.
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Claim XXXV. A polynomial function g : kn → k is zero if and only if g = 0 ∈ k[x1, · · · , xn]

Proof. If n = 1, done. Suppose it holds for n−1 and g : kn → k be a polynomial having kernel kn.
Then, g ∈ k[x1, · · · , xn−1][xn], thus g =

∑m
j=1 gjx

j
n for some polynomials gj ∈ k[x1, · · · , xn−1].

Then for any a ∈ k, g(x1, · · · , xn−1, 0) = g0 is polynomial in k[x1, · · · , xn−1] sending all kn−1 to
0, thus g0 = 0 by inductive hypothesis. Now, think g/xn, which is still polynomial and whose con-
stant part is g1. Then, for any a 6= 0, g(x1, · · · , xn−1, a)/a = 0/a = 0 implies g1(x1, · · · , xn−1) = 0
for all kn−1. Thus g1 = 0 by inductive hypothesis. By doing this argument iteratively, we can
get g = gmx

m
n , thus 0 = (g/xmn )(x1, · · · , xn−1, a) = gm(x1, · · ·xn−1) for any kn−1 implies gm = 0,

hence g = 0.

(b) We refer proof of [5]. Suppose k is finite. Then, by definition of finitely generated algebra, there
exists a surjective k-module homomorphism (i.e., linear transformation) φ : k[x1, · · · , xn] → A
which is onto. (Thus, just identify φ(xi) with xi for economy of notation.) We can renumber the
xi so that x1, · · · , xr are algebraically independent over k and each of xr+1, · · · , xn is algebraic
over k[x1, · · · , xr]. Now proceed induction. If n = r, done. Suppose n > r and the result is true
for n− 1 generators. Since xn is algebraic over k[x1, · · · , xn], there exists a polynomial f 6= 0 in
n variables such that f(x1, · · · , xn) = 0.

Let d > deg f , and x′i = xi − xd
i

n for i = 1, · · · , n − 1. Then, by letting g(x′1, · · · , x′n−1, xn) :=

f(x′1 + xd
1

n , · · · , x′n−1 + xd
n−1

n , xn) = 0, Then if f =
∑
α∈Nn cαx

α, then each monomial in g has a

form cα
∏n−1
i=1 (x′i + xd

i

n )αi . Thus, its pure power term of xn has an exponential

αn

n−1∑
i=1

αid
i.

Since d chosen larger than any αi, each α has distinct pure power term of xn. Let β be the
exponent such that whose pure power term of xn is the greatest. Then, dividing g by cβ , we can
get a monic polynomial of xn over A′ = k[x′1, · · · , x′n−1]. Thus, xn is integral oveer A′, and by
inductive hypothesis, A′ is integral over k[y1, · · · , yr] for some algebraically independent elements
yi, hence A′[xn] is integral over k[y1, · · · , yr], and since A′[xn] = A, done.

Notes that the second statement of this lemma only holds for when k is infinite, or, at least, I don’t
know whether it holds when k is finite.

For the second statement, notes that in case of r = n−1, then yi = x′i is chosen as a linear combination.
By applying this more and more, we can see that all y1, · · · , yr are chosen to be linear combination of
x1, · · · , xn.

To find out linear projection π : kn → kr such that

X
ι−→ kn

π−→ L ∼= kr

is surjective map, we can use Exercise 1.28. It suffices to show that there exists a k-algebra homomor-
phism π∗ : P (kr) = k[y1, · · · , yr]→ P (kn) = k[x1, · · · , xn] such that

k[x1, · · · , xn]/I(X)
ιι

#

←−− k[x1, · · · , xn]
π∗←− k[y1, · · · , yr]

and its corresponding regular map X → kn → L is surjective.

Now, from the Noether’s normalization lemma, we have t1, · · · , tr be algebraically independent elements
in A, and an inclusion map φ∗ : k[y1, · · · , yr]→ A by yi 7→ ti. Moreover, as we observed above, these
ti is linear combination of xis in A, i.e.,

ti =

n∑
j=1

aijxj .
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Thus, we can factor through this map φ∗ by π∗ and ι∗ by letting

π∗ : k[y1, · · · , yr]→ k[x1, · · · , xn] by yi 7→
n∑
j=1

aijxj for some aij ∈ k.

Then, since ι∗ is just canonical map for quotient ring, ι∗ ◦π∗ sends yi to
∑n
j=1 aijxj =

∑n
j=1 aijxj = ti.

Thus, φ∗ = ι∗ ◦ π∗.
Now we can derive π which induces π∗ by letting

π : kn → L by (v1, · · · , vn) 7→ (

n∑
j=1

a1jvj , · · · ,
n∑
j=1

arjvj).

To check that π∗ = (·) ◦ π, for any polynomial g(y1, · · · , yr),

g ◦ π(t1, · · · , tn) = g(

n∑
j=1

a1jtj , · · · ,
n∑
j=1

arjtj) = π∗(g).

Thus, we can deduce φ by φ = π ◦ ι. Now, we need to show that this φ is surjective.

To see φ is surjective, notes that φ∗ is injection; if g, g′ ∈ k[y1, · · · , yn] has a property that φ∗(g) =
φ∗(g′), then

g(t1, · · · , tn) = g′(t1, · · · , tn).

If g 6= g′, then this induces a nonzero polynomial whose solution is tis, which contradicts the assumption
of algebraic independence of tis. Hence g = g′ in k[y1, · · · , yr].
Now fix v ∈ L. Then, {v} is a variety (defined by zero set of fv(~y) := ~y − v) , thus canonical inclusion
ρv induces a map ρ∗v : P (L) ∼= k[y1, · · · , yr] → P ({v}) ∼= k by sending g to its evaluation at v, i.e.,
g(v). (This is because k[y1, · · · , yn]/(y1−v1, · · · , yr−vr) is a field and its canonical map is evaluation.)
From the injection φ∗, we can think k[y1, · · · , yr] is a subring of A (as k[t1, · · · , tr]) such that A is
integral over k[y1, · · · , yr]. Then define

ρ∗,
′

v : k[t1, · · · , tr] ⊆ A
(φ∗)−1

−−−−→ k[y1, · · · , yr]
ρ∗v−→ k.

Since k is algebraically closed, ρ∗,
′

v extends to a homomorphism
˜
ρ∗,
′

v : A → k by Exercise 5.2. Hence
by Exercise 1.28, 1-1 correspondence gives a function ρ̃v : {v} → X. From

ρ∗,
′

v = ρ∗v ◦ (φ∗)−1,

ρ∗,
′

v ◦ φ∗ = ρ∗v =⇒ ˜
ρ∗,
′

v ◦ φ∗ = ρ∗v.

Hence,
φ ◦ ρ̃v = ρv.

This means that for any v ∈ L, the canonical injection {v} → L factor through X, i.e., {v} → L is
equal to {v} → X → L. Now to see φ is surjective, pick v ∈ L. Then, by this factor through map,
ρ̃v(v) ∈ X such that φ(ρ̃v(v)) = v. Hence, φ is onto map.

17. To see that X is not empty, let A = k[t1, · · · , tn]/I(X) be the coordinate ring of X. Then, A 6= 0, hence
by Exercise 5.16 there exists a linear subspace L of dimension greater than 0 in kn and a mapping of
X onto L. Hence X 6= ∅. The author call it weak form of Nullstellensatz.

For the second statement, let m be a maximal ideal. Then, A = k[t1, · · · , tn]/m is not only field, but also
finitely generated k-algebra. Thus, by Noether normalization lemma, A has algebraically independent
elements y1, · · · , yr such that A is integral over a subalgebra k[y1, · · · , yr]. However, since A is field,
thus if r > 1, then any two elements are algebraically dependent. Hence, just pick f ∈ k[t1, · · · , tn]
such that f = 1, and let y1 := f. Then, the lemma says that A is integral over k[f ] = k. Also notes that
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A is a field containing k. But since k is algebraically closed, any algebraic extension of k is contained
in itself, thus A is also contained in k. This implies k = A. Thus, we have a canonical projection map
π : k[t1, · · · , tn]→ A ∼= k. Then, let ai = π(ti). Then, (t1 − a1, · · · , tn − an) ⊆ kerπ = m. If we show
(t1 − a1, · · · , tn − an) is maximal, then done.

Claim XXXVI. For any field k, an ideal of form (t1 − a1, · · · , tn − an) in k[t1, · · · , tn] is maximal.

Proof. Let φ : k[t1, · · · , tn] by ti 7→ ti + ai. Then, φ is well-defined endomorphism since it sends
1 to 1 and additivity and multiplicativity holds by construction. Also, it is automorphism since
φ(xα) = xα + some other terms when α 6= 0 ∈ Nn. Thus, (t1− a1, · · · , tn− an) is maximal if and only
if φ((t1−a1, · · · , tn−an)) = (t1, · · · , tn) is maximal. But it is maximal since by a map k[t1, · · · , tn]→ k
sending f 7→ f(0, · · · , 0), its kernel contains (x1, · · · , xn) and if f ∈ ker, then f has zero constant, thus
f = 0 or f consists of degree at least 1 monomials, which are elements in (x1, · · · , xn).

18. This is called Zariski’s lemma.

Let x1, · · · , xn generate B as a k-algebra. If n = 1, then x1 has an inverse in B, thus x−1
1 can be

denoted as a polynomial of x1, i.e., x−1
1 =

∑m
j=1 cjx

j
1. Thus,

(∑m
j=1 cjx

j+1
1

)
− 1 = 0. Hence, xj is a

solution of a polynomial in A[x], thus it is algebraic over A.

So assume n > 1. Let A = k[x1] and K = k(x1) be the field of fraction of A. By the inductive
hypothesis, B can be regarded as a finitely generated K-algebra with n−1 case, so B is a finite algebraic
extension of K. Hence each of x2, · · · , xn satisfies a monic polynomial equation with coefficients in
K, i.e., coefficients of the form a/b where a, b ∈ A. If f is the product of denominators of all these
coefficients, then each of x2, · · · , xm is integral over Af . Hence B is integral over Af since any element
in B is generated by x1, x2, · · · , xn. Since K ⊆ B, K is also integral over Af .

Now suppose that x1 is transcendental over k. Then, A is integrally closed since A is UFD and below
claim.

Claim XXXVII. If A is UFD, then it is integrally closed, i.e., its integral closure in its field of
fraction is itself.

Proof. Any elements in the field of fraction of A can be denoted as a/b where there is no irreducibles
of A dividing both a and b simultaneously. Thus, if a/b are integral over A, then by multiplying bn we
can get kind of equation

an + c1a
n−1b+ · · ·+ cnb

n = 0.

Thus, an = −(c1a
n−1b+ · · ·+ cnb

n) is divisible by b, hence an is divisible by b. Since no irreducible of
A divides both a and b, this implies that b is unit in A. Hence, a/b = ab−1 ∈ A.

Hence, Af is integrally closed by Proposition 5.12, therefore Af = Kf
∼= K since K is integral over A.

However, it is not possible by below lemma.

Lemma N. o polynomial ring k[x] has an element f ∈ k[x] such that k[x]f is a nontrivial field.

Proof. If it has such f . Then, f 6∈ k, since a/fm ∈ k[x]f is equal to af−m/1, thus k[x]f ∼= k[x]. Thus,
deg f > 0, which implies 1−f 6= 0. Since k[x]f is a field, (1−f)−1 is in k[x]f , hence (1−f)−1 = g/fm

for some m ∈ N. This implies that fm = (1− f)g in k[x] Then, in a ring k[x]/(1− f),

1 ≡ f ≡ fm ≡ (1− f)g ≡ 0 modulo (1− f)

Thus, k[x]f/(1 − f) ∼= 0, which implies that 1 − f is unit in k[x]. However, since deg(1 − f) > 0, its
leading coefficient should be nilpotent by Exercise 1.2 i). However k contains no nilpotent other than
0, contradiction.

Thus, x1 is algebraic over k. Hence A = k[x1] is integral over k, thus K and B are integral over k by
transitivity of integral dependence. Since k is field, it means that K and B are finite extension of k.
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19. Given k be algebraically closed field, let m be a maximal ideal in k[t1, · · · , tn]. Let B = k[t1, · · · , tn]/m.
Then, B is both a finitely generated k-algebra and a field. By Exercise 5.18, B is a finite algebraic
extension of k. Since k is algebraically closed, B ∼= k. Thus, let ai = ti. Then, ti− ai ∈ m for all i, this
implies m contains (t1−a1, · · · , tn−an). By Claim XXXVI, it is maximal, thus m = (t1−a1, · · · , tn−an).
Hence, every maximal ideal in the given ring is of the form (t1 − a1, · · · , tn − an).

20. Before starting this, we observe a very basic facts in localization.

Claim XXXVIII. If B is a finite (or finitely generated, resp.) A-algebra, and S is a multiplicative
subset of A, then S−1B is a finite (or finitely generated, resp.) S−1A-algebra.

Proof. If B is finite A-algebra, then B is finitely generated as an A-module, thus B has a set of
generators {b1, · · · , bn}. Then, any elements in b can be denoted as b =

∑n
j=1 aibi for some ai ∈ A.

Thus, any element in S−1B can be denoted as b/s =
∑n
j=1 aibi/s =

∑n
j=1(ai/s)(bi/1). Thus, S−1B is

also finitely generated as an S−1A-module.

Similarly, if B is finitely generated A-algebra, then there exists x1, · · · , xn such that every elements b in
B can be written as polynomial of x1, · · · , xn over f(A) where f : A→ B be a ring map defining algebra
structure. Thus, if b = f(x1, · · · , xn) =

∑
α∈Nn f(aα)xα, then b/f(s) =

∑
α∈Nn f(aα)/f(s)(xα/1), thus

it is polynomial of x1/1, · · · , xn/1 over f(S−1A). Thus, S−1B is a finitely generated S−1A-algebra.

Let S = A − {0} and let K = S−1A, the field of fraction of A. Then, S−1B is a finitely generated
K-algebra by above claim. Thus, by Exercise 5.16, there exists y1/s1, · · · , yn/sn in S−1B algebraically
independent over K and such that S−1B is integral over K[y1/s1, · · · , yn/sn]. Let z1, · · · , zm generate
B as an A-algebra. (Such zis exist since B is finitely generated A-algebra.) Then, each zj/1 ∈ S−1B
is integral over K[y1/s1, · · · , yn/sn]. This implies that there exists a monic polynomial

fi(x) :=

l∑
j=1

aijx
j

such that fi(zi/1) = 0. where aij ∈ K[y1/s1, · · · , yn/sn]. Now, notes that aij is of form aij =∑
α∈Nn cijx

α/sα. Thus, let den(aij) =
∏
α∈Nn s

α, and let s =
∏
i,j den(aij). Then, saij =

∑
α∈Nn(scij/s

α)xα

with scij/s
α ∈ A. Thus, saij ∈ B′ := A[y1, · · · , yn] for any i, j. (Notes that y1, · · · , yn is al-

gebraically independent, otherwise there is some polynomial of y1, · · · , yn which equals zero, so by
replacing yi to si · yi/si, we can get y1/s1, · · · , yn/sn are not algebraically independent, contradic-
tion.) Thus, sfi ∈ B′[x], which implies that sfi ∈ B′s[x], therefore fi ∈ B′s[x] for each i, where
B′s = {1, s, s2, · · · }−1B′ = {1, s, s2, · · · }−1A[y1, · · · , yn]. This shows that zi/1 is integral over B′s. Since
B is generated by zi over A, Bs = {1, s, s2, · · · }−1B is generated by {zi/1}mi=1 over {1, s, s2, · · · }−1A
over S−1A. Also, since {zi/1}mi=1 is integral over B′s and Bs contains B′s (since yi are in B, thus it can
be embedded into yi/1) this implies that Bs is integral over B′s.

21. Use the same notation as in Exercise 5.20. Notes that s 6= 0 since s ∈ A \ {0}. Thus, by universal
property of localization (Proposition 3.1), f extends to the unique map fs : As → Ω. Now, B′s =
As[y1, · · · , yn]. Thus, by sending yi to 0, we can extend fs to f ′s : B′s → Ω. (It is trivially ring
homomorphism.) Now, since Bs is integral over B′s, by Exercise 5.2, we can extend f ′s to g : Bs → Ω.
Now using the canonical map h : B → Bs, we can extend it to φ : B → Ω by φ = g ◦ h.

22. Use the same notation as in Exercise 5.20. Let v 6= 0 be an element of B. It suffices to show that
there is a maximal ideal of B which does not contain v. Notes that Bv = B[1/v] is a finitely generated
B-algebra, and B is finitely generated A-algebra, thus Bv is finitely generated A algebra. (Just as
polynomial ring over polynomial ring is polynomial ring.) Thus Bv contains A as an action of a ∈ A
on 1 ∈ Bv. Thus, by applying Exercise 5.21 to the ring Bv and its subring A, we obtain s 6= 0 ∈ A
such that if Ω is an algebriacally closed field and f : A→ Ω is homomorphism for which f(s) 6= 0, then
f can be extended to a homomorphism Bv → Ω. Now let m be a maximal ideal of A such that s 6= m.
(This is possible since Jacobson radical of A is zero, thus intersection of all maximal ideals is zero.)
Let k = A/m. Then, the canonical map f : A → k extends to a map f : A → Ω, such that f(s) 6= 0.
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Hence, f extends to a homomorphism g : Bv → Ω. Now, since v/1 is unit in Bv, g(v/1) is also unit in
Ω, thus g(v/1) 6= 0.

To see ker(g) ∩B is maximal, notes that ker(g) ∩A = m is maximal ideal of A. Thus,

k = A/m ≤ Bv/ ker(g) ≤ Ω.

By below claim, we can see that Bv/ ker(g) is a field. Hence ker(g) is a maximal ideal in Bv. Hence,
its contraction ker(g) ∩B is a maximal ideal in B.

Claim XXXIX. Let k be a field and Ω be an algebraic extension of k. Then any subring E containing
k and contained in Ω is field.

Proof. Let b 6= 0 ∈ E. Then, b−1 ∈ Ω. Since Ω is an algebraic extension of k, there is a polyomial
f ∈ k[x] such that f(b−1) =

∑n
j=1 ajb

−j = 0 with aj ∈ k. (Also since k is a field, we can assume that

f is monic.) Now, multiply bn−1 to get b−1 = −
∑n−1
j=1 ajb

n−1−j ∈ E. Hence, every nonzero elements
in E is unit. So E is a field.

23. i) =⇒ ii): Let f : A → B be a ring homomorphism. Then f(A) is a homomorphic image, thus f
induces a map A → f(A). Thus, assume that B = f(A), i.e., f is surjective homomorphism. Then,
B ∼= A/ ker f , thus by Proposition 1.1, every prime ideal of B is extension of prime ideal in A containing
ker f . Hence, the contraction of nilradical is an intersection of all prime ideals in A containing ker(f).
By i), this is the same as an intersection of all maximal ideals containing ker(f). (One direction is
trivial. For other direction, let x be an element of intersection of all maximal ideals. If x ∈ ker(f),
done. Otherwise, x is in every maximal ideal containing ker(f). Thus for any prime ideal containing
ker(f), it is intersection of some maximal ideals containing ker(f), hence x is in the prime ideal. Done.
) Since an intersection of all maximal ideals containing ker(f) is contraction of Jacobson radical of B,
this implies that Jacobson radical is equal to nilradical, by 1-1 correspondence.

ii) =⇒ iii): If p is a prime not maximal ideal, then (0) is not a maximal ideal in A/p by 1-1
correspondence. However, since A/p is integral domain, (0) is nilradical. By ii), (0) is the Jacobson
radical. Hence, by 1-1 correspondence, p, which i s the contraction of (0), is equal to an intersection,
say

⋂
m, of all maximal ideals in A containing p. Thus for any q a prime ideal strictly containing p,

intersect q with the
⋂
m is just p. Hence, we can rewrite it as intersection of all prime ideals which

contain p strictly.

iii) =⇒ i): Notes that hints actually denote this way. Suppose i) is false. Then, there is a prime
ideal which is not an intersection of maximal ideals, say p. Thus, zero ideal in A/p is not Jacboson
radical. (If it was, then by 1-1 correspondence p is an intersection of maximal ideals.) Thus, the
Jacobson radical R in A/p is a nonzero ideal. Let f ∈ R such that f 6= 0. Then, Bf 6= 0, since f is
not a nilpotent. Thus, Bf has a maximal ideal, whose contraction is a prime ideal q in A/p such that
f 6∈ q. Also notes that any prime ideal containing q strictly contains f , since otherwise that prime
ideal should be a proper ideal in Bf by Proposition 3.14’s 1-1 correspondence of prime ideal. Hence,
by iii) (which is applicable for its homomorphic image by Proposition 1.1), q is an intersection of prime
ideals strictly containing q, and since every strictly greater prime ideals contains f , this implies f ∈ q,
contradicting the fact that f 6∈ q.

Notes that

Claim XL. Every homomorphic image of Jacobson ring is Jacobson ring.

Proof. Let B be a homomorphic image of A. By Exercise 1.21 iv), for any prime ideal p of B,
Spec(B/p) ∼= V (ker(f)) where f : A → B → Bp be a surjective ring homomorphism making Bp be
an A-algebra. Then, by ii), (0) is both nilradical and Jacobson radical. Hence, p is intersection of all
maximal ideals containing p in B. Since p chosen arbitarily, B satisfies condition i).

Also, there is another equivalent definition from EGA, according to [6].
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Claim XLI. For a ring A, the followings are equivalent.

(a) For any radical ideal a, we have
⋂

m∈max(A)
m⊇a

m = a.

(b) For all prime ideal p, we have
⋂

m∈max(A)
m⊇p

m = p.

(c) For every integral domain A′ which is homomorphic image of A,
⋂

m∈max(A′) m = 0.

Proof. i) implies ii) is obvious since any prime is radical. Also, since any radical ideal is intersection
of prime ideals containing it, so ii) implies i). For iii), A′ = A/p for some prime ideal p, thus by
Proposition 1.1, order preserving 1-1 correspondence, ii) implies iii). Also, if iii) holds, then for any
p prime ideal of A, it can be rewritten as intersection of maximal ideals in A containing p, thus iii)
implies ii).

Since condition ii) is just the same as condition of Jacobson ring, these are another definitions.

24. (ii): Let q be a prime ideal in B. Then, B/q is an integral domain and finitely generated as A/qc-
algebra. Since A is Jacobson ring, by Exercise 5.23 ii), (0) is both nilradical and Jacobson radical.
Thus by Exercise 5.22, B/q has zero Jacobson radical. Hence, q, which is contraction of (0) is the
intersection of all maximal ideals containing q.

(i): This proof came from [6]. Let f : A→ B be a ring integral homomorphism. Let B′ be an integral
domain which is homomorphic image of B, and let A′ be the image of A in B′. Then, A′ → B′ is
integral injective homomorphism between two integral domain. Let a =

⋂
m′∈max(B′) m

′ where max(B′)

is a set of all maximal ideals of B′. Then,

a ∩A′ = (
⋂

m′∈max(B′)

m′) ∩A′ =
⋂

m′∈max(B′)

(m′ ∩A′).

By Corollary 5.8,
⋂

m′∈max(B′)(m
′ ∩A′) =

⋂
m∈max(A′) m. To see this, we claim that

Claim XLII. If A ⊆ B is integral domain and B is integral over A, then there exists 1-1 correspon-
dence between max(B) and max(A).

Proof. It is clear that for any m ∈ max(B), mc = m ∩ A is maximal by Corollary 5.8. Conversely,
suppose that m ∈ max(A). Then, by Theorem 5.10, there exists a prime q ∈ Spec(B) such that
q ∩ A = m. Thus, it suffices to show that q is maximal. Suppose it is not maximal; then there exists
a maximal ideal q′ strictly containing q. Hence, q′ ∩ A = (q′)c is not only prime but maximal by 1-1
correspondence, and since q′ contains q, q′ ∩ A contains m. Since m is maximal, thus q′ ∩ A = q ∩ A.
By Corollary 5.9, q′ = q. Thus, q is maximal.

Hence, by condition ii) of Jacobson ring, a ∩ A′ = 0. This implies a = 0 by the below claim. Since B′

was arbitrarily chosen, B is also Jacobson ring by iii) condition of the above claim.

Claim XLIII. Let A ⊆ B be an integral domains, B is integral over A. Then for any nonzero ideal
b of B, bc = A ∩ b is nonzero.

Proof. Suppose that A ⊆ B. Since b is nonzero, there exists b ∈ B \A. Since b is integral over A,

bn + an−1b
n−1 + · · ·+ a1b+ a0 = 0.

for some ai ∈ A. Since bn + an−1b
n−1 + · · ·+ a1b ∈ b, a0 ∈ b, hence b ∩A 6= ∅.

A ring is finitely generated if it is finitely generated as Z-algebra. Thus, it suffices to show that Z and
all fields are Jacobson ring. In case of field, it is trivial since all prime ideal is 0 and maximal. Also, Z
has prime ideals either maximal or (0), which is intersection of all prime ideal which is nonzero. Hence,
Z satisfies condition iii) of Jacobson radical.
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25. i) =⇒ ii): Let A′ be a image of A in B. Then, A′ is Jacobson ring by claim XL, and A′ is integral
domain as a subring of a field B. Hence, nilradical is equal to 0 and which is equal to Jacobson radical
by second condition of Jacobson ring. Now by apply Exercise 5.21 we can find s 6= 0 ∈ A′ satisfying
conditions in Exercise 5.21. Now, since the Jacobson radical is zero, we can find a maximal ideal
m of A′ not containing s. Then, A′/m is a field, so take Ω be a algebraic closure of A/m. Then,
f : A′ → A′/m→ Ω is a homomorphism where f(s) 6= 0, thus by Exercise 5.21, f can be extended to
g : B → Ω. Since B is a field, g is injective, thus, g(B) ∼= B. Since B is finitely generated over A′,
there exists x1, · · · , xn ∈ B such that every elements in B can be written as a polynomial of xis with
coefficients from A′. Now, g(B) is generated by g(xi) for i = 1, · · · , n. Now, since g(B) ⊆ Ω, g(xi) is
algebraic over A/m, thus g(B) is finite extension of A′/m. Thus, it is a finite dimensional A′/m-vector
space, therefore it has a basis. This implies that it is finitely generated A′/m-module, and using the
surjective homomorphism A → A′ → A′/m it is a finitely generated A-module. Hence B ∼= g(B) is a
finite A-algebra.

ii) =⇒ i). Let p be a prime ideal of A which is not maximal, and let B = A/p. Let f be a nonzero
element of B. Then, Bf is finitely generated B-algebra since every elements in Bf is polynomial of
1/f with coefficients from B. Thus, using a surjective homomorphism A → B = A/p, Bf is also a
finitely generated A-algebra. If Bf is a field, then it is finite over A by assumption ii), i.e., Bf is finite
A-algebra. Since A acts on Bf through A → A/p = B, Bf is also a finite B-algebra. Thus, Bf is
integral over B by [3][p.60], thus B is a field by Proposition 5.7, which is not true since p is not a
maximal ideal. Thus Bf is not a field, therefore has a nonzero prime ideal, and whose contraction in B
is a nonzero ideal p′ such that f 6∈ p′. Thus, intersection of all nonzero prime ideals in B is zero, thus
intersection of the contraction of those prime ideals, i.e., intersection of all prime ideals containing p
strictly is p. Hence, A satisfies condition iii), thus it is Jacobson radical.

26. Notes that every closed set and open set is locally closed by intersecting itself with X, which is open.

Also, locally closed is well-defined; if A is open in its closure A, then by definition ∃U an open set in
X such that A = U ∩ A. Conversely, if U is open and C is closed, then notes that U ∩ C = U ∩ C.
(To see this, notes that if K is closed set containing U ∩ C, then K ∩ (U ∩ C) is closed set contained
in K but containing U ∩ C. Since K ∩ (U ∩ C) is of form C ′ ∩ C where C ′ is a closed set containing
U . Thus,

C ∩ U =
⋂

K closed, containing C∩U

K =
⋂

C′ closed, containing U

C ′ ∩ C = C ∩
⋂

C′ closed, containing U

C ′ = C ∩ U.

Hence, C ∩ U = C ∩ U ∩ U = C ∩ U ∩ U , which implies that C ∩ U is open in its closure.

(1) =⇒ (2): For any closed set E in X, take x ∈ E, and take N be a open neighborhood of x. Then,
since N is locally closed, thus N ∩ X0 6= ∅. Since N was arbitrarily chosen, x ∈ X0. This implies
x ∈ E ∩X0. Thus, E ⊆ E ∩X0. Conversely, E ∩X0 ⊆ E, hence E ∩X0 ⊆ E = E, done.

(2) =⇒ (3): This map is just map from topology of X to the topology of X0 as a subtopology of X.
Hence, it is surjective by definition. To see that it is injective, notes that U ∩X0 = V ∩X0 for some
two open sets in X. Then, U c∩X0 = V c∩X0, thus U c ∩X0 = V c ∩X0. By ii), U c = V c, thus U = V .

(3) =⇒ (1): Since the map is bijective, preimage of ∅∩X0 = ∅ is just ∅ in X. Hence, for any nonzero
open set U , U ∩X0 is nonzero.

Now we will show equivalence of i), ii) and iii). Define X0 = {m ∈ Spec(A) : m is maximal.}
i) =⇒ ii): Notes that arbitrary closed set in Spec(A) is V (a) and arbitrary open set is Xf . Thus, let
Y = V (a) ∩ Xf , i.e., a prime ideal containing an ideal a but not containing an element f ∈ A. (We
can assume that f 6∈ a, otherwise, Y = ∅.) Now using the homeomorphism φ∗ : Spec(A/a)→ V (a) ⊆
Spec(A), think about (φ∗)−1(Y ). It is a set of all prime ideals do not containing f 6= 0. Since A is
Jacobson, so is A/a, thus ∃m ∈ Spec(A/a) such that m is a maximal ideal of Spec(A/a) not containing
f . Hence, its pullback φ∗(m) = m. is also a maximal ideal contained in V (a) but not containing f .
Hence, Y ∩X0 6= ∅. Since Y was arbitrary locally closed subset of Spec(A), done.

ii) =⇒ iii): Let Y = V (a) ∩Xf . If Y is singleton, then there is only one prime ideal p containing a
but not containing f . Since X0 is dense by ii), Y ∩X0 = Y , thus p is maximal. Hence Y is closed.
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iii) =⇒ i): Suppose A is not a Jacobson ring. Then, ∃p which is not a maximal ideal such that
q =

⋂
q′∈Spec(A)

q′⊇p
q′ is bigger than p. Let f ∈ q\p. Then, V (p)∩Xf = {p}. Thus there is a locally closed

singleton which is not closed. Hence iii) fails. So we just showed i) implies iii). Its contrapositive is
what we desired to have. .

27. Notes that K ∈ Σ, thus Σ is nonempty. Also, if C is a chain in Σ, then let C ′ be a direct limit of
rings in C. Since given map is inclusion and dominate relation also holds by composition of inclusion,
and since C ′ is totally ordered thus it is directed set, we can define C ′ well as a directed limit using
Exercise 2.21. Also, by Exercise 2.22, C ′ is an integral domain. And, by construction, C ′ =

⋃
B∈C B

by Exercise 2.17.

Now think about a maximal ideal of C ′. Since each ring B in C is local ring, it has the maximal ideal
mB , thus we have an exact sequence

0→ mB → B → B/mB → 0

for any B ∈ C. Thus, by Exercise 2.18 and 2.19, we can conclude that

0→
⋃
B∈C

mB → C ′ → C ′/
⋃
B∈C

mB → 0

is exact. (Notes that direct limit of maximal ideal comes from Exercise 2.17, and C ′/
⋃
B∈C mB ∼=

lim−→B/mB . ) Notes that lim−→B/mB is a field, since it is
⋃
B∈C B/mB by Exercise 2.17 (by identifying

each ring as a subring of the bigger one) and union of fields in a totally ordered by inclusion is also a
field (just easily check all axioms of fields using standard way). Thus,

⋃
B∈C mB is a maximal ideal of

C ′.

Now we claim that C ′ is local ring.

Claim XLIV. A direct limit of local ring is local.

Proof. Use notation in the problem. Let (C ′)× be set of units in C. We will show that (C ′)× =
C ′ \

⋃
B∈C mB . Pick any unit x. Then, there is a ring B ∈ C such that x, x−1 ∈ B. Hence,

x, x−1 6∈ mB , thus x ∈ C ′ \
⋃
B∈C mB . Conversely, pick x ∈

⋃
B∈C mB . Then, x 6∈ mB in any subring

B ∈ C containing x. This implies that x is unit in any subring B ∈ C containing x. Hence, x−1 ∈ B
for such B, thus x is unit in C ′. Hence, C ′ \

⋃
B∈C mB = (C ′)×. Now Proposition 1.6 assures that C ′

is local ring.

Since dominate relation is clear from the construction of maximal ideal of C ′, (C ′,
⋂
B∈C mB) is maximal

element of C. Thus by Zorn’s lemma, Σ has a maximal element.

Now pick A be be such maximal element, and m is the maximal ideal. Now let Ω be the algebraic
closure of A/m. Then, (A, f : A → A/m → Ω) is inside of Σ in [3][p.65]. If we have (A′, f ′) ∈ Σ of
page 65, then A ⊆ A′, f ′|A = f , thus ker(f ′) ∩A = ker(f), which is maximal ideal in A (since f maps
into a field) thus ker(f ′) ∩ A = m. Since A′ is also a local ring, this implies that (A′,m′) ≥ (A,m) in
Σ of this Exercise. (Notesthat ker(f ′) = m′ since f ′ maps into a field, and A′ is local ring.) Thus,
by maximality of (A,m) in the Σ of this Exercise, A = A′,m = m′. Hence, f ′ = f , this implies that
(A, f) = (A′, f ′), therefore (A, f) is maximal element in Σ of page 65, thus by Theorem 5.21, A is a
valuation ring of the field K.

Conversely, let (A,m) is a valuation ring of K. If it is dominated by other sub local ring of K, say
(A′,m′), then by Proposition 5.18, (A′,m′) is a valuation ring of K. Now notes that any element x ∈ m
has inverse x−1 in K \ A. Conversely, if x ∈ K \ A, then by the definition of valuation ring, x−1 ∈ m
since x−1 is not a unit in A. Thus, K \A = {x−1 : x ∈ m \ {0}}. Hence,

A′ \A ⊆ K \A = {x−1 : x ∈ m \ {0}} ⊆ {x−1 : x ∈ m′ \ {0}} = K \A′,

where {x−1 : x ∈ m \ {0}} ⊆ {x−1 : x ∈ m′ \ {0}} comse from the fact that m′ ⊇ m. This implies that
A′ \A = (A′ \A) ∩ (K \A′) = ∅. Hence A = A′, thus (A,m) is maximal.
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28. (1) =⇒ (2): Suppose a and b are nonzero ideal. (If one of them is zero, then it is trivial.) If A is a
valuation ring, but a 6⊆ b, then ∃a 6= 0 ∈ a \ b. Now for any b 6= 0 ∈ b, either a/b ∈ A or b/a ∈ A. In
case of a/b ∈ A, then b · a/b = a ∈ a ∩ b, contradiction. In case of b/a ∈ A, then a · b/a = b ∈ a ∩ b.
Since b was arbitrarily chosen, b ⊆ a.

(2) =⇒ (1): For any a, b ∈ A, (a) ⊆ (b) or (b) ⊆ (a). In case of (a) ⊆ (b), a = xb for some x ∈ A,
thus x = a/b. In case of (b) ⊆ (a), b = ay for some y ∈ A, thus y = b/a = x−1. Hence, for x, which
is an element of field of fraction of A, i.e., K, either x ∈ A or x−1 ∈ A. Hence, by definition, A is a
valuation ring.

Both Ap and A/p are still integral domain. Also, in case of A/p, Proposition 1.1 assures the containment
relationship of any two ideals. In case of Ap, if there is two ideals ae and be in Ap, (we can assume
that they are extended from ideal of A by Proposition 3.11), then containment relation also gives
containment relation between ae and be (since generators of an ideal are contained in those of another
one.) Thus, both are a valuation ring.

29. A ring B is “local ring of A” means that B = Ap for some prime ideal p. I refer [7]. Let B be a ring
containing A and be contained in K. Then by Proposition 5.18 ii), B is a valuation ring of K, and by
Proposition 5.18 i), B is a local ring. To see it is a localization of A by some prime ideal p, let mB be
a maximal ideal of B. By the inclusion map, contraction of mB in A, which is p := mB ∩ A is prime
ideal since contraction of prime ideal is prime ideal. Since A is local ring, p ⊆ mA. Now we claim that
Ap = B.

If f ∈ A \ p, then f 6∈ mB , thus f is invertible in B, hence for any a ∈ A, a/f ∈ B. Thus, we
have an inclusion map Ap → B. To see other direction, we claim that B dominates Ap as a subring.
From construction, mB ⊇ pAp. By Exercise 5.28 with the fact that A is a valuation ring, Ap is also a
valuation ring. Also notes that field of fraction of Ap is also K, by the universal property of localization.
(Apply Corollary 3.2 iii) on the map A→ K). Hence, we can regard (Ap, pAp) be an element of Σ in
Exercise 5.27 such that (Ap, pAp) ≤ (B,mB). However, Exercise 5.27 says that a set of all valuation
rings in Σ is the set of all maximal elements in A. Thus, Ap = B, done.

30. Let ξ = x + U, η = y + U ∈ Γ. First of all, we need to show that this order is well-defined. If
ξ = x + U = x′ + U and η = y + U = y′ + U , then by equality, y(y′)−1 and y′y−1 ∈ A, and
x(x′)−1, x′x−1 ∈ A. Thus,

xy−1 ∈ A ⇐⇒ (x′x−1)xy−1(y(y′)−1) = x′(y′)−1 ∈ A.

Hence, the order is independent of choosing representative.

Now, to see this order is defined on any two elements, let ξ = x+ U, η = y + U ∈ Γ. Then, since A is
valuation ring, either x ∈ A or x−1 ∈ A (or both). If x, x−1 ∈ A, then x ∈ U , thus ξ = 0 ∈ Γ, which
implies η ≥ 0 since 0y−1 = 0 ∈ A. So assume that only one of both holds. (Similarly, one of y ∈ A or
y−1 ∈ A holds.) Then,

x ∈ A x−1 ∈ A
y ∈ A (1) (2)
y−1 ∈ A (3) (4)

four cases occur. In case of (2) or (3), definitely yx−1 ∈ A or xy−1 ∈ A, thus order is determined. In
case of (1) or (4), since the inverse of yx−1 is xy−1, thus at least one of them should lie in A. Hence,
order is still determined. (If both of them lies, then, ξ = η. )

Now to see that it is well-defined ordering we need to show it is reflexive, antisymmetry and transitive.
For reflexivity, definitely 1 = xx−1 ∈ A, thus ξ ≥ ξ for any ξ ∈ Γ. For antisymmetry, if ξ ≥ η and
ξ ≤ η, then xy−1, yx−1 ∈ A. This shows that xy−1, yx−1 ∈ U . Thus,

η = y + U = yxy−1 + U = x+ U = ξ.

For transitivity, if ξ ≥ η ≥ ω for each representative x, y, z respectively, then, xy−1, yz−1 ∈ A, thus
xy−1yz−1 = xz−1 ∈ A, thus ξ ≥ ω. Hence it is well-defined ordering.
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Lastly, for the compatibility, if ξ ≥ η, then xy−1 ∈ A, thus for some ω = z+U , ξω = xz+U, ηω = yz+U ,
thus, xz(yz)−1 = xy−1 ∈ A, which implies ξω ≥ ηω.
Lastly, let v : K∗ → Γ. Suppose v(x) ≥ v(y). Then, (x + y)y−1 = xy−1 + 1 ∈ A since v(x) ≥ v(y)
implies xy−1 ∈ A. Hence, v(x + y) ≥ v(y) = min(v(x), v(y)). By the similar argument on the case of
v(x) ≤ v(y), we can conclude that

v(x+ y) ≥ min(v(x), v(y)).

31. I refer [4]. To define a ring well, we need a 0, which is compatible with v. Thus, let Γ = Γ∪{∞} which
is a monoid such that ∀α ∈ Γ, α+∞ =∞ with order ∞ ≥ α. Then,

v(0) = v(0 · x) = v(0) + v(x) =∞+ v(x) =∞.

and
v(x) = v(0 + x) = min(∞, v(x)) = v(x).

Let A = {x ∈ K∗ : v(x) ≥ 0}. First of all, we claim A is a subring of K. From v(1) = 0, (since
v is a monoid homomorphism) 1 ∈ A. And, ∞ ≥ 0 implies 0 ∈ A. Now, −1 ∈ A since 0 = v(1) =
v(−1)+v(−1) implies 2v(−1) = 0. If v(−1) > 0 or < 0, then 2v(−1) > 0 or < 0, thus false. This implies
v(−1) = 0. Thus, if x ∈ K×, then v(−x) = v(−1 · x) = v(−1) + v(x) = 0 + v(x) = v(x). This implies
that if x ∈ A, then −x ∈ A. Also, for any x, y ∈ A, v(x−y) = min(v(x), v(−y)) = min(v(x), v(y)) ≥ 0.
This implies A is closed under subtraction. Also, v(xy) = v(x) + v(y) ≥ 0, thus A is closed under
multiplication. This implies that A is a subring of K.

Moreover, A is a valuation ring since for any x ∈ K∗, 0 = v(1) = v(x)+v(x−1) implies v(x−1) = −v(x).
Hence if v(x) = 0, then x, x−1 ∈ A. If v(x) 6= 0, then either x or x−1 must be in A.

To see that valuation ring induces valuation, let A be a valuation ring of K. Then define v : K∗ →
Γ = K∗/A∗ as the canonical map. By Exercise 5.30, we can show that Γ is the value group of A, thus
v is valuation. Now let A′ = {x ∈ K∗ : v(x) ≥ 0} ∪ {0}. Then, v(x) ≥ 0 = v(1) iff x · (1)−1 = x ∈ A
by construction in Exercise 5.30. Hence, A′ = A.

Conversely, for given v, we have ker(v). Thus, v(K∗) ∼= K∗/ ker(v). Since v(x) = 0 iff v(x−1) = 0,
thus ker(v) = A∗, a set of all units in A. Hence, v(K∗) ∼= K∗/A∗. Let w : K∗ → K∗/A∗ be a valuation
constructed by Exercise 5.30. Then by above argument, w(x) ≥ 0 iff x ∈ A, hence, v(x) and w(x) has
the same sign, i.e., v(x) ≥ 0 iff w(x) ≥ 0. Also,

v(x) ≤ v(y) ⇐⇒ 0 = v(1) = v(x)+v(x−1) ≤ v(y)+v(x−1) = v(yx−1) ⇐⇒ yx−1 ∈ A\{0} ⇐⇒ w(x) ≤ w(y).

Hence, w is order preserving valuation. Moreover, we have an isomorphism by sending w(x) to v(x).
To see it is isomorphism, notes that it sends 0, 1 to 0, 1, and it is bijective in a clear manner. Also, it is
additively homomorphic, since w(x) + w(y) = w(xy) 7→ v(xy) = v(x) + v(y) which is sum of image of
w(x) and w(y). Hence, it is bijective homomorphism thus isomorphism. Thus, v and w are essentially
equivalent.

32. Since value group is defined as surjective image of K∗, so we can assume that Γ is image of K∗ under
a valuation map v.

Notes that v(A − p) is a monoid; to see this, 1 ∈ A − p, thus 0 ∈ v(A − p). And if x, y ∈ A − p,
then xy ∈ A − p since p is prime, thus v(x) + v(y) = v(xy) ∈ v(A − p). Thus, v(A − p) is closed
under addition. Now let ∆ = −v(A − p) ∪ v(A − p). It suffices to show that ∆ is isolated subgroup.
Notes that any elements has inverse by construction. Thus, let v(x), v(y) ∈ ∆. If both are positive or
negative, then since −v(A − p) and v(A − p) are closed under addition, so their sum is in ∆. Now if
v(x) ∈ v(A−p), v(y) ∈ −v(A−p), then v(y) = −v(y′) for some y′ ∈ A−p. Hence, y ∈ K∗ is inverse of
y′ in the field of fraction K. Now, v(x)+v(y) = v(xy). If v(xy) ≥ 0, then xy ∈ A, hence x/y′ ∈ A. This
implies x = x/y′ · y′. This implies x/y′ ∈ A− p. Thus, xy ∈ A− p, hence v(x) + v(y) ∈ ∆. Otherwise,
if v(xy) < 0, then xy 6∈ A, thus x/y′ 6∈ A. Hence y′/x ∈ A, thus, y′/x · x = y′ implies y′/x ∈ A − p,
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since both x, y′ are not in p. Therefore, y′/x = 1/xy ∈ A − p. This implies (xy)−1 ∈ A − p, hence
v(xy) = −v(1/xy) ∈ ∆. Thus, in any case, ∆ is closed under addition.

Thus ∆ is a subgroup. Now we need to show that ∆ is isolated. Let x ∈ A − p, and y ∈ A such
that v(x) ≥ v(y) ≥ 0. Then, v(xy−1) = v(x) − v(y) ≥ 0. This implies xy−1 ∈ A. If y−1 ∈ A, then
y is unit, thus y ∈ A − p, done. Otherwise, x is nonunit. (If x is unit, then y−1 ∈ A, contradiction.)
Also, xy−1 ∈ A − p, otherwise xy−1 · y = x ∈ p, contradiction. Hence, v(xy−1) ∈ ∆. This implies
v(x)− v(y) ∈ ∆. Thus, −v(y) ∈ ∆ since ∆ is a subgroup containing v(x) and −v(x). Thus, v(y) ∈ ∆
since ∆ is closed under inversion. This shows ∆ is isolated.

Now define a map ∆ sending prime ideal p to its corresponding isolated subgroup ∆(p). If ∆(p) = ∆(q),
then its subset whose sign is positive is also the same; this implies v(A − p) = v(A − q). Thus,
∀x ∈ A− p,∃y ∈ A− q such that v(x) = v(y). Then, 0 = v(x)− v(y) = v(xy−1) implies xy−1 ∈ A∗ by
construction, thus x = xy−1 · y ∈ A− q since unit is contained in A \ q and from prime property of q.
Thus, A−p ⊆ A−q. By the same argument in the other direction we can conclude that A−p = A−q,
Thus, p = q. Hence, this mapping ∆(−) is injective.

To show that the mapping is bijective if we regard it as a map from Spec(A) to a set of all isolated
subgroups of Γ, we need to show that it is surjective map. Let ∆ be an isolated subgroup of Γ. Then,
let p = A \ v−1(∆). If we show that p is prime ideal, then v(A − p) = v(A ∩ v−1(∆)) is just a
subset of ∆ containing all nonnegative elements, thus ∆ is the smallest subgroup containing it, hence
∆(p) = ∆, done. To see p is prime ideal, let x ∈ p. Then, −x ∈ p since v(−x) = v(x). Also, if
x, y ∈ p then v(x + y) = min(v(x), v(y)) > v(z) ∈ ∆ for any v(z) ∈ ∆ since v(x), v(y) 6∈ ∆ and
isolated property of ∆. Thus, x+ y ∈ p. Thus p is additive subgroup. Now, for any x ∈ p and y ∈ A,
v(xy) = v(x) + v(y) ≥ v(x) > v(z) ∈ ∆ for any v(z) ∈ ∆, thus xy ∈ p. Hence p is an ideal. Now, if
x, y 6∈ p, then x, y ∈ A∩ v−1(∆), thus v(xy) = v(x) + v(y) ∈ ∆, which implies xy 6∈ p. Thus p is prime
ideal.

Now to figure out what are the value groups of the valuation ring A/p, Ap, we need to define the
value group. Let v : A/p → Γ by sending a to v(a) if a 6= 0, otherwise p = 0 7→ v(0) for any
p ∈ p. To see it is well-defined, notes that if a = b, then b − a = p for some p ∈ p, then v(a) =
v(b − p) ≥ min(v(b), v(−p)) = min(v(b), v(0)) = v(b) since v(0) = ∞ by construction above. By the
same argument, we get v(b) ≥ v(a), thus v(a) = v(b). Now let K ′ be a field of fraction of A/p. Then,
extend v′ such that sending a/b to v(a)− v(b). Then, still two properties of valuation map holds. (For
multiplication,

v(a/b · c/d) = v(ac)− v(bd) = v(a) + v(c)− v(b)− v(d) = v(a/b) + v(c/d)

and for addition,

v(a/b+ c/d) = v((ad+ bc)/bd) = v(ad+ bc)− v(b)− v(d) ≥ min(v(ad), v(bc))− v(b)− v(d).

If v(ad) is minimum, then the righthandside is v(a) − v(b) = v(a/b), otherwise it is v(c/d), thus it is
equal to min(v(a/b), v(c/d)). Hence v is a valuation of K ′ by Exercise 5.31. Let v(K ′) = ∆, which
is a subgroup of Γ. Then, construct valuation ring using Exercise 5.31., say B. By construction,
B ∩A/p = {α ∈ B : v(α) ≥ 0}. Now we want to show that B = A/p.

Let α ∈ B such that v(α) ≥ 0. Then, v(α) = v(a/b) = v(a)− v(b) = v(a)− v(b) ≥ 0 for some a, b ∈ A
with nonzero nonunit b. This implies that ab−1 ∈ A . If ab−1 ∈ p, then a = ab−1 · b ∈ p, hence
α = 0. Otherwise, ab−1 ∈ A − p implies a = ab−1b ∈ A − p by prime property of p. Hence we have
a, b, ab−1 ∈ A − p. Thus, v(ab−1) = v(a/b). Now notes that in K ′, ab−1 = a/b, since it has the same
inverse b/a, i.e.,

ab−1 · b/a = a/a = 1.

Thus, α ∈ A/p. Thus, B = A/p. Hence, v(K ′) is the value group of A/p.

Now we claim that v((K ′)∗) = ∆(p). First of all, v(A/p \ {0}) ⊆ ∆(p)+ a subset of ∆(p) having all
nonnegative elements, by construction of extension. And for any nonnegative element in ∆(p) comes
from some x ∈ A − p, then x 6= 0 in A/p implies that v(x) is the element. Hence, v(A/p) ⊇ ∆(p)+,
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This shows that v(A/p \ {0}) = ∆(p)+. SInce ∆(p) is the smallest subgroup containing ∆(p)+,
v((K ′)∗) ⊇ ∆(p). Conversely, any elements in v((K ′)∗) is of form v(a)−v(b) ∈ ∆(p), v((K ′)∗) ⊆ ∆(p).

Also, in case of Ap, its field of fraction is the same as that of A. Hence, we can use the original valuation
v on this case. Now, Proposition 5.18 says that A is local. Thus, m contains p and U = A − m, i.e.,
set of all units in A, by Proposition 1.6. And notes that Γ = K∗/U by Exercise 5.30 and 5.31. Now
notes that unit of Ap is V := {a/b ∈ Ap : a, b ∈ A − p}. Hence, V is a subgroup of K∗. Thus, by
Exercise 5.30, the value group of Ap is K∗/V . Now notes that V ⊆ U and both U, V are subgroup of
K∗. Thus, by the third isomorphism theorem,

K∗/V ∼= (K∗/U)/(V/U) ∼= Γ/v(V )

since v is a canonical homomorphism K∗ → K∗/U .

First of all, we claim that v(V ) = v(Ap \ {0}). To see this, notes that if a/b ∈ Ap with a ∈ p, then
v(a/b) = v(a)− v(b)

Now we claim that v(V ) = ∆(p). To see this, let a/b ∈ V . Then, a, b ∈ A − p. Thus v(a/b) =
v(a) − v(b) ∈ ∆(p) by construction of ∆(p). Conversely, by construction, any element in ∆(p) is of
a form v(a) or −v(a) for some a ∈ A − p. Since a/1, 1/a ∈ V v(V ) contains v(a) and −v(a), which
implies v(V ) ⊇ ∆(p). Thus, the value group of Ap is isomorphic to Γ/v(V ) = Γ/∆(p).

33. To see A is an integral domain, notes that using the order of Γ, we can give a degree on A. Then, let
φ =

∑
g∈Γ agxg, ϕ =

∑
g∈Γ bgxg for some ag, bg ∈ k all but finitely many zeros. Now suppose that xgφ ,

xgϕ is the lowest nonzero term in φ and ϕ respectively. Then, φϕ has a lowest nonzero degree term
xgφ+gϕ , since agφ , bgϕ are nonzero, thus their product is nonzero since k is an integral domain. Hence,
φϕ is nonzero.

Actually, this is just proof of the claim that

Claim XLV. A group ring over integral domain is integral domain.

Now let u = λ1xa1 + · · ·+ λnxan is any non-zero element of A, where λi 6= 0 for all i, and a1 < · · · an.
Define v0(u) = a1. Then, for any u = λ1xa1 + · · ·+λnxan , v = λ′1xb1 + · · ·+λ′mxbm , with b1 < · · · < bm,
uv has the lowest term a1b1xa1+b1 , thus v0(uv) = a1 +b1 = v0(u)+v0(v). Also, v0(u+v) ≥ min(a1, b1)
where strict inequality occur when a1 = b1 and λ1 = −λ′1. Hence v0 : A− {0} → Γ satisfies conditions
of Exercise 5.31.

Let K be the field of fraction of A. We need to show that v0 uniquely extended to a valuation v of K,
and that the value group of v is Γ.

First of all, if v is an extension of v0, then from axiom 1, 0 = v(1) = v(u/u) = v(u)+v(1/u). Thus, any
extension v of v0 has a value v(1/u) = −v(u). Thus, any extension v should have v(u/u′) = v(u)−v(u′),
thus letting v(a/b) := v0(a) − v0(b) is the unique extension if it is well-defined. And definitely, it is
well-defined; if a/b = c/d ,then ad = bc, thus v0(a) + v0(d) = v0(b) + v0(c) =⇒ v0(a) − v0(b) =
v0(c)− v0(d) =⇒ v(a/b) = v(c/d). So it is well-defined extension.

To see that v is also a valuation, let a/b, c/d ∈ K∗. Then, v(a/b · c/d) = v0(ac) − v0(bd) = v0(a) −
v0(b) + v0(c)− v0(d) = v(a/b) + v(c/d). Also, v(a/b+ c/d) = v((ad+ bc)/bd) = v0(ad+ bc)− v0(bd) ≥
min(v0(ad), v0(bc)) − v0(bd), and if v0(ad) is minimum, then min(v0(ad), v0(bc)) − v0(bd) = v0(a) −
v0(b) = v(a/b), otherwise v(c/d). Thus, v(a/b+ c/d) ≥ min(v(a/b), v(c/d)). Thus v is a valuation.

Now v(K∗) is the value group of v by Exercise 5.30. We claim that v(K∗) ∼= Γ. Notes that v(A−{0}) =
Γ since A contains xg for any g ∈ Γ. Thus, v(K∗) = Γ since K∗ contains A − {0}. Hence, the value
group of v is Γ.

By Exercise 5.31, B := {u/u′ ∈ K∗ : v(u/u′) ≥ 0} is the valuation ring of v. We claim that B 6= A in
general. Notes that xa · x−a = xa−a = x0. This implies that v(xa) = −v(x−a). Thus, if a is nonzero
elements in Γ, then either v(xa) > 0, v(x−a) < 0 or v(xa) < 0, v(x−a) > 0. In any case, if Γ has an
element at least 3, i.e., an element whose order is not 2, then either x−a 6∈ B or xa 6∈ B. Thus, B 6= A.
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34. Let C = g(B) ⊆ K. Then, C ⊇ A since g(f(A)) = A in K. Also ,we can let h : A→ C by h = g ◦ f is
just canonical injection. By Proposition 5.18 i) and ii), C and A are local rings. Let n be the maximal
ideal of C. Notes that f is closed mapping, and g is homeomorphism onto V (ker(g)), thus, g∗(n) is
also maximal ideal, therefore

f∗(g∗(n)) =︸︷︷︸
Exercise 1.21 vi)

(g ◦ f)∗(n) = h∗(n)

is maximal ideal since f preserves closed singleton to close singleton. Now, notes that h∗(n) = h−1(n) =
n ∩A since h is an injection. Thus, C dominates A in the sense of Exercise 5.27, since n is the unique
maximal ideal of C. However, since (C, n) ∈ Σ such that (A,m) ≤ (C, n) but A is a valuation ring,
C = A, by Exercise 5.27.

35. By exercise 3, f : A → B is integral implies f ⊗ 1 : A
⊗
A

C → B
⊗
A

C is integral, thus by Exercise 1,

(f ⊗ 1)∗ Spec(B
⊗
A

C)→ Spec(C) is closed map.

Conversely, suppose that f : A→ B is a ring homomorphism such that for any A-algebra C, (f ⊗ 1)∗ :
Spec(B

⊗
A

C) → Spec(C) is integral. Our goal is to prove that when B is integral domain, then f is

integral. To follow the hints, let A′ = f(A). Then f : A′ → B is just a canonical injection. Let K
be the field of fractions of B. To use Corollary 5.22, it suffices to show that for any valuation ring
A′′ of K containing A contains B also. Since A′′ is also an A-algebra by canonical map A → K,
we know Spec(A′′

⊗
A

B) → Spec(A′′
⊗
A

A) = Spec(A′′) is closed map. Now let g : A′′
⊗
A

B → K by

a′′⊗ b 7→ a′′b. It is well-defined A-algebra homomorphism, since it is induced by the universal property
of tensor product applying on the bilinear map A′′×B → K by (a′′, b) 7→ a′′b. Then, by Exercise 5.34,
g(A′′

⊗
A

B) = A′′. Then, ba′′ ∈ A′′ for all b ∈ B and all a′′ ∈ A′′. Thus, by taking a′′ = 1, B ⊆ A′′.

Since A′′ was arbitrarily chosen valuation ring containing A, Corollary 5.22 shows that B is in the
integral closure of A′. Thus, B is integral over A′. It is definition of the integral ring homomorphism.

Now we change the condition, from B is integral domain to B is a ring with only finitely many minimal
prime ideals. To see this, let p1, · · · , pn be all minimal prime ideals of B. Then, notes that B → B/pi
is surjective, which implies B

⊗
A

C → B/pi
⊗
A

C is surjective for any A-algebra C, by Proposition

2.18 applying on the exact sequence ker(B → B/pi) → B → B/pi → 0. Thus, Spec(B/p
⊗
A

C) →

Spec(B
⊗
A

C) is closed map since Spec(B/pi
⊗
A

C) ∼= V (pi) ⊆ Spec(B
⊗
A

C), and any closed set of

V (pi) is intersection of V (pi) with some closed set of Spec(B
⊗
A

C), thus closed in Spec(B
⊗
A

C).

Hence, A → B → B/pi induces closed map Spec(B/pi
⊗
A

C) → Spec(C) for any A-algebra C. Thus,

by apply the above results, we get A→ B → B/pi is integral. Thus, A→ B →
∏n
i=1(B/pi) is integral

by Exercise 5.6. Then kernel of B →
∏n
i=1(B/pi) is nilradical R of B since intersection of minimal

prime ideal is just intersection of all prime ideal. Thus, by the first isomorphism,
∏n
i=1(B/pi) ∼= B/R

is integral. Now let y ∈ B. Then, there exists a monic polynomial p(x) ∈ B/R[x] such that p(y) = 0.
Then, by picking any representatives of each coefficients of p(x), we can regard p(x) is in f(A)[x] such
that p(y) ∈ R. Then ∃m ∈ N such that p(y)n = 0. Since p(x) is monic, so is p(x)l, and p(y)l = 0
implies y is integral over f(A). Thus, f : A→ B is integral.

6 Chain Conditions

In the example in [3][p.75], to see that any subgroup of G are the Gn, notes that Gn is cyclic group generated
by 1/pn. Now we use induction. Let H be a subgroup of G generated by one element, then done. If it is
generated by n elements, then it has at least two generator a/pn and b/pm with irreducible fraction form, thus
if we assume n < m wlog, then by Bezout’s identity, there is c, d such that capm−n+db = 1 since apm−n and
b still are relatively prime. Thus, d(b/pm)+c(apn−m/pm) = 1/pm, and definitely 〈a/pn, b/pm〉 ⊇ 〈1/pm〉 and
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vice versa. Thus, we can reduce its generators. Thus, H is cyclic, done. If H has no finite set of generators,
i.e., H is generated by infinitely many generators, then for any m ∈ N, there exists n > m such that a/pn is
in the generator of H, i.e., gcd(a, pn) = 1. Since each a/pn generates Gn, H contains G itself.

Claim XLVI. Quotient of finitely generated module is finitely generated. Also, submoudles of quotient
module bijectively correspond to submodules of original module containing the denominator.

Proof. For any m =
∑n
j=1 aigi where {gi} is a set of generators of a finitely generated module M , φ(m) =∑n

j=1 aiπ(gi).
For M and M/N , every submodule of M containing N can be quotiented by N Conversely, for given

submodule Q of M/N , ker(M →M/N → (M/N)/Q) is a module corresponding to Q.

Also, in a Proposition 6.9, additive is in a sense in the Category of A-module, i.e., M = M ′ ⊕ M ′′,
which gives a short exact sequence. And in Corollary 6.11, m1 · · ·mi−1/m1 · · ·mi is A/mi module by usual
product; notes that if x ∈ m1 · · ·mi−1/m1 · · ·mi and a = b ∈ A/m, then a = b −m for some m ∈ mi, thus
ax = ax = bx−mx = bx−mx = bx since mx ∈ m1 · · ·mi. Thus it is a vector space.

1. (a) Let an = ker(un) for each n ∈ N. Then, a1 ⊇ a2 ⊇ · · · is a chain of ideals. Since M is Noetherian,
∃n ∈ N such that an = an+1 = · · · . Let y ∈ ker(un+1) = ker(un+1) ∩M = ker(un+1) ∩ Im(un).
Then, un(x) = y for some x ∈M , and un+1(x) = u(y) = 0 implies x ∈ an+1 = an, therefore y = 0.
Hence, ker(un+1) = 0, which implies that un+1 is injective. Thus, u is injective on Im(un) = M .

(b) Let an = coker(un) for each n ∈ N. Then, a1 ⊆ a2 ⊆ · · · is a chain of ideals. Since M is Artinian,
∃n ∈ N such that an = an+1 = · · · . This implies Im(un) = Im(un+1) = · · · . Thus, for any x ∈M ,
∃y ∈ M such that un(x) = un+1(y), thus un(x − u(y)) = 0. Since u is injective, so is un, thus
x = u(y). Since x was chosen arbitrary, u is surjective.

2. Suppose M is not Noetherian. By Proposition 6.2, M has a submodule N which is not finitely
generated. Pick x1 ∈ N , then N − Ax1 6= ∅, thus pick x2 ∈ N − Ax1. Since N 6= (Ax1 + Ax2), pick
x3 ∈ N−(Ax1 +Ax2), and so on. Then, {Ax1, Ax1 +Ax2, · · · } is a countable set which doesn’t contain
a maximal element, contradiction. (Notes that we can construct a maximal one, which is union of all
modules in the set; however, this union itself is not contained in a set, since it is not finitely generated.)
Thus M is Noetherian.

3. Proposition 2.1 ii) implies that (N1 +N2)/N1
∼= N2/(N1 ∩N2). Since (N1 +N2)/N1 is a submodule of

M/N1, it is Noetherian, thus N2/(N1 ∩N2) is Noetherian. Now take an exact sequence

0→ N2/(N1 ∩N2)→M/(N1 ∩N2)→M/N2 → 0.

Since M/N2
∼= (M/(N1 ∩N2))/N2/(N1 ∩N2), it is exact. Also, since both N2/(N1 ∩N2) and M/N2

are Noetherian, so is M/(N1 ∩N2) by Proposition 6.3.

Conversely, suppose M/N1,M/N2 are Artinian. Then by the same argument, just replacing the word
‘Noetherian’ to ‘Artinian’ we get the desired result, i.e., M/(N1 ∩N2) is Artinian.

4. Since M is Noetherian, it is finitely generated by Proposition 6.2, thus there exists m1, · · · ,mn, gen-
erators of M . Then, a =

⋂n
i=1 Ann(mi). Since A/Ann(mi) = Axi ⊂M , A/Ann(mi) is Notherian for

any i. Thus, A/a is Noetherian when n = 2 by Exercise 6.3. Now suppose it holds for 2, 3, · · · , k − 1.

Then, A/
⋂k
i=1 Ann(mi) = A/(

⋂k−1
i=1 Ann(mi) + Ann(mi)) and A/(

⋂k−1
i=1 Ann(mi)) is Noetherian by

inductive hypothesis. Thus, by applying Exercise 6.3 again, we get A/
⋂k
i=1 Ann(mi) is Noetherian.

Thus by induction, A/a is Noetherian.

However, this doesn’t hold when we replace Noetherian by Artinian. Let G be a group G in Example
3) of [3][p.75] Then, G is Artinian Z-module, and AnnZ(Gn) := pn since Gn := 〈1/pn〉. However,
a = Ann(G) =

⋂∞
i=1 AnnZ(Gi) = 0, thus Z/a = Z, but Z is not artinian, since it has infinte length

chain (p) ⊇ (p2) ⊇ · · · .
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5. Let U1 ⊆ U2 ⊆ · · · be a chain of open sets in a subspace X0. Then, Ui = Vi ∩X0 for some open set
Vi for each i, hence it induces a chain of open sets V1 ⊆ V2 ⊆ · · · in X, thus it stabilizes, therefore
U1 ⊆ U2 ⊆ · · · stabilizes.

To see that X is quasi compact, suppose that {Uα}α∈I be a open cover of X. Pick an open set and
define it as U1. Define Un be union of Un−1 and an open set V chosen from {Uα}α∈I such that

V =

{
an open set in the cover {Uα}α∈I such that V \ Un−1 6= ∅
∅ if a set satisfying the above condition doesn’t exist.

Then, Un is still open since it is finite union of open sets, thus U1 ⊆ U2 ⊆ · · · is an ascending chain
of open sets in X. Since X is Noetherian, it stabilizes at some n ∈ N. Now suppose X 6= Un
Then, ∃x ∈ X \ Un. Hence, we have an open neighborhood V ′ ∈ {Uα}α∈I of x. Thus Un+1 ) Un,
contradiction. Hence, Un = X. Therefore, {Uα}α∈I has finite subcover of X.

6. i) =⇒ iii): By Exercise 6.5, every subspace of X is Noetherian, thus quasi-compact.

iii) =⇒ ii): Clear.

ii) =⇒ i): Since X is also an open subspace of X, done. (Or, if we take any ascending chain of open
sets, let U be union of all ideals in a chain. Then, U is open inX since for any x ∈ U , it is contained in an
open set in the chain, thus at least one of its open neighborhood is inside of U . By ii) U is quasi-compact.
Since the given ascending chain is a covering of U , it has finite subcover, such that Ui1 , · · · , Uim with
i1 < · · · < im. Thus, by letting n = im, we can see that Un =

⋃n
i=1 Ui = U ⊇ Un+k ⊇ Un for any k.

This implies Un+k = Un for any k.

7. Suppose not. Then, there is a Noetherian space X such that X is not a finite union of irreducible closed
subspaces. Thus, Σ defined in the hint of this Exercise is nonempty. By d.c.c. of Noetherian space and
Proposition 6.1, Σ has a minimal element, say X0. Then, X0 is reducible, otherwise it is trivially a
finite union of irreducible close subspace. Thus, by Claim II, X0 = C1 ∪C2 for some proper closed set
of X. However, since X0 is a minimal closed subspace which is not a finite union of irreducible closed
subspaces, each C1 and C2 is a finite union of irreducible closed subspaces, so is X0, contradiction.
Thus every Noetherian space is a finite union of irreducible closed subspaces.

For the last statement, by Exercise 1.20 iii), there exist a set of all maximal irreducible subspaces, i.e.,
set of all irreducible components of X, Y := {Yi}i∈I of X such that Y is closed covering of X and each
Yi is closed. Let X =

⋃n
i=1 Ci for some irreducible closed subspaces of X for some n ∈ N. Let Yi be a

maximal irreducible subspaces containing Ci. (Such Yi exists by Exercise 1.20 ii).) Then, X =
⋃n
i=1 Yi.

Hence {Yi}ni=1 is a finite subcover of Y . Now suppose that n be the minimal number of the cardinality
of finite subcovering of Y . Thus, for any maximal irreducible subspaces Yj , Yj =

⋃n
i=1 Yj ∩ Yn, thus

Yj = Yi for some i = 1, · · · , n by maximality. Thus, Y is finite.

8. It suffices to show that a collection of closed sets in Spec(A) satisfy d.c.c. Let V (a1) ⊇ V (a2) ⊇ · · ·
be a descending chain of closed sets in Spec(A). Then, a1 ⊆ a2 ⊆ is a chain of ideals in A. Since A is
Noetherian, it stabilizes at some n ∈ N. Hence, V (an) = V (an+k) for any k. Thus d.c.c. holds.

Converse is not true in general. Let A = k[x1, · · · , ]/(x2
1, x

2
2, · · · ). Then, nilradical of A is (x1, x2, · · · ),

thus A/(x1, x2, · · · ) ∼= k implies Spec(A/R) is a singleton, thus Noetherian. By Exercise 1.21 iv),
Spec(A) ∼= Spec(A/R) is Noetherian. However, A is not Noetherian since (x1) ⊆ (x1, x2) ⊆ · · · is an
infinite chain.

9. By Exercise 6.8, Spec(A) is Noetherian, thus by Exercise 6.7, Spec(A) is a finitely many irreducible
components. In the proof of Exercise 1.20 iv), we shows that every irreducible closed subset of Spec(A)
is of form V (p). Thus V (p) is irreducible components if and only if p is minimal prime. Hence, A has
only finitely many minimal prime ideal.

10. Notes that Supp(M) is a set of prime ideal p such that Mp 6= 0. Let a = Ann(M). Then, by
Exercise 3.19 v), Supp(M) = V (a), thus it is closed. By Exercise 1.21 vi), V (a) ∼= Spec(A/a) as a
homeomorphism. By Exercise 6.4, A/a is Noetherian. Hence, Supp(M) is Noetherian subspace of
Spec(A).
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11. By Exercise 5.10, it suffices to show that going-up property implies closed mapping when Spec(B) is
Noetherian. Suppose f has going up property and Spec(B) is Noetherian. Let V (b) be a closed set
in Spec(B). Then, Exercise 6.5 implies that V (b) is Noetherian. By Exercise 1.21 vi), Spec(B/b)
is homeomorphic to V (b), thus Noetherian. Hence by Exercise 6.7 and Exercise 1.20 iv), B/b has
finitely many minimal primes. Thus its contraction, say q1, · · · , qn are minimal elements in V (b),
thus V (b) =

⋃n
i=1 V (qi). Now let pi = f∗(qi). Then, r(b)c =

⋂n
i=1 pi using Exercise 1.18. Thus any

prime ideal p in V (r(b)c) contains
⋂n
i=1 pi, so Proposition 1.11 ii) says p ⊇ pj for some j ∈ [n]. Thus,

V (r(b)c) ⊆
⋃n
i=1(pi). And the other inclusion is clear since each pi contained in the lefthandside.

Thus, V (r(b)c) =
⋃n
i=1(pi). By Exercise 5.10 i), going up property implies that V (pi) = f∗(V (qi)).

Hence,

f∗(V (b)) = f∗(

n⋃
i=1

V (qi)) =

n⋃
i=1

(pi) = V (r(b)c).

Thus, f∗ preserves closedness.

12. Let p1 ⊆ p2 ⊆ · · · be an ascending chain or prime ideals in A. This induces a descending chain of
closed sets V (p1 ⊇ V (p2) ⊇ · · · , thus it stabilizes, which implies the chain or prime ideal stabilizes.

For the counterexample, I just refer [8]. Let A be the counterble direct product of Z/2Z. Then, Spec(A)
is countable disjoint union of Xi = Spec(Z/2Z) for any i ∈ N. Notes that the set of prime ideals of A
is {(0)×

∏∞
i 6=j Z/2Z : j ∈ N} ∪ {0}, thus every elements except 0 is maximal. Hence, every ascending

chain stabilizes. However, Spec(A) has the infinite ascending chain of open sets, by unioning those
disjoint unions. (For example, X1 ⊆ X1 ∪X2 ⊆ · · · .)

7 Noetherian Rings

In proposition 7.8, (i) implies (ii) by Proposition 5.1 and (ii) implies (i) using generators of C as a finitely
generated A-module and showing that its monic polynomial over B induces a finitely many generators of C
as a B-module.

Claim XLVII. If B is a finitely generated A-algebra and C is a finitely generated B-module, then C is a
finitely generated A-algebra.

Proof. Let xi, i = 1, · · · , n be generators of C as a B-module. Then, c =
∑n
i=1 bixi for some bi ∈ B. And

every element in B is just polynomial over yi’s i = 1, · · · ,m with coefficient from A. Thus, bi = f(y1, · · · , ym)
for some n. Thus, every element in C is a polynomial over y1, · · · , ym, x1, · · · , xn with coefficients from A.
Thus, C is a finitely generated A-algebra (by letting xixj = 0 for any i, j.)

1. Since A is not Noetherian, Σ is nonempty. Now let {ai} be a chain of ideal in Σ. Let a =
⋃
i ai. Then

a is an ideal (We did this kind of argument in the previous problems.) Moreover, a is not finitely
generated; if it was, then 〈x1, · · · , xn〉 = a. Then, ∃m ∈ N such that x1, · · · , xn ∈ am by definition
of a. However, this implies a ⊆ am = a, hence am is finitely generated, contradiction. Thus, a ∈ Σ.
Hence, by Zorn’s lemma Σ has a maximal element.

Now let p be such a maximal element in Σ. Suppose it is not a prime. Then, xy ∈ p but x, y 6∈ p
exists. Then, a+(x) contains a strictly, thus it is not in Σ (otherwise, a is not maximal.) Thus, a+(x)
is finitely generated, thus a0 + (x) = a + (x) for some finitely generated ideal a0. Also, any minimal
generator of a0 should be contained in a since they are not in (x). This implies a0 ⊆ a.

Also, as hint suggested, a ⊇ a0 + x(a : x) and if y ∈ a ⊆ a + (x) = a0 + (x), then y = y0 + xz for some
z ∈ A, y0 ∈ a0. This implies xz ∈ a, thus z ∈ (a : x). Hence, y ∈ a0 + x(a : x), thus a = a0 + x(a : x).
Since y ∈ (a : x), (a : x) strictly contains a, it is finitely generated. This implies a is finitely generated,
contradiction.

2. By Exercise 1.5 ii), if an is nilpotent for any n, then f is nilpotent. Conversely, by Corollay 7,15,
∃m ∈ N such that Rm = (0). Hence, fm = 0.
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3. i) =⇒ ii): By Proposition 4.8, either (S−1a)c = a = (a : 1) or A = (a : a) for some a ∈ A ∩ S. Pick
x = 1 or a.

ii) =⇒ iii): Let S := {1, x, x2, · · · } for fixed x ∈ A. Then, (S−1a)c = (a : xk) for some k ∈ N. Also,
by definition,⋃
i∈N

(a : xi) = {a ∈ A : xia ∈ a} = {a ∈ A : a/1 = b/xi for some b ∈ a} = {a ∈ A : a/1 ∈ ae} = (S−1a)c.

Hence, (a : xk) =
⋃
i∈N(a : xi), thus the sequence is stationary. Since x was chosen arbitrarily, done.

iii) =⇒ i): Without loss of generatliy, assume a = (0) (by thinking A/a as a ring instead of A.)
Let xy = 0 ∈ (0) and y 6= 0. Then, Ann(xn) is stationary, this implies that Ann(xn) = Ann(xn+1)
for some n ∈ N. Now, let a ∈ (y) ∩ (xn). Then, ax = 0 and a = bxn. Thus, bxn+1 = 0 implies
b ∈ Ann(xn+1) = Ann(xn), thus a = bxn = 0. Thus, (y) ∩ (xn) = 0. Since (0) is irreducible and
(y) 6= 0, xn = 0. This shows that (0) is primary.

4. I refer [4] for this exercise.

(a) Let A be the ring given in the problem. Then, any element in A is a form p(z)/q(z) with
p(z), q(z) ∈ C[z] such that q(z) has no zero on |z| = 1. Thus, q(z) is not in an ideal p = (z−a)|a|=1.
Notes that p is prime; since if fg ∈ p but g 6∈ p, then by splitting f and g into linear ones, we can
conclude that g does not contain any of (z − a) for any |a| = 1. Thus, f should be divisible by
one of (z−a), thus f ∈ p. Hence, S = C[z]−p is a multiplicatively closed set. Now, A = S−1C[z]
by construction. Since C is Noetherian, C[z] is Noetherian by Hilbert Basis theorem, thus its
localization A is Noetherian by Proposition 7.3.

(b) Let A be the ring given in the problem. Then,

A := {f ∈ C[[z]] : f =
∑
n∈N

cnx
n with lim sup

n→∞

n
√
|cn| <∞} ⊆ C[[z]].

Notes that A is closed under addition and multiplication. (To see this, just pick x from intersection
of convergence interval of two functions in A and plug in to the subtraction or product of them.
This implies they have positive convergence of radius, thus are in A.)

Now we claim that

Claim XLVIII. In C[[z]], (f) = (zord(f)) where ord(f) is the smallest n ∈ N such that cn 6= 0.
Thus, any ideal in C[[z]] is (zk) for some k ∈ N ∪ {0} or 0. Moreover, if f = zord(f)g with g is
unit, then g has the radius of convergence greater than or equal to f .

Proof. Notes that f = zord(f)g for some g with ord(g) = 0. Thus, g has nonzero constant
term. By Exercise 1.5 i), g is unit in C[[z]]. Hence, fg−1 = zord(f). Hence, since C[[z]] is
Noetherian, every ideal is finitely generated, then we can assume that those generators are comes
from {0, 1, z, z1, · · · }, therefore it is principal.

For the second one, notes that for any x which is in the interval of convergence of f , xord(f) is
convergent. Thus, g(x) should be convergent series. Since x was chosen arbitrarily, g has the
radius of convergence greater than or equal to f .

Now, let f ∈ A. Then, f = zmg by the proof of above claim for some m ∈ N, g is unit with g ∈ A.
Thus, (f) = (zm) in A. Hence A is PID, thus Noetherian by definition.

(c) Let A be the ring given in the problem. Then,

A := {f ∈ C[[z]] : f =
∑
n∈N

cnx
n with lim sup

n→∞

n
√
|cn| = 0} ⊆ C[[z]].

By the same argument, A is a subring of C[[z]].

Notes that sin(z)/z =
∏∞
n=1(1 − z2

n2π2 . Let fn :=
∏∞
j=n(1 − z2

n2 . Then, πzf1 = sin(πz). Thus,
limz→n |fn| = 0. Suppose ∃g ∈ C[[z]] such that gfn(n) 6= 0. Then, limz→n |g(z)| = ∞. Thus
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g 6∈ A since it should have the radius of convergence less than n. Thus, from fn+1|fn, we know
(fn) is contained in (fn+1). However, fng = fn+1 implies g 6∈ A by this argument. Thus, (fn) is
strictly contained in (fn+1). This shows that A has infinite ascending chain, contradiction.

(d) In this case, the desired ring is A = C + (zk+1) ( C[z]. To see this, let f =
∑
n∈N cnz

n be such
a polynomial. Since first k derivatives vanish at the origin implies that c1 = · · · = ck = 0. Thus,
f ∈ C + (zk+1). Other direction is trivial. Notes that C[zn+1] is Noetherian by the Hilbert basis
theorem (with variable zn+1.) Then A is C[zn+1] module generated by {1, z, · · · , zn}. Hence, A
is finitely generated, therefore Noetherian by Proposition 7.2.

(e) In this case,

A = {f(z, w) ∈ C[z, w] :
∂

∂wn
|z=0f = 0 for any n.}.

A is a ring since product rule of derivation and addition rule of derivation gives that A is closed
under subtraction and multiplication. Let f ∈ A. Then, f =

∑
n∈N fn(z)wn for some fn(z) ∈ C[z].

Let an = fn(0). Then,

∂

∂wn
|z=0f =

m∑
j=n

ajj
nwj−n = 0.

This implies aj = 0 for all j ≥ n. Since n ∈ N, this implies aj = 0 for all j > 0. Thus,
A = C[z] + (z)C[w]. Thus, wn 6∈ A for any n. Moreover, zwn|zwn+1 implies (zw, · · · , zwn)
contained in (zw, · · · , zwn+1) strictly. Thus, A has an infinite ascending chain of ideals. Thus A
is not Noetherian.

5. Exericse 5.12 shows that B is integral over BG. This implies A ⊆ BG ⊆ B. Also, A is Noetherian, B
is finitely generated as an A-algebra, and B is integral over BG. Thus we can apply Proposition 7.8
to conclude that B0 is finitely generated as an A-algebra.

6. If K has characteristic 0, then Z ⊂ Q ⊆ K. (To see this, Z → K by 1Z → 1K is injective, thus we
can define Q → K an injective field homomorphism, which gives a subfield of K isomorphic to Q. )
Since K is finitely generated over Z (every ring is Z-algebra), K is finitely generated over Q. Thus,
by Proposition 7.9, K is a finite algebraic extension of Q. However, Proposition 7.8 shows that K is
finitely generated as Z-algebra. This implies that Q is finitely generated as Z-algebra, contradiction.

If K is characteristic p 6= 0, then K contains Z/pZ as a subfield by the map Z→ K by 1Z → 1K . Since
Z acts on K through Z/pZ, K is also finitely generated Z/pZ-algebra. Then Proposition 7.9 implies
that K is a finite extension of Z/pZ. Hence K is a finite field.

7. Corollary 7.6 implies that k[t1, · · · , tn] is Noetherian. Thus, an ideal generated by fα with α ∈ I is
finitely generated. Let g1, · · · , gn such generator of the ideal. Then, each gi is a linear combination of
fα with coefficients from k[t1, · · · , tn]. Thus, by collecting all fα used in the linear combination of each
gi in a set A, we can see that an ideal generated by A contains the whole ideal, thus A ⊆ {fα : α ∈ I}
generates A.

8. Since A[x]/(x) ∼= A, Proposition 6.6 shows that A is Noetherian if A[x] is Noetherian.

9. Let a 6= 0 be an ideal in A. Let m1, · · · ,mr be the maximal ideals which contains a. Choose x0 6= 0 in
a and let m1, · · · ,mr+s be the maximal ideals which contains x0. Since mr+1, · · · ,mr+s do not contain
a, there exists xj ∈ a such that xj 6∈ mr+j for j ∈ [s]. Since each Ami is Noetherian for i ∈ [r], the
extension of a in Ami is finitely generated. Thus, there exists xs+1, · · · , xt in a whose image in Ami

generates the extension of a for all i ∈ [r]. Let a0 = (x0, · · · , xt). Then, a0 and a have the same
extension in Am, since, if m = mi for i ∈ [r], done. Otherwise, if i = r + 1, · · · , s, then ae0 = (1) = ae

since a and a0 an element outside of mi. For any other maximal ideal m, each a and a0 also has
an element in A − m, thus their extension is (1). Thus, extension of a and a0 are the same in the
localization by any maximal ideal. By Proposition 3.9, this implies a0 = a.
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10. In Exercise 2.6, M [x] ∼= M
⊗
A

A[x]. Notes that M and A[x] are Noetherian (by Hilbert basis theorem.)

Thus, M ⊕A[x] is Noetherian by Corollary 6.4. Since M
⊗
A

A[x] is homomorphic image of M ⊕A[x],

thus it gives an exact sequence

0→ ker(M ⊕A[x]→M
⊗
A

A[x])→M ⊕A[x]→M
⊗
A

A[x]→ 0.

By Proposition 6.3, this implies that M
⊗
A

A[x] is Noetherian.

11. Let A =
∏
n∈N Z/2Z. As we’ve seen in the proof of the Exercise 6.12, A is not Noetherian. Now let

p be an arbitrary prime ideal of A and think Ap. If x ∈ Ap, then x is of form (x0, · · · )/(y0, · · · ) with
y = (y0, · · · ) ∈ A− p. Also notes that x2 = x since (x2

0, · · · ) = (x0, · · · ) for any elements (x0, · · · ) in A.
Assume that x ∈ pAp. Then, still, x2−x = 0. This implies (x−1)x = 0 where 1 denotes multiplicative
identity of Ap. If x is nonzero, then (x− 1) must be zero since A is integral domain, thus localization
of it is also integral domain. This implies that there exists (z0, · · · ) ∈ A− p such that

(z0, · · · )(x0, · · · ) = (y0, · · · ).

However, since (x0, · · · ) is in p, this implies (y0, · · · ) ∈ p∩A− p, contradiction. Thus, pAp = 0. Thus,
any localization of A by prime ideal is actually a field. Therefore Ap is Noetherian.

12. By Exercise 3.16 condition i), aec = a for all ideal a of A. Thus, a 7→ ae is an injective map. Hence let
a1 ⊆ a2 ⊆ · · · be an ascending chain of ideal in A. Then, ae1 ⊆ ae2 ⊆ · · · is an ascending chain of ideal
in B, which must be stationary at some points. Thus, its contraction, which is the original ascending
chain in A, must be stationary from injectivity of the map a 7→ ae. Hence A is Noetherian.

13. By Exercise 3.21 iv), fibers of f∗ at p ∈ Spec(B) is Spec(k(p)
⊗
A

B) = Spec(Bp/pBp). Also, since f is

of finite type, B is finitely generated A-algebra, thus B is finitely generated f(A)-module. Since f(A)
is Noetherian by Proposition 7.1., B is also Noetherian by Proposition 7.2. Thus by Proposition 7.3,
Bp is Noetherian, therefore Bp/pBp is Noetherian by Proposition 6.6. By Exercise 6.8, Spec(Bp/pBp)
is Noetherian space.

(Or we can conclude that since Bp/pBp is a field, thus Noetherian, therefore Spec(Bp/pBp) is Noethe-
rian space.)

14. If fn ∈ a, then fn(V ) = {0} by construction of V . Therefore, fn ∈ I(V ), thus,r(a) ⊆ I(V ). Conversely,
let f 6∈ r(a). Then ∃p, a prime ideal containing a such that f 6∈ p by claim XIV. Let f be the image
of f in B = A/p. Let C = Bf = B[1/f ]. Let m be a maximal ideal of C. Since A is finitely generated
k-algebra, so does B, so does C and C/m. (Generators are image of t1, · · · , tn in C/m.) Proposition
7.9 implies that C/m ∼= k. Now let xi be image of ti in C/m. Then, f(x1, · · · , xn) 6= 0, since image
of f under the map A → B → C → k is exactly f(x1, · · · , xn), i.e., evaluation map. but since f is
converted to unit in C, so is f(x1, · · · , xn). However, (x1, · · · , xn) ∈ V since p contains r(a), therefore
the evaluation map gives zero for any polynomial in a.

15. i) =⇒ ii): By Proposition 2.19 iv), for any injective module map f : M →M ′, M
⊗
A

A→M ′
⊗
A

A is

just the same f , so A is flat A-module. And direct sum of flat module is flat by Exercise 2.4. So An

is flat for any n ∈ N.

ii) =⇒ iii): Proposition 2.19 iv) implies it.

iii) =⇒ iv): Since m
⊗
A

M → A
⊗
A

M is injective, this induces a short exact sequence

0→ m
⊗
A

M → A
⊗
A

M → A/m
⊗
A

M → 0.

Notes that TorA1 (A/m,M) := ker(m
⊗
A

M → A
⊗
A

M) = 0 by definition of Tor.
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iv) =⇒ i): Let x1, · · · , xn be elements of M whose image in M/mM form a k-basis of this vector
space. By Proposition 2.8, the xi generate M . Let F be a free A-module with basis e1, · · · , en and
define φ : F →M by φ(ei) = xi. Let E = ker(φ). Then, the exact sequence

0→ E → F →M → 0

gives us an exact sequences

0→ k
⊗
A

E → k
⊗
A

F
1⊗φ−−−→ k

⊗
A

M → 0.

Since k = A/mA, so k
⊗
A

F ∼= (A/mM)n and k
⊗
A

M ∼= (M/mM)n are vector space of the same

dimension over k = A/mA, it follows that 1⊗ φ is an isomorphism (since in this case 1⊗ φ is a vector
space map (as A/mA-module) thus surjectivity with the same dimension implies isomorphism.) Thus,
k
⊗
A

E is zero dimensional k-vector space, thus 0. Notes that F is finitely generated A-module, thus

F is Noetherian by Proposition 7.2. Thus, By Proposition 6.2, E is finitely generated since E is a
submodule of F . Also, A is local ring, thus m is Jacobson radical. And E/mE = 0 implies mE = E.
Thus By Proposition 2.6 (Nakayama’s lemma) E = 0. Thus, φ is isomorphism. Hence M is free.

16. i) =⇒ ii): Ap is a local ring and Noetherian by Corollary 7.4. Also, Mp is still finitely generated as
Ap-module, by identifying a generator x as x/1. Also, by Proposition 3.10, Mp is a flat Ap-module.
Hence, by Exercise 7.15, Mp is free Ap-module.

ii) =⇒ iii): Clear.

iii) =⇒ i): Free implies flat by Claim IX, and apply Proposition 3.10.

17. In a similar manner, define irreducible module; suppose N ⊆ M . Then N is irreducible module if
there are no two proper submodules of M whose intersection is N . In other words, if there are two
submodules L1, L2 whose intersection L1 ∩ L2 is M , then L1 = M or L2 = M .

Lemma 7.11-1. In a Noetherian module, every submodule is finite intersection of irreducible modules.

Proof. Suppose not. Then the set of submodules of N for which the lemma is false is not empty.
Also, every chain of submodule in the set is stationary by Noetherian property of N . Thus by Zorn’s
lemma, the set has a maximal element, say M . Thus, M is reducible; otherwise M itself is a finite
intersection of irreducilbe module. Thus, M = L1∩L2. Hence, each of L1 and L2 is a finite intersection
of irreducible ideals, by maximality of M . Therefore so is M , contradiction.

Lemma 7.12-1. In a Noetherian ring every irreducible module is primary.

Proof. By passing to the quotient module, it is enough to show that if the zero module is irreucible
then it is primary. (Notes that M is Noetherian, then the quotient is Noetherian by an exact sequence
0 → N → M → M/N → 0 and Proposition 6.3. ) Let x be a zero divisor of N such that xy = 0
for some nonzero y ∈ N. Then submodule 0 ⊆ AnnM (x) ⊆ AnnM (x2) · · · form an ascending chain.
By the a.c.c., this chain is stationary. We have AnnM (xn) = AnnM (xn+1) for some n ∈ N. Thus,
for any a ∈ A, x(ay) = a(xy) = 0. Also, if ay ∈ xnM , then ay = xnb for some b ∈ M . Hence,
xn+1b = x(xnb) = xay = 0. Thus, b ∈ AnnM (xn+1) = AnnM (xn). Therefore, ay = xnb = 0. This
implies that (y) ∩ xnM = 0. Since (0) is irreducible submodule and (y) 6= 0, this implies xnM = 0.
Thus, x is nilpotent. By definition in Exercise 4.21, this implies that zero module is primary.

18. i) =⇒ ii): By Exercise 7.17, zero module has a primary decomposition. Let N1 ∩ · · · ∩ Nk be an
irredundant primary decomposition. (We can get irredundant decomposition by get rid of redundant

one.) Then, without loss of generality, let p := rM (N1). let N c
1 =

⋂k
j 6=1Nj . It suffices to show that

p = Ann(x) for some x ∈ M . From irredundant condition, N c
1 6⊆ N1. Let y ∈ N c

1 \ N1. Since A is
Noetherian, and r(N1 : M) = p, by Proposition 7.14, there exists m ∈ N such that pm ⊆ (N1 : M).
Hence, for given y ∈M , there is m ∈ N such that pmy ⊆ N1. Suppose this m is the smallest one; i.e.,
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pm ⊆ (N1 : y) but pm−1 6⊆ (N1 : y). Then, x ∈ N1 \pm−1y, such that x = ay for some a ∈ pm−1. Since
y ∈ N c

1 , px ⊆ pmy ⊆ N1 ∩N c
1 = 0. Hence, p ⊆ AnnM (x).

Conversely, every elements in (N1 : x) is zero divisor of M/N1. Since N1 is primary, (N1 : x) is
subset of nilpotent on M/N1. Thus, (N1 : x) ⊆ p. Hence, AnnM (x) ⊇ (N1 : x). This implies
AnnM (x) = (N1 : x) since N1 contains zero module. Thus, p = AnnM (x), as desired.

ii) =⇒ iii): Notes that p = Ann(x) = ker(A → Ax) by definition of annihilator. Thus, A/p =
A/Ann(x) ∼= Ax ⊆M by the first isomorphism theorem.

iii) =⇒ ii): Let x 6= 0 ∈ N ∼= A/p, a submodule of M isomorphic to A/p. Now notes that ax = 0 if
and only if a ∈ p since x can be identified as a nonzero elements in A/p. Thus, AnnM (x) = p.

ii) =⇒ i): By Exercise 7.17, 0 is decomposable. By Theorem 4.5∗ which we proved in the Exercise
4.22, all prime belong to 0 are all prime ideals in the set {r(Ann(y)) : y ∈ M}. Since Ann(x) = p,
r(Ann(x)) = p. Hence, p belongs to 0.

For the last statement, start with the fact that 0 is decomposable by Exercise 7.17. Hence, fix a
prime ideal p belongs to 0, and take M1 be the submodule of M isomorphic to A/p. Now, for M/M1,
which is Noetherian by Prooposition 6.3 with 0 → M1 → M → M/M1 → 0, we can do the same
thing to have M2/M1 such that M2/M1

∼= A/p′ for some p′ prime ideal. Thus this gives an ascending
chain 0 ⊆ M1 ⊆ M2 ⊆ · · · . Since M is Noetherian, this chain stabilizes at some point, say n. We
claim that Mn = M . Otherwise, M/Mn is Noetherian by Proposition 6.3, thus 0 module in M/Mn

is decomposable, thus we can generate Mn+1 which is strictly greater than Mn in the same manner,
contradiction. Thus, Mn = M .

19. Since ideal is a module, it suffices to show that when N is a submodule of a Noetherian module M
with two minimal decompositions

N =

r⋂
i=1

Bi =

s⋂
j=1

Ci

then r = s and that rM (Bi) = rM (Ci) for all i (up to renumbering.)

If we assume the hint is true, then, let ji be the number in [s] such that

N = B1 ∩ · · · ∩Bi−1 ∩ Cji ∩Bi+1 ∩ · · · ∩Br.

Notes that this one is also an irreducible decomposition. (We don’t need minimality condition since the
hint holds without such assumption, as we will see below). If r < s, then by applying the hint r times,
we can get N =

⋂r
i=1 Cji . This implies that

⋂s
j=1 Ci is not a minimal decomposition, contradiction.

Thus, r ≥ s. Conversely, if r > s, then we can apply the hint to replacing Cis with Bjis. r > s
also lead us to get contradiction with minimality of

⋂r
i=1Bi. Thus, r = s. Then, by exercise 4.22,

{rM (Bi)}ri=1 = {rM (Ci)}ri=1. After suitable renumbering (it is possible since it is finitely many), we
may assume that rM (Bi) = rM (Ci).

To show the hint, let i ∈ [r] and let Bci :=
⋂s
j 6=k Bj . Then, define Nj = Bci∩Cj for all j = 1, · · · , s. Since

each Bj contains N ,
⋂s
j=1Nj = (

⋂s
j=1 Ci)∩Bci = N . Let πi : M → Bi the canonical projection. Then,

πi(
⋂s
j=1Nj) = πi(N) = 0 since N is submodule of Bi. Thus,

⋂s
j=1 πi(Nj) form a decomposition of

zero module in M/Bi. Moreover, since Bi is irreducible, zero module in M/Bi is irreducible; otherwise,
using 1-1 correspondence between submodules of M/Bi and submodules of M containing Bi, we can
show that Bi is reducible, contradiction. Hence, the decomposition

⋂s
j=1 πi(Nj) implies that ∃k such

that πi(Nk) = 0. This implies that Nk ⊆ Bi. Thus, Nk ⊆ N , which shows Nk = N by construction.
This is proof of hint.

20. (a) If E is a finite union of sets of the form U ∩C where U is open and C is closed, then E = U ∩C for
some open and closed set (since finite union of open is open and finite union of closed is closed)
and by definition U,C ∈ F , so is E since F is closed under finite intersection. Conversely, notes
that F contains all closed subsets, since it is closed under complement and has all open sets of
X. By intersecting with X, which is clopen, we regard that closed sets and open sets are of form
U ∩ C where U is open and C is closed. Now, all finite intersections of sets in F also of form
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U ∩C since (U1∩C1)∩ (U2∩C2) = (U1∩U2)∩ (C1∩C2), which is intersection of open and closed
sets. Thus, E should have a form U ∩ C.

(b) If E contains a nonempty open set, then by Exercise 1.19, the open subset is dense, so is E.
Conversely, suppose E is dense. Since E = U ∩C, this implies X = U ∩ C. From the definition of
closed set, C = C. By exercise 1.19, U = X. Thus, U ∩ C ⊆ U ∩ C = X ∩ C = C. This implies
U ⊆ X = C, thus E = U ∩ C = U , hence E contains a nonempty open set.

21. Suppose E 6∈ F . Then, E ∩ X = E. Thus, if we let Σ be collection of closed sets C such that
C ∩ E 6∈ F , then X ∈ Σ. By definition of Noetherian space, Σ has a minimal element, say X0.

We claim that X0 is irreducible. By claim II, it suffices to show that any two proper closed set of X0

cover it. If C1, C2 are proper closed set cover X0, then (E∩C0), (E∩C1) ∈ F , thus (E∩C0)∩(E∩C1) =
E ∩X0 ∈ F , contradiction. Thus X0 is irreducible.

If E ∩X0 ( X0, then by minimality of X0, E ∩ E ∩X0 ∈ F . However, we claim that E ∩ E ∩X0 =
E ∩X0. Notes that E ∩ E ∩X0 ⊇ E ∩X0 is clear. Let x ∈ E ∩ E ∩X0. Then, x ∈ E, so we need to
show that x ∈ X0. Since x ∈ E ∩ x0, every open neighborhood U of x contains an element y ∈ E ∩X0.
This implies that U meets X0 for every open neighborhood U . Thus, x ∈ X0. Since x is already in E,
x ∈ E ∩X0 = E ∩X0 since X0 is closed set. Therefore, E ∩X0 = E ∩E ∩X0 ∈ F gives contradiction.

On the other hand, assume that E ∩ X0 contains a nonempty open subset of X0, say U0 = U ∩ X0,
for some open set U of X. Then, U0 ∈ F by construction, and U c ∩ X0 contains E ∩ X0 \ U0 =
E ∩X0∩U c0 = E ∩X0∩ (U ∩X0)c = E ∩X0∩ (U c∪Xc

0) = E ∩X0∩U c. (Also notes that U c∩X0 ∈ F
since it is closed.) This implies that

E ∩X0 = U0 ∪ (E ∩X0 \ U0) = (U ∩X0) ∪ (E ∩X0 ∩ U c).

By Exercise 7.20 i), E ∩X0 is finite union of sets of form U ∩ C, thus E ∩X0 ∈ F , contradiction.

Thus by contrapositive, if RHS holds then E ∈ F .

Conversely, if E ∈ F , then either E contains a nonempty open set of X0 or E is not dense in X0, by
Exercise 7.20 ii). This is just restatement of RHS.

22. If E is open in X, then E ∩X0 is open in X0. Thus, by Exercise 1.19, either E ∩X0 is empty or dense
in X0. Convesely, suppose that E is not open. Then, E ∩X = E is not open. Let Σ be collection of
closed set C such that E ∩ C is not open in C. Since Σ is nonempty, and X is Noetherian, there is
a minimal element, say X0. Moreover, by the same argument as in the proof of Exercise 7.21, X0 is
irreducible. Notes that E ∩X0 6= ∅ since ∅ is open in X0. Suppose that E ∩X0 contains a nonempty
open subset U0 = U ∩X0 of X0 for some open set U of X. Let C0 = X0 − U0 = U c0 ∩X0 = U c ∩X0.
Then, C0 ∩E is open in C by minimality of X0. Hence, C0 ∩E = U1 ∩C0 = U1 for some open set U1

of X. Then,

E∩X0 = (U0∩E∩X0)∪(C0∩E) = (U0∩X0)∪(U1∩U c∩X0) = (U0∪U1∩U c)∩X0 = (U0∩U1∪U0∩U c)∩X0 = U0∩U1∩X0.

Thus, E ∩X0 is open in X0, contradiction.

23. By Exercise 7.20, it suffices to take E = U ∩C where U is open and C is closed in Y . Then C = V (a)
for some radical ideal a, thus, by replacing B with B/a, using the homeomophism ( Exercise 1.21 iv)
)Spec(B/a) ∼= V (a) and homomorphism A → B → B/a, we may assume that E is open in Y . Notes
that Y is Noetherian by Corollary 7.7. Hence, E is quasi-compact by Exercise 6.6. Thus E is covered
by finite union of basic open sets Yg for some g ∈ B. By Exercise 3.21, Yg is homeomorphic to Spec(Bg).
Thus, E is covered by finite union of basic open sets of the form Spec(Bg). If we show that each image
of Yg is constructible, then image of E is constructible since Im(E) = Im(Yg ∪ · · · ) = Im(Yg)∪ · · · , and
collection of constructible sets are closed under finite union. Thus, we can just assume that E = Y ,
by replacing B with Bg using A→ B → Bg.

Let X0 be an irreducible closed subset of X such that f∗(Y ) ∩ X0 is dense in X0. (If f∗(Y ) ∩ X0

is not dense in X0, then nothing to prove since it is a condition in Exercise 7.21.) By Exercise 1.20,
X0 = V (p) ∼= Spec(A/p) for some minimal prime p in X. Then, f∗(Y ) ∩ X0 = f∗(f∗−1(X0)); to
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see this, let p′ ∈ f∗(Y ) ∩ X0. Then, ∃q ∈ Y such that fq ∈ X0. Thus, q ∈ f∗−1(X0), therefore
p′ ∈ f∗(f∗−1(X0)). Conversely, if p′ ∈ f∗(f∗−1(X0)), then p′ ∈ X0. Also, p′ is in the image of Y , thus
p′ ∈ f∗(Y ) ∩X0.

Moreover,

f∗−1(X0) = f∗−1(V (p)) =︸︷︷︸
Exercise1.21ii)

V (pe) =︸︷︷︸
Exercise1.21iv)

Spec(B/pe) ∼= Spec(A/p
⊗
A

B)

(To see last equality, notes that a(1 ⊗ 1) ∈ A/p
⊗
A

B is equal to (a ⊗ 1) and (1 ⊗ f(a)). Thus, a ∈ p

iff a(1 ⊗ 1) = 0 iff (1 ⊗ f(a)) = 0. Also, if b ∈ pe, then b =
∑n
j=1 bif(ai) for all ai ∈ p, thus

1⊗ bif(ai) = ai(1⊗ bi) = (ai ⊗ bi) = (0⊗ bi) = 0. This shows the equality.

From this equality, we can see that the restriction of f as f : A/p → A/p
⊗
A

B ∼= B/p which induces

f∗ : Spec(A/p
⊗
A

B) = V (pe) → V (p) = Spec(A/p). Since f∗(Spec(A/p
⊗
A

B)) = f∗(f∗−1(X0)) =

f∗(Y ) ∩X0 is dense by assumption, Exercise 1.21 v) says that ker(f) ⊆ R, a nilradical. Since A/p is
integral domain, this implies R = 0, thus f is injective. map.

Now we replace A with A/p, and B with B/pe. Then, we just assume that f : A → B is injective
and A is integral domain. If Y1, · · · , Yn are irreducible components of Y , it is enough to show that
some f∗(Yi) contains a nonempty open sets in X, to use criterion in Exercise 7.21. Since X is assumed
to be X0, which is irreducible, and f∗(Y ) is assumed to be dense in X = X0. Thus, X = f∗(Y ) =⋃n
j=1 f

∗(Yj) =
⋃n
j=1 f

∗(Yj) since it is closure of finite union. Since X is irreducible, there is a fixed j

such that f∗(Yj) = X, thus f∗(Yj) is dense in X. Hence, by applying Exercise 1.21 with the fact that
Yj = V (b) for some minimal prime of B (from Exercise 1.20), we can think that A→ B → B/b is still
injective. Thus, by replacing B with B/b (thus Y with Yj), we may assume that B is integral domain
and f is injective. Now it suffices to show that f∗(Y ) contains an open subset of X.

Since A,B are integral domain, and B is finitely generated A-algebra, (from f is of finite type,) thus
B is finitely generated f(A)-algebra. Thus, by replacing A with f(A), A can be regarded as a subring
of B. Then, we can use Exercise 5.21 to assume that there is s 6= 0 in A such that g : A → Ω is
a homeomorphism for which f(s) 6= 0, then g can be extended to a homomorphism B → Ω, for any
algebraically closed field Ω. Now let p be a prime ideal not containing s. (Such prime ideal exists,
since nilradical as a intersection of all prime ideal is zero in the integral domain.) Then we have a map
g : A→ A/p→ k(p)→ Ω where k(p) is a field of fraction of A/p and Ω is algebraically closure of k(p).
Then, since g(s) 6= 0, by the Exercise 5.21, this g can be extended to B → Ω. Let q = ker(B → Ω).
Then, q∩A = p since it is just restriction of B → Ω over A. Thus, p ∈ f∗(Y ), as an image of q. Thus,
Xs ⊆ f∗(Y ). Done.

Hence, for any irreducible closed set X0 of X, f∗(E)∩X0 is not dense, or if it is dense, then it contain
an open set. Therefore, Exercise 7.21 shows that f∗(E) is constructible.

24. If f∗ is open map, then Exercise 5.10 says it has going down property. Conversely, suppose f has
the going-down property. Let Ys be a basic open set of Y for some s ∈ B. Then, Ys ∼= Spec(Bs) by
Exercise 3.21. Hence, by replacing B with Bs, we may assume that E = f∗(Y ) is open in X. By the
going down property, if p is prime ideal of B such that p ∩ f(A) = q and q ⊇ q′, then there exists
p′ ∈ Spec(B) such that p ⊇ p′ and p′ ∩ f(A) = q′. In other words, if q ∈ E = f∗(Y ) such that q ⊆ q′,
then q′ ∈ E.

Now, to use Exercise 7.22, let X0 be arbitrary irreducible closed subset of X and X0 meets E. Then,
if q ∈ E ∩ X0 then every prime ideal contained in q lies in E by going down property. By Exercise
1.20 iv), X0 = V (p) for some minimal prime p of X. This shows that q contains p, thus p ∈ E ∩X0.
Moreover, {p} = X0 by Exercise 1.18 ii). Thus, X0 ⊇ E ∩X0 ⊇ V (p) = X0 implies E ∩X0 is dense
in X0. Since E = f∗(Y ) is constructible by Exercise 7.23, and X0 is closed thus constructible, so is
E ∩X0. By Exercise 7.20 ii), since E ∩X0 is constructible and dense in X0, E ∩X0 should contain a
nonempty open set of X0. Thus, by Exercise 7.22, E is open.
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25. By Exercise 5.11, f has going down property. By Exercise 7.24, f∗ is open map.

26. In modern notation, let M be a module, and (M) be a isomorphism classes of module M , and C(A) =
ZF (A). D(A) is a subgroup generated by {(M ′)− (M) + (M ′′) : 0→M ′ →M →M ′′ → 0 is exact}.
K(A) = C(A)/D(A). γ(M) = (M) +D in K(A).

(a) Let λ : C(A) → G. Then, if 0 → M ′ → M → M ′′ → 0 is exact sequence, then λ(M) =
λ(M ′) + λ(M ′′), i.e.,

λ(M ′)− λ(M) + λ(M ′′) = 0.

Thus, λ sends D(A) to 0. Thus, define λ0(γ(M)) = λ(M). It is well-defined since λ(D(A)) = 0.
And this is unique; if there is λ′0 such that λ(M) = λ′0(γ(M)), then λ0 agrees with λ′0 for all
γ(M). However, these are all elements of K(A). Thus, λ0 = λ′0.

(b) From Exercise 7.18, for any fixed M , there exists a chain 0 ( M1 ( · · · ( Mn = M such
that Mi/Mi−1

∼= A/pi. Thus, 0 → Mi−1 → Mi → A/pi → 0 is a short exact sequence. And

M1
∼= A/p1. Thus, Mi =

⊕i
j=1A/pj . Therefore, K(A) is generated by γ(A/p) for all prime ideal

p.

(c) If A is a PID, then for any principal ideal (a) with a 6= 0, we have 0 → A → A → A/(a) → 0
where A → A is sending x to ax. This implies γ(A) − γ(A) + γ(A/(a)) = 0, thus γ(A/(a)) = 0
for all a 6= 0. Thus, the only nonzero elements of generators of K(A) is γ(A/(0)) = γ(A) since (0)
is prime in the Noetherian ring. (PID is Noetherian; since every submodule (ideals) are finitely
generated.). Thus, K(A) is an abelian group generated by a single element γ(A). Now from the
structure theorem of PID, An is not the same as direct sum of A/(a) for any ideal (a). Hence,
γ(An) is nonzero. Thus, K(A) is infinite cyclic group generated by γ(A), which is isomorphic to
Z.

(d) Notes that every finitely generated B-module is finitely generated A-module; let M be generated
by x1, · · · , xn and B is generated by y1, · · · , ym as A-module. (That’s the meaning of f is finite.)
Then, M = {

∑n
i=1 bimi : bi ∈ B} = {

∑m
i=1

∑n
j=1 aiyixj : ai ∈ A}. Thus M is finitely generated

by xiyj , (i, j) ∈ [n]× [m].

Also, if 0→M ′ →M →M ′′ → 0 is an exact sequence of finitely generated B-modules, then it is
also exact sequence of finitely generated A-modules, since such a change of view doesn’t change
each maps, especially kernel and images. Thus, if we let ι : F (B) → F (A), then this induces a
map γA ◦ ι : F (B)→ F (A)→ K(A). Hence, by the universal property of i), ∃f! : K(B)→ K(A)
such that f!(γB(N) = γA ◦ ι(N) for any B-module ismorphism classes (N). If g : B → C is
another finite ring homomorphism, then by this argument, we have g! : K(C)→ K(B) such that
g!(γC(N)) = γB(N). Hence, f! ◦ g!(γC(N)) = γA(N). Conversely, if we construct (g ◦ f)!, then
(g ◦ f)!(γC(N) = γA(N). Thus, f! ◦ g! and (g ◦ f)! agrees on all γC(N) for all N . Since those are
all elements of K(C), f! ◦ g! = (g ◦ f)!.

27. (a) Assume that we already give an free abelian group structure on F1(A). First of all, if M is
generated by xi for i ∈ [n] and N is generated by yj for j ∈ [m], then M

⊗
A

N is generated

by xi ⊗ yj for (i, j) ∈ [n] × [m]. Thus, M
⊗
A

N is finitely generated. Moreover, by Exercise

2.8.i), M
⊗
A

N is flat if M,N are flat. Moreover, if M ∼= M ′, N ∼= N ′ then M
⊗
A

N ∼= M ′
⊗
A

N ′ by

[3][p.27]. Hence, we can define tensor product of isomorphism classes as well. Since it is associative
and binary, F1(A) with tensor product is a multiplicative monoid, since it has identity (A) as a
flat module. (We already know that direct sum of flat module is flat; see Exercise 2.4.) Also,
since tensor product of flat module over an exact sequence is still exact. This gives a distribution
law on F1(A).Thus, F1(A) is abelian group with respect to addition (direct sum), multiplication
by tensor product is associative and distributive over addition, and commutative by Propostion
2.14 i), and it has multiplicative identity (A). Hence, F1(A) is a commutative ring. Moreover,
D1(A) is ideal; since for any generator of D1(A), say 0 → M → N → L → 0 exact, tensor with
any flat module over this exact sequence is still exact (thus in the generator of D1), thus again it
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is element of D1(A). Moreover, D1(A) has already abelian group structure inherited from original
definition. Hence, D1(A) is ideal of F1(A). Thus, K1 = F1(A)/D1(A) is also a commutative ring.

Notes that we can do the same thing on F (A) and K(A), thus K(A) is a commutative ring
containing K1(A) as a subring.

(b) Notes that tensor product is distributive over direct sum, and it is associative, and tensor with
identity doesn’t change anything. Thus, it satisfies module axioms. Thus K(A) is K1(A)-module
by tensoring.

(c) Suppose A is local ring. Then, by Exercise 7.15, every flat module is free. Thus, F1(A) is a set
of all free modules over A. Thus, F1(A) is an infinite cyclic group generated by the isomorphism
class (A). Thus, F1(A) ∼= Z.

(d) By Exercise 2.20 [3][p.29], if M is flat and finitely generated A-module, then B
⊗
A

M is flat and

finitely generated B-module. Thus, we can define a map g : F (A) → F (B) by sending M to
B
⊗
A

M . (It is well-defined since isomorphism is preserved under tensor.) Moreover,

Claim XLIX. B
⊗
A

(−) preserves exact sequence

Proof. To see this, notes that if f : N → M is injective as an A-module map, then B
⊗
A

N →

B
⊗
A

M is injective; to see this, let b⊗ n in the kernel. Then, b = 0 or f(n) = 0, i.e., n = 0 since

f is injective. Thus, ker(B
⊗
A

N → B
⊗
A

M) = 0
⊗
A

N ∪ B
⊗
A

0 = {0 ⊗ 0} by definition of tensor

product. Also, surjectivity is preserved; let f : N →M be a surjective map. Then, for any b⊗m
in B

⊗
A

M , from surjectivity of f , ∃n ∈ N such that f(n) = M , hence 1⊗ f(b⊗ n) = b⊗m.

Now let 0→ N
f−→M

g−→ L→ 0 is an exact sequence. Then, 1⊗g◦1⊗f(b⊗n) = 1⊗g(b⊗f(n)) = b⊗
g(f(n)) = b⊗0 = 0. Thus, ker 1⊗g ⊇ Im 1⊗f . Conversely, let b⊗m ∈ ker 1⊗g. Then, b⊗g(m) = 0.
This implies b = 0 or m ∈ ker g. If b = 0, then for any n ∈ N, 1 ⊗ f(0 ⊗ n) = 0 ⊗ f(n) = 0 ⊗m
since both are identified with 0(0⊗ f(n)) = 0⊗ 0 = 0(0⊗m). If b 6= 0, then m ∈ ker(g) = Im f ,
thus ∃n ∈ N such that f(n) = m, therefore 1⊗ g(b⊗m) = b⊗ g(m) = b⊗ g(f(n)) = b⊗ 0 = 0.
Hence, ker 1⊗ g ⊆ Im 1⊗ f , done.

Thus, γB ◦ g is additive map. Therefore, γB ◦ g : F (A) → F (B) → K(B) induces a map
f ! : K(A)→ K(B) by the universal property in Exercise 7.26 i) such that

f ! ◦ γA(M) = γB ◦ g(M).

If h : B → C is another ring homomorphism with C is Noetherian, then we have a map h! :
K(B)→ K(A) such that h! ◦γB(M) = γC(C

⊗
B

M). Thus, h! ◦f !(γA(M)) = h!(γB ◦ (B
⊗
A

M)) =

γC(C
⊗
B

(B
⊗
A

M)). Now, by apply this universal property on h ◦ f , we get

(h ◦ f)! ◦ γA(M) = γC ◦ C
⊗
A

M.

Now, notes that C
⊗
B

(B
⊗
A

M) ∼=︸︷︷︸
Exercise2.15

(C
⊗
B

B)
⊗
A

M ∼= C
⊗
A

M. Thus, (h ◦ f)! = h! ◦ f !.

(e) Since f is finite ring homomophism, Exercise 7.26 iv) gives f!. Then, let γA(M) ∈ K1(A), γB(N) ∈
K(B). Then, f !(γA(M)) = γB(B

⊗
A

M), Now by defined in ii), f !(γA(M))γB(N) = γB(B
⊗
A

M)γB(N) =

γB((B
⊗
A

M)
⊗
B

N). Thus,

f!(f
!(γA(M))γB(N)) = f!(γB((B

⊗
A

M)
⊗
B

N)) = γA(B
⊗
A

M)
⊗
B

N).
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where (B
⊗
A

M)
⊗
B

N is regarded as an A-module. Also,

γA(M)f!(γB(N)) = γA(M)γA(N) = γA(M
⊗
A

N)

by regarding N as an A-module. Now notes that

(B
⊗
A

M)
⊗
B

N =︸︷︷︸
Proposition 2.14 i)

(M
⊗
A

B)
⊗
B

N =︸︷︷︸
Exercise 2.15

M
⊗
A

(B
⊗
B

N) = M
⊗
A

N

by regarding N as an A-module. Thus, f!(f
!(γA(M))γB(N)) = γA(M)f!(γB(N)) as desired.

In other words, regarding K(B) as a K1(A) module by restriction of scalars, the homomorphism
f! : K(B) → K(A) is a K1(A)-module homomorphism. (The above equation is just showing a
condition of module map, by acting K1(A) on K(B) via f !.)

8 Artin Rings

1. For fixed i, Proposition 7.14 implies that ∃ri ∈ N such that prii ⊆ qi. Then, by Theorem 4.12∗ 6,

p
(ri)
i =︸︷︷︸

Definition

Spi(p
ri
i ) ⊆︸︷︷︸

Theorem 4.12∗, 6

Spi(qi) =︸︷︷︸
Theorem 4.12∗, 3

qi

where Theorem 4.12∗ in [4].

Suppose qi is an isolated primary component. Then pi is a minimal prime. Notes that Api is a
Noetherian local ring by Proposition 7.3. By Corollary 3.13, piApi is also minimal. Since m := piApi

is maximal by construction, this implies that Api has only one prime ideal and Noetherian. Thus, by
Theorem 8.5, Api is Artinian. Moreover, m is both nilradical and Jacobson radical. By Proposition
8.4, m is nilpotent. This implies that ∃r ∈ N such that mr = 0.

Honestly, I don’t know how mr = 0 implies qi = p
(r)
i for all large r. Instead, I refer [4]. Notes that

p(ri)∩
⋂
j 6=i qj ⊆

⋂n
j=1 qj = 0 is another primary decomposition of 0 since p(ri) is p-primary by Exercise

4.13 i). By Corollary 4.11, isolated primary component is unique; thus p(ri) = qi. (It holds for all
r > ri.)

Instead, if qi is an embedded primary component, then pi is not a minimal prime ideal, thus piApi

contains a prime ideal of Api by Corollary 3.13. Thus, Api is not Artinian, but Noetherian local ring.
By Proposition 8.6, (piApi)

r are all distinct. Thus, its contraction pi)
(r) are all distinct. Hence in

the given primary decomposition, since pi)
(r) ⊆ qi for all r ≥ ri, we can replace qi by any of the

infinite set of pi-primary ideals pi)
(r) where r ≥ ri, and so there are infinitely many minimal primary

decompositions of 0 which differ only in the pi-components.

2. i) =⇒ ii): A has only finitely many prime ideals which are all maximal by Proposition 8.1, 8.3.
This implies Spec(A) is finite. Also, it implies that all singleton in Spec(A) is closed. Hence, each
singleton is open because Spec(A) minus one element is a finite union of closed sets so closed, hence
its complement, which is a singleton, is open. Thus, Spec(A) has discrete topology.

ii) =⇒ iii): Clear.

iii) =⇒ i): In this case, A is Noetherian ring where every prime ideal is maximal. Thus, dimA = 0.
Hence, by Theorem 8.5, A is Artinian.

3. By Theorem 8.7, A is product of Artin local ring. For each component B of the product, A→ B is a
projection map, thus by sending generator of A as an k-algebra, we can conlude that B is also finitely
generated k-algebra. Thus, if we show this statement for all Artin local ring, then, A itself is a finite
k-algebra since it is product of finite k-algebra, thus again finite. (Generator of A as finitely generated
k-module is just collection of generators of all components of the product.)
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Thus, assume A is Artin local ring. Then, it has the maximal ideal m, thus A/m is a field, which
is finitely generated over k (by sending generators of A as k-algebra to A/m. By Corollary 7.10,
A/m is a finite algebraic extension of k, i.e., dimk(A/m) < ∞. Notes that A is Artinian by given
condition i), and Noetherian since it is finitely generated k-algebra and Corollary 7.7. Thus, A is
Noetherian A-module, hence by Exercise 7.18 iii), there is a chain of submodules 0 = M0 ( M1 (
· · · ( Mr = m such that Mi/Mi−1

∼= A/pi for some prime ideal pi of A. Since A is Artin local ring,
all pi = m. Hence, 0 → Mi → Mi+1 → A/m → 0 is exact sequence. Thus, as a k-module (i.e.
k-vector space), these are still exact since A-module map can be viewed as a k-linear transform. Thus,
dimkMi + dimk(A/m) = dimkMi+1. Thus, dimk m = dimMr = r dimk(A/m) < ∞. Lastly, we have
an exact sequence 0 → m → A → A/m → 0, and this also can be viewed as k-module exactness,
therefore dimk A = dimk m + dimk(A/m) = (r + 1) dimk(A/m) <∞. Hence A is finite k-algebra.

ii) =⇒ i): Since A is finite k-algebra, A is finitely generated k-module, i.e., k-vector space. Thus, by
Proposition 6.10 iv) A satisfy d.c.c. thus Artinian.

4. i) =⇒ iii) =⇒ ii): By Exercise 3.21 iv), for each p ∈ Spec(A), f∗−1(p) ∼= Spec(Bp/pBp) =
Spec(k(p)

⊗
A

B). Since i) impliesB is a finitely generated as anA-module, assume thatB = {
∑n
i=1 aibi :

ai ∈ A}. Then, every element in k(p)
⊗
A

B is of form
∑n
j=1 ki ⊗ aibi =

∑n
j=1 aiki ⊗ bi =

∑n
j=1 k

′
i ⊗ bi.

Thus, k(p)
⊗
A

B is a finitely generated k(p)-algebra, and dimension as a k(p)-vector space is n.

(In detail, first of all, generate k(p)n and give a map sending bi to ei in k(p)n, where {ei}is the
standard basis of k(p)n. This is k(p)-vector space map since it preserves scalar multiple (over k(p))
and summation. Moreover, it is surjective, hence injective as a vector space. Thus, it is isomorphic as a
k(p)-module. Also, multiple in this ring is defined as (k⊗b)·(k′⊗b) = kk′⊗bb′ as in [3][p.30]. And since
B is an algebra, we have bibj =

∑n
k=1 aijkbk for some aijk ∈ A. Thus, for any k ∈ k(p), k′⊗bi, k′′⊗bj ∈

k(p)
⊗
A

B,

k((k′ ⊗ bi) · (k′′ ⊗ bj)) =k(

n∑
l=1

k′k′′aijl ⊗ bl) = kk′k′′
n∑
l=1

aijl ⊗ bl.

(k(k′ ⊗ bi)) · (k′′ ⊗ bj) =(

n∑
l=1

kk′k′′aijl ⊗ bl) = kk′k′′
n∑
l=1

aijl ⊗ bl.

(k′ ⊗ bi) · (k(k′′ ⊗ bj)) =(

n∑
l=1

kk′k′′aijl ⊗ bl) = kk′k′′
n∑
l=1

aijl ⊗ bl.

Thus, multiple is k(p)-bilinear. Therefore, k(p)
⊗
A

B is a finite k-algebra, which is iii); Exercise 8.3

implies that k(p)
⊗
A

B is Artinian. Exercise 8.2 implies that Spec(k(p)
⊗
A

B) is discrete. Thus f∗−1(p) ∼=

Spec(Bp/pBp) = Spec(k(p)
⊗
A

B) is discrete, which is ii);

iii) =⇒ ii): By Exercise 3.21 iv), Spec(B
⊗
A

k(p)) ∼= f∗−1(p). By the same argument using Exercise

8.3 and 8.2, it is discret subspace of Spec(B).

iii) =⇒ iv): By Exercise 3.21 iv), Spec(B
⊗
A

k(p)) ∼= f∗−1(p). By iii), we know that B
⊗
A

k(p) is a

finite k(p)-algebra. Hence, by Exercise 3), B
⊗
A

k(p) is Artinian. By Exercise 2 ii), Spec(B
⊗
A

k(p)) is

finite.

For the last question, since f may not be a finite type, we cannot use the Remark in [3][p.60] (In this
case, f is of finite, thus fibres of f∗ are finite by this Exercise.) For the counterexample if f is not
a finite type, I refer [4]; let k be a field which is not algebraically closed, and think k, an algebraic
closure of k. Then, f : k → k is a canonical injection. Which leads to f∗ : Spec(k) → Spec(k). Since
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Spec(k) and Spec(k) are both singleton, thus they are finite, and f∗ is also finite map. (It maps zero
to zero, since f−1(0) = (0) because f is injection.) However, f is not finite, i.e., k is not finitely
generated k-vector space unless dimk(k) < ∞. And as you can see, if k = R, then k = C, which is
2-dimensional R-vector space, thus it is finite. However, if k = Q, then Q is not finite Q-vector space,
since [Q : n

√
2] = n for any n ∈ N and Q contains n

√
2 for any n ∈ N. It holds for Fp,Qp, k(t) where t

is transcendental element, and so on.

5. From Exercise 5.16, there is a linear map π : kn → kr such that π|X : X → L is surjective, where X is an
affine variety of kn and L = kr as a subspace of kn (thus r < n.) Let B be a coordinate ring of L, which
is isomorphic to k[y1, · · · , yr] by conclusion of Exercise 5.16. Then the lemma says that A is integral
over B, and the map φ : B → A is given by f 7→ f ◦ π|X . Thus, we have φ∗ : Spec(A) → Spec(B).
Now for given l ∈ L, ml is the maximal ideal in B consisting of all regular functions which are zero at
l, whose existence was shown in the Exercise 1.27. Then, think φ∗−1(ml); Suppose that p ∈ Spec(A)
is in φ∗−1(ml). Then for any f ∈ p, φ(f) ∈ ml, which implies f ◦ π|X ∈ ml, which implies that for
any x ∈ X such that π|X(x) = l, f ◦ π|X(x) = 0. This implies that f ∈ mx for all x ∈ π|−1

X (l). Thus,
definitely, mx ∈ φ∗−1(ml) for all x ∈ π|−1

X (l). Thus, it suffices to show that the fibres of φ∗ is finite;
in that case φ∗−1(ml) is finite for any l, thus there are only finitely many x ∈ X such that π|X(x) = l
(otherwise, φ∗−1(ml) contains infinitely many mxs, contradiction.) To use the Exercise 8.4, we need
to show that φ : B → A is a finite map, i.e., we should show that φ makes A be a finitely generated
B-algebra.

And, since A is integral over B, and if we identify B with φ(B), a subring of A, then B[xi : i =
1, · · · , n] = A. To see this, notes that A is still finitely generated as a k-algebra over xis, and B
still contains k in its subring. Thus, A is a finitely generated B-module by Corollary 5.2, since A is
integral over B implies xi is integral over B. Thus, φ : B → A is finite since A is finitely generated
f(B)-algebra, which means just A is a finitely generated B algebra, since we define A as a B module
acting by multiplication through f(B). Hence, by Exercise 8.4, fibers of φ∗ are finite. Thus, π|−1

X (l) is
finite.

To see that maxl∈L π|−1
X (l) is bounded, notes that A = B[xi : i = 1, · · · , n]. Then, for any p ∈ Spec(B),

Exercise 3.21 iv) shows that Spec(A
⊗
B

k(p)) ∼= φ∗−1(p). Since A is finitely generated by xi, i = 1, · · · , n,

as we’ve shown in the proof of Exercise 8.4 i) =⇒ iii) =⇒ ii), dimk(p)A
⊗
B

k(p) = n. Now

Exercise 8.3. implies that A
⊗
B

k(p) is Artinian, thus Exercise 8.2 ii) implies that Spec(A
⊗
B

k(p)) is

discrete and finite. Thus, let Spec(A
⊗
B

k(p)) = {mi}mi=1 for some m ∈ N. Since every prime ideals

in this set is maximal, they are coprime, therefore, A
⊗
B

k(p) →
∏m
i=1(A

⊗
B

k(p))/mi is a surjective

ring homomorphism by Proposition 1.10. Since A
⊗
B

k(p) is finite k(p)-algebra, so is (A
⊗
B

k(p))/p by

sending generators of A
⊗
B

k(p), hence (A
⊗
B

k(p))/p is a k(p)-vector space, as (A
⊗
B

k(p))/p is a k(p)-

vector space. Since the surjective ring homomorphism A
⊗
B

k(p)→
∏m
i=1(A

⊗
B

k(p))/mi is definitely a

k(p)-algebra map therefore a k(p) module map. This implies that the surjective map is actually k(p)-
linear map, therefore surjectivity implies that dimk(

∏m
i=1(A

⊗
B

k(p))/mi) ≤ n. Since A
⊗
B

k(p))/mi is

nonzero vector space, m is at most n. This shows that |Spec(A
⊗
B

k(p))| ≤ n, as desired. Thus all

fibres of φ∗ is bounded.

6. Let q = a1 ⊆ · · · ⊆ an = p be a chain of primary ideal. By taking radical on the chain we assume
that each ai are p-primary. By Noetherian condition, n < ∞. Now to see such chain is bounded,
suppose that for each n ∈ N there is a chain q = an1 ⊆ · · · ⊆ ann = p. Then, for any two chain
q = an1 ⊆ · · · ⊆ ann = p and q = am1 ⊆ · · · ⊆ amm = p, we can make a chain by intersection, such as

q = am1 ∩ an1 ⊆ am1 ∩ an2 · · · am1 ∩ ann ⊆ am2 ∩ an2 ⊆ · · · amm ∩ nn = p.
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This new chain contain the original length n chain and m chain, thus has length at least m-chain. Thus,
we can assume that the original length n chain can be extended to length m-chain for any m ∈ N.
Thus, by this construction we can make a infinite chain by intersecting all such length n chain with
n ∈ N, contradiction. Thus, the length of chain must be bounded.

Now, if we have a maximal chain C which is not the greatest length, then by above intersection with
a chain with the greatest length chain, we can refine the C having length n, as the above argument
shows, which is the contradiction of maximality. Thus, all maximal chains have the same length.

(I think [4]’s proof is a little bit suspicious since we don’t know whether primary ideals of A are 1-1
corresponds to primary ideals of (A/q)p/q; at least Proposition 3.9 doesn’t say anything on that matter,
and neither do other propositions in Section 3.)

9 Discrete Valuation Rings and Dedekind Domains

In [3][p.94], if a 6= 0 is an ideal in A, there is a least integer k such that v(x) = k for some x ∈ a. By
surjectivity of valuation map, ∃x1 ∈ A such that v(x1) = 1. Thus, v(xxn1 ) = k+n. Now, for any y ∈ A such
that v(y) = k+ n with k ≥ 0, (y) = (xx1) by the previous paragraph of [3]. Hence, y ∈ a. This implies that
the only ideals 6= 0 in A are the ideals mk = {y ∈ A : v(y) ≥ k}.

In the proof of Proposition 9.2, notes that given condition implies (A) in [3][p.95] since Noetherian local
dimension 1 ring has (0) as its prime ideal, thus all nonzero prime ideals are maximal, and locality implies
that there is only one nonzero prime ideal. And since Noetherian, a minimal primary decomposition of a
consists of only one ideal which is m-primary, thus a is m-primary. For (B) see that otherwise A is Artinian
by Proposition 8.6. Theorem 8.5 says that dimA = 0, contradicting assumption that dimA = 1.

In the proof of ii) to iii) of Proposition 9.2, if x−1m ⊆ m, then AnnA[x−1](m) = 0. To see this, notes that
Am = m implies AnnA[x−1](m)∩A = 0. Also, x−1m 6= 0 since x−1 = b/a thus ax−1 = b 6= 0. (Otherwise b ∈
(a).) Thus m is a faithful A[x−1]-module. And it is finitely generated as an A-module since A is Noetherian.
However, x−1m ⊆ A; to see this, since b ∈ mn−1, bm ⊆ mn ⊆ a. Thus, b/am ⊆ 1/amn ⊆ 1/a(a) ⊆ A.

In the proof of iii) to iv) of Proposition 9.2, if m = (x), then x is still a generator of m/m2. Thus, it form
a basis by Converse of Proposition 2.8. And this converse holds since x still generates M/mM = m/m2, thus
any element in m/m2 is of form ax for any a ∈ A/m, thus m/m2 is a vector space generated by a basis {x}.
If x = 0 then it is 0 dimensional. However, by (B), it is nonzero; thus dimk m/m

2 = 1.
In the proof of iv) to v) of Proposition 9.2, by iv), m is principal, by Proposition 2.8. Thus let m = (b).

Suppose n is the least integer such that a ⊇ mn holds. Then, bn−1 6∈ a but bn ∈ a. By proposition 8.8
applying on A/mn, we know that a is principal, thus a is principal. Say a = (a). Then, bn = ap for some
p ∈ A but a = bq for some q ∈ A. This implies bn = bpq. Since A is domain, this implies bn−1 = pq. Since
m is prime, p ∈ m or q ∈ m. This shows that p = bp′. Then, bn−2 = p′q. Repeating this argument, we may
conclude that p = bk, q = bk

′
for some k + k′ = n− 1. Thus, a = bq = bk

′+1. This implies that a is a power
of m.

In the proof of theorem 9.5, the author says that any nonzero prime ideal p of A is maximal. To see this
in detail, notes that if pc = p ∩ Z is zero, then since (0) ⊆ p and (0) is prime ideal since A is an integral
domain (since it is subset of Q) Corollary 5.9 says that p = (0), contradiction. Hence, p ∩ Z 6= 0. Since Z is
PID, every prime ideal is maximal by Example 3 after (1.6). Thus, by Corollary 5.8, p is also maximal in
A. In conclusion, A is Noetherian domain of dimension one, and integrally closed. Thus, by Theorem 9.3,
A is Dedekind Domain.

In the proof of Proposition 9.7 =⇒ part, M = (xr/y) since yM = (xr). Let v(y) = s. Then,
y, xs have the same value, yx−s has value 0, thus unit, thus in A (by definition of valuation ring.) Thus,
(xr/y) = (xr−s).

In the other part, m−1a ⊇ a since m−1a is an integral ideal, thus for any a/m ∈ m−1a, a/m ·m = a also
lies in m−1a. Also notes that in the local domain, m is Jacobson radical.

1. From A is integrally closed, S−1A is also integrally closed by Proposition 5.12. By Proposition 7.3,
S−1A is Noetherian. Moreover, since S−1A ⊆ K, a field of fraction of A, S−1A is domain. Since
dimension of A is 1, dimension of S−1A is 0 or 1, by Proposition 3.11 iv). If dimS−1A is 0, then every
prime ideal except 0 meets S. Thus S−1A is field, since (0) is the only prime ideal. Otherwise, there
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exists at least one nonzero prime ideal of A not meeting S. In summary, S−1A is Noetherian local
domain with dimension 1 which is integrally closed. Then, by Theorem 9.3, it is Dedekind domain.

For the second statement, we need a lemma. (We cannot directly use Corollary 3.15 since (A : M) is
defined over K not A.)

Claim L ([9] Lemma 25.4). Let A be domain, K be a field of fraction of A, and let M,N be fractional
ideal, and let S be a multiplicative subset of A. Then, S−1MN = (S−1M)(S−1N) and S−1(M : N) ⊆
(S−1M : S−1N) with equality if N is finitely generated.

Also, if M is invertible, then S−1M−1 = S−1(A : M) = (S−1A : S−1M).

Proof. Given x ∈ S−1(MN), x =
∑k
j=1mjnj

s for some mj ∈ M,nj ∈ N, s ∈ S, k ∈ N. Then, x =∑k
j=1

mj
1
nj
s ∈ (S−1)(S−1N). Conversely, if x ∈ (S−1M)(S−1N), then x =

∑k
j=1

mj
sj

nj
tj

. Let q =∏k
j=1 sjtj , and o′i = mini

∏k
j 6=i sjtj , we have x =

∑k
j=1

mj
sj

nj
tj

=
∑k
j=1

o′i
q with o′i ∈ MN . Thus

x ∈ S−1(MN).

Also, if z ∈ S−1(M : N), then z = x/s for x ∈ (M : N) and s ∈ S. For any y ∈ S−1N , y = n/t
for some n ∈ N, t ∈ S. Then zy = xn/st with xn ∈ M , st ∈ St, thus, zS−1N ⊆ S−1M . Hence,
z ∈ (S−1M : S−1N). Conversely, if N is finitely generated, say n1, · · · , nr. Then given z ∈ (S−1M :
S−1N), write zni/1 = mi/si with mi ∈ M, si ∈ S. Let s =

∏
si. Then, szni ∈ M for all i. Thus,

sz ∈ (M : N). Thus, z = sz/s ∈ S−1(M : N), as desired.

Finally, if M is invertible, then S−1(A) = S−1(M(A : M)) = (S−1M)(S−1(A : M)) ⊆ (S−1M)(S−1A :
S−1M) = S−1A shows that S−1(A : M) and (S−1A : S−1M) are two inverse of S−1M . Hence, by
usual argument about inverse, they are equal.

By Proposition 3.11 i), φ : a 7→ S−1a is well-defined surjective map from I(A) to I(S−1A). Since A
is Noetherian, every fractional ideal is finitely generated. Thus by the above claim it is multiplicative
homomorphism, since it preserves multiplication and inverse element. Moreover, φ(P (A)) ⊆ P (S−1A)
since for any principal fractional ideal (u) with u ∈ K, S−1(u) := {u(a/s) : a/s ∈ S−1A}, thus
principal. Thus, we can define φ′ : H → H ′ by M 7→ φ(M), where P = P (A), P ′ = P (S−1A). To
see it is well-defined, let M and N are two distinct representation of M . Then, M = NQ for some
principal fractional ideal Q. Then, S−1M = (S−1N)S−1Q by the above claim, thus S−1M = S−1N
in H ′. Moreover, φ′ is surjective since φ is surjective.

2. To use the hint “Localize at each maximal ideal” we need a lemma.

Claim LI. Let M,N be two A-submodules of an A-module K. Module equality is local property; i.e.,
M = N if and only if Mp = Np for all prime ideal p

Proof. If M = N , then trivial. Conversely, suppose Mp = Np for all prime ideal p. Notes that M
contains N iff (N +M)/M = 0. Then, we have an exact sequence

0→M →M +N → (M +N)/M → 0,

and tensor with Ap. Since Ap is flat module, we have an exact sequence

0→Mp →Mp +Np → (Mp +Np/Mp)→ 0.

By given condition, Mp + Np = Mp since they are the same, thus (Mp + Np/Mp) = 0. Notes that
((M + N)/N)p ∼= (Mp + Np/Mp) by applying Corollary 3.4 iii) and 3.4 i). Thus, ((M + N)/N)p = 0
for all prime ideal p. By Proposition 3.8, this implies (M + N)/N = 0. Thus N ⊆ M . By the same
argument over N , we have M ⊆ N . Thus M = N .

Hence, to see c(fg) = c(f)c(g), it suffices to show that they are equivalent on A/m for all maximal
ideal m. Thus, we may assume that A be a localization of Dedekind domain by maximal ideal (since
c(f) in A/m can be seen as c(f) where f = a0 + · · ·+ anx

n. )
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Thus, we may assume that A is DVR. Let g = b0+· · ·+bmxm in A[x]. Then, c(fg) ⊆ c(f)c(g) since any
coefficients in fg is generated by linear combination of product aibj . To see c(fg) ⊇ c(f)c(g), suppose
m = (y) for some y ∈ A. Since A is DVR, c(f) = (yt), c(g) = (ys) for some s, t ∈ N. Hence, v(y) = 1 and
mini∈[n] v(ai) = t,mini∈[m] v(bi) = s. (We use property on [3][p.94].) Now let i′, j′ be element in N such
that v(ai′) = t, v(bj′) = s and for any 0 ≤ i < i′, 0 ≤ j < j′, v(ai) > s, v(bj) > t. Then, the coefficient

of xi
′+j′ in fg is

∑
i+j=i′+j′ aibj , and v(

∑
i+j=i′+j′ aibj) = mini+j=i′+j′(v(ai) + v(bj)) = s + t since

either i < i′ or j < j′ holds. Thus, one of the generator of c(fg) has value s+ t. Moreover, every other
generators of c(fg) has value greater than or equal to s+t. This implies that c(fg) ⊇ (ys+t) = c(f)c(g)
since (

∑
i+j=i′+j′ aibj)A = ys+tA by property on [3][p.94].

3. By the argument on [3][p.94], DVR is Noetherian. Conversely, suppose a valuation ring A is Noetherian.
We claim that A is PID. Then, A is Noetherian (by given condition) local (by Proposition 5.18) domain
(by definition of valuation ring) of dimension one having maximal ideal which is principal (since A is
PID). Thus Proposition 9.2 shows that A is DVR.

To see A is PID, let a be an ideal. Since A is Noetherian, a is finitely generated. Thus let a =
(a1, · · · , an). Then, for any i, j ∈ [n], either (ai) ⊇ (aj) or (ai) ⊆ (aj) by Exercise 5.28. Thus, using
inclusion as an order for {a1, · · · , an}, this gives total ordering. Since {a1, · · · , an} is finite, there
should be a maximal element ai, i.e., (ai) contains all (aj). Then, (ai) ⊇ a implies a = (ai). So A is
PID.

4. Let m = (x) since m is principal. We claim that every element y can be expressed as y = uxt with
unique t. To see this, if y is unit, then by setting u = y, done. Suppose y is nonunit. Then, from the
condition

⋂∞
i=1 m

i = 0, ∃t ∈ N such that y ∈ mk for all k ≤ t but not in t.(Notes that if y ∈ mt then
for any k ≤ t, y ∈ mk since mk ⊇ mt.) Thus if y = vxs for some s < t, with unit v, then vxs = uxt.
Since it is domain, x is cancellable, thus vu−1 = xt−s. This implies that xt−s is unit, thus m = (1),
which implies x = 1, contradiction. Hence t is uniquely determined.

Now let v(y) = t for given expression y = uxt with unique t. Notes that this map v : A → N is onto,
and satisfies v(yz) = v(y) + v(z) and v(y + z) ≥ min(v(y), v(z)). For the first one, since y = uxt and
z = vxs, v(yz) = v(uvxt+s) = t + s. For the latter, if we assume s < t, then y + z = xs(uxt−s + v).
Thus, v(y + z) = s+ v(uxt−s + v) ≥ min(v(y), v(z)).

Now, we can extend v from K∗ to Z, by defining v(y/z) = v(y)− v(z). Then, since any element in K∗

has expression uxt with t ∈ Z, and also satisfy the above properties. Hence, v is a discrete valution on
K, and we observes that A = {x ∈ K : v(x) ≥ 0}. Hence, A is valuation ring of v, thus A is DVR.

5. Let M be a finitely generated by x1, · · · , xn. Then by the surjective homomorphism An → M ,
M ∼= An/K for some submodule K of An. By Exercise 3.13, M is torsion free if and only if Mp is
torsion free for all prime ideals p.

Suppose M is flat. Then, by Exercise 7.16, Mp is free Ap module. Thus, Mp = A
np
p for some np ∈ N.

Since M ∼= An/K, Mp
∼= Anp/Kp by Corollary 3.4 iii) and Proposition 3.11 v). Thus, A

np
p
∼= Anp/Kp.

If Kp 6= 0, then Anp/Kp is not a free module, since for given basis {ei}ni=1 of Anp , an element in K can
be expressed as

∑n
i=1 aiei, thus

∑n
i=1 aiei = 0 in Anp/Kp, hence {ei}ni=1 is not linearly independent.

Thus, for any generator of Mp, its set of generators in Mp = Anp/Kp is not linearly independent. Thus,

Mp is free module as A
np
p but not free as Anp/Kp, contradiction. This shows that Kp = 0, thus np = n

by Exercise 2.11. Hence, Kp = 0 for all prime ideal p. By Proposition 3.8, K = 0. Hence, M is free.
By below claim M is torsion free.

Claim LII. If A is integral domain, M is free module, then M is torsion free.

Proof. Let {ei}ni=1 be a basis of M . Any element in M can be expressed as
∑n
i=1 aiei for some ai ∈ A.

Now let
∑n
i=1 aiei be a torsion. Then by definition, ∃b 6= 0 ∈ A such that b

∑n
i=1 aiei = 0. Since eis are

linearly independent, bai = 0. Since A is domain, bai = 0 implies ai = 0 for all i. Thus,
∑n
i=1 aiei = 0.

Hence M is torsion free.
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Conversely, if M is torsion free, then Mp is torsion free, since if m/s is torsion in Mp, then ∃b ∈ A
such that bm/s = 0/1, thus tbm = 0 for some t ∈ S, and since M is torsion free, this implies m = 0 or
tb = 0. If m is zero, then m/s is not a torsion, if m is nonzero, then tb = 0, thus b = 0 since 0 6∈ A− p.
Note that Ap is PID since A is Dedekind domain, thus Ap is DVR, and every ideal in DVR is power of
the maximal ideal, which is principal, thus every ideal is principal. Now, from the structure theorem
of PID, Mp is direct sum of its free part and its torsion part. Since torsion part is zero, so Mp is free.
By Exercise 7.16, M is flat.

6. Notes that Mp is still consists of all torsion elements, by the structure theorem of PID, Mp
∼=⊕np

j=1Ap/(dj) for some dj ∈ Ap. (We already show that Ap is PID since it is DVR in the proof

of the above exercise.) Since A is DVR, each (dj) = pkjAp for some kj ∈ N, thus

Mp
∼=

np⊕
j=1

Ap/(dj) =

np⊕
j=1

Ap/p
kjAp.

Now we claim that there are only finitely many p such that Mp is nonzero. Since M is torsion
submodule, Ann(M) 6= 0. By Corollary 9.4, Ann(M) =

∏m
j=1 p

nj
j with nj > 0. Thus, Supp(M) =

V (Ann(M)) = {pj}mj=1 by Exercise 3.19 v). Now define a map φ : M →
⊕n

j=1Mpj by m 7→ m/1.
Since A is Dedekind domain, every nonzero prime ideal is maximal. Thus, any two prime ideals are
coprime. Thus, for given i 6= j, ∃x ∈ pi \ pj . Now let q be maximum of kj in Mpi for all i = 1, · · · ,ms.
Then, xq annihilates Mpj . Thus, (Mpi)pj = 0 since xn ∈ A− pj . However,

(Mp)p ∼=︸︷︷︸
Proposition3.5

(M
⊗
A

Ap)
⊗
A

Ap
∼=︸︷︷︸

Exercise2.15

M
⊗
A

(Ap

⊗
A

Ap) ∼=︸︷︷︸
Proposition3.5

M
⊗
A

(Ap)p.

If we let S = A − p, then (Ap)p = S−1(S−1A) = (SS)−1A = S−1A by Exercise 3.3 since SS = S by
multiplicative closedness of S. Thus, (Mp)p ∼= M

⊗
A

(Ap)p ∼= M
⊗
A

Ap = Mp. Thus, the given map φ

is locally isomorphism, i.e., for any prime ideal p, φp is isomorphism. Hence by Proposition 3.9, φ is
isomorphism.

Not it remains that show Ap/p
kAp

∼= A/pk. To see this, let ψ : A/pk → Ap/p
kAp by x 7→ x/1. It is

injective, since if x/1 = 0, then x/1 ∈ pkAp. This implies that x/1 = y/s for some y ∈ pk, s ∈ A − p.
Hence, ∃t ∈ A − p such that tsx = ty. Since A is domain, tsx = ty implies sx = y. By Corollary
9.4, (sx) has unique factorization as a product of prime ideals. Since sx ∈ pk, (sx) ⊆ pk. However
(sx) = (s)(x) and (s) 6∈ p. Thus, (sx) is product of factorization of (s) and (x), and we know that (s)
has no factor about p. Since this factorization must include pk or higher than k part, this implies that
(x) has factorization pk or higher part. Thus, x ∈ pk. Thus, x = 0. This shows that ψ is injective.

Also, to see ψ is surjective, let x/s ∈ Ap/p
kAp. Notes that p is maximal since A is Dedekind domain.

And s ∈ A− p. Thus, in A/m image of s is nonzero and unit, thus ∃y ∈ A− p such that image of sy is
1. This implies that sy− 1 ∈ p. Thus, (sy− 1)k ∈ pk. Thus, expand (sy− 1)k as (sy− 1)k = 1− sp for
some p ∈ A, then, p (or −p) is inverse of s in A/pk. Thus, x/s = ψ(xp) since xp/1 = x/s by xsp = x.
Thus ψ is surjective. Thus, Ap/p

kAp
∼= A/pk for any prime ideal p.

7. From the proof of above exercise, Ap/p
kAp

∼= A/pk. Thus for any a = pk, since Ap is DVR, so every
ideal in Ap principal, so is Ap/p

kAp, thus so is A/pk. For general ideal a, Corollary 9.4, says that
a =

∏n
j=1 p

nj
j . Thus, define a projection φ : A →

∏n
j=1A/p

nj
j . Then, ker(φ) =

⋂
p
nj
j , By 1.10, since

each pair of primes is coprime, so is pair of power of primes, thus a = ker(φ). Thus A/a ∼=
∏n
j=1A/p

nj
j .

Now we claim that product of PID is PID. Notes that by definition of product, every ideal is actually
product of each ideals in each component. Since each ideal in the component is pid, say generated
by bj , so the ideal in the product is generated by (b1, · · · , bn), thus PID. Hence, A/a is PID since
contraction of the ideal is PID and every ideal in A/a is contraction of the ideal in the product.

To see every ideal is generated by at most 2 elements, let b be an ideal which is not principal. Let
a ∈ b. Then, b ) (a), thus b/(a) is nonzero ideal in A/(a) by 1-1 correspondence (Proposition 1.1.)
Since A/(a) is principal, b/(a) is generated by one element, say b+(a). Then, we claim that (a, b) = b.
Notes that φ : A→ A/(a), φ(a, b) = (b+ (a)). Thus, 1-1 correspondence implies that (a, b) = b.
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8. As we’ve shown above, module equality is local property. Also, by Proposition 3.11 v), sum and
intersection commutes with localization. Thus we may assume that A is DVR. Then, m is principal,
say m = (x). And any ideal a, b, c are (xa), (xb), (xc) for some a, b, c ∈ N. Also notes that sum of (xn)
and (xm) is (xmin(n,m) and intersection of (xn) and (xm) is xmax(n,m). Hence, it suffices to check that

max(a,min(b, c)) = min(max(a, b),max(a, c)),min(a,max(b, c)) = max(min(a, b),min(a, c)).

If a is maximal, then first equality holds. If b is maximal then max(a, c) = min(b,max(a, c)) =
max(a, c). c case is equal. Thus, first one is true for any case. For the second one, check the same for
when a (or b or c) is minimal.

9. As hint appeared, it is equivalent to saying that the sequences of A-modules

A
φ−→

n⊕
i=1

A/ai
ψ−→
⊕
i<j

A/(ai + aj)

is exact. To see this, if x is solution, then φ(x) is the solution, thus by exactness ψ(φ(x)) = 0 since
each xi is congruent with xj mod ai + aj . Conversely, if (x1, · · · , xn) satisfies such congruency, then
ψ(x1, · · · , xn) = 0, thus by exactness, there is a solution x ∈ A such that φ(x) = (x1, · · · , xn).

To see it is exact, think about it by localization over p. By Proposition 3.3,

Ap
φ−→

n⊕
i=1

(A/ai)p
ψ−→
⊕
i<j

(A/(ai + aj))p

is still exact. And, as we have shown in the proof of 7, (A/ai)p ∼= Ap/aiAp and (A/(ai + aj))p ∼=
Ap/(ai + aj)Ap. Since Ap is DVR, aiAp

∼= (xni) where x is an element generates pAp. Now, assume
that ni < nj if i < j. Then, (ai + aj)Ap = (xni) if i < j.

Thus, for any (x1, · · · , xn) ∈
⊕n

i=1(A/ai)p, each (i, j) component of ψ(x1, · · · , xn)) is xi−xj +ai+aj .
If (x1, · · · , xn) ∈ kerψ, then xi − xj ∈ ai + aj = ai when i < j. Thus, x1 − xn ∈ a1, x2 − xn ∈
a2, · · · , xn−1 − xn ∈ an−1. This implies that φ(xn) = (x1, · · · , xn). Hence, kerψ ⊆ Imφ. Conversely,
ψ ◦ φ(x) = 0 since φ(x) = (x, · · · , x) and (i, j)-component of ψ ◦ φ(x) is x− x+ ai + aj = 0.

Hence the sequence is exact locally. By Proposition 3.9, applying each map, we have the exact sequence
on the original one.

Notes that exactness is also a local property.

10 Completions

Notes that (x, y) 7→ xy is continuous, then Ta : G→ G by (a, y) 7→ ay is continuous for any a ∈ G, since Ta
is a restriction of continuous map (from {a} ×G to G), thus continuous. Also, f : y 7→ −y is continuous, so
does 2f . Hence, (x, y) 7→ x+ y 7→ x+ y − 2y = x− y is continuous.

And, Ta and T−a are bijectively continuous, and open map since Ta(O) = O+a and since T−a(O+a) = O,
T−1
−a (O) = O + a, thus O + a is open, thus Ta is an open map. Hence, it is homeomorphism.

Lemma 10.1. Let H be the intersection of all neighborhoods of 0 in G. Then,

1. H is a subgroup

2. H is the closure of {0}.

3. G/H is Hausdorff.

4. G is Hausdorff ⇐⇒ H = 0.
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Proof. Let x ∈ H, U be an arbitrary open neighborhood of 0. Then, −U is also open since x 7→ −x is
continuous map. Thus, V = U ∩ −U is also an open neighborhood of 0. Thus, from x ∈ V , −x ∈ V . This
implies −x ∈ U . Since U was arbitrarily chosen, −x ∈ H. Thus it is closed under inversion.

Also, if x, y ∈ H, then for any U , let W = +−1(U). Then, W contains 0, thus it is open neighborhood
of 0, thus x, y ∈W , which implies x+ y ∈ U . Since U was arbitrarily chosen, x+ y ∈ H.

Lastly, 0 ∈ H.
For 2), x ∈ H iff for any open neighborhood U of 0, since x ∈ U , x − U contains 0. This is iff all open

neighborhoods of x contains 0. This implies x is boundary point of {0}, thus x ∈ {0}.
For 3), notes that closed set of quotient topology is union of sets of equivalence classes whose union of

those equivalence classes are closed. Since each equivalence class is closed in G, thus each singleton in G/H
is closed. Notes that G/H is still an topological group, thus (x, y) 7→ x− y is continuous, thus preimage of
[0] in G/H by this map is closed. Since preimage is just ([x], [x]), this implies that diagonal in G/H ×G/H
is closed. Then by the proposition in topology that diagonal of X ×X is closed iff X is Hausdorff, G/H is
Hausdorff.

If G is Hausdorff, then any singleton is closed, thus H = 0. If H = 0, then G/H ∼= G, thus G is Hausdorff
by iii).

Claim LIII. X is Hausdorff iff diagonal D of X ×X is closed.

Proof. If X is Hausdorff, then for any (x, y) 6∈ D, x 6= y thus ∃U, V disjoint open neighborhood of x and y.
Thus, U × V contain (x, y) but disjoint with D, otherwise U ∩ V 6= ∅, contradiction. Hence, X ×X −D is
union of such open neighborhoods for all elements of X ×X −D, so open. This implies D is closed.

Conversely, if D is closed, take an open neighborhood of (x, y) ∈ X ×X −D. Since X ×X is product
topology, we may assume that there is open neighborhood generated by open set in generator of box topology
(sinceX×X is finite proudct, box topology is equal to product topology), say U×V . Since U×V ⊆ X×X−D,
U × V ∩ D = ∅. This implies U, V are disjoint open set in X containing x and y respectively. So X is
Hausdorff.

Definition Definition of Convergence. xv → y means that for any open neighborhood U of y, ∃N ∈ N
such that ∀v > N , xv ∈ U .

Lemma . Cauchy equivalence is equaivalence relation. And sum of Cauchy sequence is Cauchy. Also, image
of Cauchy under continuous homomorphism, say f , is Cauchy.

Proof. xv ∼ xv is trivial. If xv ∼ yv, then take any open set U . Let V = U ∩ (−U). (V is nonempty since
0 ∈ V ) Thus, ∃N ∈ N such that xv − yv ∈ V for all v > N . This implies yv − xv ∈ V since V consists of
elements whose inverse is also in V (To see this, if x ∈ V , then x ∈ U and −U , thus −x ∈ U and −U , which
implies −x ∈ V . ) Thus, yv − xv ∈ U for all v > N . Hence yv − xv → 0.

To see transitivity, let xv − yv → 0, yv − zv → 0. Let U be an open neighborhood of 0. Then, +−1(U) ⊆
G × G is open set since + is continuous function. Now take U1 × U2, a basic open set generated from
product topology such that U1, U2 are open and U1×U2 ⊆ +−1(U). Then U1 +U2 ⊆ U . Take V = U1 ∩U2.
Then, ∃N ∈ N such that both xv − yv and yv − zv are in V when v > N . Thus, there sum, xv − zv is in
V + V ⊆ U1 + U2 ⊆ U , whenever v > N .

Now for sum of two Cauchy sequence, for any open set U , by the same technique we used above, ∃V ⊆ U
such that V + V ⊆ U . Now take N such that both cauchy difference lies in V . Then, there sum lies in U
whenever v > N .

For f(xv), any open set U in the codomain, take preimage and get N for xv. This N works for f(xv).

Notes that Ĝ has topology; for each open set U in G, define

Û := {x̂ ∈ Ĝ : ∀{xi}i∈N ∈ x̂, ∃N ∈ N s.t. xj ∈ U for all j > N}.

These are base of topology Ĝ.

Lemma L. et f : G → H continuous homomorphism. Then induced map f̂ : Ĝ → Ĥ is continuous

homomorphism. Also, φ : G→ Ĝ is continuous. Moreover, ĝ ◦ f = ĝ ◦ f̂ .

110



Proof. It is homomorphism since f induces additive homomorphism. Let Û be an open set in Ĥ. Then,
think about f̂−1(Û). If {xv} ∈ f̂−1(Û), then f(xv) ∈ Û , which implies that f(xv) is eventually in U . Thus,

xv is eventually in f−1(U). Thus, f̂−1(Û) ⊆ ̂f−1(U). Conversely, if xv ∈ ̂f−1(U), the xv lies eventually in

f−1(U), thus f(xv) lies eventually in U , thus f(xv) ∈ Û , thus xv ∈ f̂−1(Û). This implies f̂−1(Û) = ̂f−1(U).
For the second, φ−1(Û) is a constant whose constant Cauchy sequence eventually lies in U , thus the

contstant itself lies in U , hence, φ−1(Û) = U . Hence φ is continuous.

Let xv be a Cauchy. Then, ĝ ◦ f(xv) = (g ◦ f(x[v]) and ĝ ◦ f̂(xv) = ĝ(f(xv)) = g ◦ f(xv). Done.

Now, in the last paragraph of [3][p.102], the author introduce the Fundamental system of neighborhood
and a topology generated by the system.

Definition [Fundamental System of neighborhood, or a neighborhood basis]. 0 ∈ G has a funda-
mental system of neighborhoods when there is a sequence of neighborhoods of 0

G = G0 ⊇ G1 ⊇ · · ·

such that for every neighborhood U of 0 in G ∃n ∈ N such that U ⊇ Gn.
If every Gi is a subgroup of G, then we say it is a fundamental system of neighborhoods consisting of

subgroups.

Recall that neighborhood of 0 means a subset V of A having an open set U such that 0 ∈ U ⊆ V . I think
he implicitly assume that for any g ∈ G, g has a fundamental system of neighborhood g+G ⊇ g+G1 ⊇ · · · .
Now let B(x) be a fundamental system of neighborhood.

Lemma F. or any g ∈ G, g +G0 ⊇ g +G1 ⊇ · · · forms a neighborhood basis.

Proof. If U is neighborhood of g, then −g+U is neighborhood of 0. Hence it contains Gn for some n. Thus,
U contains g +Gn.

Now we will define a topology from these fundamental system of neighborhoods. Actually, it will be the
topology whose basis is a set of all cosets g +Gn for all g ∈ G,n ∈ N. In this kind of construction, Atiyah’s
argument showing Gn is closed is a little bit tautological; if we don’t know topology, then we cannot say
that whether translation is homeomorphism or not.

Lemma I. n the topologies, the subgroup Gn of G are both open and closed.

Proof. Since g+Gn is in the basis of topology for all g ∈ G, Gn is open. Conversely, Gcn =
⋃
h 6∈Gn(h+Gn).

Now, since we know h+Gn is open as a element of basis, Gn is also closed.

Typical example is the p-adic topology on Z with Gn = pnZ.

Lemma T. he group G with this topology is a topological group. Also, translation is continuous map.

Proof. We use the neighborhood definition of continuity. From 0+x = x, we can denote x+y be an arbitrary
element of G for some x, y ∈ G. Then, for any open neighborhood x + y + Gn, we have a product of open
neighborhood (x+Gn)⊕(y+Gn) such that (x+Gn+y+Gn) ⊆ x+y+Gn. So, µ(x, y) = x+y is continuous.

Similarly, for any open neighborhood x+Gn, there is an open neighborhood −x+Gn such that −(−x+
Gn) = x−Gn = x+Gn since −Gn = Gn because Gn is a subgroup. Hence, x 7→ −x is continuous map.

Lastly, let Ta be a translation map. Then, for any b + Gn, ∃b − a + Gn such that Ta(b − a + Gn) =
a+ b− a+Gn ⊆ b+Gn. So translation is continuous.

In the proof of Proposition 10.2, commutativity of the diagram comes from commutativity of the exact
sequence of inverse system.

In the proof of Corollary 10.3, G′ → G→ G/Gn → 0 has a kernel G′∩Gn. Thus, ι : G′/G′∩Gn → G/Gn
is injective. Also, from G → G′′ → G′′/p(Gn) is surjective and Gn is in the kernel of this map, the
map π : G/Gn → G′′/p(Gn) is surjective. And π ◦ ι = 0 by construction; both use the maps in exact
sequence. Conversely, if g ∈ G/Gn is in kernel of π, then π(g) = p(g) thus p(g) ∈ p(Gn). This implies
∃h ∈ Gn such that p(g − h) = 0. By exactness, g − h ∈ G′ by identifying G′ as a subgroup of G. Thus,
ι(g − h+G′ ∩Gn) = g − h+Gn = g +Gn = g, thus g ∈ Im ι. Hence the given sequence in p.105 is exact.
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Since G′/G′ ∩ Gn is surjective system, so by Proposition 10.2, there inverse limits also form an exact
sequence.

For Corollary 10.4, Ĝ/Gn = lim←−m(G/Gn)/(Gm/Gn). Thus, if m ≥ n,then (G/Gn)/(Gm/Gn) ∼= G/Gm

but m < n then (G/Gn)/(Gm/Gn) ∼= G/Gn. Therefore if (an) is a coherent sequence of Ĝ/Gn, then it

has a1 = a2 = · · · = an. Thus, we have a map φ : Ĝ/Gn → G/Gn by sending (an) to a1. This map
is clearly surjection. To show it is injective, notes that if two coherent sequence (an), (bn) are the same,
then b2 = g1 + a2 for some g1 ∈ G1 and b3 = g2 + a3 and so on. Thus 0, g1, g2, · · · form a coherent
sequence. Since each coherent sequence comes from the Cauchy sequence, say (xn) be a Cauchy sequence
inducing 0, g1, g2, · · · . Then, limit of xn in G is 0. Thus, limit of xn in G/Gk is also zero for all p since map
G→ G/Gn is continuous map. (Both are topological spaces;) Thus, g1 = g2 = · · · = 0. Thus (an) = (bn) iff
an = bn in each G/Gn. Hence, φ((an)) = 0 implies a1 = 0, thus a1 = · · · = an = 0, and this 0 sequence is
uniquely determined by Cauchy sequence inducing (an), thus (an) = (0). This shows injectivity of φ. Also
it is clear that φ is additive homomorphism. Thus φ is isomorphism.

Now we claim that Ĝ/Gn ∼= Ĝ/Ĝn. To see this, take a map φ : Ĝ/Gn → Ĝ/Ĝn by (an) 7→ (bn) where
bm = am for m > n and bi = θi+1bi+1 for m ≤ n. Then, an = bn, and this map is well-defined since (an)

has unique representation. Moreover, it is injective, since if (bi) = 0 then (bi) ∈ Ĝn, thus b1 = · · · = bn = 0
since limit of a Cauchy sequence inducing an lies in Gn. Hence, (an) = 0 in G/Gn which is isomorphic to

Ĝ/Gn. Also, φ is surjective since any sequence (b1, b2, · · · ) ∈ Ĝ can be represented taking an = bn in Ĝ/Gn
with the map of inverse system θ. Hence, φ is isomorphism.

And a-adic topology is a topology having {ai}i∈N as a fundamental system of neighborhood of 0. So the
basis of this topology is a collection of all cosets g + ai for any g.

Claim LIV. a-adic topology on A makes A a topological ring.

Proof. We already showed that addition and (additive) inversion are continuous. So it suffices to show that
µ×(x, y) = xy is continuous. Recall that the neighborhood definition of continuity. Also notes that x = 1 · x
in A, so any element in A can be denoted as xy for some x, y ∈ A. Then, for any neighborhood of xy, say
xy+ an, there is an open neighborhood of (x, y), which is (x+ an)× (y+ an) such that (x+ an) · (y+ an) =
xy+ xan + yan + a2n ⊆ xy+ an, since for any m1 · · ·mn ∈ an with mi ∈ a, xm1 · · ·mn = (xm1) · · ·mn ∈ an.
So multiplication is continuous.

In the proof of Lemma 10.8, Qn is finitely generated as an A-module implies M∗n is finitely generated
as A∗ module, since ak part acting on Mn components yields akMn, thus no more generators are needed to
construct M∗n.

In the proof of Proposition 10.9, actually the author uses Lemma 10.8 twice; He use it for showing that
Mn is a stable filtraion implies M∗ is a finitely generated module, and use it again showing that the finitely
generated A∗ module (M ′ ∩M)∗ gives a stable a-filtration.

In the proof of Corollary 10.10, notes that anM is already a-stable filtration by definition. In the
proof of Theorem 10.11, observe that anM ′ is stable filtration, thus by Lemma 10.6, we have a bounded
difference. Coinciding topology comes from the fact that in a bounded difference we can always find an open
neighborhood of one topology which is contained in an open neighborhood of the other topology.

For the proof of Proposition 10.12, we need to assure that the sequence M ′ ∩ (aM) and p(aM) gives
the same topology with the completion by aM ′ and aM ′′. This is assured by Lemma 10.6; notes that
M ′ ∩ (aM) is stable by Artin-Rees Lemma, and p(aM) is also stable since p is an A-homomorphism so
a(anp(M)) = p(anM) = p(an+1M) ⊆ an+1p(M). Hence, by Lemma 10.6, all stable filtration induce the
same topology.

In [3][p.108], the third map is precisely

Â
⊗
A

M
1Â⊗f−−−−→ Â

⊗
A

M̂
δ−→ Â

⊗
Â

M̂ = M̂,

where f : M → M̂ is canonical injection by construction of M̂ . And δ is defined by identity map. Also notes
that δ is well-defined via bilinear map A×M → A×M corresponding to δ, which is identity.
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Also, Corollary 10.3 induces that completion commutes with finite direct sum by thinking direct sum as
a split exact sequence.

In the proof of Proposition 10.13, δ is surjective since 0→ ker(Â
⊗
A

F → Â
⊗
A

M)→ Â
⊗
A

F → Â
⊗
A

M →

0 is exact and apply Corollary 10.3. This implies α is surjective; for any x ∈ M̂ , β is isomorphism and δ is
surjective means ∃y ∈ Â

⊗
A

F such that δ ◦β(y) = x. This implies α ◦ (Â
⊗
A

F → Â
⊗
A

M)(y) = x, hence α is

surjective. If we assume Noetherian, since N is a submodule of finitely generated module, thus it is finitely
generated. Hence by the argument what we did now, γ is surjective. And we know bottom line is exact by
applying 10.12 on 0 → N → F → M → 0. Now, if x ∈ ker(α), then ∃y ∈ Â

⊗
A

F such that its image is x,

thus δ ◦ β(x) = 0. Hence, β(x) is in the kernel of of δ, thus it is image of z ∈ N̂ . By surjectivity of γ, z is
image of z′ ∈ Â

⊗
A

N . By commutativity of diagram, sending z′ along the top line, we have x is image of z′.

Since the top line is exact, x = 0. So α is injective.
Proposition 10.14 is direct application of definition of flat.
In the proof of Proposition 10.15, actually, we cannot directly apply 10.4 since Â is completion of ring,

not a group. However, by the same argument we did for 10.4, we get the same statement for the completion
of ring. And for iv), let ξn =

∑n
j=0 x

j = 1 + x+ · · ·+ xn. Then, ξn is Cauchy in Â, since for any âk, there

is N = k such that ∀n > m > N ξn − ξm = xm+1 + · · ·xn ∈ âk since n > · · · > m + 1 > k. Thus, limit of
ξn converges, since Â is complete. From this, (1 − x) is unit, since (1 − x) · lim ξn = 1. Since it holds for
all x ∈ â, thus for any y ∈ Â, 1 − xy is unit since xy ∈ â. This implies x is element of Jacobson radical by
Proposition 1.9. Since x was arbitrarily chosen, â is contained in the Jacobson radical.

In the proof of Theorem 10.17, known as Krull’s intersection theorem, aE = E follows from Artin-Rees
lemma; let k be the k in Corolllary 10.10. Let M ′ =

⋂∞
n 6=k a

nM . Then, E = akM ∩M ′. By Artin-Rees
lemma,

aE = a(akM ∩M ′) =︸︷︷︸
A-R Lemma

(ak+1M) ∩M ′ = (ak+1M) ∩ (

∞⋂
n 6=k

anM) = (

∞⋂
n 6=k

anM) = M ′.

However, notes that anM ⊇ amM if m > n. Thus, M ′ = E since M ′ =
⋂∞
n>k a

nM = E.
In the definition of G(A), if xm = xm + xm+1 and xn = xn + xn+1, then (xm + xm+1) · (xn + xn+1) =

xmxn + xmxn+1 + xm+1xn + xn+1xm+1 ≡ xmxn mod am+n+1. Thus multiplication of G(A) is well-defined.
To see G(A) = (A/a)[x1, · · · , xs] in p.111 of [3], notes that set of monomials of degree k is generating

set of ak/ak+1 by definition of multiplication in G(A). Also, it has elements in A/a. And if y0 ∈ A/a,
then y0 · xl = y0xl. Since y0 6∈ a if y0 6= 0, so y0xl 6∈ a2. Hence, y0xl is nonzero. Thus, this kind of
identification shows G(A) = (A/a)[x1, · · · , xs] as a set. Thus the identification is bijection, and additive
homomorphism in clear way. Also, the identification of case y0xl gives multiplicative homomorphism as well.
Hence, G(A) = (A/a)[x1, · · · , xs] as a ring.

For the proof of Lemma 10.23, actually we need induction to show that either kerαn = 0 or cokerαn = 0.
To see this, when n = 0, then αn : 0→ 0 thus both injective or surjective. Then, do the diagram chasing to
show that αn+1 is either injective or surjective, when αn is either injective or surjective, depends on whether
Gn(φ) is injective or surjective. (Actually, it is very similar to intermediate step of Five lemma.) In case of
Gn(φ) is injective, then αn is injective, thus by taking inverse limit on the exact sequence derived by αn we
have an injective map from lim←−(An)→ lim←−(Bn) since the functor of inverse limit is left exact, by Proposition
10.2. In case of Gn(φ) is surjective, then αn is surjective. Also, we know from the proof of Proposition 10.12
that since Gn(φ) gives surjective system on G(A), which implies that taking inverse limit gives surjective
map between two inverse limit.

In the proof of Proposition 10.24, to see that β is injective, let x ∈ kerβ. Then, the constant Cauchy
sequence (x)n∈N is zero in M/Mn for all n, which implies x ∈

⋂
n∈NMn = ∅ since M is Hausdorff in its

filtration topology. Thus, x = 0. Also, to see that φ is surjective, let m ∈ M such that m 6= 0. Then,
β(m) 6= 0, thus by the surjectivity of φ̂ and α, ∃f ∈ F such that φ̂(α(f)) = β(m). Thus, β ◦ φ(f) = β(m).
Since β is injective, φ(f) = m. Hence φ is surjective. Thus, M is generated by x1, · · · , xr.

Now, for Exercise 1, define

Definition T. he concept p-adic completion is defined as lim←−n≥1
A/(pnA).
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1. By definition, Â = lim←−k≥0
A/(pkA), where A =

⊕
N Z/pZ. Thus, pkA = 0 for any k > 1, which

implies that Â = lim←−k≥0
A/(pkA) =

⊕
k≥0A/(0) = A. Also, notes that B =

⊕
n∈N Z/pnZ. Thus

pkB =
⊕

n∈N p
kZ/pnZ ∼=

⊕∞
n=k+1 p

kZ/pnZ. Thus, from

α−1
n (pkZ/pnZ) =

{
0 if k ≤ n
{x ∈ Z/pZ : pn−1x ∈ pkZ/pnZ} = Z/pZ if k > n

we know that α−1(pkB) ∼=
⊕

n>k Z/pZ. Hence, by letting Ak = α−1(pkB) ∼=
⊕

n>k Z/pZ, A/Ak =

(Z/pZ)k. Thus, it suffices to show that lim←−(Z/pZ)k =
∏
n≥0 Z/pZ. Actually, it is just special case of

more general one;

Claim LV. Let A =
⊕

n∈NRn and Ak =
⊕

n>k Rn. Then, lim←−n∈N(A/An) = lim←−n∈N
⊕n

i=1Ri =∏
n≥0Rn.

Proof. Notes that θ : A/An+1 → A/An is just canonical projection, by deleting last position. Let (an)
be a coherent sequence in A. Then each an is n-dimensional tuple such that θn+1(an+1) = an. Thus,
first n position of an+1 is equal to an.

Now define a map φ :
∏
n∈NRn → lim←−n∈N(A/An) by (r1, · · · , ) 7→ (an) where an = (r1, · · · , rn). Then

first of all, it is well-defined since (an) form a coherent sequence. Conversely, let ψ : lim←−n∈N(A/An)→∏
n∈NRn by (an) 7→ (r1, · · · , ) where rn is the last component of an. Then, φ◦ψ and ψ ◦φ is inverse to

each other. Also, they are ring homomorphism by checking additive and multiplicative homomorphism.
(It is tedious but trivial, so omit it.) Hence, φ and ψ are ring isomorphism.

To see that p-adic completion is not a right exact, observe that

0→ A
α−→ B

p·−:x 7→p·x−−−−−−−→ B → 0

is exact, since kernel of x 7→ p · x is
⊕

n≥0 p
n−1Z/pnZ = α(A). Then by p-adic completion we have a

map

Â
α̂−→ B̂

ˆp·−−−→ B̂ → 0

Notes that this is not exact; to see this, notes that B̂ ∼=
∏
n≥0 Z/pnZ. To see this, notes that B/Bk =

B/pkB ∼= (
⊕k

n=1 Z/pnZ)
⊕

(
⊕

n≥k Z/pkZ). Hence, if (bn) is a coherent sequence in lim←−B/Bk, then

first n components of bn+1 is equal to first n component of bn. Hence, take a map φ : B̂ →
∏
n≥0 Z/pnZ

by (bn) 7→ (r1, · · · ) where rn is n-th component of bn. Conversely, take a map ψ :
∏
n≥0 Z/pnZ → B̂

by taking canonical projection for each component in (r1, · · · ). Then, it is well-defined inverse of each
other, and you can see that it satisfies homomorphic property.

From this observation, ˆp · −(r1, · · · ) = 0 implies ri ∈ pi−1Z/piZ ∼= Z/pZ as a subset of Z/piZ. Thus,
ker( ˆp · −) =

∏
n≥0 p

n−1Z/pnZ. However, notes that α(A) =
⊕

n≥0 p
n−1Z/pnZ (

∏
n≥0 p

n−1Z/pnZ,
thus the given sequence is not exact.

2. By above computation, we know that the give exact sequence is

0→
⊕
k>n

Z/pZ→
⊕
n≥0

Z/pZ→
k⊕

n=0

Z/pZ→ 0.

Thus, lim←−n≥0
A/An =

∏
n≥0 Z/pZ as we’ve shown above. Also, to calculate lim←−n≥0

An, notes that an

inverse system commute with A/An is θn+1 : An+1 → An by injection; this means that if an+1 =
(an+1,1, · · · ) ∈ An+1, then θ(an+1) = (0, an+1,2, · · · ) in An. Thus, if we let (an) is a coherent sequence
in lim←−n≥0

An, then n-th component of a1 comes from the first component of an. However, from

an = θ(an+1), so the first component of an is zero. This implies n-th component of a1 is zero. Since
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n was arbitrarily chosen, a1 = (0, · · · ). By the same argument on induction, we have an = (0, · · · ) for
all n. Thus, lim←−n≥0

An = 0. Thus, what we have by taking lim←− functor is

0→ 0→ A =
⊕
n≥0

Z/pZ→ lim←−
n≥0

A/An =
∏
n≥0

Z/pZ→ 0

Since
⊕

n≥0 Z/pZ 6=
∏
n≥0 Z/pZ, it is not right exact. (Notes that lim←−A = A since every coherent

sequence (an) should satisfy an = an+1 since θ is identity map.)

Now to calculate lim←−
1An = coker(dA) where dA :

∏∞
n=1An →

∏∞
n=1An by an 7→ an − θn+1(an+1), we

can use the Snake lemma in the proof of Proposition 10.2, saying that

0→ lim←−
n≥0

An → lim←−
n≥0

A→ lim←−
n≥0

A/An →
1

lim←−An →
1

lim←−A→
1

lim←−A/An → 0.

From above calculation, we have

0→ 0→
⊕
n≥0

Z/pZ→
∏
n≥0

Z/pZ→
1

lim←−An →
1

lim←−A→
1

lim←−A/An → 0.

Now we claim that lim←−
1A = 0. To see this, let Bn = A,B =

∏
n∈NBn for distinguishing notation.

Then, dB : B → B is by dB(an) = an − θn+1(an+1). However, since θ is identity map, dB(an) =
an − an+1. Thus, for any (a1, · · · ) ∈ B, we have an element (0,−a1, · · · ) such that dB(0,−a1,−a1 −
a2, · · · ) = (0− (−a1),−a1 − (−a1 − a2), · · · ) = (a1, a2, · · · ). This implies that dB is surjective. Hence,
coker(dB) = 0, which implies lim←−

1A = 0. Therefore, we have an exact sequence

0→
⊕
n≥0

Z/pZ→
∏
n≥0

Z/pZ→
1

lim←−An → 0→
1

lim←−A/An → 0.

Thus, by the first isomorphism theorem, lim←−
1An ∼=

∏
n≥0 Z/pZ/

⊕
n≥0 Z/pZ.

(It is a little bit weird, since it seems that there is no way to directly show that coker(dA) ∼=⊕
n≥0 Z/pZ.)

3. By the Krull’s intersection theorem, the left hand side (say E) is all elements in M annihilated by 1+a
for some a ∈ a. If m contains a, then 1+a ∈ A−m, otherwise (1+a)−a = 1 ∈ m, contradiction. Thus,
Em = 0, since for given x ∈ E which is annihilated by 1+a for some a ∈ a, x/1 = x(1+a)/(1+a) = 0/1.
Hence, x ∈ ker(M →Mm) if m contains a. Thus, E ⊆ RHS.

Conversely, let N =
⋂

m⊇a ker(M →Mm). Then, Nm = 0 if m ⊇ a, since Nm is submodule of Mm and

apply the fact thatN is inside of kernel. Thus, by Exercise 3.14, K = aK. Hence, K = aK = a2K = · · ·
implies K =

⋂
n∈N anK ⊆ E.

For the remaining, notes that M̂ = 0 ⇐⇒ M̂ = âM̂ , since if part holds by Nakayama lemma with
the fact Proposition 10.15 iv) that â is contained in the Jacobson radical. Also, M̂ = âM̂ iff M = E,
by the argument M̂ = âM̂ = â2M̂ = · · · as above. And M = E iff M = K. Thus, by definition of
support, any maximal ideal containing a should not be in Supp(M). Now, notes that if p is a prime
ideal containing a but contained in a maximal ideal m, then A− p contains 1 + a, thus Ep = 0, since
1 + a is unit in Ap. Thus, p 6∈ Supp(M). Since p was chosen arbitrarily from a set of prime ideals
containing a, which is V (a), this implies Supp(M) ∩ V (a) = ∅. (Conversely, if Supp(M) ∩ V (a) = ∅,
then Supp(M) contains no maximal ideal containing a, trivially.)

4. If x is not a zero divisor, then 0→ A
x−→ A is exact. Now, by Proposition 10.14, Â is flat, thus, Â

⊗
A

−

is exact functor. This implies 0→ Â
x̂−→ Â is exact, since Â

⊗
A

A = Â.

The answer for last question is no. This example comes from [10][p.187-188]. Let R = k[x, y] where k
is a field of characteristic zero. Then, m := (x, y) is the maximal ideal. As we’ve seen in the proof of
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Corollary 10.27, k[[x, y]] is completion of R by m-adic topology. Now let A = k[x, y]/(y2 − x2 − x3).
Then A has maximum ideal m = (x, y) where · is a canonical map from R to A. Then completion
with respect to m is Â ∼= R̂ ⊗ RA ∼= k[[x, y]]/(y2 − x2 − x3). (The last equality can be easily shown
by observing that every element is of form f ⊗ 1.) Since y2 − x2 − x3 is irreducible (if decomposition
exists, it has a form (y+ f(x))(y+ g(x)), but this gives f(x) + g(x) = 0, f(x)g(x) = −x2−x3, which is
nonsense.) so it is prime since R is UFD. Thus, A is integral domain. However, to see Â is not integral
domain, it suffices to show that y2−x2−x3 is reducible; then from the fact that k[[x, y]] is UFD (since
it is power series ring over a field), y2 − x2 − x3 not a prime. Thus, Â is not integral domain.

To see this, notes that y2 − x2 − x3 = (y + xf)(y − xf) = y2 − x2f2 if there exists f such that
f2 = (1 + x). Now, by letting f =

∑
n≥0 anx, we can inductively define an by letting a0 = 1. Thus,

such f exists. This is counter example of the question.

5. Since M is finitely generated, by Corollary 10.13,

Ma ∼= Aa
⊗
A

M,Mb ∼= Ab
⊗
A

M.

Thus,

(Ma)b = Ab
⊗
A

(Aa
⊗
A

M) =︸︷︷︸
Exercise 2.15

(Ab
⊗
A

Aa)
⊗
A

M = (Aa)b
⊗
A

M

while
Ma+b = Aa+b

⊗
A

M.

Thus, it suffices to show that (Aa)b = Aa+b.

Now, the inclusion induces same topology between An = (an + bn)A and A′n = (a + b)nA, since
for any basic open neighborhood x + An contains an open neighborhood x + A′2n, thus any open set
in the topology induced by An is open in another topology induced by A′n and vice versa. Thus,
completion over An or A′n are the same, since completion is also defined by Cauchy sequences, and the
same topology implies that the set of equivalence of Cauchy sequence is the same, which means the
completion is the same. Thus, from the observation that completion is equal to inverset limit, we have

lim←−A/(a
n + bn)A ∼= Â ∼= lim←−A/(a + b)nA.

Now, from the given isomorphism, we have

lim←−A/(a + b)nA ∼= lim←−
m

(lim←−
n

A/(an + bm)A).

Now observe that lim←−A/(a + b)nA ∼= Aa+b by definition. To see lim←−m(lim←−nA/(a
n + bm)A) ∼= (Aa)b,

notes that isomorphism Aa
⊗
A

M → Ma is given by (an)
⊗
x
7→ (anx) (see p.108 of [3]). Thus, the

image of (bmM)a →Ma is bmMa. From the exact sequence

0→ bmM →M →M/bmM → 0

we have exact sequence by Proposition 10.12

0→ (bmM)a →Ma → (M/bmM)a → 0

Then by the image of (bmM)a →Ma with first isomorphism theorem, we have

(M/bmM)a ∼= Ma/bmMa.

Thus

(Aa)b = lim←−
m

(Aa)/bmAa ∼= lim←−
m

(A/bmA)a = lim←−
m

lim←−
n

(A/bmA)/((an + bm)/(bmA)) ∼= lim←−
m

lim←−
n

A/(an + bm)
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where before last isomorphism comes from the fact that (an + bm) is the image of an under the map
A→ A/bm,and where the last isomorphism is from the third isomorphism theorem.

Hence, (Aa)b = Aa+b holds.

To see that why the given isomorphism in the hint is true, notes that by definition, an element
of lim←−m(lim←−nA/(a

n + bm)) is a coherent sequence (am)m∈N where am ∈ lim←−nA/(a
n + bm), i.e.,

am = (am,n)n∈N. Now let θ1 : am+1 7→ am and θ2 : am,n+1 7→ am,n, which makes the inverse
system for each inverse limit. Then, notes that for given am,n, if n < m, then iterative application
of θ2 sends am,m to am,n. If n > m, then iterative application of θ1 sends an,n to am,n. Thus,
the coherent sequence (am)m∈N is deteremined by (an,n)n∈N ∈ lim←−nA/(a + b)nA. Also, from given

(bn) ∈ lim←−nA/(a+b)nA, we can recover (am) ∈ lim←−m(lim←−nA/(a
n+bm)) by setting an,n = bn and define

am,n =

{
θm−n1 am,n if m > n

θn−m2 am,n if m < n
. Hence this gives a bijective mapping, moreover preserves additivity

and multiplicativity. Thus, it is bijection.

6. If a is inside of Jacobson radical, then every maximal ideal m contains a. If x 6∈ m, then (x+a)∩m = ∅,
otherwise (x+ a)− a = x ∈ m, contradiction. Since x+ a is open in a-topology, so the complement of
m is open, hence m is closed.

Conversely, if a is not inside of Jacobson radical, then there exists a maximal ideal m not containing
a. Then, for any n ∈ N, an is not contained in m, otherwise its radical a should be contained in
m, contradiction. Thus, an + m = (1) for all n ∈ N. Thus, for given n ∈ N, we have a sequence
an ∈ an,mn ∈ m such that an + mn = 1. This implies 1 − an ∈ mn, hence (1 + an) ∩ m 6= ∅ for all
n ∈ N. Since {1 + an : n ∈ N} is a neighborhood basis of 1 in a-topology, 1 ∈ m, the closure of m. This
implies m is not closed.

7. If Â is faithfully flat over A, then for any finitely generated module M , M → Â
⊗
A

M ∼= M̂ is

injective. In particular, this is true for A/m, where m is any maximal ideal. Thus, ker(A/m →
Â/m̂) =

⋂
n≥0 a

n(A/m) = 0. Now suppose to get a contradiction that A is not Zariski ring; then
there is a maximal ideal m which doesn’t contain a, thus ∃a ∈ a − m, thus a(A/m) = A/m since
a 6= 0 and A/m is a field, thus a is unit. Therefore, an(A/m) = A/m for any n ∈ N. This implies⋂
n≥0 a

n(A/m) = A/m 6= 0, contradiction. Hence, A is Zariski ring.

Conversely, if A is Zariski ring, then a ⊆ m, thus
⋂
n≥0 a

n(A/m) = 0, since a acts on A/m only trivially.

Since ker(A/m→ Â/m̂) =
⋂
n≥0 a

n(A/m) comes from the construction of completion, we can say that

A/m → Â/m̂ is injective. Thus, from the fact that A/m is nonzero, Â/m̂ is nonzero. This implies
m̂ = me is proper ideal of Â. By Exercise 3.16 iii), this implies that Â is faithful flat A-algebra.

8. We claim that

Claim LVI. If f ∈ B has nonzero constant term, then f is unit in B.

Proof. If n = 1, done by Exericse 1.5 i). For n > 1, suppose that f has nonzero constant term. Also,
by mutliplying suitable constant, assume f(0, · · · , 0) = 1. Then, if f−1 exists, then f−1 =

∑
k(1− f)k

by geometric series; letting g = (1− f), f−1 = (1− g)−1 =
∑
k g

k =. Now, since 1− f has no constant
term,

∑
k(1−f)k is well-defined; since for each coefficient of fixed degree, say d, is determined by finite

partial sum
∑d
k=0(1− f)k, and there is only one constant term, which is (1− f)0 = 1. This shows that

f−1 exists.

Now, to show f−1 ∈ B, we need to show that f−1 has also positive radius of convergence if f has.
Suppose f(0) = 1. Then, since f has positive radius of convergence near 0, so does g = f − 1. Notes
that since f−1 = 1

1+g = 1−g+g2 + · · · , and we know that the geometric series converges when |g| < 1.

Hence, from g(0) = 0, let r > 0 such that g converges and |g(z)| < 1 for any z ∈ Br(0). Notes that this
r is nonzero, since g(0) = 0 and continuity of g implies ∃r1 > 0 such that |g(z)| < 1 for all z ∈ Br1(0);
also, by letting R be the convergence of radius, min(r1, R) > 0 guarantees that r is nonzero. Hence,
f−1 converges when z ∈ Br(0). So it has positive radius of convergence.
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From this, B is a ring; to see it is local, notes that if f has nonzero constant in B, then f−1 ∈ B.
Thus, by letting m = 〈z1, · · · , zn〉 an ideal of B, f 6∈ m is unit. Therefore, Proposition 1.6 shows that
B is local ring with the unique maximal ideal m.

Notes that A ⊆ B is obvious, since g(0) 6= 0 implies g has nonzero constant, thus invertible in C, which
shows that g−1 ∈ C. Moreover, from g has infinite radius of convergence, so g−1 has positive radius of
convegence, which implies both g, g−1 ∈ B. Also, any polynomial is in B. This implies A ⊆ B.

Moreover, B with completion is C, to see this, notes that A ⊆ B ⊆ C with Â = C = Ĉ by Corollary
10.27. Observe that A/(m ∩ A)n ∼= B/mn for any n ∈ N, since image of power series in B/mn is
truncation of power series up to degree n, which is polynomial, thus, the same as A/(m ∩ A)n. This
implies A and B has the same inverse system with respect to m-adic topology, hence Â = B̂ = C.

Lastly, observe that A,B are Zariski ring; since A,B are local ring with m-adic topology, where m is
just Jacobson radical. By Exercise 10.7, C = Â = B̂ is faithfully over A and B. Now notes that A→ Â
actually factor through A → B → B̂, and we know that A → B → B̂ = A → Â is flat and B → B̂ is
faithfully flat. Thus, by Exercise 3.17, A→ B is flat.

9. We need to construct coprime monic polynomials gk, hk with degree r and n− r such that gkhk − f ∈
mkA. In k = 1, g1, h1 are given by the problem. Thus suppose we know gk−1 and hk−1 such that
deg(gk−1) = r, deg(hk−1) = n− r and gk−1hk−1 − f ∈ mk−1A[x], and that their image gk−1, hk−1 are
coprime in (A/m)[x], which is PID.

First of all, by inductive hypothesis that f(x)− gk−1(x)hk−1(x) ∈ mk−1(A[x]),

f(x)− gk−1(x)hk−1(x) :=

n∑
p=0

cpx
p

for some cp ∈ mk−1. Now fix p such that 0 ≤ p < n. Then, since (A/m)[x] is a PID, we can apply
Bezout’ identity on gk−1, hk−1 to get ap, bp ∈ (A/m)[x] such that apgk−1 + bphk−1 = xp. Now by
Euclidean lemma, there exists q, r ∈ (A/m)[x] such that ap = hk−1q+ r with deg r < deg hk−1 = n− r.
Then,

rgk−1 + (qgk−1 + bp)hk−1 = xp

Thus, by replacing ap with r and bp with (qgk−1 + bp), we may assume that deg ap < n− r. Then,

deg bphk−1 = deg xp − apgk−1 < deg f.

Thus, deg bp < deg gk−1 = r Therefore, we may choose ap and bp such that for each 0 ≤ p < n,
∃ap, bp ∈ A[x] such that apgk−1 + bphk−1 − xp ∈ m(A[x]) with deg(ap) < n− r, deg(bp) < r.

Thus, if we let rp(x) = apgk−1 + bphk−1 − xp ∈ m(A[x]), then xp = apgk−1 + bphk−1 − rp(x), thus

f(x)− gk−1(x)hk−1(x) =

n∑
p=0

cpx
p =

n∑
p=0

cp(ap(x)gk−1(x) + bp(x)hk−1(x)− rp(x)) ∈ mk−1(A[x])

From this, let gk = gk−1 +
∑n
p=0 cpbp(x), hk = hk−1 +

∑n
p=0 cpap(x). Then,

gkhk = gk−1hk−1 +

n∑
p=0

cp(ap(x)gk−1(x) + bp(x)hk−1(x)) +

(
n∑
p=0

cpbp(x)

)(
n∑
p=0

cpap(x)

)
.

thus

f(x)− gkhk =

n∑
p=0

cprp(x) +

(
n∑
p=0

cpbp(x)

)(
n∑
p=0

cpap(x)

)
≡ 0 mod mk

since cp ∈ mk−1 and rp(x) ∈ m(A[x]) by construction, and cp · cp′ ∈ m2k−2 ⊆ mk. Moreover, gk ≡ gk−1

mod mk−1 and hk ≡ hk−1 mod mk−1 since cp ∈ mk−1.
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In summary, we just showed that for each k ∈ N, ∃gk, hk ∈ A[x] such that f−gkhk ∈ mk and gk+1 ≡ gk
mod mk and hk+1 ≡ hk mod mk. Thus, if we think about the map θk+1 : A/mk+1 → A/mk consisting
inverse system, then θk+1(gk+1) = gk since θ is just a map sending each coefficeint c = c+mk+1 of gk+1 ∈
(A/mk+1) to c+ mk, thus θk+1(gk+1) = gk+1 mod mk ≡ gk. Hence, if we suppose gk :=

∑r
n=0 ck,nx

n,
then (ck,n)k∈N form a Cauchy sequence for each n, since for any mk, a basic open neighborhood of 0, for
any k1, k2 > k, we have ck1,n− ck2,n ≡ ck,n− ck,n mod mk = 0 mod mk implies that ck1,n− ck2,n ∈ mk.
Therefore, since A is complete, ∃cn = limk ck in A. Now let g =

∑r
n=0 cnx

n. In the same way, define
h. Then, g ≡ gk mod mk, h ≡ hk mod mk, thus f − gh ≡ f − gkhk mod mk[x] ≡ 0 mod mk[x] for all
k ∈ N. Thus, f − gh ∈

⋂
k≥0 m

k[x]. Since A is complete,
⋂
k≥0 m

k = 0, which implies f − gh = 0.

10. (a) From definition of simple root, f is factorized as f = (x − α)h(x). Let g = x − α. By applying
Hensel’s lemma, we have g, h ∈ A[x] such that f = gh. Since deg(g) = 1, g = x − a for some
a ∈ A. Thus, f has simple root a ∈ A such that a ≡ α mod m.

(b) To see this we need to find a solution of x2 − 2 in the 7-adic completion of Z. Moreover, if
solution α exists, then x2 − 2 splits into (x − α)(x + α). Now if we let A = Z7, the completion
of Z by (7), then m = (7), thus A/m = Z7/7Z7

∼= Z/7Z by Proposition 10.15. Now notes that
32 = 9 ≡ 2 mod 7 is the solution of this equation, thus Hensel lemma lifts 3 to some element in
Z7. Thus 2 is square in Z7

(c) By thinking A = k[[x]],m = (x), we have k[x, y] ⊆ A[y]. Then, f(0, y) = f in (A/m)[y]. Thus,
f(0, y) = (y − a0)h(y) induces f = (y − a)h(x, y) in A[x]. Thus, f has a solution a ∈ A = k[[x]].
Thus, by letting y(x) = a, f(x, y(x)) = (a− a)h(x, y(x)) = 0.

11. Let A be the ring of germs of C∞ functions of x at x = 0. Notes that f and g are in the same germ of
0 if and only if ∃U an open neighborhood of 0 such that f |U = g|U . Also, ev : A → R by [f ] 7→ f(0)
gives that m = {[f ] : f(0) = 0} is a maximal ideal. Also, if [f ] admits f(0) 6= 0, then by inverse
function theorem f admits local inverse at 0, so ∃[g] such that [f ][g] = [1]. Thus, [f ] is unit if it is not
in m. Thus A is local ring.

First of all, we claim that

mk = {[f ] ∈ A :
dj

dx
(f)(0) = 0 for all 0 ≤ j < k}.

To see this, if f1 · · · fk are product of elements in m, then by product rule of differentiation, each term
occurs at j-th derivatives contain at least one of fi, thus 0 when x = 0. Conversely, if f is in the right
hand side, then by Taylor’s theorem, for any open neighborhood U of 0,

f(x) =

k−1∑
j=0

1

j!
f (j)(0)xj + gn(x)xn = gn(x)xn

where gn ∈ C∞(U) and gn(0) = 1
k!f

(k)(0). Thus f ∈ ([xn]) ⊆ mk. Done.

And from this argument, we see that mk ⊆ {[f ] ∈ A : dj

dx (f)(0) = 0 for all 0 ≤ j < k} ⊆ ([xn]) ⊆ mk.
Hence, mk = ([xn])

Now to understand Â, we claim that A/mk ∼= R[x]/(xk) for all k. Notes that R[x] 7→ A sends (xn)
to ([xn]), so R[x]/(xk) ∼= A/mk = A/([xk] by the first isomorphism theorem. Also, This commutes
with the map θk+1 : A/mk+1 → A/mk and θ′k+1 : R[x]/(xk+1)→ R[x]/(xk) since both of the works by

picking representation in R[x] (or A) and mod out by (xk) (or mk). Thus, Â ∼= ˆR[x] = R[[x]]. Since R
is field, so it is Noetherian, hence by Corollary 10.27, Â is Noetherian.

Then, Â is finitely generated A-module since A → Â ∼= R[[x]] is sending f to its Taylor expansion.
(One can actually use this map to showing that A/mk ∼= R[x]/(xk)) Hence, by Borel’s theorem, A→ Â
is surjective. Thus, as a module, Â is finitely generated module since image of ([1]) generates all Â.

However, A is not Noetherian, since
⋂
n∈N([xn]) 6= 0; think e−1/x2

. Since its Taylor expansion at 0 is
0, it is inside of ([xn]) for all n. Thus, by Corollary 10.18, A is not Noetherian.
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12. Notes that A → A[x1, · · · , xn] is flat by applying Exercise 2.5 and 2.8 ii) n times. Now, notes that
A[x1, · · · , xn] → A[[x1, · · · , xn]] is faithfully flat, since Exercise 1.5 v) shows Spec(A[[x1, · · · , xn]]) →
Spec(A[x1, · · · , xn]) is surjective, which is one of equivalent conditions of faithfully flat. Now apply
Exercise 2.8 ii) on A→ A[x1, · · · , xn]→ A[[x1, · · · , xn]] to get A→ A[[x1, · · · , xn]] is flat.

11 Dimension Theory

In the proof of Theorem 11.1, L is annihilated by xs since Ln = Mn+ks/xsMn; thus if we multiply xs on
m ∈ Ln, then xs · m ∈ xsMn+2ks , thus xsm = 0 ∈ Mn+2ks/xsMn+ks . Also, to get (2), by summing the
above line, you get

P (K, t)− P (M, t) +

∞∑
n=ks

λ(Mn)tn−ks =

∞∑
n=ks

λ(Ln)tn−ks .

Multiply tks , then you can get

tksP (K, t)− tksP (M, t) +

∞∑
n=ks

λ(Mn)tn =

∞∑
n=ks

λ(Ln)tn.

Then,
∑∞
n=ks

λ(Mn)tn = P (M, t) − g1(t) and
∑∞
n=ks

λ(Ln)tn = P (L, t) − g2(t). Thus, by letting g =
g2(t)− g1(t),

tksP (K, t)− tksP (M, t) + P (M, t) = P (L, t) + g(t).

Now by reordering you can get (2). Now inductive hypothesis shows that P (L, t), P (K, t) are of given form,
thus so is P (M, t).

In the proof of Corollary 11.2, (1− t)−d =
∑∞
k=0

(
d+k−1
d−1

)
tk is from following; since (1− t)−d =

∏d
i=1(1 +

t+ t2 + · · · ), thus the coefficient of tk is the number of ordered d-partitions of [k]. Actually, it is the same as
giving d− 1 bars on the sequence of same k balls to make d groups. Thus, it is the same as choosing d− 1
positions in a row of d− 1 + k positions and assign bars on the chosen positions and put balls on the other
positions. Thus, we get

(
d+k−1
d−1

)
.

Now, for λ(Mn) if n ≥ N , then since it is coefficient of tn with n ≥ N in f(t) · (1 − t)−d, it is sum of
akt

k ×
(
d+n−k−1

d−1

)
tn−k for k = 0, 1, · · · , N . Done.

Also notes that d in corollary 11.2 is the order of the pole.
To get d(L) = d(M)−1, notes that in given situation, L = M/xM and by applying λ on 0→M0 →M1 →

L1 → 0 you get λ(L1) = λ(M1)−λ(M0). And, (2) gives (1− t)P (M, 1)+λ(M0) = P (L, 1)+λ(L0) = P (L, 1)
since L0 does not exists. Thus, P (L, 1)− λ(M0) = (1− t)P (M1). Since λ(M0) ∈ Z, the order of the pole of
P (L, 1) is 1 less than that of M . This shows d(L) = d(M)− 1.

In the example in p.118, length of An can be obtained by a chain of submodule, whose n-th module is
generated by

(
s+n−1
s−1

)
− n monomials.

In the proof of Proposition 11.4, to see that G(A) is Noetherian an G(M) is finitely generated graded
G(A)-module use Proposition 10.22. Also, A/q is Artin, since Corollary 7.16 shows that ∃n ∈ N such that
mn ⊆ q, thus m in A/q is nilpotent. Now apply Proposition 8.6. Also, a finitely generated module M over
Artinian local ring A is artinian, since 0 → ker(An → M) → An → M → 0 is exact sequence of A-module,
and An is also Artinian by Theorem 8.7. Now apply Proposition 6.3. And M/Mn is of finite length since
each Mn−k/Mn with k ≥ 1 has finite length; when k = 1, done. Suppose Mn−k+1/Mn has finite length.
Then, it has a short exact sequence

0→Mn−k+1/Mn →Mn−k/Mn →Mn−k/Mn−k+1 → 0

Since each Mn−k+1/Mn and Mn−k/Mn−k+1 have the composition series, thus Proposition 6.8 says that it
satisfies both chain condition. By Proposition 6.3, so does Mn−k/Mn. Now l(·) is an additive map on module
with finite length, the exact sequence induces

l(Mn−k/Mn)− l(Mn−k+1/Mn) = l(Mn−k/Mn−k+1).
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Thus this finite difference implies l(M/Mn) =
∑n
r=1 l(Mr−1/Mr). Also, as a polynomial notes that lk is a

polynomial in n of degree ≤ s − 1 distinct with f(n), by thinking it as a coefficient of power series. Thus,
sum ln is a polynomial g(n) of degree ≤ s for all large n. Lastly, to get limn→∞ g(n)/g̃(n) = 1, apply limit
on g(n)/g(n+ n0) ≤ g(n)/g̃(n) ≤ g̃(n+ n0)/g̃(n).

In proof of Proposition 11.6, containment affects on the size of polynomial since it is just coefficient as
a length. Thus, by taking n → ∞ on 1 ≤ ξq(n)/ξm(n) ≤ ξm(rn)/ξm(n), we get limn→∞ ξm(rn)/ξm(n) =
rdeg ξm(n) > 0 when r ≥ 1. Hence limit of ξq(n)/ξm(n) converges; this implies ξq(n) and ξm(n) have the same
degree.

To check d(A) = d(Gm(A)), I refer [11][11.2]. Let old d in [3][p.117] is d0 and new d in [3][p.119] be
dv. Then it is the problem of checking dv(A) := d0(Gm(A)). Notes that Gm(A) is Noetherian graded
ring since A is Noetherian local and Proposition 10.22 (i). If we assume M = A in Proposition 11.4,
ln = l(A/mn). Corollary 11.4(1) shows that ln =

∑n
r=1 l(m

r/mr+1). And definition of d0(Gm(A)) is a pole
of P (Gm(A), 1) =

∑∞
r=1 l(m

r/mr+1)tr. Let Q(A, 1) :=
∑∞
r=1 lrt

r. Then, P (Gm(A), 1) ·
∑∞
q tq = Q(A, 1),

i.e., P (Gm(A), 1) · 1
1−t = Q(A, 1). Hence, d0(Gm(A)) + 1 = d0(A) by definition of the pole. By applying

Corollary 11.2 on Q(A, 1), we can get d0(A)− 1 = dv(A). Thus,

d0(Gm(A)) = d0(A)− 1 = dv(A).

Or, you can see that
0→ mn/mn+1 → A/mn+1 → A/m→ 0

This is exact by third isomorphism theorem. (Take quotient and apply it.) Then, by multiplying t, we can
get

(1− t)Q(A, 1) = tP (Gm(A), 1) + l(A/m)

Hence, d0(Gm) = d0(A)− 1. Now we can get the same answer.
In the proof of 11.8, the exactness of short exact sequence can be checked by showing (M/qnM)/(xM/qnM) ∼=

(M/xM)/qn(M/xM) directly. The map is just sending representation to representation. However, I didn’t
know whether A/qnA is flat or not.

For the example in [3][p.121], notes that Gm(A) is a polynomial ring over A/m with n indeterminates.
Thus, length of each module is just the number of monomials with particular degree. This leads to the
Poincare series in the book. Thus, d0(Gm(A)) = n =⇒ dv(A) = n =⇒ dimA = n by Theorem 11.14
=⇒ dimAm = n since any prime in A contained in m.

In corollary 11.15, since m is generated by dimA = δ(A) number of elements by the dimension theorem
s ≥ dimA.

In the proof of Proposition 11.20, d is old d, i.e., d0 with λ = l. Thus, d(Gq(A)) ≤ d((A/q)[t1, · · · , td]/(f))
comes from the fact that (A/q)[t1, · · · , td]/(f)→ Gq(A) is still surjective since f ∈ ker(α), thus preimage of
chain of submodules in each graded summand of the latter is also chain in former. The rest is straighforward,
and the last equation d(Gq(A)) = d is actually do(Gq(A)) = do(Gm(A)) = dv(A) = d where first equality
comes from the previous argument that it doesn’t matter on the pole whether use m-primary ideal or m itself
by Proposition 111.6. And the second equaltiy is just definition of dv, and the third equality comes from the
example in [3][p.121].

In the proof of Corollary 11.21, fs(x1, · · · , xd) = −higher terms, thus it is in qs+1. That’s why we can
apply 11.20 in this case.

In the proof of theorem 11.22, iii)→ i), notes that generators x1, · · · , xd of m (which is clearly m-primary
ideal) is a system of parameter since dimA = d. Thus, by Corollary 11.21, they are algebraically independent
over k. Thus, the epimorphism α constructed in Proposition 11.20 must have no kernel elements except 0.

For the statement that regular local ring is integrally closed, see [12][Proposition 2.2.3].
Notes that the strong Nullstellensatz (Exercise 7.14) implies that for any ideal a of k[x1, · · · , xn],

I(V (a)) = r(a). In case of when a = m , then V (m) is a point of kn. Thus it gives a bijection between kn

and maximal ideals of k[x1, · · · , xn].
In the proof of Theorem 11.25, notes that dimV is actually the number of algebraically independents

of k(V ). And k(V ), a field of fraction of A(V ), contains A(V )m as a subring. Thus, by Corollary 11.21,
since A(V )m contains k and has a system of parameters, which is a generators of mA(V )m, then they are
algebraically independent over k. Thus, the number of algebraically independents elements of k(V ) has at
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least the number of the system of parameters of A(V )m, which is dimA(V )m, since A(V )m ⊆ k(V ). Hence,
dimV ≥ dimA(V )m.

In the proof of Lemma 11.26, integally closed means integrally closed in the field of fraction.

1. Let P = (p1, · · · , pn). Since k is algebraically closed field, f =
∑n
i=1(xi − pi)gi for some gi ∈

k[x1, · · · , xn]. Hence,

∂f

∂xi
= gi + (xi − pi)

∂gi
∂xi

+

n∑
j 6=i

(xj − pj)
∂gj
∂xj

.

Thus, f is singular at P if and only if gi ∈ m2
P if and only if f ∈ m2

P . Now notes that m is image of
mP in A = k[x1, · · · , xn]/(f). Thus, image of k[x1, · · · , xn]−mP is just A−m. Hence,

k[x1, · · · , xn]mP /(f)mP
∼=︸︷︷︸

Corollary3.4iii)

(k[x1, · · · , xn]/(f))mP
∼=︸︷︷︸

Exercise3.4

(k[x1, · · · , xn]/(f))m = Am.

Also, m2 can be denoted as an image of m2
P , thus m2 = (m2

P +(f))/(f). Thus, m/m2 ∼= (mP /(f))/(m2
P +

(f))/(f) ∼= mP /(m
2
P + (f)) where the last equality comes from third isomorphism theorem. Now, f

is singular if and only if f ∈ m2
P if and only if m/m2 ∼= mP /(m

2
P ) if and only if dimk(m/m2) =

dimk(mP /(m
2
P )) = n. Thus, when f is singular, dimAm = dimA = dim k[x1, · · · , xn]/(f) = n − 1 6=

n = dimk(m/m2). So A is not regular. If f is nonsingular, then m2
P + (f) is strictly greater than mP ,

hence there is v ∈ mP which is nonzero in mP /m
2
P but zero in mP /(m

2
P + (f)). Since mP /m

2
P is a

vector space, there is a basis containing v. This implies that as a vector space mP /(m
2
P + (f)) has

dimension less than that of mP /m
2
P . Thus, dimk(m/m2) ≤ n− 1. Now apply Corollary 11.5 on Am we

get n− 1 = dimAm ≤ dimk(m/m2) ≤ n− 1. This shows dimk(m/m2) = n− 1. Hence Am is regular.

2. This homomorphism is lifting of k[t1, · · · , td]/(t1, · · · , td)n → A/(x1, · · · , xd)n as ti 7→ xi into their
completion. This map is injective for any n, since p(x) = 0 implies the least degree monomial of p(x) is
at least n, thus the least degree monomial of p(t) is at least n, hence p(t) = 0. Thus, by Proposition 10.2,
the map between completion is injective. Now all we need to show is that (x1, · · · , xd)-adic completion
is equal to m-adic completion. Since (x1, · · · , xd) is m-primary and A is Noetherian, Corollary 7.16
shows that mn ⊆ (x1, · · · , xd) ⊆ m for some n > 0. Thus, as a neighborhood base, (x1, · · · , xd)-adic
basis and m-adic basis has the same open set. Hence, (x1, · · · , xd)-adic completion is equal to m-adic
completion. Hence the given homomorphism is injective.

Now we may think that A is k[[t1, · · · , td]] module. {(x1, · · · , xd)n}n∈N is (t1, · · · , td)-filtration of A.
Moreover, since A is m-adic completion, which is equivalent to q-adic completion, thus A is Hausdorff
in its filtration topology. Now let a = (x1, · · · , xd). Notes that k[[t1, · · · , td]] → A is injective. By
below claim, k[[t1, · · · , td]]/(t1, · · · , td)→ A/(x1, · · · , xd) is injective. Hence, G(t1,··· ,td)(k[[t1, · · · , td]])
has a natural map on G(x1,··· ,xd)(A) since their zeroth component is isomorphism and their other
components are generated by correspondence ti 7→ xi. Thus, G(x1,··· ,xd)(A) is generated by 1 in
G(t1,··· ,td)(k[[t1, · · · , td]]) as aG(t1,··· ,td)(k[[t1, · · · , td]])-module. So it is finitely generatedG(t1,··· ,td)(k[[t1, · · · , td]])-
module. Thus, By Proposition 10.24, A is finitely generated k[[t1, · · · , td]]-module.

Claim LVII. Let α : A → B be an injective ring homomorphism. Let I be an ideal of A. Then,
α′ : A/I → B/Ie is injective ring homomorphism.

Proof. Suppose that α′(a) = α(a) = 0. Then α(a) ∈ Ie ∩ α(B) = α(I). Thus a ∈ I. Hence a = 0.

3. From Noether normalization, there is a ring B = k[x1, · · · , xd] contained in A(V ) such that d = dimV
and A(V ) is integral over B. By Lemma 11.26,

dimBn = dimA(V )m

Also by the hint k[x1, · · · , xd] is integral over k[x1, · · · , xd]. Thus, by applying Lemma 11.26,

dimBn = dim k[x1, · · · , xd]q.
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By picking m and q such that m ∩ B = n = q ∩ k[x1, · · · , xd], and from the theorem 11.25 implies
that dim k[x1, · · · , xd]q = d where d is a dimension of variety V over k for all maximal ideal q of
k[x1, · · · , xd]. Hence, dimBn = d for all maximal ideal n. Since B was chosen as d = dimV where
dimV is dimension of variety V over k, this implies the local dimension of V at any point is equal to
dimV .

4. Just notes that pi = (xmi+1, · · · , xmi+1). Now we claim that maximal ideals of S−1A are pis. Now if a
is an ideal of A does not meet S, then a is inside of union of pis. Actually, since A is Noetherian, a is
finitely generated, and each generator of a contains finitely many indeterminates. Hence a is inside of
finite union of pis. Thus, Proposition 1.11 i) shows that a is contained in pi. Thus by Proposition 3.11
i), all maximal ideals are S−1pi. Now, to use Exercise 7.9, we claim that S−1AS−1pi is Noetherian. To
see this, define a map

(S−1A)S−1pi → Api by (a/b)/(c/d) 7→ ad/bc.

Then, it is well-defined, since if (a/b)/(c/d) = (e/f)/(g/h), then ∃t/q ∈ S−1A − S−1pi such that
tag/qbh = tce/qdf , which implies ∃l ∈ S such that ltagqdf−lqbhtce = 0. This implies ltq(agdf−bhce) =
0. Since ltq ∈ S, thus ltq ∈ A \ pi. Hence, ad/bc = eh/gf in Api . Now surjectivity is clear; for any
a/b ∈ Api , send (a/1)/(b/1). Injectivity is clear since ad/bc = 0/1 implies there is t ∈ A− p1 such that
tad = 0. Since td 6= 0 with A is integral domain, a = 0. Thus, (0/b)/(c/d) is preimage of it, and notes
that this is the same as (0/1)/(1/1).

Hence, this map is isomorphism as a ring. Thus, each S−1AS−1pi is Noetherian since Api is Noetherian
for any i by Corollary 7.4. Thus by applying exercise 7.9, S−1A is Noetherian. Now notes that each
S−1pi has height equal to mi+1 −mi, which increases when i→∞. Thus, dimS−1A =∞.

5. Suppose that γ is a map sending an A0-module M to its class in K(A0). Then, for any homomorphism

λ0 : K(A0) → Z let P (M, t) =
∑∞
n=0 λ0((Mn))tn. Then, P (M, t) = f(t)∏s

i=1(1−tki ) . Notes that proof is

exactly same; since the construction of K(A) implies that applying λ0 on exact sequence is 0.

6. Follow hints; let f : A→ A[x] be the embedding and consider the fiber of f∗ : Spec(A[x])→ Spec(A)
over a prime ideal p of A. By Exercise 3.21 iv), f∗,−1(p) ∼= Spec(k

⊗
A

A[x]) where k is the residue field

of the local ring Ap. Now notes that k
⊗
A

A[x] ∼= k[x] since q ⊗ axt = a(q ⊗ xt) = (aq ⊗ xt) where a

is image of a on k. Also, dim k[x] = 1 since k[x] is PID. Thus, if A has length r chain consisting of
r + 1 prime ideals, then A[x] has at most length 2r + 1 chain consisting of 2r + 2 ideals. This shows
dimA[x] ≤ 1 + 2 dimA.

Conversely, if A has length r chain consisting of r + 1 prime ideals, then Exercise 4.7 ii) implies that
A[x] has at least length r chain induced by chain of A. Moreover, let pr be the top elements of the
chain of A. Then, pr + (x) is prime in A[x]; to see this, let A[x]→ A→ A/pr. Then, this is surjective
map. And kernel is pr + (x). Since A/pr is integral domain, so pr + (x) is prime. This implies
dimA+ 1 ≤ dimA[x].

7. Follow hints; We already know that dimA[x] ≥ 1 + dimA. Thus we should show the other inequality.
Let p be a prime ideal of height m in A. Then there exists a1, · · · , am ∈ p such that p is minimal prime
ideal belonging the ideal a = (a1, · · · , am). To see this, apply dimension theorem on Ap, which shows
that there is pAp-primary ideal with m generators. By Exercise 4.7 v), p[x] is a minimal prime ideal
of a[x], thus height p[x] ≤ m by Corollary 11.16.

Now, let p be a prime ideal of A[x]. Then, pc is prime ideal of A. If pc has height 0, then pc = 0. Thus,
from the fact that f∗,−1(0) is set with two elements and one element is zero ideal of A[x], p is minimal
ideal belong to 0; otherwise there exists another prime ideal between p and 0, and this should be in
f∗,−1(0), contradiction. This shows height of p ≤ that of pc+1 when pc has height 0.

Then, suppose this holds when height of pc is m. Then, for any prime ideal q strictly contained in p,
height of qc is less than or equal to m. Now notes that pc[x] is a subset of p such that both are in
f∗,−1(p). If pc[x] = p, then height of p is less than height of pc+ 1. Done. Otherwise, there is no prime
ideal between pc[x] and p since f∗,−1(pc) has cardinality 2. In this case, pc[x] is strictly less than p,
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thus height m. Hence, p has height less than m + 1. This shows that every prime ideal of A[x] has
height less than 1+ height of its contraction. Hence, dimA[x] ≤ 1 + dimA.

Now by Exercise 11.6, this shows dimA[x] = 1 + dimA. In case of polynomial ring with multiple
variable, notes that Hilbert basis theorem shows that each polynomial subring is Noetherian. So apply
inductively the above argument.
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