Integrate $|x y(x+y)|_{p}$ over \mathbb{Z}_{p}^{2} with Haar measure. Gigem Presentation Feb. 16., 2019
Byeongsu Yu

February 16, 2019

Table of Contents

(1) Objective
(2) \mathbb{Z}_{p} and
(3) $\quad \mu$ and $\int_{\mathbb{Z}^{p} \times \mathbb{Z}^{p}}$
(4) Calculate Integral!

- This is one of two exercises in my life related to zeta functions.
- These gives me both pain and joy simultaneously, since this gave my first time painful working...
- Thus I just want to share those two things, emphasizing on the 'joy' part.

Want to understand

$$
\begin{equation*}
\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}}|x y(x+y)|_{p} d \mu=? \tag{1}
\end{equation*}
$$

I saw it from Undergraduate Analysis 3 Final exam, and later, I knew it is related to Sautoy's Zeta function paper [1]. Then, we should deal with the meaning of

$$
\text { (1) } \mathbb{Z}_{p}, \text { (2) }|\cdot|_{p}, \text { (3) } \mu \text { and (4) } \int_{\mathbb{Z}^{p} \times \mathbb{Z}^{p}}
$$

Table of Contents

(1) Objective
(2) \mathbb{Z}_{p} and $|\cdot|_{p}$.
(3) $\quad \mu$ and $\int_{\mathbb{Z}^{p} \times \mathbb{Z}^{p}}$

4 Calculate Integral!

Definition $\left(\mathbb{Q}_{p}\right)$

For any $x \in \mathbb{Q}, x=p^{m} \frac{a}{b}$ for some unique $m \in \mathbb{Z}$ with $(a, b)=1$. Define

$$
\operatorname{ord}_{p}(x):=m,|x|_{p}:=\frac{1}{p^{m}} .
$$

$|\cdot|_{p}$ is a non-archimedean norm, i.e.,
(1) $|x|_{p} \geq 0, \forall x,|x|=0 \Longleftrightarrow x=0$.
(2) $|x y|=|x||y|$.
(3) $|x+y| \leq \max \{|x|,|y|\}$ (not usual Triangle inequality.)

And $d(x, y)=|x-y|_{p}$ induces metric on \mathbb{Q}.

Definition

\mathbb{Q}_{p} is a completion of \mathbb{Q} with $|\cdot|_{p}$, i.e., set of all equivalent classes of Cauchy sequence.

Thus any $x \in \mathbb{Q}_{p}, x$ has the unique Laurent series expansion, i.e.,

$$
x=\sum_{i=m} a_{i} p^{i}, a_{m} \neq 0
$$

where $m=\operatorname{ord}_{p}(x), a_{i} \in\{0,1, \cdots, p-1\}, \forall i \geq m$.
Exercise: What is Laurent expansion of -1 ?
Exercise: It is totally disconnected but locally compact.

Definition (p-adic integer)
$\mathbb{Z}_{p}:=\left\{x \in \mathbb{Q}_{p}:\left|x_{p}\right| \leq 1\right\}$.
Why? Any expansion of p-adic integer starts with p^{m} with $m \geq 0$. So it has no Laurent part.

Proposition

\mathbb{Z}_{p} is open and closed, compact, and decomposed with disjoint union of $\left(p \mathbb{Z}_{p}+0\right), \cdots,\left(p \mathbb{Z}_{p}+p-1\right)$.

Proof.

\mathbb{Z}_{p} is actually closed ball. So it suffices to show that boundary is open. Take $\epsilon<1$. Then, $\forall x \in S_{0,1}, B_{x, \epsilon} \subseteq S$, since

$$
\epsilon=|x-y|<|x-0|=1 \Longrightarrow|x|=|y| .
$$

for any $y \in B_{x, \epsilon}$. (Compare coefficients.)

Proof.

To see compact, let $\left(x_{n}\right)$ be sequence in \mathbb{Z}_{p}. By pigeonhall principle, $\exists b_{0} \in\{0,1, \cdots, p-1\}$ infinitely many elements of $\left(x_{n}\right)$ has zeroth digit (coefficient of 1) is b_{0}. Take $x_{n_{0}}$ be the smallest index elements from those infinite elements. Then use induction to get subsequence converging to $x=\sum_{i=0}^{\infty} b_{i}$.

Decomposition part is clear from the above proof. If you love algebra more, then you can construct \mathbb{Q}_{p} using DVR, $\mathbb{Z}_{p} m$-adic completion. Maybe next Gigem I will deal with such algebra things..

Table of Contents

(1) Objective
(2) \mathbb{Z}_{p} and $|\cdot|_{p}$.
(3) $\quad \mu$ and $\int_{\mathbb{Z}^{p} \times \mathbb{Z}^{p}}$

4 Calculate Integral!

Definition

Topological group G is a group with topology such that multiplication and inverse map is continuous.

Then, it is known that if G is abelian and locally compact, then \exists nonzero translation invariant measure μ (which is called "Haar measrue") which is unique up to scalar. Also it has good properties that
(1) $f: G \rightarrow \mathbb{C}$ is continuous $\Longrightarrow f$ is μ-integrable.
(2) $\int_{G} f(x) d \mu=\int_{G} f(g x) d \mu$, for all $g \in G$.
(3) Every borel subsets of G is μ-measurable.
(9) $\mu(A)$ is finite $\Longleftrightarrow A$ is compact borel open nonempty subset.

From this, let μ be Haar measure for $\mathbb{Q}_{p} s u c h$ that

$$
\mu\left(\mathbb{Z}_{p}\right)=1
$$

Exercise. What is $\mu\left(p \mathbb{Z}_{p}\right)$? $1 / p$, since

$$
\mathbb{Z}_{p}=\left(p \mathbb{Z}_{p}+0\right) \cup \cdots \cup\left(p \mathbb{Z}_{p}+p-1\right)
$$

and $\mu\left(p \mathbb{Z}_{p}+i\right)=\mu\left(p \mathbb{Z}_{p}\right)$ from translation invariance. By similar way, $\mu\left(p^{m} \mathbb{Z}_{p}\right)=\frac{1}{p^{m}}$.

How can we integrate on \mathbb{Z}_{p} ? Notes that image of $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}$ is countable, thus we can take a level set, then preimage of level set is closed, thus borel measurable set. For example, if A is a measurable set and $c \in \operatorname{im}(f)$, then

$$
A_{f}(c):=\{x \in A: f(x)=c\}
$$

thus

$$
\int_{A} f(x) d \mu=\sum_{c \in i m(f)} \int_{A_{f}(c)} f(x) d \mu=\sum_{c \in C} c \mu\left(A_{f}(c)\right) .
$$

Example: $\int_{\mathbb{Z}_{p}}\left|x^{d}\right|^{s} d \mu=\frac{p-1}{p-p^{-d s}}$, for $d \in \mathbb{N} \cup\{0\}, s \in \mathbb{R}_{\geq 0}$ To see this, notes that

- $\left|x^{d}\right|^{s}=1$ for $x \in \mathbb{Z}_{p}-p \mathbb{Z}_{p}$,
- $\left|x^{d}\right|^{s}=\frac{1}{p^{d s}}$ for $x \in p \mathbb{Z}_{p}-p^{2} \mathbb{Z}_{p}$,
and so on, thus

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}}\left|x^{d}\right|^{s} d \mu & =1 \cdot \mu\left(\mathbb{Z}_{p}-p \mathbb{Z}_{p}\right)+\frac{1}{p^{d s}} \mu\left(p \mathbb{Z}_{p}-p^{2} \mathbb{Z}_{p}\right)+\cdots \\
& =1 \cdot(1-p)+\frac{1}{p^{d s}}\left(\frac{1}{p}-\frac{1}{p^{2}}\right)+\frac{1}{p^{2 d s}}\left(\frac{1}{p^{2}}-\frac{1}{p^{3}}\right)+\cdots \\
& =\left(1+\frac{1}{p^{d s+1}}+\frac{1}{p^{2 d s+2}}+\cdots\right)\left(1-\frac{1}{p}\right) \\
& =\left(1-\frac{1}{p}\right) \frac{1}{1-p^{-d s-1}}=\frac{p-1}{p-p^{-d s}}
\end{aligned}
$$

And, to deal with integration over \mathbb{Z}_{p}^{2}, we need the Fubini-Tonelli theorem. (Notes that $\left(\mathbb{Q}_{p}, \mu\right)$ is σ-finite.)

Theorem (Fubini's theorem for p-adic version)

Suppose $f(x, y): \mathbb{Q}_{p}^{n+m} \rightarrow \mathbb{R}$ is integrable, such that $\int_{\mathbb{Q}_{p}^{n+m}} f(x, y) d \mu_{x, y}<\infty$. Then, for almost every $y \in \mathbb{Q}_{p}^{m}$,
(1) The slice f^{y} is integrable on \mathbb{Q}_{p}^{n}.
(2) The function defined by $\int_{\mathbb{Q}_{p}^{n}} f^{y}(x) d \mu_{x}$ is integrable on \mathbb{Q}_{p}^{m}
(3) $\int_{\mathbb{Q}_{p}^{n}}\left(\int_{\mathbb{Q}_{p}^{m}} f(x, y) d \mu_{y}\right) d \mu_{x}=\int_{\mathbb{Q}_{p}^{n+m}} f(x, y) d \mu_{x, y}=$

$$
\int_{\mathbb{Q}_{p}^{m}}\left(\int_{\mathbb{Q}_{p}^{n}} f(x, y) d \mu_{x}\right) d \mu_{y}
$$

Proof.

Quite standard procedure on $\left(\mathbb{Q}_{p}, \mu\right)$ and its product measure.

Table of Contents

(1) Objective
(2) \mathbb{Z}_{p} and $|\cdot|_{p}$
(3) μ and $\int_{\mathbb{Z}^{p} \times \mathbb{Z}^{p}}$

4 Calculate Integral!

Now we are ready for dealing with

$$
\int_{\mathbb{Z}_{p}^{2}}|x y(x+y)|_{p} d \mu
$$

From Fubini-Tonelli,

$$
\int_{\mathbb{Z}_{p}^{2}}|x y(x+y)|_{p} d \mu=\int_{\mathbb{Z}_{p}}|x|^{s} \int_{\mathbb{Z}_{p}}|y|^{s}|x+y|^{s} d \mu_{y} d \mu_{x}
$$

First of all, fix $x=\sum_{i=1}^{\infty} a_{i} p^{i}$ with $a_{l} \neq 0$. Then, $|x|=p^{-1}$. Now we can decompose y-part of \mathbb{Z}_{p} as follow; for any $y \in \mathbb{Z}_{p}$ with $y=\sum_{i=k}^{\infty} b_{i} p^{i}$ with $b_{k} \neq 0$,
(1) $|x|>|y| \Longrightarrow|x+y|=|x|$
(2) $|x|<|y| \Longrightarrow|x+y|=|y|$
(3) $|x|=|y|$ and $a_{l}+b_{l}=p$ implies $|x+y|<p^{-1}$, otherwise $|x+y|=|y|=|x|$.
To see this, compare Laurent expansions.

From above, we can decompose \mathbb{Z}_{p} of y as below;
(1) $\left\{y \in \mathbb{Z}_{p}:|x|>|y|\right\}=\left\{y=\sum_{i=k}^{\infty} b_{i} p^{i}, b_{k} \neq 0, k>I\right\}=$ $p^{I+1} \mathbb{Z}_{p}$.
(2) $\left\{y \in \mathbb{Z}_{p}:|x|<|y|\right\}=\left\{y=\sum_{i=k}^{\infty} b_{i} p^{i}, b_{k} \neq 0, k<I\right\}=$ $\mathbb{Z}_{p}-p^{\prime} \mathbb{Z}_{p}$.
(3) $\left\{y \in \mathbb{Z}_{p}:|x|=|y|\right\}=p^{\prime} \mathbb{Z}_{p}-p^{\prime+1} \mathbb{Z}_{p}$.

And third one can be decomposed with

- $\left(p^{\prime+1} \mathbb{Z}_{p}+\left(p-a_{l}\right)\right)$, giving $|x+y|<p^{-I}$
- $p-2$ components of translation of $p^{\prime+1} \mathbb{Z}_{p}$ giving $|x+y|=p^{\prime}$.

Also, $\left(p^{I+1} \mathbb{Z}_{p}+\left(p-a_{l}\right)\right)$ is decomposed with $\left(p^{I+2} \mathbb{Z}_{p}+\left(p-a_{l+1}\right)\right)$ and other $p-2$ translation of $\left(p^{I+2} \mathbb{Z}_{p}\right)$ part, so on.

Thus finally, we have
(1) $\left\{y \in \mathbb{Z}_{p}:|x|>|y|\right\}=p^{\prime+1} \mathbb{Z}_{p}$.
(2) $\left\{y \in \mathbb{Z}_{p}:|x|<|y|\right\}=\mathbb{Z}_{p}-p^{\prime} \mathbb{Z}_{p}$.
(3) $\left\{y \in \mathbb{Z}_{p}:|x|=|y|,|x+y|=p^{-r}\right\}=p-2$ part of $p^{r+1} \mathbb{Z}_{p}$, for every $r \in\{I, I+1, \cdots\} \subset \mathbb{Z}$.

So do the first part of integration, case $|x|>|y|$. Then $|x+y|=|x|$, thus

$$
\int_{p^{l+1} \mathbb{Z}_{p}}|y|^{s}|x+y|^{s} d \mu=|x|^{s} \int_{p^{\prime+1} \mathbb{Z}_{p}}|y|^{s} d \mu
$$

Then use partition $p^{\prime+1} \mathbb{Z}_{p}-p^{\prime+2} \mathbb{Z}_{p}, p^{\prime+2} \mathbb{Z}_{p}-p^{\prime+3} \mathbb{Z}_{p}, \cdots$, level set of $|y|^{s}=\frac{1}{p^{(1+1) s}}, \frac{1}{p^{(1+2) s}}, \cdots$, thus

$$
\begin{aligned}
& =|x|^{s} \sum_{j=1}^{\infty} \frac{1}{p^{(I+j) s}} \mu\left(p^{I+j} \mathbb{Z}_{p}-p^{I+j+1} \mathbb{Z}_{p}\right) \\
& =|x|^{s} \sum_{j=1}^{\infty} \frac{1}{p^{(I+j) s}}\left(1-\frac{1}{p}\right) \mu\left(p^{I+j+1} \mathbb{Z}_{p}\right) \\
& =|x|^{s} \sum_{j=1}^{\infty} \frac{1}{p^{(I+j) s}}\left(1-\frac{1}{p}\right) \frac{1}{p^{I+j+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =|x|^{s} \sum_{j=1}^{\infty} \frac{1}{p^{(I+j) s}}\left(1-\frac{1}{p}\right) \frac{1}{p^{I+j+1}} \\
& =|x|^{s} \frac{1}{p^{s s}}\left(1-p^{-1}\right) p^{-I-1} \sum_{j=1}^{\infty} p^{-j(s+1)} \\
& =|x|^{2 s+1}\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \sum_{j=1}^{\infty} p^{-j(s+1)} \\
& =|x|^{2 s+1}\left(\frac{1}{p}-\frac{1}{p^{2}}\right)\left(\frac{p^{-s-1}}{1-p^{-s-1}}\right) \\
& =|x|^{2 s+1}\left(\frac{1}{p}-\frac{1}{p^{2}}\right)\left(\frac{1}{p^{s+1}-1}\right)
\end{aligned}
$$

For the second part, $|x|<|y|$, we should integrate over $\mathbb{Z}_{p}-p^{\prime} \mathbb{Z}_{p}$, which has decomposition $\mathbb{Z}_{p}-p \mathbb{Z}_{p}, p \mathbb{Z}_{p}-p^{2} \mathbb{Z}_{p}$,
$\cdots, p^{\prime-1} \mathbb{Z}_{p}-p^{\prime} \mathbb{Z}_{p}$, thus

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}-p^{\prime} \mathbb{Z}^{p}}|y|^{s}|x+y|^{s} d \mu & =\int_{\mathbb{Z}_{p}-p^{\prime} \mathbb{Z}^{p}}|y|^{2 s} d \mu \\
& =\sum_{j=0}^{1-1} \int_{p^{j} \mathbb{Z}_{p}-p^{j+1} \mathbb{Z}_{p}}|y|^{2 s} d \mu \\
& =\sum_{j=0}^{1-1} \frac{1}{p^{2 j s}} \mu\left(p^{j} \mathbb{Z}_{p}-p^{j+1} \mathbb{Z}_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{I-1} \frac{1}{p^{2 j s}} \mu\left(p^{j} \mathbb{Z}_{p}-p^{j+1} \mathbb{Z}_{p}\right) \\
& =\sum_{j=0}^{I-1} \frac{1}{p^{2 j s}}\left(1-\frac{1}{p}\right) \mu\left(p^{j+1} \mathbb{Z}_{p}\right) \\
& =\sum_{j=0}^{I-1} \frac{1}{p^{2 j s}}\left(1-\frac{1}{p}\right) \frac{1}{p^{j+1}} \\
& =\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \sum_{j=0}^{I-1} \frac{1}{p^{j(2 s+1)}} \\
& =\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \frac{1-p^{-(I-1)(2 s+1)}}{1-p^{-2 s-1}}=\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \frac{1-|x|^{2 s+1} p^{(2 s+1)}}{1-p^{-2 s-1}}
\end{aligned}
$$

For the rest part, for any $r \in\{I, I+1, \cdots,\} \subset \mathbb{Z},|x+y|=p^{-r}$ for $(p-2)$ parts of $p^{r+1} \mathbb{Z}_{p}$, hence if we denote A for such parts for fixed r, then from assumption $|y|=p^{-I}=|x|$,

$$
\int_{A}|y|^{s}|x+y|^{s}=|x|^{s}(p-2) \int_{p^{r+1} \mathbb{Z}_{p}} p^{-r} d \mu=|x|^{s}(p-2) \frac{1}{p^{2 r+1}}
$$

Thus,

$$
\begin{gathered}
\int_{p^{\prime} \mathbb{Z}_{p}-p^{\prime+1} \mathbb{Z}_{p}}^{|x|=|y|} \mid \\
=|x|^{s}|x+y|^{s}(p-2) \frac{1}{p} \sum_{r=1}^{\infty} \frac{1}{p^{2 r}}=|x|^{s}(p-2) \frac{1}{p} \frac{p^{-2 l}}{1-p^{-2}} \\
=|x|^{s+2}(p-2) \frac{1}{p} \cdot \frac{1}{1-p^{-2}}
\end{gathered}
$$

Thus, for fixed $|x|^{s}$, the inside integral value is

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}}|y|^{s}|x+y|^{s} d \mu_{y}= & |x|^{2 s+1}\left(\frac{1}{p}-\frac{1}{p^{2}}\right)\left(\frac{1}{p^{s+1}-1}\right) \\
& +\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \frac{1-|x|^{2 s+1} p^{(2 s+1)}}{1-p^{-2 s-1}} \\
& +|x|^{s+2}(p-2) \frac{1}{p} \cdot \frac{1}{1-p^{-2}}
\end{aligned}
$$

i.e.,

$$
=C_{1}(p)|x|^{2 s+1}+C_{2}(p)|x|^{s+2}+C_{3}(p)
$$

where $C_{1}(p)=\left(\frac{1}{p}-\frac{1}{p^{2}}\right)\left(\frac{1}{p^{s+1}-1}-\frac{p^{2 s+1}}{1-p^{-2 s-1}}\right), C_{2}(p)=\frac{p-2}{p\left(1-p^{-2}\right)}$, and $C_{3}(p)=\left(\frac{1}{p}-\frac{1}{p^{2}}\right) \frac{1}{1-p^{-2 s-1}}$.

Thus,

$$
\begin{gathered}
\int_{\mathbb{Z}_{p}}|x|^{s} \int_{\mathbb{Z}_{p}}|y|^{s}|x+y|^{s} d \mu_{y} d \mu_{x} \\
=C_{1}(p) \int_{\mathbb{Z}_{p}}|x|^{3 s+1} d \mu+C_{2}(p) \int_{\mathbb{Z}_{p}}|x|^{2 s+2} d \mu+C_{3}(p) \int_{\mathbb{Z}_{p}}|x|^{s} d \mu \\
=\left(1-\frac{1}{p}\right)\left(C_{1}(p) \frac{1}{1-p^{-3 s-2}}+C_{2}(p) \frac{1}{1-p^{-2 s-3}}+C_{3}(p) \frac{1}{1-p^{-s-1}}\right)
\end{gathered}
$$

Using simplifyFraction in Matlab you can get...

The numerator part is

$$
\begin{array}{r}
-p^{2 s}\left(2 p^{s}-2 p^{s+1}+p^{3 s+1}-2 p^{s+2}+2 p^{s+3}-2 p^{s+5}+p^{s+6}+2 p^{4}\right. \\
-p^{5}-p^{3 s+2}-3 p^{3 s+3}-p^{4 s+2}+3 p^{3 s+4}+p^{4 s+3}+2 p^{3 s+5}+p^{4 s+4} \\
-4 p^{3 s+6}-p^{4 s+5}-p^{5 s+4}+p^{3 s+7}+p^{5 s+5}+2 p^{4 s+7}+p^{5 s+6}+p^{6 s+5} \\
\left.-p^{4 s+8}-p^{5 s+7}-p^{6 s+6}-p^{6 s+7}+p^{6 s+8}\right)
\end{array}
$$

and the denominator part is

$$
p\left(p^{2 s+3}-1\right)\left(p^{3 s+2}-1\right)\left(p^{s+1}-1\right)(p+1) .
$$

Thank you for listening!

References

- 1) Mihnea Popa, CHAPTER 3. p-ADIC INTEGRATION, https://sites.math.northwestern.edu/~mpopa/571/ chapter3.pdf Actually, his lecture notes series on Algebraic Geometry is interesting!
- 2) M. P. F. du Sautoy, Zeta functions of groups: the quest for order versus the flight from ennui, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser. 304, Cambridge Univ. Press, 2003, 150189.

