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Abstract
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Without specific instruction, use R as a commutative ring, &,, be symmetric n-group, and a
be an (left) ideal.

1 Tensors

Thanks to Hobin Jeong for constructing concrete categories in this section, and to See-Hak
Seong for investigating errors and revising the definition of Algebra and the claim 1.0.3.

Definition 1.0.1 (Algebra). Let R be a commutative ring with identity, then, A is an algebra if
o A is ring
e (A, +) is an unitary (left) R—module.
e r(ab) = (ra)b = a(rdb), Vr € R, Va,b € A.

Especially, if A which , as a ring, is division ring, is called division algebra.

Note that unitary R-module is an R-module M satisfying that Va € M, 1r -a = a, where 1
is identity in R. This definition follows Hungerford’s definition in [2][p.227]. Note that if R is a
field, then algebra is always a vector space.

Example 1.0.2. 1. Every ring is an additive abelian group, so it is Z-module, therefore, it
is Z-algebra.

2. Polynomial ring with R, then it has R-module structure, so it is algebra.

3. Let G be a multiplicative group and R is a commutative Ting with identity. Then group
ring R(G) = >, cq R = { assign R on each element in G}, with natural addition and
multiplication. Then it has R-module structure given by r(>_ rg,g;) = > (rre,gi), so it is
R-algebra.

Now we can see much things on tensor product of R-algebra. Let A, B be R-algebras, and
define its tensor product (A ®g B, ), where -((a1 ® b1), (ags ® b2)) = (a1a2) ® (b1bz). Now check
its well-definedness.

Claim 1.0.3. (A®g B, ") is well-defined as R-algebra homomorphism.

Proof. Given a € A,b € B, consdier the map f: Ax B — A®p B by (a/,V) — (ad’ @bl'). First
of all, Yo/ € B, o' — f(d’,b) is R-module homomorphism by checking below;

ra’ — f(ra’ ;') = a(rd) @b =r(ad’) @bb =r(ad’ @ bb') =rf(a,b)
ay +ay — fla) +a5t) = a(a) +ab) @b =ala®@bd + aha @bb' = f(a},b) + f(ah,b).

Similarly, Va' € A, V' — f(a’,V’) is R-module homomorphism. Therefore, it is bilinear.
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Figure 1: Define multiplication on A ® B.

Then, by universal mapping property stated in theorem 5.6 of [2][p.211] in case of tensor
product, we can get unique R-linear map myp, in figure 1(a). Since a,b are arbitrary, we can
get amap A x B — Hompr(A® B, A® B) by (a,b) — mgp. This map is bilinear, because

Myab = T"Ma,by May+as,b = May,b + May b, and Ma,by+by = Ma,by + Ma,by

from tensor’s linearity. By universal mapping property of tensor product, we can get unique map
m in figure 1(b). So, m € Hompr(A® B,Homr(A® B, A®B)) = Homg((A®B)®(A®B), A®B),
from theorem 5.10 of Hungerford. In other words, adjointness between Hom and ® gives the
desired isomorphism. Therefore, m is binary operator. To check that it acts as multiplication
without disturbing R-algebra structure, check below equation.

Va®b,a' @b € A® Byrm(a®b,a’ @ b') =r(ad’ @ bb') = raa’ @ bb' = a(ra’) @ bb'.
Thus, A ® B becomes an R-algebra with respect to m, O

Since this universal mapping property of quotient object is used often, so I'll mention it as
a theorem. For any algebraic object I deal with in this article, this universal property holds
and you can easily prove them by the similar way. I'll call it universal mapping property
throughout this article. If you find a comment as ”using universal (mapping) property” without
any proof throughout this article, You can check the universal mapping property like below.

Theorem 1.0.4 (Universal mapping property of tensor product). Tensor product is an initial
object of certain category.



Proof. Actually this is proof of theorem 5.6 of [2][p.209 212]. Construct a category € such that

e Object : (f,C) where f : Ax B — C is bilinear R-module homomorphism for A, B,C € R-
mod, where R is a commutative ring with identity.

e Morphism: ¢91 : Cy — Cp such that for (f1,C4), (f2,C2) € 0bj%, ¢y is an R-module
homomorphism such that ¢21 fo = f;.

Since 1¢ is identity morphism of (f, C'), ¢o1 is an equivalence in € if and only if ¢ is isomorphism
of R-module homomorphism. Hence ¥ is well-defined. Note that i : A x B — A ®g B given by
(a,b) — a ®pr b defined in [2][p.209] is bilinear.

Now it suffices to show that (i, AQ g B) is initial obect. Let (g, D) € Obj%. Then, define F, K
in [2][p.208] where F is free abelian group on the set A x B and K is subgroup of F' generated by
some forms defined in [2], which gives A®pr B = F/K. From these, we can define g; : F — D by
(a,b) — g(a,b) € C determines a unique homomorphism by theorem 2.1 (iv) in [2][p.181]. Also
note that K C kerg; since g is bilinear. Hence we have quotient map g: F/K = A®r B — C
such that g[(a,b) + K] = g1[(a,b)] = g(a,b). (Check that it is R-module homomorphism.) Since
(a,b) + K = a ®p b, and the map is homomorphism, g is homomorphism such that gi = g.

To show uniqueness of g, suppose h : A ®g B — C' is any R-module homomorphism such
that hi = g. Then, for any generator a ® b € A Qg B,

h(a @R b) = hi(a,b) = g(a,b) = gi(a,b) = gla @r b).

Since h and g agree on generator of A ®p B, so it agrees on A ®p B. So h = g.
Hence g is unique R-module homomorphism from A ® g B to D, so (i,A ®g B) is initial
object. O
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Figure 2: Universal Property of a quotient object.

There are three concrete example, such as, tensor algebra, symmetric algebra, and exterior
algebra. These are from [1][XVI, 6,7,8, XIX, 7]

1.1 Tensor Algebra
Let E be an R-module. Then, let 77 := E®---® E = E®" with T°(E) := R. These are
—_——

r times
R-module, since it is tensor product of R-module. Then define

T(E) = ®r>0T" (E),

a direct sum of R-modules. Also, define multiplication; for r,s > 0, T"(E) x T*(E) — T""5(E)
as (x1,22) — 1 ® T or 129 when r =0 or s = 0. Then, T(E) becomes an R-algebra with 1.

Definition 1.1.1. T(E) is called the “tensor algebra generated by E over R.”



Proof. Note that direct sum of R-module is also R-module, since category of R-module has prod-
uct and coproduct(direct sum). And, it has ring structure equipped with above multiplication;
from direct sum, addition is naturally defined and it satisfy additive axioms of ring because R
is commutative. Also, multiplicative identity exists, and associative. Also distribution law holds
from that of tensor product. And scalar multiplication with ring R is already defined since 7°
is in T(E). O
Remark 1.1.2. 1. T can be regarded as a functor; define it as E I B with T(E) EACIN

T(E"). Then, if f : E - F, g : F — G a linear map, then T(f) = @,>T(f, -, [),

—

T

then T(idg) = idpgy, T(go f) = T(g) o T(f) by definition. Note that T(f,---,f) is a
—_——

M
map induced from tensor product. This is from commutativity of tensor product map with
product map.

2. If E is free over R with basis {v1---,v,}, then B, = {vy;, ® -+~ @ v, : {i1,--+ ,ir} C
{1,2,--- ,n}} is R-basis of T"(E), with By = {1}. So, B = U,>0B, is R-basis of T(E).

Let A be an R-algebra generated by {s1, -+ ,s,} C A. Then, 3¢ : T(E) — A, an R-algebra
homomorphism such that ¢(v;) = s; fori =1,--- n.

Proof. For 0 < r <mn, we can get below diagram from direct sum.

(/Ui17”'7vir,~)% S182 -+ Sy

Ex-xBE——"3A

l =" 3¢,:R—linear”

Figure 3: Commutative diagram for T(E)

From this, the R-linear map ¢ : T(E) — A with ¢ = @,>0¢,, which preserves multiplication
exists. 0

Remark 1.1.3. If E is a free module on {v1,--- ,v,}, T(E) can be viewed as a universal object
in a certain category of R-algebra. So T(E) is also called a "free non-commutative algebra
generated by {v1,--- ,v,}.”, since v; @ v; Fv; Qu; if i # j.

Proof. Define a category ¥ with object (<7, E ER /) where o is R-algebra, and f is R-linear

map, with morphism ¢ : & — 9 where ¢ is R-algebra homomorphism such that for (<7, E ENgYS )

and (%, E % %), below figure commute. commute. In this category, (T'(E), E ER T(F)) with

x+— (0,2,0,---) exists, since f is R-linear.
It suffices to show that existence and uniqueness of morphism from T'(F) to every other object.



Let (&, f) be an arbitrary object in €. Define f,. : E*" — o by f.(v1,- - ,v.) = f(v1) - f(vp).
Then f, is R-multilinear map since for any 1 > ¢ > r,

fr(vi, - vim1, av + wiy viga, - o) = f(on) s fvien) favi +wi) f(viga) - f(or)
= af(v)--- f(op) + f(v1) -+ fviea) f(wi) f(vigr) -+ for).

So, from the definition of tensor product as an universal object of a category of multilinear maps
of a fixed multiset of modules {E,--- E}, [1] [p.602-603], we can get unique f. : E®" — &,
N——

s
making below diagram commute.

EXT s EOr

N4

By the universal property of a direct sum, 3!¢ : T(F) — & s.t. below diagram commutes. (A,

E®r A

()
o

o

is natural injection.)

So, if we check that ¢ is R-algebra homomorphism and commute with R-linear map, we are
done. Since F is free module on {vy,--- ,v,}, it suffices to check that ¢ preserves multiplication
for tensor products from the set. Now take v;, ® --- ® v;,,vj, ® --- @v;, € T(E). Then,

p((viy @ ®@v;,) - (vj, ® -+~ ®j,))
= ¢, ® - ®v;, Quj; ®- ®vj,)
= fras(vi ® - Qui, v, @ -+ B, )
= fui,) - flui, ) f(vg,) - f(vs,)
= fr(Uh®"'®Uir)‘f5(vj1®"'®Ujs)
P(vi, @ - @w;,) - P(vj, @+ ®y,)

So it is R-algebra homomorphism, and since Vv € E, ¢(v) = f1(v) = f(v), so following diagram
commutes. O

Also note that even if E is not finite ranked, the above discussion still hold, without change
the argument.



E —— T(E)
\ P’

4

1.2 Symmetric Algebra

Definition 1.2.1. A R-linear map f : E" — F is symmetric if f(x1,---2;) = f(Zo1), " Tor))
for any o € S,.

Motivation is to remedy non-commutativeness of T(E). For r > 0, I, is R-submodule of
TT(E) spanned by 21 ® -+ @ X — To(1) @+ @ To(yy, for ; € B, 0 € S, a symmetric group with
7.

Example 1.2.2. Ifr =2, [, =< x1 Q 2 — To Q@ x1 >.

Define S™ :=T"(E)/I,, and S(F) := ®,>05"(E). Denote the element 71 ® --- ® z, € S"(E)
as x1 - - - xy. Note that S(F) is still R-module. Now define multiplication on S(E) by

/

(ml...xp).(xll’... ’x;):xl...xpxll...mq.

Proof. This multiplication is well-defined since for any o € S,

(l'o'(l)mg(p))(l‘/l, ,1};) = Ia(l)zo(p)xllx;

= (o)) Tr(o(m) Tr(p41) " Tr(pta)
!
q

= (x1~~:cp)~(x’1,~~,:c;)7

= xl...l'pxll...x

where 7(k) = o~ (k) if k € [p], T(k) =k —pif k € [g+ p] \ [p]. Note that 7 € S, O
So S(E) becomes an R-algebra, as the same arguments on T'(E).
Definition 1.2.3. S(F) is called the ”symmetric algebra generated by E.”

Remark 1.2.4. 1. I = @21y, a two sided ideal in T(E). (Ip,I are empty.) Then, S =
T(E)/I, from the argument that direct sum of quotient module is isomorphic to a quotient
module of two direct sums.

2. Suppose E is free over R with basis {v1,--- ,v,}. Then S(E) satisfies the universal mapping
property, i.e., for commutative R-algebra generated by {s1,--- ,s,}, say A, ¢ : S(E) — A,
an R- algebra homomorphism such that ¢(v;) = s; for i = 1,--- n. So, S(E) is called a
free commutative algebra generated by {vy, - , v, }.

Proof of 1.9.2. Define a subcategory 2 of €, with object (&7, E ER /) where <7 is commutative
R-algebra generated by n-elements, and f is symmetric R-linear map, with morphism ¢ : &/ — %
where ¢ is R-algebra homomorphism such that for (&, E ENyY ) and (%, E 2 %), below figure
commute.

It is not an empty category, since (S(E),E % S(E)) with f(z) = (0,2,0,---) is an object,
since S(FE) is commutative and f is symmetric and linear. Now, it suffices to show that there
exists unique R-algebra homomorphism from S(F) to arbitrary object in &. Take arbitrary

commutative algebra (&7, E ER S(F)) in 2, where «f is generated by {s1,---,$,}. Since it is



also object in ¢, 3¢ : T(F) — 7. which is R-algebra homomorphism, which translate v; in each
elements to s; for i = 1,--- ,n. Also, canonical projection map (R-algebra homomorphism) from
T(E) & S(E) = T(E)/I exists, since it preserves multiplication on 7(E). Then, by universal
mapping property of quotients module T'(E)/I, we can get unique ¢ : S(E) — &/, which makes
below diagram commutes.

Note that ¢ is also R-algebra homomorphism since it is induced from category 4. So we should
check that it is symmetric, since if it is symmetric, then ¢ is unique morphism from (S(E), ¢) —
(7, f) which commutes the diagram below, so we are done.

&=
o

Since .7 is commutative, kernel of ¢ : T(F) — .o/ contain terms such as @1 --- 2 — (1) - - - To (k)
for any k € N and any o € Si. This implies that I C ker ¢. Thus, ¢ is symmetric, therefore, ¢ is

also symmetric. So, ¢ is unique symmetric R-algebra homomorphism, so S(F) is universal. [
Note 1.2.5. Check the "universal property of quotient module T(E)/I” in exact sense.

Proof. Let’s construct such category for some quotient module E/I. (X, f) be an objects in this
category, where X is R-algebra, f : E — X be R-algebra homomorphism, and I C ker(f). Also
define morphism (Xo, fo) — (X1, fo) if g : Xo — X1 be R-algebra homomorphism such that
go fo = fi. Tt is category, you can trivially checks. Then, (E/I, ) is in this category, and let
(X, f) be arbitrary object. Then, take g : E/I — X by a + I — f(a). Then, it is well-defined
since if a+ 1 = b+ I, then f(b—a) = 0 since b—a € I, so f(b) = f(a) since f is R-algebra
homomorphism, so g(a+1) = g(b+1). Also, g(r(a+1)) = g(ra+1I) = f(ra) =rf(a) = rg(a+1),
and g((a+ 1)+ (b+1)) = fla+bd) = f(a)+ f(b) =gla+I)+g(b+1I),and g((a+1I)- (b+1)) =
glab+I) = g(ab) = f(a)f(b) = gla+1I) - g(b+I), where (a+1I)- (b+1I) = ab+ I is from
R-algebra’s axiom. Therefore, g is R-algebra homomorphism, and it is unique since if g, h are
such R-algebra homomorphism, then g(a + I) = f(a) = h(a+I) for all a € E, so g = h. O



Proposition 1.2.6 (Proposition 8.1 in Lang). Suppose E is free over R with basis {vy,--+ ,v,}.
Then, S(E) & R[x1,- -+ ,x,] as an R-algebra, where xis are indeterminate.

Proof. Note that (R[z1, - ,z,], E ER Rlxy,- -+ ,x,]) with f(v;) = x; is an object of 2, therefore
3¢ : S(E) — R[x1,- -+ ,2y), from universal mapping property. And by definition of f, ¢ maps
Zcil,..irml c Vg, with (1 § il S s S ir S n) to Zcil"'irxil s Ty,

Suppose ¥ = 3. ¢, Vi, v, = 0, then ¢(v) = . ¢iy.i iy -+ x;,. = 0. Then, from linear
independence, each c¢;,...;, in the sum is zero, therefore, ©’'s coefficients are zero. To recap, for
any r > 1, {v;,---, v, : 1 <3 <--- <4i,. <n} is linearly independent since {x;,,---x;. : 1 <
iy < -+ <4, <n}is linearly independent in R[z1,-- ,x,]. Therefore, with the fact that ¢ maps
basis to basis, it is one-to-one as show, and onto, since for any monomial cz;, - - - z;,., there exists
cv;, -+ - x;, such that ¢(cv;, -+~ x;,) = cxy, -+ - x;,. So, it is bijective R-algebra homomorphism, so

isomorphism as R-algebra. O
Also note that for any monomial f € Rz, --,2,], we can identify it as a function from
7%, — R such that if f = az}"* --- 2], then f(mi,--- ,my) = a, otherwise f(-) = 0. Then any

element in the polynomial ring can be written by linear combination of those functions.
Corollary 1.2.7. Forr > 1, {v;, ---v;, : 1 <3 <--- <4, <n} is an R-basis of S"(E).
Proof. We already proved it on the above statements. O

Proposition 1.2.8 (Proposition 8.2 in Lang). Let E, E’ be free R-module of finite rank, with
basis B ={v1, - ,vn},C = {vnt1, ", Untm} respectively. Then

1. SE®QE) = @p-f—q:T'Sp(E) ® S1(E)
2. S(E@ E')=S(E)®S(E') as algebra.

Proof. Let fg: E— E®F’, fg: E' - E®E’, a canonical injection. Then we can define linear
map
T:SE)Y®S(E)— S(EDFE)

by

T((Uil - Ui'r‘)’ (Uin+1 QR Uin+s)) = (Ui1 Q- BV, & Viptq R Ui'rL+s)'

for any monomial in S(E). From the corollary above, it suffices to show that 1) A :={z®y :
x € R-basis of S(E),y € R-basis of S(E’) } is R-basis of S(F) ® S(E’), and 2) T is bijection of
basis map, so that T is one-to-one and onto, and 3) T is homomorphism.

1) is easy, since for any element in S(F) ® S(E’) can be written by using their R-basis, so A
spans S(E) ® S(E’), and A is linearly independent since for distinct z1 ® y1,- -,z ® yi with
ke N, Zle ¢z ®y; = 0 implies ¢; = 0, since no two distinct elements are cancellable from
linearly independence of B, C. (Suppose it is, then (x; + cz;) ® (y; + cyi) = 0 for some constant
¢, which implies «; = —ca; or y; = —cy;, a contradiction.)

2) Is also easy but tedious; since every monomial in S(E @& E’) can be denoted as form

vil ®...®vir®vin+1®”.®fvin+s7

which is equal to

Vi, ®"'®vir ®vin+1 ®"’®vin+sa

which shows that 7" is onto. Also, if T(Z ® y) = 0, then x ® y = 0, implies every coefficients in
the linear combination of basis representing x ® y is zero, so that T ® g = 0, implies coefficients in



the its linear combination of basis representing x ®y is zero, so T® gy = 0. This shows one-to-one.
3) is also tedious; Let x ® y, 2’ ® ¢y’ € S(E) ® S(E'). Then,

Ty r®y) = TEer ®y®y') from commutativity of S(E) ® S(E")
= r®2 @y®y by definition of T
= r®Ry®ar @y by commutativity of S(E & E')
= 2®y @y®y by definition of product in S(E & E’)
= T(x®y)- T(x ®y )by definition of T.

Thus, T is an isomorphism. And first statement is deduced from 7', since S™(E @ E’) should be
also mapped on elements which spanned by monomials with r elements, a direct sum above. [

Example 1.2.9. Belows are deduced from second statement of proposition 8.2.
1. R[z] ® R[y] = R[z,y] with 2™ @ y™ > x™y".

2. Let k be a field, and K is an extension of k as a ring, which implies as a vector space over
k, then K ®, k[z] = Klz] as K-algebra.

1.3 Exterior Algebra

It is also called alternating algebra or Grassmann algebra. Let J,. be the R-submodule of
T7(E) generated by o1 ® - -+ ® &, — sgn(0)Te(1) ® -+ @ Ty = 0, for z; € E,0 € S,. Define
N(E) = T"(E)/J,, and \(E) = @0 /" (E). And denote 1 @ --- @ z, + J, € \"(E) as
21 A+ Axy, call it wedge product. Then A(E) is an R-algebra with respect to (1 A--- Ax,) -
(i A Ayr) =21 A Az Ayt A Ayp.

Definition 1.3.1. A(FE) is called the exterior algebra generated by E.

Remark 1.3.2. Suppose E is free over R with basis {vi,--- ,v,}. Then, forr =0, N'(E) =
T°(E) =R, forr =1, N\'"(E) = TY(E) = E, for 1 <r <n, N"(E) =span {v;, A---Nv;, : 1<
i1 <. <i.<n}, forr=n, N"(E)=Rvi A+ Avy,, and \"(E) =0 forr >n.

Also, if w; = Y,_; ai;v; for j € [n], wiA---Awy, = det(ai;)viA- - -Avy, since only terms choosing
all of v; left up to sign, and definition of determinant, detA = Y g sgn(0)a1,0(1) " Gn,o(n)
covers all such elements.

Note that alternating n-linear form has linearity, and sign is changed when we permute its
input.

Proposition 1.3.3 (Proposition 1.1 on Lang). Let E be such free group. Then, for 1 <r <mn,
{vig Ao A, 01 <y < --- < i, < n} are R-basis of \"(E).

Proof. First of all, we should show that Va € R, 3! alternating n-form F such that F(vy,- - ,v,) =
a. To show this, let F' be arbitrary alternating n-form. Then, for (w;,ws,- - ,w,) where

10



n
w; = Zji:1 @4,5; Vjis

F(’U)]_,’LUQ,'" 7wn>

Z o Z ﬁ ai,j. F(vj,, -+ ,v;,) by linearity,
J1

jn k=1

Z H ar,j, F'(Vg(1), -+, Vf(ny) just consider all possible functions,
Fen]m k=1

n
= Z H i, F(Vo(1), -, Vo(n)) since only bijections (permutations) are nonzero,
O’E@n k=1

n

= Z sgn(o) H ag,j F'(v1,- -+ ,vy,) from alternating property,
e, k=1

= det(a; j,)F(v1,--- ,v,) by definition of determinant.

Actually this argument proves the latter part of above remark. Also, the argument shows that
every alternating n-linear form is determined when we fix its value on (v, -+ ,v,). So for any two
alternating form having the same value a on (v1,--- ,v,) is equivalent, therefore, Alt,(F) = R,
where Alt,,(E) is the set of alternating R-multilinear map. Also, we get projection 7 = 7y o7’ :
EX" — T"(E) = E®" — E"/J, = \" E as follow; first of all, as we shown in remark 1.6, for

the morphism E* ER R, with projection map 7’ : EX™ — T™ defined in the remark 1.6, we
get unique map ¢ : T"(E) — R, from universal property of 7" (F). Also, using this ¢, and a
canonical projection map ¢, we can get unique G by the universal mapping property, since
Jr C ker . So, we get the universal property in Figure 4.

EXm T T7(E) T (E) — T7(E)/J, = N"(E)
x .
R

Figure 4: Two commutative maps for 7/, 7 .

(Ulv"'vvn) ' a

[ ARRAN /%
Figure 5: Universal property of alternating mulitilinear map.
In short, we have a universal property of A\"(E) with respect to R-linear alternating maps.

Also, note that every R-algebra homomorphism from A" E to R is can be induced by R-linear
alternating map F since for any ¢ € Homg(A"(E), R), ¢(rvi A - Avy) = 1¢(v1 A -+ Avy),
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therefore it is induced by F whose value on (v1, -+ ,v,) is equal to ¢(v1 A+« -Avy). So, Alt,(E) =
Hompg(A"(E), R). Next, It is clear that vy A --- A v, generates \" E. However, it may be not
linearly independent, for example, 1 generate Z/37Z but {1} is not linearly independent when we
see Z/37Z as Z-module, since 3-1 = 0. So we should check linear independence. Let v = v1A- - -Avy,,
with v = 0. Then, for any G € Homg(A\"(E), R), G(rv) = rG(v) = 0. Now, take G such that
G(v) = 1, then r = 0, so it is linearly independent as R-module. Hence A"(E) has a basis
{v1 A+ Awvy}, so it is free over R. O

Proof of remark. For A" E with 1 < r < n, we also show that linear independence of %, =
{viy, Ao Ay 2 1 <ip < -+ < i, < n}. (Actually, \"E =span %, is trivial.) Let 0 =
S @iy i Vi Ao A, with ip < -+ < 4. Then, choose particular (i1, - - i), say (¢}, --4.) let
w = jr11 A+ A Jn be wedge products where j's terems are not in {i},--- ,i".}. Then,

0= (Z Gy e 3, Vig Ao N viT)/\w = (@i, it JOir N0 ANvj, ANy, = (sgn(o)agy . i JULA- -

where o = (i}, ,ir,jr41, "+ ,dn) 1 € &,. Note that the second equality holds since all
other terms vanishes by above wedge product since they contain at least one elements among
Vj41, Un. Since A" has basis v1 A+ Avy, ay ... i = 0. Since (i1, - - 4,) was arbitrarily chosen,
all coeflicients are zero. O

2 Polynomial Ring

This is from [1][Ch4]

2.1 Basic Properties for polynomials over a field

Theorem 2.1.1 (Euclidean Algorithm). A is a commutative ring. f(x),g(x) € Alz]\ {0} where
the leading coefficient of g(x) is a unit. Then, lq(z),r(x) € Alx] s.t. f(z) = g(x)q(z) + r(z)
where degr(xz) < degg(z).

Proof. Let f(X) =a, X" +---+ag, g(X) = b, X% +---+by, where n = deg f, d = deg g so that
an,bg # 0 and by is a unit in A. Use induction;

e If n=0,and d > n, take ¢ = 0,7 = f. ifd:n:(),thenr:(),q:anbg1

e Suppose it is proved for n < m, with m > 0. Assume d < n (otherwise, take ¢ =0, r = f.)
Then,

FX) = b X" g(X) + f1(X),
where deg f1 < n. So by inductive hypothesis, 3l¢1, r such that
F(X) = anby ' X" g(X) + q1(X)g(X) + r(X)
Take ¢(X) = a,b; ' X" ¢+ q1(X)

so existence is proved.

As for uniqueness, let f = g1g+r1 = qag + r2. with degry,degry < degg. Then (¢1 — g2)g =
ro — r1. Since the leading coefficient of ¢ is unit (so none of coefficients of ¢; — go are zero when
proceeds product),

deg(q1 — g2)g = deg(q1 — g2) + degg.
But deg(rz — 1) < degg, 1 — g2 =0, 71 — r2 = 0 are only solution. O
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Suppose k is a field.
Remark 2.1.2. Let f(x) € k[z] \ {0}. Then
o f(x) is unit in k[x] if and only if f(x) € k* or deg f(x) =0, where k* =k \ {0}.

o f(x) isirreducible if and only if f(x) is not of the form f(x) = g1(x)g2(x) with deg g;(z) > 0
fori=1,2.

Proof. (<) is easy since 1 € k is also 1 € k[z], so k* is still unit in k[z]. Also, if f(z) is nonzero
degree zero polynomial, it is in £*. So it is unit.
(=) Suppose f(x) is nonzero polynomial with degree > 0. Then its the leading coefficient is
unit, so none of elements in k* make it zero by product, therefore f(x)g(x) cannot be 1 for any
nonzero g(x). Hence deg f =0, so f € k*

A polynomial is irreducible if it has degree > 1, and if one cannot write f(x) as a product
with f(X) = g(X)h(X) with g, h € k[X], and both ¢g,h &€ k. So, by definition, above statement
holds. O

Recall 2.1.3. If f(z) = (x — a)™g(x) for some a € k, m > 1 with g(a) # 0, then a is a root of
f(x) , with multiplicity m.

Applications of theorem 2.1 are below;
e k[z] is principal, hence factorial.
o If f(z) € k[z] with deg f =n >0, f(x) has at most n roots in k.

Proof. Those are theorem 1.2, 1.3, and 1.4 in [1][IV, §1]. Suppose a is an ideal of k[z], assume
a# 0. Let g € a of a smallest degree > 0. Let f € a with f # 0. Then by Euclidean algorithm,
Jlg,r such that f = g9+ r. With degr < degg. But r = f — qg € a, this contradicts the
minimality of degree of g if r # 0. So r = 0, hence a =< g >. From principal ideal ring =
unique factorization ring in [1][II, §2, Theorem 5.2], k[X] is factorial. (Factorial means unique
factorization.)

For the second part, suppose f(a) = 0, then 3lg,r s.t. f(z) = g(z)(x — a) + r(x), with
degr < 1. So, 0 = f(a) = r(a), implies r = 0. Hence f(z) = (z — a)q(x), with degqg = n — 1.
From induction that for n = 0, it is true, and for any n degree polynomial, the last argument
show that ¢ has at most n — 1 roots, therefore f has at most n roots. O

Theorem 2.1.4 (Theorem 1.9 in [1][IV, §1). Suppose u be a finite multiplicative subset of k.
Then u is a cyclic group of k*

Proof. Note that u is group, since for arbitrary g € u, g', g%, - ¢"--- € u, however u is a finite,

so dn,m € N such that n # m, ¢g" = ¢g". Hence ¢g"~" = 1, so u has inverse, associativity and
identity.
Also u is abelian since it is subgroup of a field. Hence, by the fundamental theorem of finite
abelian group (Every finite abelian group is an internal group direct product of cyclic groups
whose orders are prime powers.),

u= [ up

p:prime
where u(p) is a p-group, i.e., finite group whose order is p” for some r € N. Fix p, and let
p" = max{|a| : @ € u(p)}. Then Ya € u(p), @ = 1. Hence all elements in u(p) is a root
of X?" — 1. And by letting a’ be element having maximal order in u(p), then < a > has p"
elements. If u(p) is not equal to < a >, then XP" — 1 has more then p" roots, contradiction.
Hence u(p) =< a >. Since orders in [ u(p) are relatively prime, by theorem 4.3(v) in [1][L,§4],
u is cyclic. O
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Example 2.1.5. n > 1, pu, = {£: &" = 1}, cyclic of order n. Then u, =< &, >, where &, is
n-th primitive root.

Corollary 2.1.6 (Corollary 1.10 in [1][IV,§1). Let k is finite field, then k* is cyclic.
This is deduced directly from the above theorem.
Definition 2.1.7. For f(z) = an? 4+ -+ + a1z + ag € k[z], let D(-) : k[z] — k[z] such that
Df(z) = napz™ ' 4+ +a
D is k-linear (this is proved at basic calculus course). It is called a formal derivative.
Note that D(fg) = D(f)g + fD(g), and a; = D' f(0) for [ > 0.
P/I(‘o)position 2.1.8 (Proposition 1.11 in [1][IV,8§1). Let a be a multiple root of f(x) < f(a) =
f(a) =0.

Proof. If a is a multiple root of f(z), then by definition, f(z) = (x — a)™g(x)for some m > 1,
g(z) € k[z]. Therefore, by Leibniz rule, f'(z) = m(z —a)™ tg(z) + (z — a)™g'(z), so f'(a) = 0.
Conversely, if m = 1, then f'(x) = (z — a)g'(x) + g(x), so f'(a) = g(a) # 0. So, we must have
m > 1if f'(a) =0. O
Proposition 2.1.9 (Proposition 1.12 in [1][IV,§1). Let f(z) € k[z], with deg f(x) > 1. Then
if ch k=0, then f'(x) #0, if ch k = p, then f(x) = g(aP) for some g(x) € k[x] if and only if
f'(x) =0.

Proof. For the first part, from deg(f) = n > 1, f has 2™ term with nonzero coefficient. Hence
its derivative contain na™~! with nonzero coefficients.

For the second part, if f(z) = Y1 ja;a", suppose f'(z) = 0. Then, for any nonzero a,
1 < m < n, plm; because f’(z) has coefficients ma,, for each x™~1, so ma,, = 0 implies that.

Hence, we can represent each ™ having nonzero coefficients as (zP)” for some r. So, take g(x)
consists of a;,a” for such m. Then, g(a?) = f(x). O

Remark 2.1.10 (Frobenius Homomorphism). Let o, : k — k by x — zPan injective ring
homomorphism, where k is a field with characteristic p. Check that it is ring homomorphism
below;
opla+b) = (a+bP =a’+b =o0,(a)+ op(b) by freshman’s dream.
oplad) = @t = o,(a)o,(0)

op(a)=0 = a’ =0, soa=0.

Hence, if k is finite field, then it is isomorphism, hence automorphism.

In proposition 1.12, if f € k[z] and f'(x) = 0, then f(z) = h(z)? for some h(x) € k[z], since
from f'(z) =0, f(z) = Zle Qpn,; xP™, as shown above. Also, each a,,, has a b,, such that
0p(bn; = apn,, since o, is automorphism. Therefore, let h(x) = Zle bpn,; ™. Then,

k P k k
(h(z))? = (Z bpmxm) = Z(bpm)p(xm)p = Zapmxpm = f(z)

i=1 i=1

by freshman’s dream.
p . - - ” .
For example, 2P — ¢ has a root in k, say «, then a? =¢,s0 2P —aof = (z — a)?P .
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2.2 Polynomials over a factorial ring

Let A be a factorial ring, i.e., A is entire (integral domain) and every nonzero elements have a
unique factorization by irreducible elements. k be the quotient field of A.

Remark 2.2.1. p € A is prime <= p is irreducible.

Proof. To show that prime implies irreducible, suppose p = ab, where p is prime but not irre-
ducible, hence Ja,b where a,b is nonzero nonunit. Then, p|ab, hence p|a or p|b by definition of
prime. Without loss of generality, let a = pc for some ¢ € A. Then, p = pcb, which implies ¢b =1
since A is integral domain, hence b is unit, contradiction.

Conversely, suppose p is irreducible. Then, p is non unit. Take ab € (p) \ 0. Then, ab = cp
for some ¢ € A. Since A is factorial, we have unique factorization of a, b, c. Then, from unique
factorization, at least one element in such factorization of ab contain p. Hence pla or pl|b. O

Suppose a € k* = K\ {0}. Then, a = p”;—; for unique r € Z and by,by € A such that

p # by, by. (If there is another v/ € Z with Z—i such that Z—é = l%, then from unique factorization,

so either p|b) or p|bh, therefore by b, = V) ba, so by unique factorization, p|b; or p|bs, contradiction.)
Hence we can define such unique number r as order;

Definition 2.2.2. Fora € k*, we can represent a as p’”g—; for unique r € Z. Say r as "the order
of a at p,” and write r = ordp(a).

Note that
ordy(aa") = ord,(a) + ordy,(a’)

Extend this definition to polynomial;
Definition 2.2.3. Let f(z) = >.I"  a;z'. Then, Vp € A, where p is prime,

ordy(f) = ailf;l%{lVi{ordp(ai)}.

Also, define “the content of f”7 as

cont(f) = H pordp(f).

p,prime
And if cont(f) =1, then f is called primitive.
Remark 2.2.4. 1. f(x) is primitive, then f(z) € Alz], since

cont(f) =1 = Vp,ord,(f) =0 = Vp,minord,(a;) >0 = a € A.

2. cont(cf(x)) = c- cont(f) for any c € k*
3. f(x) = cont(f(z)) f1(x) where fi(x) is primitive, and fi(x) € Alx].

4. IfVf(x) =Y ax’ € Alz]\ {0}, then cont(f) = g.c.d(ay, -+ ,an.
Here, we assume that cont(f) = oo if f = 0.

Theorem 2.2.5 (Gauss Lemma). Let f,g € klx]. Then cont(fg) = cont(f) - cont(g).
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Proof. Assume fg # 0. Then, f = cont(f)f1, g = cont(g)gr where f1,91 € Alz], with f; =
Siait, g1 = > bjzl. Tt suffices to show that cont(fig1) = 1, which means that Vp, prime,
ordy(fig1) =0.

Let p be arbitrary prime. Choose maximal r, s > 0, such that p fa,, p fbs. (Since cont(f1) =
cont(g1) = 1, at least one of coefficients in fiandg; cannot be divisible by p.) Then coefficient
of "% € fig1, say c, is

c= arbs + ar—lbs—i-l + -
ar+1b571 + -

Then except a,bs, all other terms in the righthandside of ¢ is divisible by p, so ¢ is not divisible
by p. Since p was arbitrary, ¢ # 0 mod p. So ord,(f1g1) = 0 for all p. O

Theorem 2.2.6 (Theorem 2.3 in [1] IV. §2). Given A, k, Alx] is factorial, and the set of primes
in Alx] is {p : prime in A} U{f(x): f(x) is irreducible in klx] and f is primitive }.

Corollary 2.2.7. If x1,--- ,x, are indeterminate, then Alxy,--- ,x,] is factorial.
Lemma 2.2.8. If k is a field, then k[z] is euclidean domain.

Proof. Since all nonzero elements in k is unit, we can use euclid algortihm and deg function as
euclidean function. O

Note that deg function is not euclid function in general integral domain, since we cannot use
euclid alorithm for a polynomial with nonunit coefficient.

Proof of the theorem. Let f(x) € Alx] \ {0}, and assume deg(f) > 1. (Otherwise, it has
unique factorization from A.) Note that k[z] is factorial since k[z] is euclidean domain. So,
f(z) = pi(x)---pr(x) for some irreducible p;(x) € k[r]. Now let p;(x) = ¢;q;(x) where ¢; =
cont(p;(x)), ¢;(x) € Alz], which is primitive. Then,

f(@) = (H > @) g (2)
i=1

and note that ([];_, ¢;) € A since ([[;_; ¢;) = cont(f(z)) by the Gauss Lemma and ¢; - - - ¢, is
primitive. Also note that g;(z) is irreducible in k[x], since it is the same as p;(z) up to unit.
Now it suffices to show that ¢;(z) is irreducible in A[z] and that such factorization is unique.
Suppose not. Then ¢;(x) = r;(z)s;(z) for some nonzero nonunit r;, s; € A[z] . Then, cont(q;) =
cont(r;)cont(s;) = 1. So, if one of r;,s; has degree zero, then that degree zero polynomial is
unit, a contradiction. Hence deg(r;) > 0, deg(s;) > 0. However, in this case, r;, s; is also nonzero
nonunit in k[z], so ¢;(x) is reducible in k[z], a contradiction. Hence ¢;(x) is irreducible in Alzx].
To show uniqueness, suppose there are another factorization such that

f(@) = cq(2) - gr(2) = dgi(2) - - g5 ().

where ¢;,§; € A[z] are primitive and their degree are at least 1. By comparing content of the
equation, ¢ = d. Since k[z] is factorial, r = s, ¢; = u;¢; for some u; € K up to some permutation.
So, u; = §£,a4,b; € A. Hence big;i(x) = a;¢;(x). Since content of lefthandside and that of

righthandside is equal and cont(q;) = cont((g;)) = 1, so cont(b;) = cont(a;), therefore u; contain
only unit elements in its factorization, otherwise above equality cannot hold. So ¢; = w;q; for
some u; € A, done.

The second statement is follows from construction of factorial ring A[z] from k[z]; suppose f is
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prime element such that f|gh for some g, h € Alz]. Then f|g or f|h, which implies f is contained
in factorization of g or that of h, so f should be primitive and irreducible in k[z], since we
construct factorization from k[x]. O

Remark 2.2.9. Let f(z) € Alx], primitive, degree > 1. Then f(zx) is irreducible in Alzr] <~
f(x) is irreducible in k[z].

Proof. If f is irreducible in A[z] then it is prime in A[x] since A[z] is factorial, so by the above
theorem, f is irreducible. Conversely, if f is irreducible in k[z], and having content 1, then the
above theorem tells that f is prime in A[x], so f is irreducible. O

2.3 Criteria for irreducibility

Theorem 2.3.1 (Eisenstein Criterion). Let A be factorial ring, k be the quotient field of A, and
f(x) =apnz™ + -+ a1x + ag € Alz] of degree n > 1. If Ip, prime in A, such that a, Z 0 (mod
p), a; =0 (mod p) for 0 <i <n, and ag #0 (mod p*). Then f is irreducible in k[z].

Proof. Assume cont(f) = 1. (Otherwise, get g.c.d. out of f). Suppose f(z) = g(x)h(zx) for some
g(x), h(z) € k[z] of degree at least 1, where g, h are nonzero nonunit. By the gauss lemma, g, h
are primitive, so g, h € Afz]. Let g(z) = bya” +-- - +bg, h(z) = csa® + - -+ ¢o. Then, b;, ¢; € A,
and p fa, = b.cs, and plbycy but p? Jboco. Without loss of generality, p|co but p fby. Take the
smallest ¢ such that p fe;. Then, since all terms except the first term is divisible by p but p fbocy
implies p fa; = bocy + bic—1 + -+ -. So a; Z 0 (mod p), a contradiction. O

Lemma 2.3.2. Let D be integral domain, ¢ € D. Then f(x) € D[z] is nonunit if and only if
f(z —¢) is nonunit. Also, f(z) € D[z] is nonzero if and only if f(x — c) is nonzero.

Proof. For the first statement, it suffices to show that f(z) is unit if and only if f(z — ¢) is
unit. Suppose f(z) is unit in D[z]. Then Jg € D[z| such that fg = 1. By theorem 6.1.(iii),
0 = deg(l) = deg(fg) = deg(f) + deg(g). So, deg(f) = deg(g) = 0, hence f,g € D. So,
f(z) = f(x—c),g9(x) = g(x —¢). Conversely, if f(x — ¢) is a unit, the same argument shows that
f(x—c) € D,so f(x) = f(x—c).

For the second statement, let f(z) be nonzero in D. If deg(f) = 0, then f(z) = f(z — ¢) so
done. If deg(f) > 1, then f(z) =ao+ Y., apz™ for some n > 1, with a,, # 0.Then f(z —¢) =
ao+ Y iy an(@ — )™ is nonzero polynomial since its unique form from linear combination of the
power of z is nonzero, since a,z™ is contained in f(z — ¢) with a, # 0. O

Lemma 2.3.3 (Exercise III. 6. 10 in [2]). Let D be integral domain. Then, f(x) € D[z] is
irreducible <= f(x — ¢) is irreducible for some ¢ € D.

Proof. Now suppose f(z) is reducible. Then there exists g(x), h(z) € D[z] such that f(z) =
g(z)h(x), where g(x), h(x) are nonzero and nonunit. Then, by replacing z° to (z — ¢)? for all
monomials in the lefthandside and the righthandside of equation, f(x—c) = g(z—c)h(x—c). Since
g(x—c), h(x—c) are also nonzero, nonunit by above lemma, f(z—c) is also reducible. Conversely,
f(z — ¢) be reducible. Then there exists g(z), h(z) € D[z] such that f(z — ¢) = g(z)h(z). By
the exercise III. 6. 2. proved above, for each g, h, with respect to (x — ¢) we can get a unique
polynomials having degree lower than 1 = deg(x — ¢), representing g, h by linear combination
of power of (x — ¢), respectively. Since degrees are lower than 1, they are in D, so we can get
g (z—c), W' (z—c) such that ¢'(z—c) = g(z), M (x—c) = h(x). Hence, f(z—c) = ¢'(x—c)h' (z—c),s0
by replacing = to « — ¢ in both sides, f(z) = ¢'(z)h'(x). Since ¢'(x), h'(x) are also nonunit and
nonzero by the lemma, f(x) is reducible. O
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Example 2.3.4. e Fora € Z\ {£1} such that a is squarefree, ™ — a is irreducible in Q|x].

o For f(z) = z::ll € Zx], with prime p, let
(z+1)P -1 -1 P\ p—2 p
= V)= —————2 = p p e .
g(z) = f(x +1) P e U L e S O L Z

satisfy the Eisenstein criterion, so it is irreducible in Q[z]. And by the above lemma, f(x)
is wrreducible in Q[z].

o Let t be indeterminate, k be a field. Then, let A = k[t], K be the quotient field of A. Then,
" —t € Klx]. Also, t is prime in A as factorial ring, by the theorem 2.3 in [1][IV. §2].
So, by the Eisenstein criterion, ™ — t is irreducible in K[z|. Since x™ — t is primitive, it
is irreducible in Alx] = k[t, x], so it is irreducible in k[t, z].

o 23y% + 2% + ay® +y € k[x,y]. It is factorial ring, so think the polynomial as
(y* + 1)z + 2z +y.

Then, y*> +1 # 0 mod y, yly?, but y*> /ly, so this polynomial satisfies the Eisenstein
criterion, hence it is irreducible in k[z][y] = k[z, y].

Theorem 2.3.5 (Reduction Criterion). Suppose A, B are entire ring, K,L are the quotient
field of A, B respectively, and ¢ : A — B be a ring homomorphism. (So we can extend it as
homomorphism for Alx] — Blz]. If f(z) € Alz] such that deg(¢f) = deg(f) =n > 1 and ¢f is
irreducible in L[x], then f(x) does not have a factorization f(x) = g(xz)h(z) with g,h € Alx] and
deg(g), deg(h) > 1.

Proof. Suppose f has a factorization. Then, ¢(f) = ¢(g)o(h). Since deg(¢(g)) < deg(g) and
deg(o(h)) < deg(h), our hypothesis implies that equality holds on these inequalities. So, from
the irreducibility in L[z], g or h is an element in A, as desired. O

Example 2.3.6. In the reduction criterion, if A is factorial, then f(x) is irreducible in K|[x].

Proof. If f is reducible in K[xz], then f = gh for some g,h € Klz], so f = cont(gh)gihi for
some g1, h; € Alz], which gives contradiction; since f(z) is not product of polynomials in A[z]
of degree greater then 1. O

Note that factoriality is needed since this proof use the Gauss lemma.

Example 2.3.7. In particular, let A = Z, B = Z/pZ, f € Z[z] is monic, and ¢(f) = f(x) €
Z/pZ]x] is irreducible. Then, f(x) is irreducible in Z[x] by reduction criterion.

For example, since P —x — 1 € Z/pZ[x] is irreducible (check that xP and —x — 1 are distinct
with respect to even and odd criterion), it is irreducible in Z[x] by the reduction criterion.

Proposition 2.3.8 (Integral root test). Suppose A, k as above. Let f(x) = apa™+- - -+a1z+ag €

Alx]. If a € k is a root of f, with o = g, where b,d € A and g.c.d(b,d) = 1. Then, blag, d|a.

In particular, if a, = 1, then a € A and o|ag.

Proof. See d"f(%) — apd™ = —aod". O
Note that k[x1,--- ,z,] is not a principal ideal domain if n > 2. Algebraic geometry concerns
on ideal on k[zq,--- ,x,] since it deals with surface, which can be represented as polynomial.
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3 Algebraic Extensions

The Galois theory is important since it shows a connection between the (undergraduate) group
theory and the field theory, which seems distinct at glance. Also, the theory deals with classical
problem of solving higher degree polynomial. Maybe finding connection between two irrelevant
field is still important now.

3.1 Finite and algebraic extensions

From now on, k, E, F, L, K denote "fields.” Let E be an extension of F if FF C F is subfield.
We denote it by below figure; and write it E/F. So E is F-module, which implies a vector space
over F. Also denote E/F be finite when dimp E < oo, and infinite otherwise.

E

F

Figure 6: Notation for field extension.

Definition 3.1.1. a € E be algebraic over F if f(a) =0 for some f € F[z]\ {0}.

Remark 3.1.2. Let o € E be algebraic /F. Then, ¢o(f) = f(a) € E is ring homomorphism.
Also, since F[z] is a free commutative F-algebra and E is also F-algebra, it is F-algebra homo-
morphism. ker ¢o =< p(x) > since it is ideal and F[z] is PID. So, p(x) is irreducible, and is
unique up to scalar multiplication, so take monic polynomial.

Definition 3.1.3. irr(a, F,x) = p(z)
If the context is clear, we can omit F' in the left hand side.
Note 3.1.4. Im¢, = ¢o(Flx]) =: Fla] = {f(a) : f(z) € Flz]} C E.

Definition 3.1.5. E/F is algebraic extension if Vo € E, « is algebraic /F. In this case, denote
[E: F]=dimp FE

Proposition 3.1.6 (Proposition 1.2 in [1] V. §1). Fork C F C E, [E : k] =[E : F][F : k]

Proof. Tedious; Let {x;};cr be a basis for F over k, and {y;};cs be a basis for E over F. Then,
for any z € E, 2 = Y, yay; = Dy D e Piziy; for some a; € F having representation,
aj =Y . Bix; for some f; € k. Thus, {z;y;}icr jes is a family of generator for E over k. Also,
it is linearly independent, since 3, >, cijxiy; = > (D2; cijxi)y; =0 = Vj, >, cija; = 0 since
{y;}je is basis, which implies Vi, Vj, ¢;; = 0 since {z; }scr is basis. Hence {x;y;}( jjerx s is basis
of F over k. O

Corollary 3.1.7 (Corollary 1.3 in [1] V. §1). E/k is finite extension < E/F, F/k are finite
extension.

Remark 3.1.8. For a € E, k(a) = {% 2 f(x),g(x) € klz],g(a) # 0} C E is the smallest
subfield including k and a.

|

Proposition 3.1.9 (Proposition 1.4 in [1] V. §1). Let « be algebraic over k. Then, kla] = k(a),
and [k(a) : k] = degirr(a, k, x).

19



Proof. For the first part, note that k[a] = k[z]/ < p(x) > where p(z) = irr(«o, k, ), since for
all f(z) € klz], f(a) = g(a)p(a) + r(a) = r(a) for some unique ¢,r € k[z] by euclid algorithm.
Also, < p(z) > is maximal ideal, since for any g € k[z]\ < p(z) >, p g, this implies p, g are
relatively prime, so Ja,b € k[x] such that ap + bg = 1, which implies < p, g >= k[z]. Hence k[a]
is a field, and k[o] C k(o) by definition. Therefore, from the definition that k() is the smallest
subfield containing k and «, k[a] = k().

For the second part, suppose deg(p(x)) = d. Then, it suffices to show that {1,a,a2, -, ad"1}
forms a k-basis. Firstly, they span k(a), since any o™ with n > d can be replaced by z¢ =
—irr(a, k,z) + 2. Also, it is linearly independent, if not, we have another irreducible polyno-
mial having « as root, and degree is lower than irr(a, k,z), contradiction. Hencelk(a) : k] =
deg(irr(a, k, x)).

Definition 3.1.10. Let L be a filed containing E, F as subfield. Then, denote EF be the smallest
subfield of L including E and F, called compositum of E and F in L. One can define the
compositum of a family of subfield E;, i € I. So,

Zfinite aib;

EFF = —=——
Efinite ajbj

:ai,ajGE,bi,bjEF, Z ajbj7é0 ,
finite
and

HE: ZfzmteHzeI i Lai, a; cE, Z Haj 7&0

iel Zﬂnzte H]GI finite eI

Remark 3.1.11 (Remark and definition). o Letk CE,ay, - ,an € E, thenk(oy, -+ ,ap)
is the smallest subfield of E including o;’s and k, which means that

f(al,... 7an)

glag, - ,on

klay, - an) = { } = k(ar) - k(o).

o If E = k(ag, -+ ,an), then E is called “finitely generated over k.” Similarly, let S =
{aq, -+ ,an} C E be finite set. Then, k(S) := k(ay, - ,an). Extending this definition, for
S C E arbitrary subset, define k(S) = Ug/css is finitek(S"), the smallest subfield containing
k, S, and is called "subfield generated by S over k.” This is, namely, compositum of {k(S’) :
S" C 8 finite }. For example, EF = Ugc gSisfiniteF (S).

e Think about such subfield; If E = k(aq,- -+, ),

Figure 7: Extension of E, F';, EF over k; "f.g.” means ”finitely generated.”
then, EF = FE := F(k(ay, -+ ,ap)) = F(ag, - ,ay).
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Proposition 3.1.12 (Proposition 1.5 in [1]V. §1). E/k: finite — E/k: f.g.

Proof. Let {a1, - ,a,} be a k-basis of E. Then, k(ay,---,a,) = E, implies finitely generated.
O

Example 3.1.13. Let x be indeterminate. Then, k(x)/k is finitely generated extension but have
infinite dimension.

Figure 8: Example of finitely generated extension having infinite dimension.

Remark 3.1.14 (Miscellaneous notation). We define a tower of fields to be a sequence F} C
Fy, C -+ C F, of extension fields. The tower is called finite if and only if each step is finite.
Think about figure 7. In this case, EF/F is called the translation of E to F, or the lifting of
FE to F.

Proposition 3.1.15 (Proposition 1.6 in [1] V §1). E = k(ay -+ ,ap) f.g. over k, where a; :alg.
/k. = E/k :finite.

Proof.

k C k(aq) Ck(aq)(ag) C -+ Ck(ag, -+ ,ap)

Il |
k(a1,az2) E

Then, k(ai, - ,q;)/k(ar,+ ,q;41) is finite for all § = 1,2,--- ;n — 1. Hence E/k is finite,
algebraic over k by corollary 1.3. O

Definition 3.1.16 (Distinguished Class). Let € be a class of extensions F C E. Then € is
called 7distinguished” if following conditions hold.

1. E/F, F/lke€¥ «<— E/ke¥.
2. E/k € € with the following figure. Then EF/F € €.

Note that third condition suggested in [1] is automatically holds when 1,2 condition hold. Third
condition is this; if F/k,E/k € €, and F,E are subfield of a common field, then k C EF € €.
It is deduced by following argument; From 2, EF/F € € , and think tower EF/F/k.

Proposition 3.1.17 (Proposition 1.7 in [1] V §1). The class of algebraic extensions and the
class of finite extensions are distinguished.

Proof. In case of finite extension, condition 1 is done by the proposition 1.2. on [1]. For condition
2, since F = k(ay, - ,a,)/k are finite, F(ay, -+ ,ay,) = EF/F is also finite; this is due to the
fact that deg(irr(ay, F,z)) < deg(irr(a, k, x)) for all i.

In case of algebraic extension, suppose F/k algebraic. Then, E/F, F/k is algebraic since Va €

21



EF
\
/ F
\
k
Figure 9: Condition 2 of distinguished class

Eirr(a,k,x) € k[z] C Flz] and Vo € F = « € E. Suppose E/F, F/k are algebraic. Then,
Va € E, ana™ + -+ + a1 + ap = 0 for some ag,--- ,a, € F. (Note that not all a; are zero.)
Then, let kg = k(ag, -+ ,a,) and it is algebraic over kg. Then,

k‘o(a) D ko Dk‘((lo,'“ ,Ap—1 O - Dk‘(ao) Dk

is tower of algebraic simple extension, which implies finite extension. Hence, from distinguishness
of finite extension, kq(«)/k is finite, So « is algebraic over k by the proposition 1.6. Now, suppose
E/k is algebraic extension. Then, EF = UgcgfiniteF'(S). And since F(S)/F is finite because
each element in S is algebraic in F so F(S) is tower of simple algebraic extension. So F(S)/F
is algebraic by proposition 1.6, hence EF/F is algebraic. O

Remark 3.1.18. For any set S, K(S) = Ug/css is finite K(S"). If S C E, where E is algebraic
extension over K, then K(S) is also algebraic extension.
3.2 Algebraic Closure

Definition 3.2.1. Let E/F, L be fields, and let o : E — L is called embedding of F, into L, if
it 1s an injective homomorphism. Let 7 : E — L is embedding. Then,

e T is over o, or T extends o if T|p = 0.
o 7 is called embedding of E over F if o is identity, i.e., T|p = idp.

Note 3.2.2. If x is transcendental, we can take o :  — 2 to show that there exists embedding
which fix k but cannot fiz polynomial.

Figure 10: Example of embedding fix k& but cannot fix its polynomial

Lemma 3.2.3 (Lemma 2.1 in [1] V. §2). E/k algebraic extension. o : E — E is embedding /k.
Then, o(E) = E.



Proof. Tt suffices to show o is surjective. Let o € E, p(x) = irr(a,z,k). Then, let B/ =
k(ay, -+ ,ap) where ag, -+ -, o, are the set of roots of p(z) in E. Then,

o(E") = k(oay, - ,0ay).

So, for any i € [n], o«; is also a root of p(x), since o(p(e;)) = p(oa;) = 0. Hence, o(E’) = £,

which implies aino(E’) C o(E). O

Lemma 3.2.4 (Lemma 2.2 in [1] V. §2). Let k C Ey,E> C E field, and o : E — L is embedding
of E in some field L. Then, o(E1E3) = o(FE1)o(Es).

Proof.

o Zﬁnite aibi — Zﬁnite U(ai)o(bi>
Zﬁnite a’;‘ b; Zﬁnite O'((l;)o’(b;)
O

Remark 3.2.5. The Lemma 2.2 holds for the composition of arbitrary family of subfield E;s of
E.

Proposition 3.2.6 (Proposition 2.3 in [1] V. §2). Let f(z) € k[z]. If degf > 1, then IE/k
such that f(xz) has a root in E.

Proof. Assume that f(z) = >.,5a;z" is irreducible. Consider a canonica homomorphism o :
k[z] = k[z]/ < f(z) >. Then o induces homomorphism on k, and it has trivial kernel, since
every nonzero element of k is invertible in k, generated the unit ideal, and 1 ¢ kero. Hence
ok — k[z]/ < f(z) > is an embedding.

Put & = o(x). Then, f7 :=> .., 0(a;)z" € o(k)[z], so

f7©&) = f7(o(z) = o(f(x)) = 0.

Put F = k[z]/ < f(z) >. Let S be a set such that |S| = |F — o(k)| and SNk = (. Now define
E:=kUS. We want to extend o as bijection, to make field structure on E. First of all, extend
olk to E, say 6 : E — F, bijection. Then, give field structure as below; For z,y € E,

o x4y = &_1(5(1‘) +&(y)>
o zy:=5"'(5(x) 5(y)).

Therefore, E is an extension of k since it is a field containing k. Now let o := 57 1(£), then « is
a root of f(x), done. O

Definition 3.2.7. A field K is called ”algebraically closed” if (1) Vf(z) € Klx] has a root in K.

Equivalently, if (2)Vf(x) € K|x] splits into linear factors in K[z], or (3) no proper algebraic
extensions of K exists, then K is also said algebraically closed.

Proof. (2) = (3) is easy; there are no irreducible polynomial having degree at least 2, since
all polynomials splits into linear factors.

(3) = (1): Suppose there are no proper algebraic extension of K, and take f(z) € K[x],
irreducible. If at least one of root is not in K, then f should have degree at least 2, so we can
extend K using f, say M. Then [M : K| > 1, which implies there is a proper algebraic extension
over K, contradiction.

(1) = (2): For any f(z) € K[z] with deg f = n € N, it has root, say u; € K, so f = (z —u1)g
for some g € K|[z]. By repeating this, f splits into linear factors in K{z]. O
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Theorem 3.2.8 (Theorem 2.5 in [1] V. §2). Let k be a field. Then, 3 an extension of k, which
is algebraically closed.

Corollary 3.2.9 (Corollary 2.6 in [1] V. §2). Let k be a field. Then 3k which is algebraically
closed and algebraic over k.

Proof of the corollary. Let k C E, algebraically closed. Put k% := UxcpcgF, where F/k is
algebraic. Then, k® is also algebraic over k. Now it suffices to show that k¢ is algebraically
closed field. T will show that there are no proper algebraic extension over k®. Suppose o € E
which is algebraic over k*. Then, by distinguishness of algebraic extension, with the fact that
k(o) /k*, k* /K are algebraic, so « is algebraic over k. Hence, k(«) C E is also algebraic extension
over k, so k(a) C k®, implying « € k*. Hence k® is an algebraic closed. (Picking in E contain
all possible algebraic elements in k since all polynomials in k[z] is also in F[z], and E contain
every solution of its polynomial, which means every possible algebraic elements of k.) O

Proof of the theorem. 1. Construct an extension in which every polynomial in k[z] of
degree > 1 has a root. For each f € k[z] of degree > 1, assigns a letter Xy and let S
be a set of such letter. So, S has bijection with the set of polynomial having degree > 1.
Now construct k[S], a polynomial ring.

Lemma 3.2.10. For any such f in k[z], an ideal generated by all the polynomials f(Xy) €
k[S] is not the unit ideal

Proof. Suppose not. Then, 3 a finite linear combination of elements in the ieal such that

G fi(Xp) + -+ gnfa(Xy,) =1
for some g; € k[S], f; € k[z] having degree > 1, i € [n]. Now let X; := Xy, for all i € [n].

Then, for all g;, only finitely many indeterminate are involved in all g;s. Say Xi,--- Xy
be such indeterminates. Then,

S gi(X, e XN fi(X) = 1.
i=1

Let F be a finite extension, having roots of each polynomial fy,---, f,, say «; is a root of
fiin F| for i € [n]. Let a; = 0 for ¢ > n. Then, by substituting X; to «;, we get 0 =1, a
contradiction. O

So, we can construct the maximal ideal m containing all such f(Xy) above. Then, k[S]/m
is a field, and we can get canonical projection o : k[S] — E[S]/m. For any f € k[x]
havind degree > 1, f“ has a root in k[S]/m by o(Xy). Also, k[S]/m is an extension of
ok. By constructing a set T having cardinals with |k[S]/m — ok| and TNk = ), and gives
operations to make fields, like the proof of proposition 2.3. Then, we can get 1 =T Uk
be a field containing k and every polynomials of k[z] having degree > 1 has a root in Ej.

2. Use mathematical induction. Inductively, we can form a sequence
EFiCcEy,C---CE,C---.

such that every polynomials in E,[z] of degree > 1 has a root in E, ;. Let E = US| E,,.

Lemma 3.2.11. F is a field.
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Proof. For any z,y € E, there exists n € N such that x,y € F,, so we can use its field
structure to define = + y, zy. O

Now, take f € E[z]. Then JE,, such that every coefficients of f lies on, so f has a root in
E,+1 C FE, hence f has a root in E. So F is algebraically closed, containing k.
O

Proposition 3.2.12. Let 0 : k — k%, embedding over k. Let E = k(«a) for some algebraic
element o, and p(x) = irr(a, k). Then # of extensions of o to E = # of distinct roots of p(x)
in k®.

Proof. Let X = { extensions of o to E},Y = { the roots of p(z) in k*}. It suffices to show
that | X| = |Y]. Let 7 € X, so p(7(e)) = 7(p(a)) =0 = 7(a) € Y. And 7 is completely
determined by 7(a), i.e., if 7/ € X such that 7/(a) = 7(«), then 7 = 7/, since every elements in
E can be represented by linear combination of power of a™, n € NU {0}.

Conversely, given 3 € Y, let 7 = ¢ 0 ¢, where ¢z evaluates f € k[z]/ < p(z) > to f(B). This
is isomorphism, as shown in [1][p.224]. So, 7|, = id). Hence 7 € X.

k(a) «—— klz]/ < p(x) > —— k(B)

Therefore, there exists bijection X — Y as 7 — 7(«). This is bijection since by fixing «, all
7 € X have a form 73 = ¢ 0 ¢, ! so that 75(«) = 3 for any 8 € Y, which implies |X| = [Y|. O

Remark 3.2.13. We can extend this argument on arbitrary finitely generated extension.

Proof. Let K/k be finitely generated algebraic extension. Then we can get a tower of algebraic
simple extension, and apply the proposition 2.7 on each extensions, and sum all of it. O

Theorem 3.2.14 (Theorem 2.8 in [1] V. §2). Let E/k be algebraic extension, o : k — L be
embedding of k, where L is algebraically closed field. Then, 1) 37 : E — L which is extension of
o. 2)If E is algebraically closed, and L/ck is algebraic, then T is isomorphism.

Proof. 1. For 1) we use standard zorn’s lemma argument. Let S = {(F,7) : E/F/k,7 :
extension of o to an embedding of F' € L}. Give an order (F,7) < (F/,7)if F C F',7'|p =
7. Then, (k,0) € S, 805 # 0. Then, for some totally ordered set {(F;, 7;)}, define F' = UF;,
7(x) = 7;(x) for some x € F; C F. Then, (F,7) € S, so it is upper bound for the totally
ordered set. So, by Zorn’s lemma, 3(K, A) which is maximal. Then, |y = 0. Now it suffices
to show that K = E. Otherwise, Ja € E such that a ¢ K. Then, (K(a),A(a) > (K, ),
contradicting maximality of (K, \). So there exists extension of o, say 7: E — L.

2. For 2), see the picture. Then 7(F) is also algebraic closed; otherwise, 3 irreducible poly-
nomial in 7(E)[z] of degree > 1. This polynomial is irreducible in E(z), otherwise it is
reducible, so contradiction. However, L/ck is algebraic = L/7(FE) is algebraic by distin-
guishness of algebraic extension, so L = 7(FE) since algebraic closed field have no proper

extension. Hence 7 is isomorphism.
O

Remark 3.2.15. Any algebraic extension of k which is algebraic closed is unique up to isomor-
phism. We call it the algebraic closure” of k. This is what corollary 2.9 in [1] V. §2 says.
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Remark 3.2.16. Lang’s comment; in category theoretical aspect, Aut(A) operates Iso(A, B).

Exercise 3.2.17. If k is a field which is not finite, then any algebraic extension of k has the
same cardinality.

Proof. Note that k[z] has infinite basis, say {1,z,2?%,---}. So, |k[z]| = | Upen k"|. However, for
any n, |k™| = |k|, furthermore, | Upen k™| = |k by 1nvok1ng axiom of choice twice. Now, for any
extension of E/k

o: FE — k[z] by a— irr(a, k, x).

Since o(k) = {z —a : a € k}, so |o(E)| > |o(k)] = |k|. Also, |o(E)| < |k [ 1l = |kl
|o(E)| = |k|. Since fibers of o, i.e., for any f(z) € o(F), co > |e7*(f)] > 0, which 1mpl1es
|E| = |o(E)| = |k|. O

3.3 Splitting fields and normal extension

Definition 3.3.1. Let f(x) € k[z] of degree > 1. Then, K/k is called splitting field of f(x) if
1) f(x) splits into linear factors in k[x] (i.e., f(x) = c(x —a1) - (x — o) with ¢ € k) and 2)
K =Fk(ay, - ,ap).

Theorem 3.3.2 (Theorem 3.1 in [1] V. §3). Let K, E be splitting field of f(z). Then,
1. 3o : E — K is isomorphism such that ol = idy.
2. If k C K C k%, then for all 0 : E — k%, which is embeding over E, o(F) = K.
Proof. 1. Take algebraic closure containing K, and use the result below;

2. By theorem 2.8 1), 30 : E — L, which is embedding over k. Then, let f(z) = c(z —

B1)---(x — By) for some B; € E. Then, f7(z) = c(x —op1) -+ (x — oB,). Since f(x) has

a unique factorization f(x) = ¢(x — oq) (z—ay) € kz], {08}, = {a;}};, so they

differ up to permutation. So {0f;}".; C K, which implies o(E) C K. However, K =

k(ag, - ,apn) = k(of1, - ,08,) = o(k (ﬂ1,~' ,Brn)) = o(F). Hence o is isomorphism,
since it is both injective and surjective.

O

Remark 3.3.3. For K/k algebraic, we may assume K® = k since 37 : K — k® by theorem
3.1, such that 7(K) = K, so we can assume k®/K/k.

Remark 3.3.4. S ={f;(x):i € I} C k[z], one can define a splitting field of S in the same way.
Vi € I, k; is a splittinf field of f;. Then, K = K(U;S;), the compositum of K!s.

Corollary 3.3.5. Let K, E the splitting field of {fi}icr. Then o : E — K is isomorphism with
O’|k = idk.
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Proof. By theorem 2.8, 30 : E — K is embedding /k. Then, E is compositum of E;s, and K
is compositum of K;s. So, define o; = o|g,, then, by the same argument in proof of theorem
3.1, 0; induces isomorphism as 0;(E;) = K, so 0(E) = o([[;c; Ei) = [L;c; o(Ei) = K, where
the third equality is from lemma 2.2. Hence o induces isomorphism, since it is already injective
homomorphism. O

Remark 3.3.6. In general, 0(F) # E, even if isomorphism. But it is equal when E is a splitting
field.

Example 3.3.7 (General Case). Let f(x) = 2° — 2 = (v — V/2)(z — V2w)(x — V/2w?) where
_1%\/?3. Then,

w =

Qa
/ N \
¥2) ———— Q(V2w)

Q Q

Q(

Figure 11: Extension of f(z) = 2® — 2.

So a(Q(V/2)) # Q(V2).

Theorem 3.3.8. Let k C K C k*. The following are equivalent.
1. Vo : K — k*, embedding [k, o(K) = K.
2. K is the splitting field of some {f; :i € I}.

3. Let f(x) € klx] such that f is irreducible and having a root in K. Then, f splits into linear
factors in K.

Proof. 1. 1. = 3.:Given ¢, 8 € K, which are roots of irr(«, k, x), there exists isomorphism
k(a) = k(B) by mapping « on . (This is isomorphism since it preserves k, and clearly
injective and surjective, and has inverse, and it is homomorphism.) Now extend this
isomorphism to an embedding of K into k®. This extension is from below; apply theorem
2.8 on the K/k(«a) and o : k(a) = k(8) C k*. Then by condition 1., 7(K) = K. So 8 € K.

K — 37 jo

k(o) —=— Kk(B) C k*
Figure 12: How to get extension of 7.

Since 8 was arbitrary, K have all root of f, so f splits into linear factors on K.

2. 1. = 2.:Let X =irr(a,r,k) : a € K}, and K is a splitting field of X. Then it suffices
to show that K = K. By the above argument, for any a € K, every conjugate of a is in
K, which condition 3. says. Hence K C K, which implies K = K.
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3. 2. = 1.:Let X = {fi}ies is a family of polynomials in k[z] such that K is splitting field
of X. Then, if € K is root of some f;, then Vo : K — k® embedding over k, we know
o(a) is also root of f;, so o(a) € K. Since K is generated by all such roots, o maps K to
itself. Hence, o(K) = K.

4. 3. = 1.:Let 0 : K — k® embedding over k. Then, for all « € K,c(«) is also root of
irr(a, x, k), which implies o(«) € K since irr(a, x, K) splits into linear factors in K, which
implies K has all roots. Hence o(K) C K, which implies 0(K) = K by the lemma 2.1,
saying that every embedding of field into itself is automorphism.

O

Definition 3.3.9 (Normal Extension). K/k is called normal extension, if it satisfies one of the
conditions in theorem 3.3.

Theorem 3.3.10 (Theorem 3.4 in [1] V. §3). Below two figures, 13 and 14, hold.

EF
\
/ F K
\
k !
(a) K/k normal => KF/F normal.  (b) K/k normal = K/E normal.

Figure 13: Lifting (Top) and Above subextension (Bottom) are normal.

K K,
Kl K2
KiNK,

k
Figure 14: Composition and intersection are normal

Proof. 1. Assume K C F® Then, KF C F*. So by theorem 2.8, 40 : KF — F® embedding
over F. which is extension of idr. Then o|; = k, so

o(KF)=0(K)o(F)=KF.

where first equality comes from the lemma 2.1 and the second equality comes from condition
1 of normal extension, and o|r = idp. Hence KF/F is normal.
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2. Suppose K/k is normal and take o be embedding of K into k% over E. Then, it is also
embedding of K into k% over k, so it is automorphism, Hence K/F satisfy condition 1 of
normal extension.

3. Take k® which contain both K7, Ka. (This construction is possible by constructing algebraic
closure of K7 K5.) Then, for any o : K1 Ky — k%, embedding over k, o|x, — k% is also
embedding over k, so o(K;) = K, for i € [2], so 0(K1K2) = 0(K1)o(K2) = K1K3 with the
lemma 2.1. Also, o(K; N K3) = o(K71) No(Ks) = K1 N Ko.

O

Remark 3.3.11. Normal extension do not form a distinguished class.

Example 3.3.12. Note that Q(/2,w) is normal extension of Q. However, for Q(+/2,w)/Q(¥/2)/Q,

Q(¥/2)/Q is not normal. Also, in Q(v/2)/Q(v/2)/Q, each subextension is normal but Q(+v/2)/Q
is not normal; since % — /2 is irreducible in Q(v/2) but it is not in Q[x].

In general, if [K : k] = 2 then K/k is normal, which implies K = k(«) for some « such that
wrr(a, k) = (z — a)(x — B) implies 5 € K.

Proof. If [K : k] = 2, then it is finitely generated algebraic extension by proposition 1.5. Then

K = k(aq,--- ,ap) for some n € N, but [k(aq) : k] > 1 implies K is simple extension. Say
K = k(«). Then, irr(a, k) has degree 2. Denote § be its conjugate, then irr(a, k) = (x — a)(z —
B) =122~ (a+B)x+aB, soa+ €k implies (a+ ) —a=B€ K. O

3.4 Separable extension

Definition 3.4.1. Let E/F algebraic, o : F — L embedding into L, which is algebraically closed.
Then, for any extension of o to E, the image of E is algebraic over oF. Let [E : F|s be the
cardinality of {T|t : E — L}, the set of embeddings of E. It is called separable degree of E/F.

First of all, we should check it is well-defined.

L+ L

+— F 72—

Figure 15: Separable extension

Proof. Let S, = {¢ : E — L : ¢ is extension of the embedding o : F — L}, L' be another
algebraic closed field, and 7 : FF — L’ be an embedding. Then, L’ is algebraic closure of 7F, so
we can apply theorem 2.8 on To0 ™! : ¢F — 7F C L' with L as algebraic extension of 0 F, so we
can get A : L — L’. Since L is algebraically closed, A is isomorphism. Let S, ={¢: E — L' : ¢
is extension of the embedding 7: F — L'}.

Now it suffices to show that |S,| = |S;|. Let o* € S,. Then

Noo*|lp=(roo oo =r.

So A induces mapping from S, to S;, and also A~! induces mapping vice versa. Hence there is
bijection between S, and S,, so we are done. O
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Theorem 3.4.2 (Theorem 4.1 in [1] V. §4). E/F/k algebraic extension. Then 1) [E : k]s = [E :
F|s[F : k]s. Also, if E/k is finite, then [E : k]s < [E : k] < oco.

Proof. Let A = {o;|o; : F — L be extension of o : k — L embedding of k into algebraically
closed field L for ¢ € I}. Then, |A| = |I|. Given i € I, J0y; : E — k®, which is extension of
o;; for some j € J. The existence of 0;; comes from the fact that [E : F], is well-defined, so
constructing set like A and take extensions. Then, |J;| = |Ji| for all i,7" € I since each o; has
precisely [E : F], extensions of embedding of E into L, therefore, {o;;} contain [E : F| [F : k],
extensions of embedding of F into L, since {o;} has precisely [F : k|, elements, by definition of
separable degree. (Think of S,, and S,,; in the definition of separable degree.)

Then, since any embedding of E into L over o must be one of the o5, since its restriction on F
is one of ¢;. So cardinality of the family of distinct embedding of F into L over o is the same as
{0ij}jyerx, done.

Now, suppose E/k is finite. Then, F = k(a1,- -, ay,) finitely generated algebraic extension, by
the proposition 1.5., for some «; € L,i € [n]. Then make tower of simple algebraic extensions,

k Ck(on) Ck(ar,a2) C--- Ck(ag, - ,a,) = E.
Then, [k(aq, - ,q;) : k(aq, -+ ,a;—1)]s is number of distinct root of irr(a;, k(aq, -+, 1)),
hence it is less than or equal to degree of irr(ay, k(aq, - ,a;-1)) = [k(a1, - , ;)  k(aq, -+, a—-1)].
Hence, by multiplicativity, we can say that [E : k]s < [E : k]. O

Note that for some indeterminate ¢, let E = k(t)/F = k(t)/k. Then, let t = a. So «a is a
root of x? — t? = 0, which is the same as (x — t)? = 0, so t is transcendental over k but algebraic
over tP.

Corollary 3.4.3 (Cororally 4.2 in [1] V. §4). [E : k]s = [E : k] holds <= each step of the
tower of simple algebraic extension is separable.

Proof. Derived in the proof. O

Remark 3.4.4. 1. For any finite extension E/k, denote E/k is separable if [E : k]s = [E :

2. Let « is algebraic over k. Then « is called separable over k if k(a)/k is separable.
3. Let f(z) € k[z]. Then f(x) is called separable if f(x) has no multiple roots in k.

Remark 3.4.5. « is algebraic and separable <= irr(a,k) is separable <= all the roots of
wrr(a, k) are distinct.

Proof. The second <= is just definition of separability of polynomial. Suppose « is separable
over k. Then k() is separable, so [k(a) : k]s = [k(«) : k]. Hence k(a) has [k(«) : k] distinet
embedding of k(a) — k® over k. If irr(a, k) doesn’t have [k(«) : k] distinct roots, then by
principle of pigeon hole, there exists two maps which maps a to the same algebraic elements,
which implies two maps are equal, contradiction. Hence irr(a, k) has [k(«) : k] distinct roots,
and since [k(a) : k] = deg(irr(a, k)), irr(a, k) has no multiple roots. Conversely, if all roots are
distinct, we can make [k(«) : k] embeddings which maps « to either other distinct root or itself.
So [k(a) : k] = [k(a) : Ks. O

Theorem 3.4.6 (Theorem 4.3 in [1] V. §4). E/k finite. Then E/k is separable < Va € E,
« is separable over k.
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Proof. Suppose E/k separable. Then
[E: k(a)]s[k(a) : K]s =[E : k]s =[E : k] = [E: k(o)][k(a) : K].

Since [E : k(a)]s < [E : k(a)], [k(a) : K]s < [k(a) : K], this implies equality for each subinequal-

ity. Hence [k(«) : K] = [k(a) : K], so « is separable.
Conversely, Let all elemetns in E is separable over k. Since E is finite extension, so it is

finitely generated algebraic extension by the proposition 1.5. So E = k(ai,--- ,«ay) for some
a1, -an € B So we can get the tower of algebraic simple extensions,
k Ck(on) Ck(ag,a2) C--- Ck(ag, - ,a,) =E.
Note that each «; is separable over k(a, - - - , @;—1); since irreducible polynomial of cv;, irr(ca;, k(aq, -+ ,ai—1), )
can divide irr(a;, k, z), and the latter have no multiple roots, so do the former. Hence [k(a1, -+, ;) :
klay, -+ ,a;-1)]s = [k(aq, -+ ,a;) : k(aq, -+ ,a;_1)], so the conclusion can be derived. O

By this theorem, we have another definition of separability of E/k for infinite dimensional
extension;

Definition 3.4.7. For E/k algebraic with arbitrary dimension. Then E/k is separable iff Vo €
E, « is separable over k. This is equivalent to say that [E : k]s = [E : k], the original definition
when dimension is finite.

Theorem 3.4.8 (Theorem 4.4 in [1] V. §4). Let E/k algebraic. E = k(S) for S = {a;}ics. If
Vi € 1, is separable over k, then E/k is separable.

Proof. Note that F = k(S) = Ug/css’ is finite- Note that k(S’)/k is separable by the argument in
the proof of theorem 4.3. (Make tower of simple algebraic extension, and each element is separable
over middle extension, so that separable dimension is equal to general dimension.) Hence k(S")/k
is separable. So Va € F, 35’ which is finite, so that « € k(S”). So « is separable.

Theorem 3.4.9 (Theorem 4.5 in [1] V. §4). Separable extensions form a distinguished class.

Proof. 1. (Condition 1) Let E/F/k and E/F, F/k are separable. Then take arbitrary a € E,
let irr(a, F) = ag + a1 + - - - apz™. Now let ko = k(aog, -+ ,a,). Then « is separable over
ko, since irr(a, ko) is divisible by irr(«, F'), which has no multiple roots by given condition,
implying so does irr(a, ko). And ko(a)/ko is finite and separable extension. Also, ko/k is
finite separable extension since kg is generated by separable elements in F' over k. Hence

[ko(a) : k]s = [ko() : kolslko : k]s = [ko(@) : kol[ko : k] = [ko(e) : K],

by theorem 4.1 and proposition 1.1. Hence kg («) is separable over k. So by theorem 4.3 «
is separable over k. Since « is arbitrary, E/k is separable.

Conversely, let E/k is separable. Then, F/k is also separable since every element in F is
also in E, which implies they are separable over k. Now it suffices to show that E/F is
separable. Let o € E. Then irr(a, F') can divides irr(a, k) but irr(a, k) have no multiple
roots since E/k is separable. Hence irr(a, F) also have no multiple roots. Therefore « is
separable over F'.

2. (Condition 2) Let E = UScE,ﬁnitek(S)- Then EF = F(USCE,ﬁnitek(S)) = USCE,ﬁniteF(S)
since F' contain k already. Since each S is separable over k, so it is separable over F' by the
same argument using divisibility of irreducible polynomial and its linear factors in algebraic
closure.

O
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Remark 3.4.10. Let E/k be finite, E C k*. Let K = Npcrx' K’ where K' is any normal
extension over k containing E is normal extension over k, by theorem 8.4. This is the smallest
normal extension of k containing E, by definition.

Alternatively, let o' : K — k% be any embedding over k, and let o be extension of o’ to K' for
each K'. Then, since K' is normal, o(K') = K'. Hence

o(K)=Ng~po(K')=Ng~pK =K

So we can check K is normal by this way.

Consider A= {01, -+ ,0p : 0; : E — k% is embedding over k}. And let K" = o1 E -0, E C k*.
Then, we want to show that K" /k is normal. Let 7 : K" — k% be any embedding over k.
Then, this can be extended as isomorphism 7 : k* — k% by theorem 2.8. Then, {101, -To,} =
{o1, -+ ,on} since To; is also embedding of E into k* over k, so it is in A, and each To; is
distinct. Therefore, 7(K") =1(01E - opE) =101 E -+ 70, E = K".

Now note that K C K" since K, K" are normal but K s the smallest normal extension. Also,
K" C K since Vi € [n],0;FE C K because o, E € K’ for any normal extension of k containing E.
Hence K = K"

This implies that the smallest normal extension of k containing E is equal to o1 E -+ -0, E.

In particular, if E/k is separable, then K/k is separable since each o;FE is separable over k since
o cannot change its irreducible polynomial, which implies all element has irreducible polynomial
having no multiple roots. Hence by condition 2 of distinguishedness, K = o1 E - - -0, F is separable
over k.

Theorem 3.4.11 (Primitive Element Theorem). E/k finite.
1. E =k(a) for some o € E <= 3 finitely many F such that E/F/k.
2. E/k separable. = E = k(«a) for some o € E.

Proof. 1. (1.,«<) If k is finite field, then the multiplicative group of F, say E* =< a > for
some « € E, which implies E = k(«). Suppose k is infinite. Given «, € E, consider
k(a+c¢p) for some ¢ € k. Then the number of such form is infinite but they are all subfield
of E containing k, so actual field must be finitely many. Hence,

ko = k(()é + 015) = k(OZ + 026)

for some ¢; # co. This implies (¢; — ¢2)B € ko, which implies 8 € ko, so ainky. Hence
k(a, B) C k(a+ ¢fB), this implies k(«, 8) = k(o + ¢fB) since other inclusion is obvious. So,

since F/k finite, E = k(ay, -+ ,,) for some «; by the proposition 1.5, hence it suffices
to show that E' = k(cia1 + -+ -cpay). If n = 2, then we done. Suppose n > 3. Then,
Fk(caaa + -+ - + cpa) = k(daas + - -+ + dy ) which contain all ag, - -+, a,, by inductive

hypothesis. This implies k(aq + caqs + - - - + ¢cpv,) contain ay by aq + coqn + -+ - + cra, —
(coag + -+ epay) = a1 € k(g +coaa + -+ + cpayp). So E = k(ciaq + -+ - + ¢cpay ), done.

2. (1.,=) Let E = k(a). Let f(x) = irr(a,k). Given E/F/k, consider gp(z) = irr(a, F).
Then f is divisible by gp. Let {gr(z) : E/F/k}. Then it is a finite set by thinking
that all possible factorization in algebraic closure is finite. Now, let Fy = k(C) where
C' is the set of coefficients of gp(x). Then F, C F, and gp is irreducible on Fy. So,
[Fo(a) : Fy] = [F(«) : F], but Fy(a) = k(C U o) = k(a) since C C k(o) and F(a) = k(@)
since F' C k(a). So Fo(a) = F(«), hence Fy = F. Therefore, {F : E/F/k} has a bijection
with {gr : E/F/k}. Since the latter is finite, so does the former.
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3. (2.) Let E/E be finite and separable. Assume that k is infinite field. Given «, 3 € E, we
claim that k(«, 8) = k(v) for some v € E, by assuming E = k(«a, 8). (If E = k(a1, -+ ,an)
for some n > 2, We can apply this argument inductively, on the tower of simple algebraic

extension;
ka(al)Ck(al,ag)C~-- c F
kCck(d)Ck(d,az)C--- C E
kCk(d)Ck@ ay)c--- C E
kc k(™) c E=k™ p)
kCk(y) = E.
Let 01, ,0, be distinct embeddings of k(a, 8) in k% over k. Let

p(a) =[] (cia — o0 + (0:8 — 0;8)x).
i#£j

Then p(x) is nonzero since each term (0,0 — o0+ (0:8 — 0 5)z) = (0i(a — XB) — 0 (v —
zf)) # 0 if & —zf # 0. Hence 3¢ € k such that p(C) # 0. Then, o;(a + ¢f) are distinct
for each i € [n], so

[k(a,B) 1 k] > [k(a+ cB) 1 k] > n=[k(a, B) : k]s = [k(, B) : K]

This implies k(a, 8) = k(a + ¢f).
O

Remark 3.4.12. If E = k(«) for separable extension E, then « is called primitive element.

Remark 3.4.13. An example of finite extension which is not simple is in [2][p.289] Exercise
15. Let F/k with F = k(u,v), chark = p # 0, where uP,vP € k and [F : k] = p>. Then F/k
s not a simple extension of k, since it contains infinitely many intermediate fields. This is the
same as exercise 24 in [1][p.255]

Proof. Suppose it has only finitely many intermediate fields. Then, since [F' : k] < oo means
F/k is finite, we can use the primitive element theorem to conclude that F' = k(a). Now take
the frobenius map ¢ : F' — F by x — ¢(z) = zP. Then ¢(a) = oP € k(uP,vP) since a can be
represented by linear combination of powers of u and v. However, k(u?, v?) = k, which implies
a? € k, so zP — oP € k[x] is a polynomial having « as a root. However, deg(irr(a,k)) = [F :
k] = p? by given condition, which contradicts the fact that z? — o is also a polynomial in k[z]
having « as roots but its degree is p. O

Definition 3.4.14. Let k°°P be the compositum of all separable extensions of a field k in a given
algebraic closure k®. This is a separable extension since Vo € k%P, v can be represetned by finite
elements which are from distinct separable extensions, so « € ky -+ -k, where k;/k is separable,
fori € [r] some r € N. Then, ky---ky()/k1 - kr/k is a tower with ky--- k(&) /ky -k, and

ky---kr/k are separable, so « is separable over k, by condition 1 of distinguishness. So
kE*°P = {x : x € k% x is separable over k}.

Actually the left inclusion is trivial since such x should be in k°¢P. To show right inclusion holds,
since Yx € k%P is separable over k as shown above, so k*P is subset of the right hand side.
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Remark 3.4.15. And for E/k algebraic, o : E — k® embedding over k, then we call o FE is con-
jugate of E in k®. By above remark, the smallest normal extension of k containing E is the com-
positumm of all the conjugates of E in E®. Also, for any a, algebraic, and {0;}ic[sepdega] aT€ G
set of distinct embedding of k(a)) — k® over k. Then o;« is called the conjugates of o in k*. The
smallest normal extension of k containing one of these conjugates is simply k({00 }ic[sep deg a])-

Remark 3.4.16. Let E/k finite, separable and noraml. Then, [E : k] = [E : k]; = |Aut(E/k)|.
where Aut(E/k) = {¢|¢ : E — E is isomorphism, ¢|, = idy}. The third inequality comes from
the fact that normal extension implies every embedding into algebraic closed field is automor-
phism.

3.5 Finite Field

In this section we want to classify all finite fields. Let p be prime, and Z/pZ := F,. If E is any
extension of F,,, then E 2 F, & ---§F, as abelian group. So |E| = p™. However this is necessary
condition of order of extension of F),. We don’t know that there exists such field. If f(z) € Fp[z]
is irreducible with degree n, then take its root on Fy, say «, and F,(a) is such fields. We want
to generalize this.

Theorem 3.5.1 (Theorem 5.1 in [1] V. §5). Let p be prime, n > 1. Then
1. 3! finite field of order p™ in Fy. So write it Fpyn.

2. Fpn = the splitting field of ) Fp ={a: ' —a=0,a€ Fp}.

3. Bvery finite field is isomorphic to ¥y for some p,n > 1.
Proof. Let S = {a:a?" —a =0}, and let f(x) = 2?" —x. Then f'(z) = p"a? "' —1 = —1#0,

so f has no multiple roots since f(a) = —1 # 0 for any root « for f. Hence we know that
|S| =p". Let E be the splitting field of f(z) in Fj.

Claim 3.5.2. E=S.

Proof. S C FE is clear since S is a set of roots of f, with the fact that splitting fields must contain
all roots. Conversely, given o, 3 € S, (o £ )" = o?" + P", and (aB)?" = " (B)?". Also
0,1€ S, and forany 0 # € S, (67" —B~' =0, and (—B)P" — (=B) = (—=1)P" " + =0
in any prime p. So S form a splitting field of f, which makes £ = S. O

To show uniqueness, suppose E’ be another finite field of order p™ in Fp. Then [(E")*| =p"—1,
soVa € (E')*, a?""'=1 = a?" =a. Hence E' C S and |E'| =|S| = E'=S=E.

To show third statement, let F be a finite field. Then |E| = p™ for some p,n > 1. By theorem
2.8, there exists embedding into Fj, say o. Then, o(FE) has order p" in 5. From uniqueness of

Fy

a finite field of order p™ in Fy,, o(E) = . Hence E =, O

34



Remark 3.5.3. F,n /F, is simple, normal and separable.

Proof. If a € Fyn such that < a >= (Fpn)*, Fy(a) = Fpn. Since (Fpn)* is cyclic as shown in
theorem 5.3, such element exists. Also, third statement of theorem 5.1 shows that F,» satisfy
condition 1 of normal extension. And it is separable extension since every element is a root of
irreducible polynomial, f(x) = 2" — & which have no multiple roots. O

Theorem 3.5.4 (Theorem 5.3 in [1] V. §5). Let k be finite field. Then k* is cyclic.

Proof. Let k = Fpn, by theorem 5.1. Suppose (k*) is not cyclic. Then,
k* 22 Zg, X - X Ly,
for some n > 2,q; < p™ — 1, Hie[r] q; = p™ for some i € [r]. This implies that
Va € k¥, a9 =1 where ¢ = l.em(qy, -+ ,q) <p" —1

But this contradicts the fact that ¢ — 1 has only ¢ < p™ elements as roots. So (k*) is cyclic. (If
g = p", then ¢;s are mutually prime, then by chinese remainder theorem, it is cyclic.)

Definition 3.5.5 (Frobenius map). Let ¢ = p™. Then define ¢ : F; — F, by a — oP. Call it
the Frobenius map.

Proposition 3.5.6. ¢ is isomorphism.

Proof. Tt is homomorphism by freshman’s dream. The kernel of ¢ is 0, which implies injective.
Since F, is finite, injectivity implies surjectivity. O

Theorem 3.5.7 (Theorem 5.4 in [1] V. §5). Aut(F,) =< ¢ >.

Proof. Note that |Aut(F,)| = n since F, is separable and [F, : F,] = n = [F, : F,],. So it suffices
to show that | < ¢ > | = n Note that ¢"(a) = aP" = a so ¢" = idp,. If $™ = idy, for some
m < n, then

Vo € Fypn, ¢™(a) = a?" = a.

So Fpn» C F,m, which is impossible since |Fpn| > |Fpm|. So | < ¢ > | = n, we are done. O
Theorem 3.5.8 (Theorem 5.5 in [1] V. §5). Let m,n > 1.

1. Fpn CFpm <= n|m.

2. For m = nd, Fpm [Fpn is separable and normal. So Aut(Fpm [Fpn) =< ¢™ >.

Proof. 1. (First Statement) Suppose Fyn C Fpm. Then, Aut(F,n /F,) is subgroup of Aut(F,m /F)).
By the Lagrange’s theorem, m = |Aut(F,~ /F,)| is divisible by n = Aut(F,/F,). Con-
versely, let o € Fp». It suffices to show that o?” = a. We know that a?” = a. So

m nd n n n,_n n

P = = P =...=aP P =aof =a.

2. Note that DFpm : Fpn] =d= |AUt(]Fpm /]Fpn>| since (b’rn|]]7pn = id]]?p — (bn S Aut(Fpm /Fpn).
And |¢"] = d = ™ since |[¢| = m. So < ¢™ > is subgroup of Aut(Fym /Fyn). Two groups
have the same order d, so they are equal.

O
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3.6 Inseparable Extension
Proposition 3.6.1 (Theorem 6.1 in [1] V. §6). Let a € k%, f(x) = irr(a, k).
1. ¢chK =0 = « is separable (have multiplicity 1).

2. chKK =p = Ju > 0 such that all the roots of f(X) have the same multiplicity p*. So we
have [k(a) : k] = p"[k(a) : k]s. Also, o" is separable over k.

Before proving the proposition, we claim some fact;
Claim 3.6.2. All the roots of f(x) in k® have the same multiplicity.
Proof. Suppose f(z) = (x —ag)™ -+ (z — o)™ € k%[z]. Now let ¢ : k(a1) — k(a;) embedding
over k by ¢(a1) = «; for some i € [n]. Then, this is isomorphism by standard argument. Now,
since k(aq), k(ay,) are subfield of k%, we can extend this map as automorphism of k%. Then,
¢(f(z)) = f(x), which implies f(z) = (z — o)™ -+ (x — )™ -+ (¥ — o)™, Since k%[z] is
factorial, my, = m;. Since i was arbitrary, m; = --- = m,,. O]

Proof of 6.1. Suppose that f(z) is not separable. Then, « is multiple root of f(z). Hence
f(a) = f'(a) = 0. Since f = irr(a,k), f/'(x) should be identically zero, otherwise f/(z) is a
polynomial having « as a root with lower degree than f(x), contradiction.
1. (If chK =0)
chK =0 = f'(z) #0 = [f'(z) € k[z] \ {0}.
Since deg f'(z) < deg f(x), it contradicts that f(z) = irr(a, k).

2. (If chK = p > 0) Then, f’(z) = 0 is possible. By proposition 1.12 in [1][Ch 4], f(z) =
g1(aP) for some g1 (z) € k[z]. Hence a? is a root of ¢g1(x). If g1(z) is not separable, then
g1 (x) is also identically zero, then by the same argument. So we can take go(x) such that
g2(zP) = g1(x). Hence go(x) has aP” as a root.

Repeat this step until we have o?” is separable over k for some p > 1, i.e., f(z) = gu(xp“)
where g, (x) is separable. (Since deg f is finite, this process should stop at some point.
And the stop implies the g,, is separable.) Now we can say that

# of distinct roots of f(x) = # of distinct roots of g,(x),

since LHS < RH S because g, has all p* power of roots of f as root of g,,, and LHS > RHS
because if there exists 1, -, as ¢'s distinct root then Frobenius map assures that Jo;
such that of” = B; in k®. This implies
k() : k]s = [k(a®") : K.

By comparing degree of f, g1, we can conclude that [k(«) : k(aP)] = p. since deg f = pdegyg
by putting a? on ¢’s leading term and deg f = [k(«) : k] = [k(«) : k(aP)][k(a?) : k] =
pdeggr (If g1(x) # irr(a®, k) up to constant, then Ih € k[z] such that h(a?) = 0 but
degh < deg g, which implies h(zP) € k[z] such that h(zP) has « as a root, so deg h(aP) =
pdegh < pdeg gy = deg f, contradict the fact that f = irr(«, k).) Applying this argument
inductively on g1, --g,, we can get

[k(a) : k‘(o/’“)} = pt.

Since g,, has root of multiplicity 1, we know [k(a?") : k]s = [k(a?") : k]. Also, since the
number of distinct roots of f(z) is equal to the number of distinct roots of g,

[k(cr) : k] = [k(a) - k(a")][k(a?") : K] = p"[k(a®") : k] = p*[k(a?") : k]s = p"[k() : Kls.
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O]
Remark 3.6.3. In the second case of the proof, k(a?")/k is separable, and zP" — o?" = (x —
Q)P € k(a?")[z].
Corollary 3.6.4 (Corollary 6.2. in [1] V. §6). Let E/k be finite. Then [E : k|s|[F : k] and
Ex {1, if chk = 0

[E:K]s pt, for some p >0 if chk=p >0
Proof. Let E = k(aq,- -+ ,a,) by proposition 1.5 in [1]. Then, we can think a tower of simple
algebraic extension. and [_: ], [-: _|s are transitive under multiplication. O

Definition 3.6.5. Let E/k finite. Then denote [E : k]; = [E : k]/[E : k]s, and call it insepa-
rable degree of E/k.

Remark 3.6.6. [E : k]; = [E : F);[F : k|; for any intermedate field F.

Definition 3.6.7. Let o € k% ,chk = p > 0. Then, « is called purely inseparable over k if
o €k for some p > 0.

Remark 3.6.8.
ais p. ins < # of distinct root of irr(a, k) =1 < [k(a): k]s = 1.

Proof. If « is purely inseparable, then In € N such that o?" € k, so 22" — (") € k[z]. Since
it has a as a root, and 2P" — (a?") = (z — a)?" in k%[z], so the number of distinct root is 1.
Conversely, suppose the number of distinct roots of irr(a, k) is 1. Then, irr(a, k) = (x —a)™. If
n # p* for some u € NU{0}, then a € k since irr(a, k) = 2™ —n-az" 1 + .- € klx], son # 0 if
n # Ip for some | € N, and if n = Ip but n # p*, then the coefficient of "7 is (l;’) = %,
which include no p in irreducible term, so nonzero, implies &% € k, so degirr(a,k) = n — p,
contradiction.

Second <= is from definition of [-: _|,. O

Proposition 3.6.9. Let E/k algebraic, chk = p. Then the followings are equivalent.
1. [E:kls=1
2. Ya € E, «a is purely inseparable.
3. Ya € E, irr(a, k) = 2P — a for some > 0,a € k.
4. E =k(S) for some S = {a;}icr such that o is purely inseparable over k.

Definition 3.6.10. E/k algebraic, call E/k be purely inseparable if one of the above four
conditions holds.

For example, « is purely inseparable over k and o € k, then k(a)/k(a*) is purely inseparable
extension and k(a#)/k is separable extension.

Proof. e (1 = 2)Let a € E. Since [E : k]; = [E : k(a)]s[k(a) : k]s by theorem 4.1,
[k(«) : k]s = 1. Then irr(a, k) has only one root, «. Hence irr(a,k) = (x — )™ € k*[z]
for some m € N. If m # p* for some u € NU {0}, then o € k since irr(a, k) = 2™ —
m-azx™ L+ ... € klx], so m # 0if n # Ip for some | € N, and if m = Ip but m # p*,

then the coefficient of ™ 7P is (lg ) = %, which include no p in irreducible term,

so nonzero, implies o™ P € k, so degirr(a,k) = n — p, contradiction. Hence m = p*,

therefore o?” € k. Hence « is purely inseparable.
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e (2 = 3) Let a € E. Since it is purely inseparable, 3u € N such that a?" € k for some
pu>0. Let a = a?”. Then,

irr(o, k)2 —a = (z —a)?".

So, irr(a, k) = (z — a)! for some [ € N. Let [ = mp”, with g.c.d(m,p) = 1. Then,

(2 -a) = (- a)P”)m = (" - ap”)m — = (”17“) a?” P (M= 4 e a]

Hence ma?” € k. Since g.c.d(m,p) = 1, o®” € k. However, since (z — a)’

I < p”. Therefore,

=rr(a, k), so

p” <mp” =1<p".
This implies m = 1, so n = p” for some v.
e (3 = 2) trivial; just definition of purely inseparable element.
e (3 = 4) Take S=FE. Then by 3 < 2, k(S)=E.

e (4 = 1) Let o : E = k(S) — k” embedding over k. Then, o(a;) = a; for all i € I,
since a; is purely inseparable, implies irr(a, k)|z?" — o?” for some p € N, thus irr(a, k)
has only one root. Hence o is identity on each a;. Therefore, o is identity on E. Since o
was arbitrary, any embedding of E over k into k° is identity. Therefore, [E : k]; = 1.

O

Proposition 3.6.11. A class of Purely Inseparable extensions form a distinguished class.

Proof. 1. (First condition) Suppose E/F/k with E/F, F/k are purely inseparable extension.
Then, [E : ks = [E : F]s[F : k]s = 1 by theorem 4.1, implies E/k is purely inseparable.
Conversely, if E/k is purely inseparable, then theorem 4.1 tells that [E : F|y = 1,[F : k]s =
1.

2. (Second condition) Suppose E/k is purely inseparable. Then, by condition 3 of purely
inseparable extension, E = k(S) for some S = {«; };cr such that «; is purely inseparable
over k. Then EF = k(S)F = F(S) for any F/k. Since any element in S is also purely
inseparable on F, since its power of p* is in k C F. Therefore, by condition 4 of purely
inseparable extension, EF'/F is purely inseparable extension.

O

Proposition 3.6.12 (Theorem 6.6 in [1] V. §6). E/k is algebraic, char k = p. Let Ey be the
compositum of all F' such that E/F/k where F/k is separable extension. Then, E/Ey is purely
inseparable, and Ey/k is separable.

Proof. Let o € E. By the proposition 6.1.2, 3 > 0 such that o?” is separable over Ey. By
definition of Ey, with the fact that k(a?")/k is separable, a?" € Fy. Hence a is purely inseparable
over Fjy.

Ey/k is separable, since separable extensions form a distinguished class and Ey = EoF/F is
separable for any F'/k is separable, by condition 2 of distinguished class, which implies Ey/k is
separable, by condition 1 of distinguished class. O

Remark 3.6.13. For k®/k*¢P [k, k®/k°P is purely inseparable, k°¢P /k is separable, by above
pProposition.
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Corollary 3.6.14 (Corollary 6.7 in [1] V. §6). E/k algebraic, and separable and also purely
inseparable. Then E = k.

Proof. Since FE is purely inseparable, [F : k], = 1. Since FE is separable, [E : k]; = [E : k]. Hence
E=k. O

Corollary 3.6.15 (Corollary 6.8 in [1] V. §6). Let K/k is normal, Ky is the mazimal separable
subextension of K/k. Then Ko/k is normal.

Proof. Let 0 : Ky — k® be embedding of K, over k. Existence of ¢ is solved when we make
(Ko)®, which is actually isomorphic to k% therefore at least one such o exists. Then, by theorem
2.8, 3r : K — k® which is extension of ¢. Then since K/k is normal, 7 € Aut(K/k), so
7(Ko) = 0(Kp) C K. And also note that o(Ky)/k is separable since Vo € Ky, o(«) is another
root of irr(a, k), which implies o(«) is also separable. (Note that o(irr(a, k)) = irr(a, k) since
it has no multiple roots.) Therefore, o(Ky) C K since K is maximal separable extension. Then
by the lemma 2.1, 0(K() = Kj. Since o was arbitrary, Ko/k is normal. O

Corollary 3.6.16 (Corollary 6.9 in [1] V. §6). Let E/k, F/k be finite, and E/k is separable,
F/k is purely inseparable, and 3L, a field such that E C L, F C L. Then, below figure holds; so
[EF : Fl=|E:k|=[EF : k|5, [EF : E]=[F : k] = [EF : k];.

EF
E F
% /ms
k

Figure 16: Corollary 6.9

Proof. The figure 16 holds by condition 2 of distinguished class and the fact that separable
exensions and purely inseparable extensions form distinguished classes respectively. Then,

[EF:F|=[EF : F|,=|[EF : k|, = [E: k], = [E : k]

where first equality comes from EF/F is separable, the second equality comes from [F : k]; = 1,
and the third equality comes from [EF : k]; = [EF : E|s[F : k]s = 1-[E : k]s, and the last
equality comes from E/k is separable. Similarly,

[EF :E|=[EF :E];=[EF : k|, =[F : k]; = [F : k]
where first equality comes from EF/FE is purely inseparable, the second equality comes from

[E : k]; = 1, and the third equality comes from [EF : k]; = [EF : F;[F : kl; = 1 [F : k];, and
the last equality comes from F'/k is purely inseparable. O

Corollary 3.6.17 (Corollary 6.10 in [1] V. §6). Let E/k finite, and EP = {zP : x € E}. Then

E/k separable <— E’k =F <— EP"'k = Evn > 1.
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Proof. Third statement contain the case of the second statement. If second statement holds,
then

E = EPk = (EPk)Pk = EP (kPk) = E" k,
where last equality comes from the fact that kP = k since char k = p and x — 2P is the Frobenius
map which induces isomorphism. By applying inductively, we can conclude that F = EP"k for
any n € N.
Suppose the second statement. Then, E' = k(aq,- -+ ,ay,) by the proposition 1.5. Then Im such

that of " s separable over k for all ¢, by theorem 6.1. Hence of € Ej which is maximal separable
extension between E and k. Take the maximal m for all 1 < i < m. Then F = EP "k C E,
implies F = Ey. Conversely, suppose E/k be separable. Then, E/EPk is separable since still
irr(a, EPk) contain all distinct roots. Also, E/EPk is purely inseparable since Vo € E,| of € EPk.
Therefore, EPk = E, by the corollary 6.7. O

Remark 3.6.18. Let o € E. Then « is separable over k <= k(a) = k(a?"),Vn > 1.
Proof. Put E = k(a), then EP"k = k(a?") O

Proposition 3.6.19 (Proposition 6.11 in [1] V. §6). K/k be normal. G = Aut(K/k). Let
K¢ = {a € K : 0a = a,Vo € G}, Ky be mazimal separable extension of k in K. Then, the below
figure holds.

K = KoK¢

Ko KC
sep&normal A

k=KynNKC®

Figure 17: Proposition 6.11

Proof. e (K%/k is purely inseparable oveer k) Let a € KY. Then, let o : k(a) — k®
be embedding. Then, take 7 be extension of o of K. Then, since K/k is normal, 7 €
Aut(K/k) = G, and 7|y = 0. Hence o(a) = 7(a) = a. So o is identity. Hence
[K(a) : k]s = 1. Since o was arbitrary, K¢ /K is inseparable.

e (KgNK = k) Note that KN K/k is purely inseparable and separable, hence Ko N K = k
by corollary 6.7.

e (K/KC is separable.) We should divides two casees.

1. (K/k is finite.) Let a € K, and let Ga := {o(a) : ¢ € G}. Since G is finite by
theorem 4.1, so Ga is finite, and take o1, --- 0, € G such that o;(a) # o;(a) for any
two pair (i,7) € [r] x [r], i.e., Ga = {o1(a), - 0.(a)}. Then, since K is normal,
Goa C K. Now construct

(s

flx) = H(x — o) € klz].

i=1
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Then for any o € G,

T

of(xz) = H(:E —oo0) = H(m — o) = f(x).

i=1

since o is just a permutation. (If oo;() = 00;(a) with ¢ # j, then o(0;(a) —0j(a)) =
0, which implies o is not injective, contradiction. Hence {o0;()}icfy) = Ga.) Hence
f(z) € K€[z], hence f(x) has no multiple roots, so « is also separable over K. Since
« was arbitrary, K/K¢ is separable.

2. (K/K€Y is infinite.) Let o € K. Then take splitting field of a over K¢, call it L.
Since L,/K€¢ is normal and finite, we can conclude that L,/K¢ is separable. Since
K = Ugex Lq, so it is also separable, by the definition that every finitely generated
subextension is separable.

o (K = KoK€.) Since K/Kj is purely inseparable and K/KqK%/K,, K/KoK® is purely
inseparable by condition 1 of distinguished class of purely inseparable extension. Also,
since K/K% is separable and K/Kq(K%/K%, K/KyK® is separable by condition 1 of
distinguished class of separable extension. Hence, by corollary 6.7, K = KoK©.

e (Ky/k is normal.) This is from corollary 6.8.
O

Corollary 3.6.20 (Corollary 6.12 in [1] V. §6). Let k = kP, called perfect, E/k be algebraic
extension. Then E/k is separable.

Proof. Suppose K/E/k for some K/k normal extension. (Note that such K exists, by just
taking K = k%) Let o € K¢, then, since K /k is purely inseparable by the above theorem,

o € k = kP" for some m, since k = kP = k=kP = kP = ... So, a?" = a?" for some
a € k. Hence a = a by injectivity of frobenius map. Hence K /k is separable, which implies E/k
separable by distinguished class of separable extensions. O

4 Galois Theory

Every number of theorem comes from Lang’s book.

4.1 Galois Extensions

Definition 4.1.1. Let K be a field, G a group of automorphism of K. Then,
K¢ :={a€ K :0a=a forocG}

is called fized field of G.

Definition 4.1.2. For field k and its extension K, K/k is called Galois extension if it is separable
and normal. Then, G(K/k) := Gal(K/k) := Aut(K/k) is the galois group of K/k.

Theorem 4.1.3. Let K/k be finite Galois. Then,
1.
F={E:kcECK} & @ .—(H:H<G(K/k)}
E — G(K/E)
K i H
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2. ForE € 7, E/kis Galois < G(K/E) < G(K/k). In this case, G(E/k) 2 G(K/k)/G(K/E)
Remark 4.1.4. For E € #,|K : E] =|G(K/E)|, and [E : K] = (G(K/k) : G(K/E)).

Proof of the theorem will be given by step by step with other theorems.
Theorem 4.1.5. Let K/k be Galois, and let G = G(K/k). Then,

1. K¢ =k

2. If k C EC K, then K/E is Galois.

3. E— G(K/E) is injective.

Proof. For the first assertion, let « € K, and think about k(a). Let o be any embedding of
k(a) in K% so that o|p = 1. Using theorem 2.8, we extend this map to an embeding of K
into K by theorem 2.8. and say o too. Then, o is automorphism from theorem 3.3’s normality
condition 1. Thus, ¢ € G, by definition of Galois group. Since a € K%, o(a) = a. Also, o fixes
k by definition. Thus, o fixes k(a). Since o was arbitrary,

k() : ks = 1.

Since « is separable over k by Galois condition of K, k(«) = k, which implies o € k. Thus
K¢ =L,

For the second assertion, K is normal over E by theorem 3.4, and separable over E' by theorem
4.5. Hence K/E is Galois. From the first assertion, £ = K¢K/E),

It suffices to show that E — G(K/E) is injective. If E, E’ are intermediate fields such that
G(K/E) = G(K/E'), then E = K¢&/E) = gGE/E) — E done. O

Corollary 4.1.6. . G(K/F)NG(K/F')=G(K/FF’)
2. FNF' = KGE/F)WVGE/F) yhere \ is join.
3. FCF < G(K/F)>G(K/F'").
4. If K is finite Galois, 3 only finitely many E’s such that k C E C K.

Proof. For any 0 € G(K/F)NG(K/F"), o fixes FF’, and for any 7 € G(K/FF") fixes F, F' too.
Hence G(K/F)NG(K/F') = G(K/FF').

Also, join implies the smallest subgroup containing each G(K/F),G(K/F’) respectively.
Thus, for any element in the join, it can be represented by product of elements from G(K/F), G(K/F").
Since such product fixes FF'N F’, it is obvious.

Third thing is also obvious; If o € G(K/F’), then it fix F' too. Thus ¢ € G(K/F). This
implies G(K/F) > G(K/F'). If G(K/F') < G(K/F), then 0 € G(K/F’) fixes F for any o.
Hence F' C F".

Since |Gal(K/k)| < oo, so that the number of its fixed field is finite. O

Theorem 4.1.7 (Artin). Let K be a field and let G = Aut(K) with |G| = n. Then, K/K is
finite and Galois, and G(K/K%) = G, [K : K€ = n.

Proof. Let a € K. Choose 01,---,0, € G maximal such that o1(a),---,0,(a) are distinct.
Thus, for any 7 € G, {o1(a), - ,00(a)} = {701(0),- -+ , 70, ()} by maximality and injectivity

of 7. Hence,
T

f(@) = [[@@ - osc)

=1
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has o as a root, and f7 = f = f € K%[z]. Futhermore, f is separable by definition. Since
irr(a, K9) is a product of linear factors z — o;a in K], irr(a, K¢) splits in K[z]. Since a was
arbitrary, K is normal for K. Thus, K/K% is Galois.
For any a € K,
[K%): K% <n = [K:K% <n.
and, K/K¢ is finite by lemma 1.7. And by theorem 4.1 of chapter V., G(K/K®%) has order less
than n. Since |G| = |G(K/K%)| and G < G(K/K%), G(K/K%) = G. O

Lemma 4.1.8 (Lemma 1.7). Let E/k algebraic separable extension. Suppose [k(a) : k] < n for
any o € E and some n. Then, E/k finite, and [E : k] < n.

Proof. Let « be an element such that [k(a) : k] = m < n is maximal. It suffices to show
that k() = E. Otherwise, 38 € E such that 8 & k(«). From the primitive element theorem,
Iy € k(a, 8) such that k(«, 8) = k(7). However,

kCk(a) Ck(a,8) = [k(a,B): k] >m = [k(v) : k] >m
contradiction. O

Corollary 4.1.9 (Corollary 1.9). Let K/k be finite and Galois. Then, G(K/K®) = H for
H < G(K/k).

Proof. Apply Artin’s theorem on H and K. O

Proof of theorem 1.1, first part. Note that 7 : H — K™ is injection by theorem 1.1.5.3. Also,
corollary 1.9 gives bijection between Imr = 4. Now it suffices to show that Imr = %. For
arbitrary k C E C K, K/FE is Galois by theorem 1.1.5.2. And from Corollary 1.1.6.3, G(K/k) >
G(K/E). Hence let H = G(K/E), then H < G(K/k), which implies 7(H) = E, so it is
surjective. O

Theorem 4.1.10 (Theorem 1.10). Let K/k be Galois with G = G(K/k), and let k C F C
K,H = G(K/F). Then,

1. F is normal over k <— H <G

2. If F/k is normal, then G 2, G(F/k) by o — o|F is a surjective group homomorphism with
ker¢p = H. So, G(K/k)/G(K/F) = G(F/k).

Proof. Suppose F is normal over k. Pick arbitrary 7 € G. Then, TH7~! = {ror~! : 0 € H}.
Since F'/k is normal, 7(F') = F' by Normality condition 1. (Think it as embeding of K*. Nor 1
gives automorphism.) Then, for any 0 € H, a € F,

ror o) =1o(t7Ha)) =TT la =«
since 77 'a € F. Thus, To7~! € H Since ¢ was arbitrary, TH7 ! = H. Hence H < G.
Suppose H <G. Let 7 : F — K® be an embedding over k. Extend 7 € G. Since TH7 ! = H,
and H = G(K/F) as defined above,

G(K/7F) = G(fK/7F) = ¥G(K/F)7~' = G(K/F).

Hence 7F = F. So F'/k satisfy normality condition 1.

For second part, define ¢ : G — G(F/k) by ¢(0) = o|r. Then ¢ is well-defined. Hence ¢ is
surjective from theorem 2.8 of chapter V, since any automorphism in G(F/k) can be extended
to be in G(K/k), and any automorphism in G(K/k) can be restricted to be in G(F/k). Also,
kerp = H. O
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Proof of theorem 1.1, second part. If E/k is Galois, F is normal, so that G(K/E) 4 G(K/k) by
theorem 1.10 first part. Also, G(E/k) =2 G(K/k)/G(K/FE) by theorem 1.10 second part. O

Theorem 4.1.11 (Theorem 1.12). Let K/k be finite and Galois, and let F' be an extension of
k. Then, KF/F is Galois and G(KF/F) =2 G(K/K N F) where the isomorphism is given by
o 0|k.

Proof. KF/F is Galois from theorem 3.4 and distinguishness of separable extension. Consider

the map G(KF/F) 2, G(K/KNF) defined by 0 + o|k. Then, ¢ is injective, since o|x = idxnr
implies o = id|x . Surjectivity comes from below argument. Let H = im¢. Then, K > KNF.
Conversely, Va € KH Vo € G(K/KNF), ca = a since « is fixed by every element in H, which
implies o € F, so that « € KNF. Thus K ¢ KNF,so K = KNF. Hence H = G(K/KNF)
by Artin’s theorem. O

) /KFX F
kKHF/

k

Figure 18: Theorem 1.12

It is suggestive to think of the opposite sides of a parallelogram as being equal.

Corollary 4.1.12 (Corollary 1.13). Let K/k be finite, Galois and let F/k be arbitrary extension.
Then, [KF : F||[K : k]. In particular, [KF : F]=[K : k] < KNF =k.

Proof. From order of H divides order of G, with remark 1.1.4, our assertion follows. O
Theorem 4.1.13 (Theorem 1.14). Let K, /k, K3/k be Galois. (K1, Ky C k*). Then,
1. K1 Ks/k is Galois

2. The map G(K1Ka/k) % G(K1 /k)xG(Ka/k) by o = (0|, 0|x,) where ¢1(0) = 0k, 62(0) =
Ok, is a well-defined injective group homomorphism. If K1 N Ks = k, then ¢ is isomor-
phism.

For example,

In this case, G(Q(v/2,V3)/Q) = Z/27 x 7.)27

Proof. First assertion is obvious from theorem 3.4 of chapter V and distinguishness of separability.
For the second assertion, since K7, Ko are normal over k, ¢ is well-defined; namely, restriction
is also automorphism. Also, ¢ is a group homomorphism from trivial but tedious calculation. If
o € G(K1K3/k) such that 0|k, =id|k,, 0|k, = id|k,, then, 0 = idg, k,. So ¢ is injective.
Suppose K1 N Ko = k. Then, ¢1(G(K1K2/K>2)) = G(K1/K1NKy) = G(K1/k) by theorem 1.12.
Similarly, ¢2(G(K1K2/K1)) = G(K3/k). Thus, ¢ is surjective. O
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Qv V3) = Q(V2)QV3)
Q2) — Qi)
Q- NQW3)

Figure 19: Example of theorem 1.14

Corollary 4.1.14. 1. Let Ky, -+ ,K,, C k* and let Ky /k,--- , K, /k be Galois. Assume that
K 1N(Ky---K;) =k foreachi=1,--- ,n—1. Then, G(K;y--- K, /k) =2 G(K1/k) X -+ x
G(K,/k).

2. Let K/k be Galois and let G = G(K/k) = Gy x -+ x Gy. Put G; = Gy x ---{e} x--- x G,
and K; = K% fori = 1,--- n, where {e} in middle is i-th component. Then, K;/k is
Galois fori=1,--- ;n with G(K;/k) 2 G; and K;x1N(Ky - K;) =k fori=1,--- ,n—1,
and K = K, --- K,

Proof. For the first assertion, Inductively apply theorem 1.14. ~
For the second assertion, since G; <G, K;/k is Galois by theorem 1.1 and G(K;/k) = G/G; =
G; by theorem 1.1. Hence,

GK/Kip1N(K, - K;)) = GIK/Ki ) )VG(K/K, -+ K;) = Gy V(G1N---NGy) = G = G(K k)
by corollary 1.1.6. Thus, K; 1 N (K, --- K;) = k. Also,

GK/K,--K,) =G N---NG, = {e} = G(K/K).
Hence, K7 --- K,, = K. O

Remark 4.1.15. A Galois extension K/k is said to be abelian (resp. cyclic) if its Galois
group G is abelian (resp. cyclic). Also, k® denote composite of all abelian extensions of k in a
given algebraic closure . It is called mazximal abelian extension of k.

Remark 4.1.16 (Related theorems for abelian extension). 1. (Cor 1.11) Let K/k be abelian.
Then for any intermediate field E, E/k is abelian.

2. (Thm 1.17) Assume all fields are contained in some common field.

(a) K/k,L/k abelian — KL/k abelian.

(b) K/k abelian, E/k any extension, = KE/E abelian

(¢c) K/k abelian, E be intermediate field of K/k, then E/k,K/E are abelian.
Proofs come from 1.12 and 1.14.
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4.2 Examples and applications

Let f(x) € k[z] be separable, E be the splitting field of f(x) over k. Hence E/k is Galois. Let
G(E/k) be Galois group of f.

Example 4.2.1 (Example 1, quadratic extensions). Let a € k. If a is not square in k, > — a
is irreducible. Suppose chark # 2. Then, polynomial is separable because 2 # 0, and if « is root,
then k(o) is the splitting field, Galois, and cyclic.

Conversely, given an extension K/k of degree 2, 3a € k such that k(o) = K,a? = a. This
comes from by taking o € K \ k, and its order must be 2. Since sum of other root of irr(a, k)
and product of roots are in k, the other root should be conjugation of a. Hence, its square must
be in k. (Tedious calculation must be needed.)

Example 4.2.2 (Example 2, cubic extensions). Let f(z) € k[z] be separable, and let oy, -, ap
be roots of f(z). Define 6(f) = [[;—;(c — ay), A(f) = 5(f)? = = [[<j(i — a;)?; which is called

discriminant of f.

If n = 2, then, A(f) = (a1 —a2)? = (a1 + a2)? —dajay = a® — 4b where f(z) = 2% +ax+b €
We may assume G(E/k) < S,, since G(E/k) — S,, because {oay, - ,04,} = {a1, - ,an},
so that o is permutation on {aq, -, @, }. Then, for any o € G(E/k),

o(6(f) =+6(f) = cA=A = AeECE/M

. We can check that 0§ = <= o is even, by checking for transposition cases.

Assume char k # 3. Consider f(z) = 23 + az® + bx + ¢ € k[x] irreducible, separable, G be
Galois group of f. So that G < S3. Also, |G| > 3 since at least three ways of permuting roots
does always exist. Hence, G = A3 or S3. Note that

G=A3 < 06=6,VoeG < VYoeG,oiseven. < J€k

or
G=953 < 00 =-0, forsome o € G < Some o isodd. < § € K.

In particular, if a = 0, then A(f) = —4b% — 27¢2. In general,

g(@) = J(e—3) ="+ prtq

for some p,q € K. (cf. Hungerford Ch.V. Prop 4.8.) For example, f(z) = 2% — 2 € Q[z],
A(f)=—27-4 = —108 (not square). Thus, Galois group of f(x) = 53

Example 4.2.3. f(z) = 2*—2 € Q] irreducible by Eisenstein criterion. Then, {a, —a,ic, —ia}
where o = /2 are roots of f. So, let K := Q(a, ). Then, |G(K/Q)| = 8 since below diagram.

Note that Dy =< 0,7 : 0* =72 = 1,7070 = 1 > . Let 0 € G(K/Q(i)) such that o(a) = ia.
Then |o] = 4. Let 7 € G(K/Q(«)) such that 7(i) = —i. Then |7| = 2, and 7 ¢< o >. Hence
Toto(a) = @, ToTo(i) = i. Hence 7070 = idk. Thus, Dy = G(K/Q).

Example 4.2.4. Let ty,--- ,t, be indeterminates, and let k[t1,--- ,t,] C k(t1, - ,tn). Suppose
that S, acts on k[ty,--- ,t,] by of(tr, - ;tn) = f(te), s lo(n))- Let K :=k(ty,--- ,t,),G =
Sn. Then, G < AutK.
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Consider K/K%. For 1 < m < n,sp(t1, -+ ,t,) = Y i<iy<ocin <n tis ti, € K@, called
(elementary) symmetric polynomial. s, is a coefficient of (—1)™t"~™ in [}, (z — t;) € K%[z].
Hence k(sy,---,8,) C K. Also, K/k(s1, - ,s,) is normal since K is a splitting field of

[T, (z — t;) over k(s1,---,sy,). Also K/K¢ is Galois and G(K/K%) = G by Artin’s theorem
Also, from deg f = n,
[K : k(s1,-+,80)] <nl=]G]|.

Since [K : K% = |G| =n!, K¢ = k(s1, - ,5,)-

Example 4.2.5 (Example 5, C is algebraically closed. Not in notes.). First, for any a,b € R,
a + bi has square roots in R(i). (Tedious calculation.)

Next, every finite extension of R is separable. Since every polynomial in R[x] having odd
degrees must have a root in R, we should consider polynomial of order 2.

Let K be union of all possible finite extension of R(i). Then, K is algebraic separable exten-
sion, and for any element o € K, [R(i)(a) : R(2)] < 2, since every odd polynomial has a root in
R, and every even polynomial can be reduced as quadratic polynomial using quadratic formula.
Hence, using lemma 1.7, [K : R(i)] < 2, and K/R(3) is finite. Also, K/R is Galois since it is
normal and separable.

Now, it suffices to show that K = R(7). Let G = G(K/R), H < G be a 2-Sylow subgroup of
G. Let F = KH. Since |G/H| is odd, [F : R] is also odd. By the primitive element theorem,
Ja € F such that F = R(«). Then irr(a,R) has degree 1, since every odd degree polynomial has
solution on R. Thus G = H. G is a 2-group. Thus, K/R(i) is Galois, by Artin’s theorem.

Let Gy = G(K/R(1)). Since Gy is a p-group, p = 2, Gy should have a subgroup Go with index
2, if Gy is not trivial, by Sylow’s theorem. Let E = K&2. Then, [E : R(i)] = 2. However, R(i)
has no quadratic extension since it has all roots of quadratic polynomial. Hence Gy is trivial,
thus K = R(7).

Example 4.2.6 (Example 6). Let p be prime and let f(x) be irreducible in Q[x] of degree p.
Suppose f(x) has exactly two complex roots. Let G = G(f). We may assume that G < S,. Let
T € G such that T(a) = a, conjugation. Then, T = (1 2), and p||G|, since deg f = p. Then,

Jdo € Gs.t.lo| =p,
i.e., 0 15 a p-cycle. Since o, 7 € G, and they can generate S,, G = S,.

So conclusion; Let f(X) be an irreducible polynomial with rational coefficients and of degree
p prime. If f has precisely two nonreal roots in the complex numbers, then the Galois group of

fis Sp.

47



Example 4.2.7 (Example 7 - not in notes). Let f(X) € Z[X] be a polynomial with integral
coefficients, and leading coefficient 1. Let p be a prime number. Let f(X) = f(X) mod p be the
polynomial obtained by reducing the coefficients mod p. Assume that f has no multiple roots in
an algebraic closure of F},. Then there exists a bijection

~—

(a17"' 7an)’_> (OZl,"' 70277,

of the roots of f onto those of f and an embedding of the G(f) — G(f). which gives an isomor-
phism of the action of those groups on the set of Toots.

For example, f(z) = 2° —2 — 1 € Z[z]. By mod p = 5, it is irreducible. By mod 2,
f(x) = (22 + 2+ 1)(23 + 2% + 1), so that G(f) contain one 5-cycle and a product of 2-cycle and
3-cycle. Since the third power of the latter element has order 2, so G(f) = Ss.

4.3 Roots of unity

For n > 1, £ is a primitive n-th root of unity in k% if < £ >= {a : o™ = 1} C (k%)*. Consider
k(€)/k when (char k,n) = 1. Then, k(§)/k is Galois, since ™ — 1 is separable on k[z] and it is
the splitting field of 2™ — 1. When k = Q, Q(£)/Q is called as n-th cyclotomic extension of Q.

Theorem 4.3.1 (Theorem 3.1). Under the above hypothesis, [Q(§) : Q] = p(n), G(Q(£)/Q) =
(Z/nZ)*.

Proof. Given o € G := G(Q(£)/Q), o(&) = & for some i € (Z/nZ)*. Then the map G — (Z/nZ)*
by o — i(o) where i(o) = i, is well defined. The map is a group homomorphism and injective,
by checking some tedious calculation. Hence

1G] = [Q(¢) : Qlle(n).
Put f(z) =irr(£,Q). Now I claim that

To show this claim, it is enough to show that &P is a root of f(z) for each prime p fn. Suppose
not, &P is not a root of f(x). Then, 2™ — 1 = f(x)g(x) for some g(x) € Z[z], and &P is root
of g(z), since it is root of 2™ — 1. Hence ¢ is a root of g(zP). Now, since f(z) is irreducible
polynomial of &, g(2P) = f(x)h(z) for some h(x) € Z[z]. By reducing the coefficients to Z/pZ,

g(a?) = g(a)? = f(z)h(z) in Z/pZiz].
From above, we can conclude that f, g has common factor. Hence,
2" — 1= f(z)g(x) € Z/pZlz).

and z" — 1 have multiple roots in Z/pZ. However, by differentiation and (chark,n) = 1, we
know that it cannot have multiple roots, contradiction. Hence the claim holds, so [Q(§) : Q] :=

deg f(x) = ¢(n), thus G(Q(€)/Q) = (Z/nZ)". O

Corollary 4.3.2 (Corollary 3.2). If (m,n) =1, and &,, &, are primitive n, mth root of 1, then
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Figure 21: Structure of Q&)

Proof. It (m,n) = 1, then p(mn) = p(m)p(n) by homework. Also note that Q(&,)Q(&,)
Q(&mnn), since &,&, is primitive mn-th root of unity and &,,, &, both are contained in Q(&n

Consider below diagram:;

From distinguishness of finite extension, [Q(&mn) @ Q(&m)] = [Q(&n) + Q&) N Q)]

o(n) = [Q(&,) : Q. This implies Q(&r,) NQ(&,) = Q.
Definition 4.3.3. Forn > 1, let £ is primitive n-th root of unity. Then, define

@n(x) = H (x_fm)

1<m<n,(m,n)=1
be n-th cyclotomic polynomial.
Remark 4.3.4. Below facts were proven in exercise problems.

12" =1 =Ty, Pa(x). If n=p, then ®y(x) =P~ 4 - + 2+ 1.

Ty e o
D, (2P) if p|n.

3. Forn>1, &,(z) = Hdln(x”/d — 1)) where p is the Mébius function such that

2. Let p be prime. Then, ®,,(x) = {

lifd=1
p(d) =< (=" ifd>2,d=py-- p., Squarefree
0 otherwise.
Proof. 1. For all dn, ®q(z)[z™ — 1 and },,, ¢(d) = n.
2. Note that if p [n,

deg(®,(2)Ppn(z)) = p(n) + p(pn) = pp(n) = deg(Pn (7).

o

To prove this, first show that it hold for n is also prime. If this holds for n is prime, then it
holds for n = p™. Then it holds for any n, by induction. First of all, if n = ¢, some prime,

then
ol — 1 = 01 (2)Pp () Pq(7) Ppg (7).
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Also, by thinking aP as one variable,
(27)7 — 1 = 1 (a7) @, (a7).

Since ®1(xP) = 2P — 1 = &;(x)®,(x), this formula holds. Suppose it holds for n = ¢*~*
where k is some natural number. Then,

(@P)7 — 1= &y (a7)By(a?) - - Dyrs (27) D i (27).
By inductive hypothesis, ®1(x?) = ®1(2)®,(x) and ®gi (2P) = P,qi (2) Py (). And,

k—1
o (D1(2)Pp(x)) - (H (Ppqi (2) Py (m))) Ok ()P gk ().

So by removing each terms, we get the conclusion that this statement holds for n = ¢*.
Now suppose n = mg* with inductive hypothesis that it holds for any divisor of m and
holds for k, where k € N. Then, using the same argument, it holds for n.

If p|n, then n = p*m for some k, m € N, hence

deg(Ppn () = @(P"'m) = p(P*)p(m) = p* (p—1)p(m) = pe(p*)p(m) = pp(n) = deg(®, (27)).

Thus it suffices to show that ®,(2?)|®,n(x) or vice versa. Let o be arbitrary solution of
®,,(z) = 0. Then, a?™ = 1 but of # 1 if k < np. Thus, (a?)® = 1 and (a?)™ # 1 if
m < mn. So af is a primitive n-th root of unity, hence « is also solution of @, (2?). Thus,
two polynomial, having the same degreee, share the same roots. Therefore, they are the
same polynomial.

3. Note that Md&bius inversion formular is this; for some F, G : Z — X,

=> Gd) = => pu(d)F(n/d).
d|n

d|n

Now let F'(n) =log(z™ — 1), G(n) = log @, (x). Then,

F(n) =log(a" —1) = ) log 4(z) = Y _G(d)

d|n d|n
Thus,
log @,,( Zu ) log(z n/d _ 1),

from the formula. By taking exponentlal, we get desired result.

4.4 Linear independence of characters

Definition 4.4.1. Let K be a field and let G be a monoid (Unlike group, inverse may not exists).
1. A map x: G — K* is called a character of G if x(g192) = x(91)x(g2) for any g1,92 € G.
2. Let {x1, - ,Xn} be a set of characters. {x1, -+, Xn} 1 linearly independent if

Zaixi:OforsomeaieK — a1 =---a, =0.
i=1
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Example 4.4.2. Let 0 : K — K® be an embedding, G = K*. Then, o is a character of G, since
o preserves product as an embedding.

Theorem 4.4.3 (Theorem 4.1, Artin). Let X := {x1, -+ ,xn} be a set of distinct characters.
Then, X is linearly independent.

Proof. Suppose that a;x1 + -+ + apxn = 0 for some a; € K. Use induction on n. If n = 1,
clear. Assume any non-empty proper subset of X is linearly independent. Then, 3z € G such
that x1(z) # x2(2). Then, for any g € G,

arx1(zg) + -+ anxn(29)
= alXI( ) ( )+ +anxn( )Xn(g) =0
= aixi(yg )+G2X2(2 (g)+"'+an§?((j))>(n(g) =0

(
= o (1-38) )+ +an (1- 5 ) o) =0

From inductive hypothesis with the fact that 1— ifgzg # 0, ag = 0. Now, by inductive hypothesis
for X —{x2}, a1 =a3=---=a, =0. O
Corollary 4.4.4. Let ay, -+ ,a, be distinct elements in K*. If ala’f capa,; = 0 for all
k>0, then, ay =--- =a, = 0.

Proof. Put y;(k) = af. Then, x; : Z>o — K™ is character. O

4.5 The norm and trace

Let E/k be finite with r = [E : k], and let {01, -+ ,0,} be the set of distinct embeddings of E
into k®. For a € E, define

Trem(a) == [E: k] Zaz  Ne/k(a (1_[0z ) .

Remark 4.5.1. If E/k is separable, then

Trp(a ZUz ), Ni k(o HUz
If E/k is Galois then,

Trgm(e)= Y oi(a),Ngule)= [ aila)

c€G(E/K) c€G(E/K)
Theorem 4.5.2. Let E/k be finite. Then,
1. NE/k(Oz),TTE/k.(Oé) cK.

2. Ngyp : E* — K*, Trg), : E — K are group homomorphism, multiplicative and additive
resp.

3. ForkCcFCE, NE/k: = NF/kONE/F; TTE/k :TTF/kOTTE/F.
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Proof. Assume char k = p and [E : k]; = p* for some p > 0. Given o € E, o’ is separable over
k for some 0 < v < u. Thus, o” is separable over k. Then, for an embedding of F into k¢,

called o,
o <H Ui(ozpu)> = Hoi(ap”) € K.
i=1 i=1

Since [T os(a?) = (T, 03(@))” = Nigja(a), Nijila) € K.
In case of trace, if [F : k]; > 1, the statement trivially holds. Otherwise, « is separable, so that

o (Z Ji(a)> = Zm(a) =Trpm(a) € K.

If char k£ = 0, the proof is similar.

For the second part, just check homomorphism.

For the third part, let F' be intermediate field. Consider {¢1,---¢,} and {r, -, 74} are
distinct embedding of F in k% over F', of F' in k% over k respectively. (Without loss of genrality,
by copy of field argument, we can think that E C k%) Then, if o is an embedding of E in
k® over k, then o|p = 71; for some j € [g], thus Tj_lU fixes F. Hence, Tj_IO' = (; for some
i. Thus, {¢iTj}icp),jelq are all distinct embeddings of £ in k% over k. Thus, we get desired
conclusion. O

Example 4.5.3. Consider the case when E/k(a)/k is finite and k() /k is separable and E /k(c)
is inseparable, with

f(x) = ’iTT’(Oc, k) = ;[;d + adilxdfl + -4+ a1z + ag.

Since any embeddings of E into k* over k(«) fizes «,

[E:k(a)]s
NE/k(a)(a) _ O_i(a)[E:k(a)]i _ a[E:k:(a)]S[E:k(a)]i _ O[[E':k(a)].
Also,
[E:k(a)]s
Trg /e () = [E: k(a); Z oi(a) = [E: k(a)]s[E : k(a)]ia = [E : k(a)]a.
i
Thus,

NE i = Niga)/k © Ni /i) (@) = Nigay e (@ PNy = Ny /(@) RO = ((=1)%ag) (],

and
TTE/k = TTk(a)/k OTTE/k(a)(Oz) = T?“k(a)/k([E : k(a)]a) = [E : k(a)](—an,l).

4.6 Cyclic extensions
Let K/k be finite abelian, i.e., G(K/k) is a finite abelian group, such that
G(K/K) 2 Gy x - x Gy

where G; is cyclic.
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Theorem 4.6.1 (Hilbert Theorem 90). Let K/k be cyclic with G(K/k) =< o > of order n.
Then, For g € K,

Ng/w(B) =1 <= B:%forsomeaeK.

Proof. 1t f = ==,

N(8) = N(a/oa) = N(a)/N(oca) = 1.

Suppose 5 € K with N(8) = 1. Note that G(K/k) is character, by thinking G = K*. Then,
define 7 as

n—1 i—1
Ti=1+ Z H dd(B) | o' | =1+ Bo+Ba(B)o* +---+ Ba(B)o*(B)---a"2(B)o" .
i=1 §=0
By Artin’s theorem on character, 7 # 0. Hence 30 € K* such that 7(6) # 0. Also note that

n i—1
o(r)=o+y_ | | [[o7B) ]| o' | = ota(B)o*+a(B8)o*(B)o*+ -+ (B)a*(8)o*(B) - 0" (B)o™.
=2 j=1

Thus,
sota) = o)+ 3 [ [ TTo | @) ] =32 [ [TTo7®) | @) | + Nese(810m @)
i=2 j=0 i=1 j=0

Since NK/k(B) = 1,0’" = 1,

Bo(a) =0+ ]_:[oj(ﬂ) a0 | =a.
: s

Thus, = =% O

o(a)
Example 4.6.2. Let 0 € G(Q(3)/Q) be complex conjugation, and z = a + bi € Q(i). Then,
Nogiyg = 20(2) = a?+0% Ifa®>+b*> =1, then z = % = gfﬁi = zz;gz +<:22+de2") where ¢, d € Z.
Hence, (¢* —d?)? + (2cd)? = (¢* + d*)*.

Theorem 4.6.3 (Theorem 6.2). Let n > 1, char k [n. Suppose that k has a primitive nth root
of unity, say &. Then,

1. If K/k is cyclic of degree n, then Ja € K such that K = k(a) and « is a root of " — a
for some a € k.

2. Let a € k, and let o be a root of 2 — a. Then, k(a)/k is cyclic of degree d|n and a® € k.

Proof. For the first part, let G(K/k) =< o >. Then, NK/k(f’l) = (£&H)" =1, since € € k
so that ¢ is fixed by any o. Thus, by Hilberth Theorem 90, £~! = a/o(a) for some a. Hence,
o(a) = &a. Thus, o'(a) = &a for 0 < i < n, are mutually distinct. Thus, £'a are n distinct
conjugation of a over k. Therefore,

n<[k(a): k] <[K:k]l=n.
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Thus, K = k(o). And, Ng /i) = fnm{l)a" €k = a" € k. Thus, o™ € k, and since &'« are

all roots of ™ — @™ = 0, we are done.

For the second part, note that « is separable over k, since ™ — a has all distinct roots. Thus,
{€a : 0 < i < n}is the set of roots of 2 —a. By given assumption that ¢ € k, k(«) is the splitting
field of 2™ — a. Thus, k(«)/k is Galois. Let G = G(k(«)/k) and H = {c: c € k,c™ = 1} C k*.
Call H be a group of cyclic of order n. (Check that group axiom holds.) Given o € G, o(a) = &'«
for some i. Write ¢! = &,. Then, the map G — H by o — &, is an injective group homomorphism.
Hence, G is cyclic of degree d|n for some d. O

Theorem 4.6.4 (Hilbert Theorem 90 Additive form). Let K/k be cyclic with G(K/k) =< o >
of order n. For p € K,
Trg;p(B) =0 <= B=a—o(a)

for some a € K.

Proof. From right to left, obvious. Assume that T /,(8) = 0. Then, by linear independence of
characters, 30 € K such that Trg/,(6) # 0. Put

n—1 [i—1

1 i igy| — 1 2 n=2( a1y -1
= ; jE:jOow) 'O)| = oy [P7O + (B H+0(3)o*(O) +-- (B+0(B) +---+ 0" (B)o" T (O)]
Note that

1 n—1 .
B= T (; Bo (9))
Thus,

i—1

5+0(a):TT1(0) ; Zo’j(ﬁ) a9 | = a.

=0

Theorem 4.6.5 (Theorem 6.4, Artin-Schreier). Let k be a field of characteristic p. Then,

1. If K/k cyclic of degree p, then da € K such that K = k(«) and « is a root of 2P —x — a
for some a € k.

2. For a € k, the polynomial x? — x — a satisfies are of the following.

(a) P — x — a has a root in k. In this case, it splits in kx].
(b) 2P —x —a is irreducible. In this case, if a is a root of x? —x — a, then k(a)/k is cyclic
of degree p.

Proof. 1. Assume that G(K/k) =< o >. Since Trg,(—1) = p- (—1) = 0 since char k = p,
—1=a—o(a) for some « € K by Hilbert Theorem 90’s additive form. Thus, o(a) = a+1,
o'(a) = a+ifor 0 <i < p. Hence K = k(). Also, o(a? —a) = (a+1)P —(a+1) = o? —a.
Hence a =a?f —a € k.

2. Let o be aroot of 2P —x—a in k*. Then, {a+i: 0 <14 < p} is the set of roots of 2 —z —a.
If a € k, then a + 4 € k for all i. Suppose that o & k, (i.e., k has no roots in 2 — x — a)
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Figure 22: Solvability in subextensions implies that of all extensions

and f(z) is reducible. Then, f(z) = g(x)h(z) for some g(x),h(z) € klz] of degree > 1.
Note that

(x —a—1) € K[z]

\
O
i
—

Thus, g is a product over certain i. If r = deg g, then the coefficient of "1 term of g is
sum of terms —(a+1), so that it can be expressed as —ra+ j for some integer j. But r £ 0
implies ra € k, which implies « € k, contradiction. Hence f(x) is irreducible. Note that «
is separable and k(«) is the splitting field of 2P — x — a. Hence k(«)/k is cyclic of degree p.

O

4.7 Solvable and Radical extensions

Definition 4.7.1. Let E/k be finite and separable. E/k is solvable if IL/k, finite and Galois
such that L O E and G(L/k) is solvable.

Remark 4.7.2. One may replace L with the smallest Galois extension K of k containing F,
with G(K/k) is solvable. In this case, G(L/k) - G(K/k) surjective.

Remark and definition is equivalent; if remark holds, then definition holds by taking L = K. If
definition holds, G(L/K) is normal for G(L/k), and G(K/k) = G(L/k)/G(L/K) is also solvable
by property of solvability.

Proposition 4.7.3 (Proposition 7.1). Solvable extensions form a distinguished class.

Proof. Suppose E/k be solvable. Then, 3K/k Galois, with solvable G(K/k). Thus, KF/F
is Galois, since lifting of Galois extension is also Galois. Hence G(KF/F) = G(K/K N F) <
G(K/k) by theorem 1.12 in chpater VI. Hence G(K F/F) is solvable, because subgroup of solvable
group is solvable, so that G(KF/F) is solvable. Since EF C KF, G(EF/F) is solvable.

For the second part, let k ¢ FF C E C K. If E/k is solvable, then F/k, E/F are solvable
by just taking K and match them with definition. Now suppose E/F, F/k are solvable. (See
figure 5.) Since F'/k is solvable, 3K /k is Galois, solvable. Thus, 3L/K is Galois, solvable. Let
o be an embedding of L into k%. Then, ¢(K) = K. So, cL/K is also Galois and solvable. Put
M =o01L---0,L where o1, , 0y, are all distinct embeddings of L into k*. Then, M/k is Galois
by thoerem 1.14. And since K/k is Galois, M/K is also Galois, by Artin’s theorem. Note that

55



1. GIM/K) c G(61L/K) x ---G(c,L/K) by corollary 1.16,
2. G(M/k)/G(M/K) = G(K/k) by Artin’s theorem.

Thus, G(M/K) is solvable, since quotient group is solvable if and only if its original group is
solvable. Thus E/k is solvable.
O

Definition 4.7.4. Let F/k be finite and separable. F/k is called solvable by radicals if 3 a
sequence of finite extensions k = Eg C By C -+ E,;, = E such that E D F and E;y, is obtained
from E; by adjoining one of the followings:

1. a root of unity
2. a root of x™ — a where a € E; and chark [n.
3. a root of P — x — a where a € E; if char k = p.

Remark 4.7.5. The extensions which are solvable by radicals form a distinguished class. (Subex-
tensions are obvious. For lifting, adjoin lifting field for each E;.)

Remark 4.7.6. Let char k /n, and let £ be a primitive nth root of unity. Then, k(§)/k is
abelian Galois and [k(§) : k]|e(n).

Proof. First comes from that ¢ : G(k(§)/k) — (Z/Zy,)* by £ — a, mod n where a, is integer
such that £% = g () is injective homomorphism. Let 0,7 € G(k(€)/k). Then,

(07)(§) = o(7(§)) = o (£ = £,

Also, since (07)(§) = £%7, a,r = aya, mod n. Hence ¢ is a homomorphism. Also, if o € kery,
then a, = 1, 80 a, fix &, hence it fixes all element of k(¢). Thus, o = id € G(k(£)/k). Thus it is
injective.

The second is comes from [(Z/Z,)*| = p(n). O

Theorem 4.7.7. Let E/k be finite separable. E/k is solvable by radicals <= E/k is solvable.
Proof. Assume that E/k is solvable. Then, 3K /k is Galois, solvable such that K D E. Put

m= I «

q|[K:k]

q is prime

g#char k
Let £ be a primitive mth root of unity, and F' = k(&). Note that K F/F is Galois and solvable, by
distinguishness of solvability and lifting property of Galois extensions. Thus, there exists tower
of groups such that

{e}=Gy<Gi1<---<G,=G(KF/F)

such that G; <G;4+1 and G,41/G; is cyclic of prime order, by solvbaility of G(KF/F'). Then, we
have
F=(KF)% < (KF)%-1 <...<(KF)% =KF

where (K F)% /(K F)%+1 are type 2 or 3 by theorem 6.2. and 6.4. Thus, K F/F is solvable by
radicals. Since F/k is also solvable by radical by definition, K F/k is solvable by radicals. Hence
E/k is solvable by radicals.
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Conversely, assume that E/k is solvable by radicals. Let ¢ be an embedding of E into k%.
Then, o E/k is solvable by radicals, by putting tower of fields for E on . Let K be the smallest
Galois extension of K containing E. So K = 01 E - - -0, E for all distinct embeddings o, ¢ € [n].
Then, K/k is also solvable by radicals, since it is compositum of all solvable by radical extensions.

Put
m= H q.

q|[K:K]

q is prime
g#char k

Let & be a primitive mth root of unity, and F' = k(£). Then, F/k is solvable since it is abelian
by above remark, and the fact that all abelian group is solvable. Note that K F/F is solvable by
radical since it is lifting from K/k, which is solvable by radical. And K F/F is Galois since K/k
is Galois. Thus, we have some tower of fields such that

F=LyCcLiC---Cly

where L; D KF and L;y1/L; is of type 1,2, or 3. If L;11/L; is of type 1, then it is abelian
extension, by remark. If L;;1/L; is of type 2 or 3, then it is cyclic extension, by theorem 6.2
or 6.4. Thus, Gal(L;/F) is solvable. Since Gal(KF/F) is homomorphic image of Gal(L;/F),
Gal(KF/F) is solvable. O

Remark 4.7.8. Let f(x) € Q[z] be an irreducible polynomial, and G = Gal(f).

1. Ifdeg f = 3 or 4, then G < S3 or Sy, with tower {e} < A3 < Sy or {e} < Vi < Ay < Sy
where Vy is klein four group. Thus, the splitting field of f is solvable by radical.

2. If deg f =5, then G < S5. It would be solvable or not. For example, If Gal(f) = Ss, then
it is not solvable by radicals.

For example, f(x) = 225 — 5z* + 5. Then, f’(z) = 10x3(x — 2). It has two nonreal roots.

Example 4.7.9. If A = {t;}7, is a set of indeterminates, B = {s;}7_, is a set of elementary
symmetric polynomials from A, and E = k(A), K = k(B) for some field k. Then, G(E/k) = S,,
as shown above.

Example 4.7.10. Let f(z) = z* —42® +2 = (2% — (2 — V2))(2® — (2 +V2)). Then, z =
V2 = V2, 5V2+ V2. Let K = k(f). Then,K = Q(v/2—/?2), since V/2— vV2V2+ 2 =
V2 € Q(V2) € Q(V2 —V?2). Thus, K/Q(v/2)/k, therefore, |Gal(f)| = 4, which implies Gal(f) =
Zs.

5 Semisimplicity

See also §14. Representations of one Endomorphism.

5.1 Matrices and linear maps over non-commutative rings

Remark 5.1.1. We use below facts.

Let K be a ring.
Mat,(K) = {(aij)i<ij<n : aij € K}

is a ring under usual +, - of matrices.
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1. Let K be a division ring, i.e., Ya € K \ {0} is a unit. Then, every K-module has a basis
and any two bases have the same cardinality.

2. Let Rbearingand E=E1&---®E,, F=F &---&F, be R-module. (E; F; are
submodules.) Let ¢ : E — F be a R-linear map. For1<i<m,1<j<n, p;; =mopoL;
where v; : E; — E, m; : F — F; is a R-linear map from E; to F;. So ¢;; € Homp(Ej;, F}).

Sketch of proof. First one is the same as linear algebra; we do not use commutativity. Second
one is related to proposition 2.1.3 below. See Lang’s book, p.642~643. O

Define M(p) := (¢ij)i<i<m,1<j<n, G Matric.

Definition 5.1.2. Let k be commutative ring, E be module. Then, Endy(E) denotes the ring
of k-endomorphisms of E, i.e., the ring of k-linear maps of E into itself.

——~
Proposition 5.1.3. Let E be an R-module. Denote E) = E@®---®FE for n > 1. Then,
Endr(E™) = Mat,(K) as a ring, where K = Endg(E).

Proof. Note that ¢;; € Endr(FE), and ¢ — M () is a ring isomorphism, since every ¢ has unique
M (¢) and for every matrix in Mat, (K), this gives Endr(E™). O

Proposition 5.1.4 (Proposition 1.1, Schur’s Lemma). Let E, F' be simple R-modules, i.e., there
are no proper nontrivial submodules in E, F. If f € Homg(E, F)\{0}, then f is an isomorphism.
Thus, Endgr(FE) is a division ring.

Proof. {0} # Imf C F. Hence Imf = F, since F has no proper nontrivial submodule. Also,
kerf C Esince f # 0. Hence ker f = {0}, since F has no proper nontrivial submodule. Thus, f is
isomorphism. By letting F' = F, we can conclude that any nonzero f € Homg(E, E) = Endg(E)
is unit. O

Remark 5.1.5. Let R be a k-algebra, with k a field, and let E be a simple R-module. Then, since
R is simple as an R-module, the Schur’s lemma holds for E. In particular, if k is algebraically
closed, then Endg(E) = k.

Proof. Take o,7 € Endr(FE). Then, if 0,7 has the same eigenvalue A, then ¢ = Al = 7; this
is from the fact that ker(c — AI), ker(t — AI) is nontrivial in E, so that ker(c — \) = E =
ker(r — AI). Thus we have the map Endg(E) — k* = k by 0 — \,, where A, is eigenvalue of
o, since A\, comes from any algebraic elements of k. Also any endomorphism can be represented
by AI, so the map is bijective. Since ring homomorphism holds trivially, it is isomorphism as a
ring. (So as a field.) O

Proposition 5.1.6 (Proposition 1.2). Let E be an R-module. Suppose E = Ef"l) @@ E")
where E; is simple, E; 2 E; fori# j, n; > 1. Then, {E1,--- ,E.} and ni,--- ,n, are uniquely
determined, and Endr(E) = Mat,, (K1) X -+ x Mat,, (K,) as rings where K; = Endg(E;).
Proof. Suppose that E = Fl(m1 Q- D Fs(mS) where F; is simple, F; 2 Fj for i # j, m; > 1.
Consider E; 4 B I F;. This map is R-linear since each ¢, m; is R-linear. Thus, by Schur’s
lemma,

Yy, 3, s.t., B RENY I F;; is isomorphism,

otherwise this map is always zero, which means ¢; is zero, contradiction. Hence,

{Elv"' 7E7‘}C{F17"' >Fs}~
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Mutadis mutandi,
{E17"' aET} D {Fl7"' ,Fs}~

Hence two set is equal, and by renumbering, we can say that F; = F; for all i, and r = s.

Now the above isomorphism induces the fact that E"" — E — F/™ is isomorphism. Thus,
it suffices to show that if £(") — E() isomorphism exists for simple module F, then n = m.
If such isomorphism exists, Endg(E™) = Endr(E™)), and by proposition 2.1.3, Mat, (K) =
Mat,,(K) as K-module, for K = Endgr(FE). This implies m = n, so done. O

So such decomposition is unique up to renumbering. Hence, when E admits a (finite) direct
sum decomposition of simple submodules, the number of times that a simple module of a given
isomorphism class occurs in a decomposition will be called the multiplicity of the simple module
(or of the isomorphism class of the simple module). Furthermore, sum of all multiplicity is called
length of E.

5.2 Conditions defining semisimplicity
Let R be a ring and let ' be an R-module.
Theorem 5.2.1. The following are equivalent.

1. E is a sum of simple submodules, i.e., E =>_._; E;, where E;s are simple submodules.

i€l
2. E is a direct sum of simple submodules, i.e., E = @;c1 E;, where E;s are simple submodules.
3. For any submodule F of E, 3 submodule F' such that E = F @& F'.

Definition 5.2.2. FE is called semisimple if one of 1,2,3 is satisfied.

1 = 2. Let J be a maximal subset of I such that the sum ) ._; E; is a direct sum. For any

i€, E;NY ;B =0or E;. Butif it is zero, then E; + (ZZ:].EJ E;) is also direct sum, so
J is not maximal, contradiction. Hence every FE; is contained in ZjGJ E; = ®jesE;. Thus,
Eg@jeJEj,SOE:EB]‘EJEj. O]

2 = 3. Let F C E. Let J' be a maximal subset of J such that F' + (®,c,-E;) is a direct
sum. Let F' = @,cpE;. If such J' doesn’t exists, F' = E, contradiction. If FF& F' C E, then,
Jz € E\ F', so 3i € J such that x € E;, so F + E; & F' is also direct sum. However, this
contradicts maximality of J'. Thus, £ = F & F". O

8 = 1. First, claim that every submodule of F contains a simple submodule. Let v € FE,
v # 0. Then, Rv is a principal R-module (and a left submodule of E ), and 7 : R — Rv by
r +— rv is R-linear homomorphism. Thus, kerw is a left ideal in R. Let M be a maximal left
ideal in R, containing kerw, using Zorn’s lemma. By the first isomorphism theorem of the left
R-module,

M/kerm — R/kerm = Ru.

Thus, image of this map, Mv, is a maximal submodule of Rv, by the isomorphism above. Thus,
E = Mv@® M’ by the hypothesis 3. Then,

Rv=Mv& (M' N Rv),

since for any w € Rv, 3lw; € Mv,wy € M’ where w = wi + wy from EF = Mv & M’, so
wi; € Mv C Rv, and wy € M’ N Rv since ws = w — wy € Rv from wy € Rv. Thus,

M'NRv= Rv/Mv = (R/kerr)/(M/kerm) = R/M.
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Thus, M’ N Rv is simple, as desired. So the claim that every submodule of E contains a simple
submodule holds.

Now, let Ey be the sum of all simple submodules of E. If Ey # E, then E = FEy @ E{, with
E{, # 0, by the hypothesis 3. Thus, E{) have also simple submodule by above claim, say F. Hence
Ey @ F is also sum of simple submodules of E, contradicting the maximality of Ej. O

Proposition 5.2.3 (Proposition 2.2). Let E be semisimple R-module. A factor module of E
and a submodule of E are semisimple.

Proof. Let E =3, ; E;, E; be simple. Let F' be factor module or submodule of E. In any case,
if : E — F, which is R-linear. Hence, Imf = > ._; f(E;). And schur’s lemma assures that
f(E;) is zero module or simple module. O

Note 5.2.4. Let E' C E be submodule, and E is semisimple. Then,
E=FEaoFE" 5 F,
and 7 is R-linear. From the proposition 2.2, E' is also semisimple.
Remark 5.2.5. The same is true for module over k-algebra.
Note that left R-submodule of R is called left ideal.

Example 5.2.6. 1. Let k be a field. Think about E;; in R = Mat, (k). Then, let (E;;) be an
left ideal in R. Thus, it is R-submodule. Also, (E;j) = (Ey ;) since Ey;E;; = Ey; € (Eyj).
Thus,

R =@ (E).

Note that (E;;) is simple; if it has nontrivial submodule, then it contains rE;; = (6 7 6)
for some r € R, with r1 is its i-th column, so by taking r' = %“_Eij, we can see that
r'rE;; = E;; in the submodule. So it is nonproper. Hence R is semisimple R-module.
Since each (E;j) 2 k™, REEk"®--- k™.

klz]) < (z = 1)(x —2) >Z klz]/ <x—1> xklz]/ <x—2>,

by chinese remainder theorem. And since k[z]/ < z —1 >, k[z]/ < x —2 > are simple,
with generated by f(xz) = f(1) and f(x) = f(2) respectively, klz]/ < (x —1)(z —2) > is
semistmple.

Remark 5.2.7 (Counterexample). k[z]/ < (z — 1)?(x — 2) > is counter ezample. It is not
semisimple.

Proof. k[z]/ < (z—1)%(x —2) > k[x]/ < (x —1)? > xk[z]/ < (x —2) > from decomposition of
PID. Note that R/ < p™ > is indecomposable for p, prime, with R, PID. Since (x — 1) is prime
k[z]/ < (x — 1)% > is indecomposable, and if n > 2, it has proper submodule < p* > / < p™ >.
Thus, k[z]/ < (z — 1)? > is not simple.

To show that R/ < p" > is indecomposable, let M be ideal on R/ < p" >. Then, 7~ 1(M) C R
is ideal, so 7~ 1(M) =< a > for some a € R from PID. Since < a > contain < p" >, am = p"
for some m € R, so a|p™. Since PID is UFD, a = p' for some [ < n. Thus, M =< p! > / < p" >.
If it is decomposable, < p'* > / < p" > @ < p'2 > / < p™ >, for some 1 < I; < Iy < [. However,
since p2 e<plt > <pht >/ <pt>n<p >/ <p? >=<plt >/ < p" >, s0 it cannot be
direct sum, contradiction. Thus, only n = 0 or 1 makes the submodule simple. O
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5.3 The density theorem

Let R be a ring, E be semisimple R-module. Let f € R’ = Endr(FE) C End(E). We call R’
as commutant of R. Then, F can be viewed as a R’-module with the product operation of
R’ on F being given by (f,z) — f(z) for f € R, x € E. Also note that each r € R induces
R’-homomorphism A, : E — E by A\.(z) = ra.

Similarly, take R” = Endg/(E) C End(FE). Then it is called bicommutant. We get a ring
homomorphism

AMR—R'\r )\
The density theorem states that the image of this homomorphism is quite big.

Example 5.3.1. For some field k, Mat, (k) is a vector space, as well as a ring, since it has
multiplication. Let {x;}’_, be generator of Mat,(k). Questions; what is minimal i? Answer;
i = 2. Take E11 and a permutation matrix.

Definition 5.3.2. Let E be R-module. Then, E is called faithful of r € R such that rE = {0}
implies r = 0.

Faithfulness implies that R — R” C End(E) by r — A, is injective.

Lemma 5.3.3. Let E be semisimple R-module. For f € R", x € E, f(x) = azx. for some
o€ R.

Proof. Since E is semisimple, £ = Rx & E’ with some submodule E’. Let 7 : E — Rz be
projection. Then,
Rx — FE 5 Rx

is R-linear. Hence,
mo f(Rx) = f(r(Rx)) = f(Rx) = f(Rx) = Rux.

where first equality comes from 7= € R’, and regard Rz as a submodule of R'-module F, with
R/-scalar 7. Since f € R” implies f is R’-linear, such equality holds.
Hence f(x) € Rz, so da € R such that f(z) = ax, as desired. O

Theorem 5.3.4 (Theorem 3.2, Jacobson Density Theorem). Let E be semisimple R-module.
Forxzy, - ,x, € E, f € R, o € R such that f(x;) = ax; for 1 <i < n. In particular, if E is
a finitely generated R'-module, then X\ : R — R by r — A, is surjective.

Proof. Assume that F is a simple module. Then, E(™ is also R-module, and define R =
Endp(E™) = Mat,(R').

Consider f(n) : EM — g™ by (yh"' >yn) = (f(y1)7"' >f(yn)) Then, f(n) € RZ =
Endp: (E™). And, its matrix form is

f Y1
f Yn

So it is diagonal as a matrix form. Hence f(") commutes with any element in Endg, (EM).
Thus, using the lemma 3.1, 3o € R such that (ayy, - ,ayn) = (f(y1), -, f(yn)).

Now FE is not simple, suppose that E' is equal to a finite direct sum of simple submodules F;
(non-isomorphic), with multiplicities n;. Then

f(n)(yh ’yn) =

E=al_ E".
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The matrices representing the ring of endomorphisms splits according to blocks corresponding
to the non-isomorphic simple components in our direct sum decomposition. So we can apply the
same argument above on those part.

If F is finitely generated R’ module, then f € R is determined by its value on a finite number
of elements of E, thus R — R" is surjective. O

Note 5.3.5. "Noetherian” module is related to commutative ring, and used for algebraic geom-
etry. On the other hand, Linear algebra is related to semisimple rings and modules.

Corollary 5.3.6 (Corollary 3.3, Burnside’s theorem). Let k-algebraically closed, E be k-vector
space with finite dimension, R C Endy(E) be subalgebra. If E is a simple R-module, then R’ = k
and R = Endg/(E) = Endy(E).

Proof. First of all, we want to show R’ = k. Since E is simple R-module, by Schur’s lemma,
R’ = Endg(F) is division ring. And it contain k in its center, since R’ D {cI,, : c € k} 2 k as a
field. Let o € R’. Then, k(«a) is also a field. Since R’ is also finite dimensional k-space (think
that space of linear transformation for finite dimensional vector space is also finite dimensional
vector space.), so is k(). Since k is algebraically closed, k(a) = k. Since « is arbitrary, R’ = k.

Thus, F is finitely generated R’-module since F is finite dimensional k-vector space, i.e.,
k = R'-module.

Thus By Jacobson density theorem, A : R — R” is surjective. Also, this map is injective
since Ao (z) =0 iff a = 0. Also, R C Endi(E) = Endg (E) = R” since R’ = k. Thus, R C R".
With A, bijective map, R = R”.

O

Remark 5.3.7 (Proof of &k =2 Endg(E), where E is simple.). Let f € Endg(E). 3\, an
eigenvalue of f over k. Then, f(v) = Av for some v # 0. So consider f — N € R'. Then,
0#ker(f—MN) CE = ker(f—X)=E. So f= M. Hence take map Endr(E) — k by
f— A, we get desired result.

Example 5.3.8. Let k be a field. Mat, (k) = Endi(k™) from above argument. Then let R be
the subalgebra generated by X = Z;:ll E;i+1 and Y = X*. Note that k™ is a simple R-module.
(If it has proper submodule, this contain e; for some i. Using X, we can get all e; with j < 1,
and using Y, we can get all e; with j > i. So k™ is simple R-module.)

Thus, Burnside theorem tells that R = Endy (k™) = Mat, (k).

Remark 5.3.9. In general, if R is k-algebra, with k is algebraically closed field, and E is simple
R-module with dimiE < oo, with simple faithful p : R — Endy(E), by definition of R-module,
then p(R) = Endi(E).

Why? 1f R := p(R), E can be viewed as R-module. Since E is simple R-module, it is also simple
R-module. Now apply Burnside’s theorem. O

Theorem 5.3.10 (Theorem 3.7). Let k be field, R be k-algebra. Let Vi,---,V,, be simple R-
modules such that dim;V; < oo for all i € [n]. Also assume that V; 22 V; for i # j. Then,
Vi € [n], Je; € R such that

1. e; acts on V; as an identity

2. ¢;V; =0 for j #1.
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Proof. Let E =V ®---® V,,m : E — V;, projection. Then, Vf € R' = Endg(E), f(V;) C
Vi, Vi € [n], from simplicity and nonisomorphic condition on V;s. Thus, m; o f = f o m;, Vi € [n].
Thus, m € R”.

Using jacobson theorem, Je; such that A(e;) = m;. Thus e;s satisfy all desired conditions. [

Corollary 5.3.11 (Corollary 3.8, Bourbaki). Let k be a field, chk = 0, R be a k-algebra. Let
E,F be semisimple R-modules, with dimpyE < oo,dimpF < oo. If tr(ag) = tr(ap) for all
o € R, where ag,ap are the corresponding k-endomorphism on E F resp., then E = F as
R-module.

Proof. Let V be simple R-module. Then,
E=VMgE F=v®™gF

for some m,n > 0, and F’, E' submodules such that F/ NV = {0} = E' NV. By theorem 3.7,
Je, € R such that e, acts on V' as identity and e,W = 0 for any simple R-module W % V.
Then,

tr(eg) =m - dimV,tr(ep) = n - dimgV.
(To see this, think it as a matrices; every nondiagonal term is zero, and every diagonal term which
is not related to V is zero, and the number of diagonal term related to V' should be n - dimyV,

and the value on the position is 1. Similar to case of F.) Thus, n = m. Since V was arbitrary,
E = F as R-module. O

5.4 Semisimple rings

Definition 5.4.1. Let R be a ring. Define R be semisimple if it is semisimple as a left R-module
with respect to multiplication.

Proposition 5.4.2 (Proposition 4.1). Let R be semisimple ring. Then, every R-module is
semisimple.

Proof. Let M be R-module. Then, 3F =3, Rm, and a surjective map F' — M as natural
map. Since F' is direct sum of Rm for any m € M, and Rm = R as a R-module, and R is
semisimple. Hence M, a homomorphic image of F' is semisimple by theorem 2.2. O

Remark 5.4.3. Let L C R be a R-submodule. Then, L is a left ideal of R. (Converse is also
true.) Call L is stmple if it is a simple as a R-submodule. So,

R: semisimple — R = Z L.

L:simplele ftideal

Example 5.4.4. Let R = Mat,(k), where k is a field. Then, by above argument, R =
n

—~—
K" @ - @K™, and since k™ is (semi)simple as shown above, R is also semisimple.

Example 5.4.5. Let G be a finite group. Then, let k[G] be the group ring of G over k. By
definition of k[G], it is k-vector space with basis G and with multiplication defined distributively
using the given multiplication of G. So, k|G] = ®g4ecakvy, with vy - vy, = vgp for any g,h € G.
Since scalar multiplication and associative law also hold, we can also view this as a k-algebra.

Now let X be a set such that G acts on X. Then, we can also think G acts on V = @ cx kv,
by g — ¢(g) € End(V), where ¢(g) is a map x — gx. Like this, take map p : k[|G] — End(V)
by > cqug = > cqpy. By checking p is faithful by thinking End(V) = Mat|q(K), we can think
it as a k[G]-module. By below theorem, k[G] is semisimple.
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Theorem 5.4.6 (Mashcke, proof is not given). Let char k [|G|. Then, k[G] is semisimple. In
particular, if char k =0, k[G] is always semisimple.

For example of example, let C,, =< 0 >= {e,0,--- ,0" "'} a cyclic group of order n. Then,
let
ClCh] =Cv. ®Cuy @ P Ctyn1 =ClHCo @ ---®Co™ L.

Note that last sum is just notational abuse. Then, using distributive law with the fact that
o'tI = gt mod o™ = 1, we can define multiplication well. Thus, we can show that

ClCy) =Clz]/ <™ —1>.
This is because ™ — 1 = Z;S (x — &F), where ¢ is primitive n-th root of unity and think C,, as
a group of primitive n-th root of unity, and think about natural map from x to £. Then, since
C is algebraically closed field, we can use the chinese remainder theorem to show that

ClCn]=Clz]/ <a™—1>=Clz]/ <z —1>xCz]/ <z —€(>x---xClz]/ <z — "1 >,

For fixed i € [n—1]U{0}, C[z]/ < x — &' >= k but #-1 = £, Hence, each factor is isomorphic to
k, which is 1-dimensional vector space, so it is simple left ideal. However, they are nonisomorphic
to each other as a left R-module, since they have Z - 1 with different order.

Example 5.4.7.
C[C x Cy] 2 C[C,,] ® C[C]

To show this, use the map from vector spaces, and check that it is actually algebra isomorphism.
In general, if G is a finite abelian group, then C[G| is tensor product of group rings from abelian
groups which are component of G by the fundamental theorem of finitely generated abelian group.

Lemma 5.4.8 (Lemma 4.2). Let R be semisimple, L be simple left ideal, E be simple R-module.
If L% FE, then LE = 0.

Proof. Note that LE is also submodule of E since R(LE) C (RL)E C RE = E. Since F is
simple module, so LE = 0 or E. If LE = E, then take y € E such that Ly # 0. Then, Ly is
nontrivial submodule contained in £ so Ly = E. Then, the map

7T:L—-Ly=FEbyr—ry

is surjective, so nonzero. From Schur’s lemma, it is isomorphism. However, it contradicts L % F,
given condition. so LE = 0. O

Now let R be semisimple, and let £ = {L;};c; be the set of simple left ideals such that
L; % Lj; for i # j. Then, for all 7 € I,

R; = Z L,

L=L; LCR
since there are more left ideals which are isomorphic to L;.
Remark 5.4.9. Now we can check followings;
1. RiR; =0 for i # j. This comes from the lemma directly.

2. RiR; = R; since R; C RR; = R;R; C R;., the first inclusion because R contains a unit
element, and the last because R; is a left ideal. From this conclusion, we can say that R;
is also a right ideal, so it is a two sided ideal.
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8. R=7),c; R, since R is semisimple so that it is sum of simple left ideals, which is equiv-
alent as simple left R-submodule.

4-1e€R=3 R, s0l= Zj’:l ei; for somei; € I and s € N. By renumbering we can say
that 1=737_, e;.
5. Thus, eje; =0 fori# j, since R;R; =0 fori # j.
6. Also, €2 = e; since Yz € R,
r=x-1=uxe; + -+ zey,
and take x = ¢;.
7. Also note that R; = Re; = ¢; R, since e; is identity in R; by remark 6.

From remark 6, R = R; ® --- ® R, a direct sum. And since e; is unit element of R;, so it is
equal as a ring. By remark 4, it is in fact that R is a direct product of R;. This argument is
capped on theorem 4.3. below.

Theorem 5.4.10 (Theorem 4.3). There exists only finitely many simple left ideals up to iso-
morphism. In Lang’s textbook, above remark and conclusions are summarized in this part.

Theorem 5.4.11 (Theorem 4.4). Let R be semisimple, E be nontrivial R-module. Then,
E=®_RE=08_ie;F
where e, = ©p/cp =L, L;i is from theorem 4.3’s argument.

Proof. For any simple submodule E’ in FE, L;E’ = E’ for some i, since RE' = E’. Thus, by
lemma 4.2, E' = L;. Hence E is direct sum of F; = ¢;E, and note that R;F = ¢; E. O]

Corollary 5.4.12 (Corollary 4.5). Fuvery simple R-module is isomorphic to L; for some i =
1,---,s, where s, L; are from argument for theorem 4.5.

Definition 5.4.13. A ring is simple if it is semisimple and has only one simple left ideals up
to isomorphism.

Corollary 5.4.14 (Corollary 4.6). A simple ring has ezactly one simple module, up to isomor-
phism.

Proposition 5.4.15 (Proposition 4.7). Let k be a field, E be a finite dimensional k-vector space,
R be a sub-algebra of Endy(E). Then, R is semisimple <= FE is semisimple R-module.

Proof. If R is semisimple, then E is semisimple by proposition 4.1. So does E® 4™ F gince it
can be also represented by direct sum of simple modules.

Let {y1, - Ym} be k-basis of F and consider ¢ : Endy(E) — EW™E) by v (ryy, -, rym)-
Then,¢ is a Endy(F)-module isomorphism, thus not only Endy(E) linear but also R-linear. If
(ry1,- -+ ,7ym) = 0, then r makes every basis be zero, so r is trivial. Hence ¢ is injective. Also,
from linear algebra argument that there exists unique linear transformation from basis to any
set of vectors having the same cardinality with basis, surjectivity holds. Thus,

R C Endy,(E) = E(dmE),

Therefore, R is isomorphic to some submodule of semisimple module. Hence it is semisimple by
proposition 2.2.
O
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(Thanks Hobin Jung for giving detailed proof of below example.)

Example 5.4.16. Let k =R, E = R3. Let R be a subalgebra of Mat3z(R) = Endg(E) generated
by permutation matrices. Note that permutation matrices in Mats(R) are

1 00\ /100 /010 /010 /001 /001
01 0),l00 1|,{1t 0oo0],[oo0 1],{1 0 of,[0o1 0],
oo 1/ \o 10/ \o o1 100/ \o1o/ \1t oo

and the set have actually group structure, isomorphic to S3. Thus, R = R[S3]; this can be showed
by just checking that algebra structure gives group ring structure.

Now I claim that R is semisimple. It is enough to show that E is semisimple R-module
by proposition 4.7. For example, take Vi = R(1,1,1) and Vo = {(z,y,2) : x+y+ 2 = 0}, a
hyperplane orthogonal to Vi. Then, trivially, E = Vi + V,. We know that Vi is simple since it is
1-dimension.

I claim that Vs is simple. Let M be nontrivial submodule of Vo. Then, 0 # (I,m,—l—m) € M.
From action of (1,3) and (2,3) in Ss, we can get (=l —m,m,l) and (I, =l — m,m) in M. By
addition, we can get (—m,2m,—m) and (21,—1,—1). By scalar multiplication as R-module, we
can get (—1,2,—1) and (2,—1,—1). From this, we can get

1 1
(1,-1,0) = =(2,—1,-1) + =(1,-2, 1),
3 3
and,
(0,1 1)—1(2 1,-1) g(1 2,1)
9 3 - 3 ) ) 3 ) ) :
Since {(1,—1,0),(0,1,—1)} forms a basis of Vo, M is nonproper. Thus, Vs is also simple. Since
VinVy={0}, E=V;, & V,, hence E is semisimple by definition.
5.5 Simple rings
Let R be semisimple ring. Then R = @;c;R; for some R;. We just call R; as simple ring.

Lemma 5.5.1. Let R be a ring. Then, R°P? = Endgr(R), a set of homomorphism of R into
itself, viewd as R-module, isomorphic as a ring where R°PP is (R°PP 4 -) with a -b = ba for
a,be R.

Proof. Define RP? 25 Endgp(R) by a + po : & — za. Then,
pas(3) = 2+ B) = (3B)a = pa 0 pa(2).

Since kerp = {0}, p is one-to-one. Also, for some f € Endgr(R) such that « = f(1), for any
r € R,
f(x) = f(x-1) =2f(1) = 2a = pa(x)

where second equality comes from R-linearity of f. Since a was arbitrary, p is onto. So p is
isomorphism, as desired. O

Theorem 5.5.2 (Theorem 5.2). Let R be simple. Then,
1. R is a finite direct sum of simple left ideals.

2. Suppose L, M be simple left ideals of R. Then, Ja € R such that La = M.
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3. There is no proper nonzero two-sided ideal of R.

Proof. 1. 1 € R = ®jerL; from semisimplicity of R. Thus, 1 = z;, + --- + x;, for some
i1, ,1s € . Thus, R C @j_, L;;. Hence,

R = R . 1 = @j-:lRiL'ij = @;ZlLi]..

2. From definition of semisimplicity, R = L @ L’ for some given L and some other submodule
L'. Then, 30 : L — M C R, which is R-linear isomorphism, from the lemma 4.2’s
argument. Then,

RS LS MCR

is R-linear map. So, o0 o € Endg(R). By the lemma 5.1, 0 0 ¢ = p, for some a € R.
Thus, py|r is nonzero homomorphism from L to M, thus isomorphism by Schur’s lemma.

3. Let I be nonzero two sided ideal. Then we can think it as a left R-module. Thus, [ is a
sum of left ideals. However, by second assertion, IR = R since for any simple left ideals,
La = M so that LR is sum of all simple left ideals in R, thus LR = R. Hence take any L,
left ideal in R. Then,

R=LR=R=1IR=1

Thus I = R
O

Theorem 5.5.3 (Theorem 5.4, Rieffel). Let R be simple ring, and L be a nonzero left ideal.

Then, A : R = R", where R', R" are commutant and bicommutant.

Proof. Note that ker) is two sided ideal, from linearity of A. Hence, kerA = {0}, by theorem
5.2. Hence it is injective. Now consider LR, a nonzero twosided ideal. Then from theorem 5.2,
LR =R.

For f e R", z,y € L,

foXa(y) = flxy) = fopy(x) =pyo flz)=f(x) y=As(a)(v)

where third equality comes from the fact that p € R’ and regard z is in a submodule of R'-module
L, we argued in Lemma 3.1. Thus, f oA, = Ay(,). Hence, A(L) is a left ideal of R”, since above
equation shows R”A(L) = A(L). Finally,

R" = R'AR) = R'\(LR) = R'N(L)X(R) = M(L)X(R) = AM(LR) = \(R).
So, A is an isomorphism. O

Remark 5.5.4. If L is simple, then R = Endp(L) & Mat,(D), where n = dimpL = n,
D = Endgr(L) is division ring by Schur’s lemma.

Theorem 5.5.5 (Theorem 5.5). Let D be division ring. E be D-module with dimpE < co. Let
R = Endp(E). Then,

1. R is simple.
2. E is simple R-module.
3. D = Endg(E).
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Proof. For the first assertion, let B = {vy,--- ,v,} be basis of E over D. Then, 7 : R — Mat, D

——
by f — M(f) is ring isomorphism and £ = D" = D @ --- @ D as an R-module, by argument in
proposition 2.1.3. of this note. We have D" is simple Mat,,(D)-module, as shown in proposition
2.1.3. Hence Mat,(D) =2 D" @ ---@® D™ as a Mat,(D)-module. Thus, R is simple, and E = D"
with 7 is simple R-module.

For the second assertion, recall that R = D’. And F is finitely generated R-module, so
finitely generated D’-module. Also, from conclusion 2, F is (semi)simple R-module. Hence by
jacobson density theorem, A : D — D" by r — ), is surjective. Since this map is also injective
from definition, it is isomorphism. So, D = D" = Endg(FE). O

Remark 5.5.6. 1.
R is semisimple <= R = Endp,(Ey) X -+- X Endp_(FEs)
for some division rings D; and D;-module F;, i € [s].

2. 1 is true when R is a k-algebra for a field k. This is from chapter 9 of Hungerford.

5.6 The Jacobson radical

Definition 5.6.1. Let R be a ring. Denote Rad(R) = ﬂM_mammalM. Call it jacobson radical.
“left ideal

Theorem 5.6.2 (Theorem 6.1). Let N = Rad(R). Then,
1. NE =0 for all simple left R-module.

2. N is two sided ideal. N contain any two sided nilpotent ideals of R.
8. If R is finite dimensional k-algebra, then

R is semisimple <= N = 0.

4. if R is finite dimensional k-algebra, then N is nilpotent, i.e., N” = 0 for some positive
integer r.

Proof. 1. Tt suffices to show that N = B where B = {a € R : a.S = 0 for any simple R-module

S}. To show N D B, suppose a € B. Take a maximal ideal of R, then R/M is simple
R-module, thus a(R/M)=0. Thus,a-1+ M =0+ M,soa € M CN.
To show N C B, suppose not; then B C N. Then there exists simple module S such that
NS # 0. Pick s € S such that Ns # 0. However, Ns is a submodule of S, and since S is
simple, Ns = S. Thus, zs = s for some x € N. So (z —1)s = 0. Thus, (x — 1) € Ann(s),
annihilator of s, and since Ann(s) # R (otherwise, NS = 0.) Ann(s) C M C R for some
maximal ideal M. Hence (1 —x) € N, so (1 —z) 4+ 2 =1 € N, contradiction.

2. Note that B is two sided ideal; for any r € R, a € B, arS = a(rS) = 0,raS = r(aS) =
r0 = 0.
Let J be an arbitrary two sided nilpotent ideal. It suffices to show that J is contained in
every maximal left ideal M of R. Note that for any maximal left ideal M, M + J is also a
left ideal of R containing M. If M + J = M,J C M. Otherwise, M +J =R,sol=x+y
for 2 € M,y € J. From nilpotentness of J, 4* = 0 for some k € N. Thus,
A+y+y’+ " He=0+y+y’++y"Hl-y=1-y* =1

Thus, 1 € M, contradiction. Thus, J C M.
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3. Suppose R is semisimple. Then, R is direct sum of simple left R-modules, say R = >, ; Li,
L; is simple left ideal. However, by conclusion 1, NL; = 0 for all ¢ € I. Thus, NR = 0.
Since 1 € R, this implies N = 0.

Suppose N = 0. Let M; be a maximal left ideal of R. If M; # 0, since N = 0, dM>, a
maximal left ideal of R such that M; N My # M. Since N = 0, 9M3, a maximal left ideal
of R such that My N MsN Mz # My N M. From this, we have tower of left ideals such that

My DM iNMy,DM NMsNMzD---.

Note that the related inclusion is proper inclusion. Since R is finite dimensional k-algebra,
so M must be a subalgebra with some nonzero degree, so this sequence must be finite. Hence
we can find some finitely many maximal left ideals, say M, -+ My, with MyN---NM; =0
for some k € N. Now, take R-module homomorphism

R— @ R/M; by v = (v + My, ,x+ My).

The kernel is My N---N M, = 0. So the map is injective. Since R/M; is simple, because of
maximality of M, for any 4, the RHS is semisimple. Since R can be viewed as submodule
of this module by image of the map, R is semisimple by proposition 2.2.

4. Since R is finite k-algebra, the tower
NDON2ON*D...

must be stabilized, i.e., Ir € N such that N* = N for any k > r. Suppose that N is not
nilpotent, i.e., N™ # 0. Then, let A = {L, left ideal : N"L # 0}. Then, since R € A, so
A is nonempty. Since R is finite dimensional k-algebra, there exists some left ideal with
minimal dimension. Say it L. Then, since N"L # 0, 3l € L such that N"l # 0. Thus,
N"l is also a left ideal, and N"N"] = N"l # 0. Hence N"l € A. Since L has the minimal
dimension and N"l € L, : L = N"[. Since L is also finitely generated, and generated by
x since L = N"x, N"L = L. Thus, using Nakayama lemma, L = 0, contradiction. Hence,
N" =0.

O

Example 5.6.3. u := {A: A is upper triangular n x n matrices } C Mat,(k).Then N := {B : B

is strictly upper triangular matrices }. And, u/N =2k x --- x k.

Remark 5.6.4. R is a ring, R’ :== R/Rad(R). Then, Rad(R') = 0. If R is finite dimensional
k-algebra, then R’ is semisimple.

Lemma 5.6.5 (Nakayama Lemma, module version). Let R be any ring and M a finitely gener-
ated module. Let N = Rad(R). If NM = M, then M = 0.

Proof. Let wq,- -+ ,w, be generator of M. Then, since NM = M,
W, = a1wy + -+ + a,wy
for some ai,---a, € N. Thus,
(1 —ay)wy = agwg + « - + apwny.

If (1 —aq) is not a unit in R, then (1 — ay) is contained in some maximal ideal I. Since
N clI a € 1,50 (1 —a1)+a =1 € I, contradiction. Thus, (1 — a;) is unit. Hence,

wy = (13721)1024-' - ﬁwn, contradiction. Thus, M = 0 is only possibility for NM = M. O
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