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1 Basics - Fundamental Coefficients

1.1 Basic Number and Rules

Let N = {0, 1, 2, · · · }, [n] := {1, 2, · · · , n}.

• [̇Rule of sum]: If A ∩B = ∅, then
|A ∪B| = |A|+ |B|.

• [̇Rule of product]: If A,B are finite set, then

|A×B| = |A| · |B|.

Application: A task has k steps. There are ai ∈ N ways to do i-th step. Then, # of ways to do the
task is a1 · · · ak =

∏k
i=1 ai.

• [̇Rule of bijection]: If ∃ a bijection from A onto B, then

|A| = |B|.

For example,

# of subsets of [n] = 2n

# of words of length n = 2n

We can see this by encoding the information of subset of [n] using word of length n. For example,

{2, 3, 4} 7→ 01110000.

• [̇Rule of double counting]: If 2 formulas count the same set then they are equal. This leads to how we
can provide a combinatorial proof. For example,

C(n, k) =

(
n

k

)
= # of subsets of [n] of size k.

Since complementary of size k subset is a subset of n − k subset and this relationship is bijective, we
can say that (

n

k

)
=

(
n

n− k

)
without calculation. Another example is Pascal’s identity, which is,(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

To see this, # of choosing k element from the n element is the same as fixing one element, and choosing
k − 1 elements from the other n− 1 elements (so that we can choose k elements containing such fixed
one) plus choosing k elements from the other n−1 elements (so that we can choose k elements without
fixed one.) In summary, the number of choosing k elements from n elements is the number of choosing k
elements containing some special element plus the number of choosing k elements without such special
one.

2



• [̇Rule of subtraction]:
|A| = |U | − |Ā|.

This leads to the principle of inclusion and exclusion, i.e.,

|A ∪B| = |A|+ |B| − |A ∩B|.

Definition 1.1.1 (Permutation). A k-permutation is an ordered list of k-distinct elements from n, where
0 ≤ k ≤ n. The # of k-permutation is denoted as P (n, k), and

P (n, k) =
n!

(n− k)!
= n(n− 1) · · · (n− k + 1).

Definition 1.1.2 (Falling and Rising factorial). We call

nk = n(n− 1) · · · (n− k + 1)

as k-falling factorial of n. Similarly, we call

nk = n(n+ 1) · · · (n+ k − 1)

as k-rising factorial of n.

Thus, (
n

k

)
=
P (n, k)

k!
=
nk

k!

Actually k-falling (resp. rising) factorial can be generalized to R; for any x ∈ R,

xk := x(x− 1) · · · (x− k + 1)

xk := x(x+ 1) · · · (x+ k − 1)

Then we have identity that

(−x)k = (−x)(−x− 1) · · · (−x− k + 1) = (−1)k(x)(x+ 1) · · · (x+ k − 1) = (−1)kxk

(−x)k = (−x)(−x+ 1) · · · (−x+ k − 1) = (−1)k(x)(x− 1) · · · (x− k + 1) = (−1)kxk.

Now we can define that (
x

k

)
:=

xk

k!
.

Actually,
(−1
n

)
,
( 1

2
n

)
occurs often in combinatorics. From this definition, for any c ∈ R, k ∈ N,(

−c
k

)
=

(−c)(−c− 1) · · · (−c− k + 1)

k!
=

(−1)kc(c+ 1) · · · (c+ k − 1)

k!
= (−1)k

(
c+ k − 1

k

)
.

Similarly,(
c

k

)
=
c(c− 1) · · · (c− k + 1)

k!
=

(−1)k(−c)(−c+ 1) · · · (−c+ k − 1)

k!
= (−1)k

(−c+ k − 1)(−c+ k − 2) · · · (c)
k!

= (−1)k
(
k − c− 1

k

)
.

Theorem 1.1.3 (Reciprocity Law).(
−c
k

)
= (−1)k

(
c+ k − 1

k

)
and

(
c

k

)
= (−1)k

(
k − c− 1

k

)
.
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From this, we know that (
−1

n

)
= (−1)n

(
1 + n− 1

n

)
= (−1)n( 1

2

n

)
= (−1)n

(
n− 3

2

n

)
(
− 1

2

n

)
= (−1)n

(
n− 1

2

n

)

1.2 Basic identities

Theorem 1.2.1 (Binomial Theorem).

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Maybe induction can be used for proving this, but we can see other ways.

Proof 1. For polynomial identities, verify it for sufficiently many values. In practices, we can deal with
infinitely many values, such as P. Now let X,Y be 2 disjoint sets with |X| = x, |Y | = y. Our goal is to count
# of words of length n with alphabet set X ∪ Y .

• Counting 1 : It is just (x+ y)n.

• Counting 2 : In a words on X ∪ Y of length n, let

k = # of letters in X, 0 ≤ k ≤ n.

For a fixed k, # of words of length n with k letters in X and (n− k) letters in Y is(
n

k

)
xkyn−k

since first of all, we should choose k positions from the words for letters from X, and the number of
choosing such positions is

(
n
k

)
. From each chosen positions, there are x possible letters from X, and for

each unchosen position, y possible letters. Thus, the number of possible words with chosen k position
is xkyn−k.

Now summing over k, we get

# of words =

n∑
k=0

(
n

k

)
xkyn−k.

Remark 1.2.2. By convention, we define ∑
∅

= 0,
∏
∅

= 1.

Theorem 1.2.3 (Newton Binomial Theorem).

(1 + x)α =

∞∑
k=0

(
α

k

)
xk.

for |x| < 1.

4



Useful cases of Newton’s binomial theorem is

1

1− x
= 1 + x+ x2 + · · · .

Actually,

(1− x)−1 =
∑
k≥0

−1

k
(−x)k =

∑
k≥0

(−1)k
(
k

k

)
(−x)k =

∑
k≥0

xk.

You can find useful identity here. Similarly,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k

We can prove first one using combinatorial structure. If we assume x = |X| and y = |Y | for some set X,Y ,
and assume n < x + y, then we can count the number of length n words from characterset X ∪ Y without
repeating character in two ways;

• Counting 1: Just (x+ y)n.

• Counting 2: In a words on X ∪ Y of length n, let

k = # of letters in X, 0 ≤ k ≤ n.

For a fixed k, # of words of length n with k letters in X and (n− k) letters in Y is(
n

k

)
xkyn−k

since first of all, we should choose k positions of characters of fixed word for letters from X, and the
number of choosing such positions is

(
n
k

)
. For k chosen positions, there are xk possible ways to have

letters from X, and for n − k unchosen positions, there are yk possible ways to have letters from Y .
Thus, the number of possible words for fixed k chosen position is xkyn−k.

Now summing over k, we get

# of words =
n∑
k=0

(
n

k

)
xkyn−k.

For the second one, think about it...

Definition 1.2.4 (Polynomial sequence of binomial type). A polynomial sequence of binomial type is
a sequence of polynomials {pn(x)}∞n=0 such that deg(pn(x)) = n and for any n ∈ N,

pn(x+ y) =

n∑
k=0

(
n

k

)
pk(x)pn−k(x).

The second condition is called binomial type.

Theorem 1.2.5 (Hockey Stick Identity).

n∑
i=0

(
i

k

)
=

(
n+ 1

k + 1

)
.

In this case, we define
(
i
k

)
= 0 if i < k.
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Proof. Choosing k + 1 elements from n+ 1 elements,

• Counting 1:
(
n+1
k+1

)
.

• Counting 2: We can divide case where a special person is chosen or not; i.e,(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.

Now
(
n
k+1

)
also can be represented by a second special person is chosen or not, i.e.,(

n+ 1

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 1

k + 1

)
.

By repeating this, we get(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+ · · ·+

(
k + 1

k

)
+

(
k + 1

k + 1

)
.

and since
(
k+1
k+1

)
=
(
k
k

)
, we are done.

Theorem 1.2.6 (Vandermonde Identity).

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
.

or ∑
a+b=n

(
x

a

)(
y

b

)
=

(
x+ y

n

)
.

Proof. Let X,Y be sets such that |X| = x, |Y | = y. Then how many ways of choosing n elements from
X ∪ Y ?

• Counting 1:
(
x+y
n

)
.

• Counting 2: Let k be a number of chosen elements from X. Then, k = 0, 1, · · · , n. Then, for each
fixed k, there are

(
x
k

)(
y

n−k
)

ways to choosing k elements from X and choosing n− k elements from Y .
By summing these for all possible k, we get

n∑
k=0

(
x

k

)(
y

n− k

)
.

Theorem 1.2.7 (Multinomial Theorem).

(x1 + · · ·+ xk)n =
∑(

n

a1, · · · , ak

)
xa11 · · ·x

ak
k

where
(

n
a1,··· ,ak

)
:= n!

a1!···ak! .

Note that (
n

a

)
=

(
n

a, n− a

)
.
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1.3 Lattice Paths and Stirling number

1.
(
m+n
n

)
→ # of lattice paths from 0 = (0, 0) to (m,n). To see this, note that each lattice path consisting

of m-step in East and n-step in North. Thus, a path corresponds to a sequence of {E,N} with exactly
m E-step and n N -step.

2.
(
n
k

)
: Choose k items for a set of n without repetition.

3.
((
n
k

))
=
(
n+k−1

k

)
: Choose k items for a set of n allowing repetition. Why? assume the items are

S1, · · · , Sn. A k-multiset is (x1, ·, sxn) where xi ∈ N is the multiplicity of Si and x1 + · · · + xn = k.
Hence, ((

n

k

))
= # of solutions of xi ∈ N such that x1 + · · ·+ xn = k.

And to see this, use bar-ball trick. For example, if n = 4, k = 10, then

3 + 2 + 5 + 0 = 10 ↔ ooo|oo|ooooo|

a sequence of 10 balls and 3 bars. Hence, xi denotes a horizontal steps and + denote a vertical steps.
So we can denote it as a lattice path from (0, 0) to (10, 3) by

3

2

5

(10,3)

(0,0)

4. Set Partition:

Definition 1.3.1. Given S 6= ∅, |S| = n, a partition of S is a collection of subsets of S, say
{B1, · · · , Bk} such that S = ∪ki=1Bi and Bi 6= ∅, Bi ∩Bj = ∅ if i 6= j. Each Bi is called a block.

We use notation as
Π(S) = { partitions of S},Πn = Π([n]).

Definition 1.3.2 (Stirling number of the 2nd kind). Let Sn,k be the Stirling number of the 2nd
kind, denoting the number of partitions of [n] with k blocks.

For example, Sn,0 = 0, S0,0 = 1 by convention.

Sn,1 = 1, Sn,n = 1.Sn,n−1 =

(
n

2

)
, Sn,2 =

2n − 2

2

To see Sn,2, note that each nonempty proper subset A gives natural partition {A,Ac}. To see Sn,n−1
note that only one block should have 2 elements and the other blocks are singletons.

Definition 1.3.3 (Bell number).

B(n) :=
∑
k

Sn,k = # partitions of [n].

Properties:
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(a) Sn,k = kSn−1,k + Sn−1,k−1. To see this, consider the blocks containing n. Then,

• It is in singleton, and in this case, Sn−1,k−1 cases occur.

• It is not a singleton, then choosing k partitions, and assign n to one of given partitions. This
gives k · Sn−1,k ways.

(b)

B(n+ 1) =

n∑
i=0

(
n

i

)
B(i) (n ≥ 0).

Proof. Consider the size of blocks containing elements n + 1. If size is i + 1, then there are
(
n
i

)
ways to making a block with size i + 1, and the number of partitioning remaining elements are
B(i).

1.4 Short introduction to Generating function and Exponential Generating
Function

To describe sequence f0, f1, f2, · · · ,

(a) Closed formular: For example,

2n, n2 + n, or
1√
5

((
1 +
√

5

2

)n
+

(
1−
√

5

2

)n)
.

(b) Summation: For example,
n∑
i=1

(
n

i

)
.

To use this, you need usefulness of this notation.

(c) Recurrence Relation: For example,

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

(d) Generating function: We can represent the sequence as a formal power series, by∑
i≥0

fix
i or

∑
i≥0

fi
xi

i!
.

These are from [Hai10], not dealt on the lecture. Let structure be a mathmatical object constructed on
each [n], n ∈ N0. Let f(n) be the number of structures on each [n]. Then, we can define

Definition 1.4.1 (Exponential Generating Function).

F (x) =
∑
n

f(n)
xn

n!
.

Example 1.4.2 (Trivial structures).

• If a structure is just “being a set,” then

f(n) = 1,∀n ∈ N0 =⇒ F (x) = ex.

• Structure = “1-element set” then

f(n) =

{
1 n = 1

0 n 6= 1
=⇒ F (x) = x.
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• Structure = “empty set” then

f(n) =

{
1 n = 0

0 n 6= 0
=⇒ F (x) = 1.

• Structure = “non-empty set” then

f(n) =

{
1 n 6= 0

0 n = 0
=⇒ F (x) = ex − 1.

• Structure = “even size set” then

f(n) =

{
1 n ≡ 0 mod 2

0 n ≡ 1 mod 2
=⇒ F (x) =

∑
n≥0

x2n

(2n)!
= cosh(x)

• Structure = “odd size set” then

f(n) =

{
0 n ≡ 0 mod 2

1 n ≡ 1 mod 2
=⇒ F (x) =

∑
n≥0

x2n+1

(2n+ 1)!
= sinh(x)

Now we have addition and multiplication principles for exponential generating function. Suppose f -
structure be a structure which gives {f(n)}. Then,

Principle 1.4.3 (Addition Principle for exponential generating functions). Suppose that the set of f -
structures on each set is the disjoint union of the set of g-structures and the set of h-structures. Then

F (x) = G(x) +H(x)

where F (x) =
∑
n f(n)x

n

n! , G(x) =
∑
n g(n)x

n

n! , H(x) =
∑
n h(n)x

n

n!

Example 1.4.4. If we can consider f = “trivial” structure, g = “empty” structure, h = “non-empty”
structure. Every set is either empty or non-empty, and these possibilities are mutually exclusive, so we have

F (x) = G(x) +H(x) = 1 + (ex − 1) = ex.

To establish multiplication principle, we need a definition for multiplicative structure.

Definition 1.4.5. Let g and h denote two types of structures on finite sets. A g × h structure on a set A
consists of

1. an ordered partition of A into disjoint subsets A = A1 ∪A2

2. a g-structure on A1,

3. a h-structure on A2,

4. where the structures in A1, A2 are chosen independently.

Principle 1.4.6 (Multiplication principle for exponential generating functions). If G(x) and H(x) are
the exponential generating functions for g-structures and h-structures, respectively, then the exponential
generating function for g × h structures is

F (x) = G(x)H(x).

In general, let g1 × g2 × · · · gr structure on A consists of an ordered partition of A into r disjoint subsets
A = A1 ∪ · · · ∪ Ar, and independently chosen gi structures on each subset Ai. Then, by following induction
on g1 × (g2 × · · · gr) and so on, the generating function of g1 × g2 × · · · gr structure is

G(x) = G1(x)G2(x) · · ·Gr(x).
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[Hai10] gives a proof for this principle.

Example 1.4.7.

• To counting subsets of [n], note that choosing a subset is choosing a partition of [n] by 2, and imposing
“being a set” structure for both. Thus by the multiplication principle,

F (x) = ex · ex = e2x =
∑
n

2n
xn

n!

and f(n) = 2n is consistent with our prior knowledge.

• To counting a non-empty subsets, this is equivalent to choosing a partition of [n] by 2 and imposing
“non-empty set” structure on first one and trivial structure for second one (since we only count in case
of chosen subset is nonempty; if complement of that set is empty, this implies chosen set is nonproper,
thus nonempty.) Hence,

F (x) = (ex − 1) · ex = e2x − ex
∑
n

(2n − 1)
xn

n!
.

Also, f(n) = 2n − 1 is consistent with our prior knowledge.

• To counting number of functions from [n] to [k], note that this is equivalent of partition of [n] by k
(allowing empty set) and giving a “being a set” structure. Hence,

F (x) = (ex)k = ekx =
∑
n

kn
xn

n!
.

Also, f(n) = kn is consistent with our prior knowledge.

• To counting number of “surjective” functions from [n] to [k], we should give a “nonempty set” structure
for every partition of [n] by k. This gives

F (x) = (ex − 1)k.

And note that number of surjective functions can be counted by making k nonempty partition of [n]
and assign each element of [k], which can be represented by f(n) = k!Sn,k way. Thus,

F (x) =
∑
n≥k

k!Sn,k
xn

n!

Therefore, ∑
n≥k

Sn,k
xn

n!
=

(ex − 1)k

k!
.

There is another way of seeing above equation. Let

Fk(x) :=
∑
n≥k

Sn,k
xn

n!
.

Then,

kFk(x)+Fk−1(x) =
∑
n≥k

(kSn,k+Sn,k−1)
xn

n!
+Sk−1,k−1

xk−1

(k − 1)!
= F ′k(x)−Sk,k

xk−1

(k − 1)!
+Sk−1,k−1

xk−1

(k − 1)!
= F ′k(x)

since Sk,k = 1 = Sk−1,k−1. Now note that for k = 0, 1 Fk(x) = (ex−1)k
k! holds. So, by inductive

hypothesis, we can replace Fk−1(x) with (ex−1)k−1

(k−1)! . Then,

F ′k(x) = kFk(x) +
(ex − 1)k−1

(k − 1)!
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Let y(x) = Fk(x), l(x) = (ex−1)k−1

(k−1)! . Then,

y′ − ky = l(x).

By multiplying e−kx both sides, we get

y′e−kx + y(−ke−kx) =
e−kx(ex − 1)k−1

(k − 1)!

By product rule,

ye−kx =

∫
e−kx(ex − 1)k−1

(k − 1)!
dx =

e−kx(ex − 1)k

k
+ C

So

y =
(ex − 1)k

k
+ Cekx.

and from the inductive hypothesis C = 0, done.

Remark 1.4.8 (Small contradiction). Note that the exercise 2.23 gives an equation of Stirling number
of first kind, not the second kind.

• For the Bell number, note that B(n) is just consisting of all possible (nonempty) partitions of n, which
implies just summing all possible partitions of n by k with respect to k. Hence, by addition principle,∑

n

B(n)
xn

n!
=
∑
k

∑
n≥k

Sn,k
xn

n!
=
∑
k

(ex − 1)k

k!
= e(e

x−1)k .

See another identities about Sn,k.

5. ∑
n≥k

Sn,kx
n =

xk

(1− x)(1− 2x) · · · (1− kx)
.

To see this [Aig07][p.63-64], let Sk(x) =
∑
n≥k Sn,kx

n. Then,

Sk−1(x) + kSk(x) =
∑
n

(Sn,k−1 + kSn,k)xn =
∑
n

Sn+1,kx
n = xSk(x).

Thus

Sk(x) =
xSk−1(x)

1− kx
Since S0(x) = 1 by definition, we get

Sk(x) =
xk

(1− x)(1− 2x) · · · (1− kx)

by induction.

6. xn =
∑
k≥1 Sn,kx

k.

Proof. Assume x ∈ P. Then

xn = # of maps from [n] to X where |X| = x

=
∑
K⊆X

# of surjections from [n] to K

And if we fix K, then the number of surjection from [n] to K is Sn,tt!. Thus,

xn =

n∑
t=1

∑
|K|=t,K⊆X

Sn,tt! =

n∑
t=1

(
x

t

)
Sn,tt! =

n∑
t=1

Sn,tx
t =

∑
k≥1

Sn,tx
k

OEIS: Online encyclopedia of interger sequence.
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Note that table of Sn,k is
n\k 0 1 2 3 4 5 6
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
· · ·

You can see that it gives infinite dimensional matrix. In general, if S is infinite dimensional matrix then

an
∑
k

Sn,kbk ⇐⇒ bn
∑
k

(S−1)n,kak

where an, bn are two integer sequences. From this inversion, we can get

xn
n∑
i=1

(S−1)n,kx
k

Also,

(1 + x)n =
∑
k

(
n

k

)
xk =⇒ xn

∑
(−1)n−k

(
n

k

)
(1 + x)k

from inversion. You can check it by expanding ((1 + x)− 1))n.

7.

k!Sn,k =

k∑
i=0

(−1)k−i
(
k

i

)
in.

Proof. LHS is the number of surjections from [n] to [k]. Let A,B a set with |A| = a, |B| = b. Then,
number of functions f : A→ B is ba. The number of one-to-one functions is ba. To get the number of
surjections, let U be set of all functions from [n] to [k]. Take

Ai = {f ∈ U : i 6∈ Im(f)}

Then the number of surjections is ∣∣A1 ∪ · · ·Ak
∣∣ =

∣∣∣∣∣
k⋂
i=1

Ai

∣∣∣∣∣
By inclusion-exclusin formular,∣∣∣∣∣

k⋂
i=1

Ai

∣∣∣∣∣ = |U | −
∑
|Ai|+

∑
i<j

|Ai ∩Aj |+ · · ·+ (−1)k|A1 ∩ · · · ∩Ak|.

Since
|Ai| = (k − 1)n, |Ai ∩Aj | = (k − 2)n, · · · , |Ai1 ∩ · · ·Air |(k − r)n,

for r = 1, 2, · · · , k, we get
k∑
i=0

(−1)k−i
(
k

i

)
in

for RHS.
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1.5 Permutation Statistics

There are several notation to denote permuations.

1.
π = a1 · · · an,

rearrangement of 1,2, · · · , n.

2. Bijection: for example,

f =

(
1 2 3
3 1 2

)
or g =

(
1 2 3
2 1 3

)
.

The first row denotes domain, and second row denotes range. So,

f ◦ g =

1 2 3
2 1 3
1 3 2

 =

(
1 2 3
1 3 2

)
.

3. Picture: for f ,

f :

1 2

3

Note that permutation is union of cycles.

4. Notation for cycles. If

π =
1 2 3 4 5 6 7 8
3 5 1 4 6 8 2 7

,

then we can rewrite it as
π = (13)(25687)

And standard is to write down each cycle starting with the largest entry, and list cycles in increasing
order according to their initial entries. So, in this case,

π = (31)(4)(87256)

Now let φ be a map from standard cycle notation to word of length n consisting of characters in [n]
by removing all parentheses. It is bijection, since from any length n-word, we can recover it by find all
left-to-right maximals and make a parenthese. For example, from 31487256 we can find it by

(31487256→ (31)(487256)→ (31)(4)(87256→ (31)(4)(87256).

Theorem 1.5.1. # of permutation of length n with k cycles = # of permutation of length n with k left-to-
right maximum

Definition 1.5.2 (Stirling number of first kind). The Stirling number of first kind is defined as

Sn,k := # of permutations of [n] with k cycles.

Set S0,0 = 1,S0,k = 0 if k ≥ 1, and Sn,0 = 0. Another easy example is

Sn,1 = (n− 1)!,Sn,n = 1,Sn,n−1 =

(
n

i

)
.

Lemma 1.5.3.
Sn,k = Sn−1,k−1 + (n− 1)Sn−1,k.

Proof. Note that we can divides case of permutation of [n] with k cycles by

13



• A case that n is in the singleton cycle, which can be generated by Sn−1,k−1 way.

• n is not in the singleton cycle, which can be generated by (n− 1)Sn−1,k way. (Making a k cycle and
assingn n, which gives (n− 1) possibility, since assigining n in the word of length n− 1 seems to give
us n possibility, but the first position, which is the most left and a position between first cycle and
second cycle gives the same cycle, if we think that assigned n is contained in the cycle which its left
element contained.

Now see generating function. Fix n. Then,

Theorem 1.5.4. ∑
k≥0

Sn,kx
k = xn = x(x+ 1) · · · (x+ n− 1).

Proof.
∑
π∈Sn x

# cycle(π)

If π = (13)(25)(476), denoting cycle by x1 = (13), x2 = (25), x3 = (476) for example, then let X be a
finite set with x elements in X. Then, Label each cycle by an element in X (allowing repeatition). Then,

LHS = # X-labeled permutations

Alternatively, we can construct X-labeled permutation by following step. Introduce entries one by one.

1. Integer 1: It has to appear a cycle, make a cycle (1) and label it in x ways.

2. Integer 2: either start a new cycle (x ways) or join the existing cycle (1 ways) so x+ 1 ways occur.

3. Integer 3: either start a new cycle (x ways) or join the existing cycle (2 ways)

4. and so on.

From this,
RHS = xn.

Also note that

xn = (−1)n(−x)n =

n∑
k=0

(−1)n−kSn,kx
k.

From this equation, some authors define Stirling number of first kind with sign (−1)n−kSn,k and call Sn,k

as signless Stirling number of first kind . From the equation

xn =

n∑
k=0

Sn,kx
k,

We know that {Sn,k} and {(−1)n−kSn,k} is inverse to each other. (Sn,k is the Stirling number of second
kind.)

1.5.1 Inversion

Let a1 · · · an ∈ Sn, where Sn is the symmetric group of n.

Definition 1.5.5 (Inversion). An inversion is a pair (i, j) ∈ [n]× [n] such that i < j and ai > aj from the
given permutation a1 · · · an.

14



For example, if π = 35146827, then inversions are (13) or 31, and (17) or 32. First (13) denotes it by
position, and second 31 denotes it by its entries. Now we use entry notation for this. So, the example has

31, 32, 51, 54, 52, 42, 62, 82, 87

as inversions. Define

INV (π) = { set of all inversions of π}, inv(π) = |INV (π)|.

Usually, capital letter denotes set and lower case letters denotes cardinality of the set. So, for above π,
inv(π) = 9. Actually you can check it by counting how many crossings occur on below function graph;

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Given π, let
ai := |{j : j > i and j appears before i}|.

Then,
ak = |{ inversion with a form ∗k in π}|

for any k. From this know that
n∑
i=1

ai = inv(π) (1)

since each set inducing ai gives a partition of INV (π). Note that

an = 0, 0 ≤ an−1 ≤ 1, · · · , 0 ≤ an−k ≤ k for j ∈ [n].

Definition 1.5.6 (Inversion Table). Inversion Table is a map Sn→ An−1×· · ·×A0 where Ai = [i]∪{0},
defined by π → (a1, · · · , an).

Claim 1.5.7. Inversion table is a bijection.

Note that if we know that domain and codomain has the same (finite) cardinality, then one-to-one or
onto implies bijection. And in this case, we know

|Sn| = n! = |An−1| · · · |A0| = |An−1 × · · · ×A0|.

Proof. It suffices to show that there exists a inverse map. Note that given (a1, · · · , an), we can reconstruct
π by inserting integer from i = n to 1. For each i, insert i so that there are ai terms in front of i.

15



For example, suppose (1, 5, 2, 0, 4, 2, 0, 1, 0)

a9 = 0 =⇒ 9

a8 = 1 =⇒ 98 1 numeric should be in front of 8

a7 = 0 =⇒ 798 0 numeric should be in front of 7

a6 = 2 =⇒ 7968 2 numeric should be in front of 6

a5 = 4 =⇒ 79685 4 numeric should be in front of 5

a4 = 0 =⇒ 479685 0 numeric should be in front of 4

a3 = 2 =⇒ 4739685 2 numeric should be in front of 3

a2 = 5 =⇒ 47396285 5 numeric should be in front of 2

a1 = 1 =⇒ 417396285 1 numeric should be in front of 1

Say f : Sn →
∏0
i=n−1Ai be inversion table and g be process of making sequence to permutation. Then, we

claim f ◦ g = id∏0
i=n−1 Ai

. Note that g is one-to-one since it is deterministic process. And f is onto since

any element in codomain can be rechable by f using construction of g. Done.

Generating function is

∑
π∈Sn

qinv(π) =
∑

(a1,··· ,an)∈An−1×···×A0

q
∑
ai =

∑
(a1,··· ,an)∈An−1×···×A0

qa1 · · · qan =

 ∑
a1∈An−1

qa1

 · · ·( ∑
an∈A0

qan

)
= (1 + q + · · ·+ qn−1) · · · (1 + q)(1).

By letting q-integer [n]q as
[n]q := (1 + q + · · · qn−1),

we can denote it as ∑
a1∈An−1

qa1

 · · ·( ∑
an∈A0

qan

)
= (1 + q + · · ·+ qn−1) · · · (1 + q)(1) = [1]q[2]q · · · [n]q = [n]q!

Any permutation statistics α with the same distribution as inversion is called Mahonian Statistics, i.e.,∑
qα(π) = [n]q!

1.5.2 Descents

Let π = π1 · · ·πn be a permutation. (Each πi denotes permuting i such that πi = π(i)). Then,

Definition 1.5.8.
DES(π) := {i : πi > πi+1} ⊆ [n− 1], des(π) = |DES(π)|.

For example, if π = 231564, then since 3 > 1, 6 > 4,

DES(π) = {2, 5}, des(π) = 2.

Given D ⊆ [n− 1] let

β(D) = |{π ∈ Sn : DES(π) = D}|, α(D) = |{π ∈ Sn : DES(π) ⊆ D}|.

If we counting this using multinomial by length of each cycles, this disregards information between cycles.

Proposition 1.5.9. If D = {d1, · · · , dk} with increasing order, then

α(D) =

(
n

d1, d2 − d1, · · · , dk − dk−1, n− dk

)
=

(
n

∆d

)
where ∆d be a sequence d1, d2 − d1, · · · , dk − dk−1, n− dk, called difference sequence.
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Proof. Proof is from [Sta11][p.38]. To obtain such a permutation, for the first cycle, take d1 elements and
arrange it with ascending order. It gives

(
n
d1

)
way. Secondly, take d2 − d1 elements from n− d1 remainings

and arrange it with ascending order. It gives
(
n−d1
d2−d1

)
way to choose. In this manner there are(

n

d1

)(
n− d1
d2 − d1

)
· · ·
(
n− dk
n− dk

)
=

(
n

d1, d2 − d1, · · · , dk − dk−1, n− dk

)
.

Claim 1.5.10.
α(D) =

∑
T⊆D

β(T )

and
β(D) =

∑
T⊆D

(−1)|D−T |α(T ).

Proof. First equation is just derived from definition of α(D). To see the second one, we should use inclusion
exclusion principle. To see this,

A(D) := {π ∈ Sn : DES(π) ⊆ D}, B(D) := {π ∈ Sn : DES(π) = D}

Then,

B(D) = A(D) \
⋃
T(D

A(T )

Thus

β(D) = |B(D)| = |A(D) \
⋃
T(D

A(T )| = |A(D)| −

∣∣∣∣∣∣
⋃
T(D

A(T )

∣∣∣∣∣∣ .
Now to see

∣∣∣⋃T(D A(T )
∣∣∣, note that from the inclusion,⋃

T(D
A(T ) =

⋃
T(D,|T |=|D|−1

A(T )

since for any proper subset of D should be a subset of element |D| − 1. Now call a proper subset of D with
cardinality |D| − 1 as facet . Letting D = {d1, · · · , dk} and giving index for facets, such as

Ti = D \ {di}, Ai := A(Ti)

Then, ⋃
T(D,|T |=|D|−1

A(T ) =

k⋃
i=1

Ai.

By the inclusion exclusion principle,

|
k⋃
i=1

Ai| =
k∑
j=1

(−1)j+1

 ∑
1≤i1<···<ij≤n

|Ai1 ∩ · · · ∩Aij |


And it is clear that

Ai1 ∩ · · · ∩Aij = A(Ti1,··· ,ij ) where Ti1,··· ,ij = D \ {d1, · · · , dj}.

Hence, j + 1 = |D − Ti1,··· ,ij |+ 1. Since it visits all case of proper subsets of D, we can say

k∑
j=1

(−1)j+1

 ∑
1≤i1<···<ij≤n

|Ai1 ∩ · · · ∩Aij |

 =
∑
T(D

(−1)|D−T |+1α(T ).
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Hence,

β(D) = α(D)−
∑
T(D

(−1)|D−T |+1α(T ) = α(D) +
∑
T(D

(−1)|D−T |α(T ) =
∑
T⊆D

(−1)|D−T |α(T ).

GIven a set S, we can linearly list all subsets of S, with bigger ones first. For example, if S = {a, b},

then we can make a matrix with entries ST1,T2
=

{
1 if T1 ⊆ T2
0 otherwise

T1\T2 {a, b} {a} {b} ∅
{a, b} 1 0 0 0
{a} 1 1 0 0
{b} 1 0 1 0
∅ 1 1 1 1

Then, inver se of this is given by

S−1T1,T2
=

{
(−1)|T2−T1| if T1 ⊆ T2
0 otherwise.

1.5.3 Eulerian Polynomial

Definition 1.5.11 (Eulerian Polynomial).

An(x) =
∑
π∈Sn

x1+des(π).

+1 is to assigning ascending permutation; which gives des(π) = 0. Data are below;

A1(x) = x,A2(x) = x+ x2, A3(x) = x+ 4x2 + x3, A4(x) = x+ 11x2 + 11x3 + x4.

Now let
An,k := |{π ∈ Sn : des(π) = k − 1}|

Then,

An(x) =
∑
k

An,kx
k.

Basic properties are below.

•
An,k = An,n−k+1.

Proof. It suffices to show that

{π ∈ Sn : des(π) = k − 1} ∼= {π ∈ Sn : des(π) = (n− k + 1)− 1 = n− k}

has a bijection. Suppose π = a1 · · · an ∈ Sn has des(π) = k − 1. Then, let πrev be a reversion of π,
i.e.,

πrev = anan−1 · · · a1.

Then it has des(π) = n− 1− (k − 1) = n− k, and (πrev)rev = π for any π, hence this reversing map
has a bijection with image. Note that this map gives bijection with image if we think it as a map from
{π ∈ Sn : des(π) = (n− k + 1)− 1 = n− k}, thus it gives a bijection.
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•
An,k = kAn−1,k + (n− k + 1)An−1,k−1

To see this, note that we can generate des(π) = k − 1 permutation by

1. Making descent k − 1 sequence first using [n − 1] and distribute it on the rightmost end (which
doesn’t add descent) or inside of each descent (for example, if aiai+1 form a descent, then ainai+1

form a new descent ain and delete original one, hence number of descent is preserved.) This gives
k possible way of assigning n.

2. Making descent k− 2 sequence and generating new descent by assigning leftmost end or inside of
aiaj which are not descent. This gives 1 + (n− k) ways.

From this property, we get

Proposition 1.5.12 (Proposition 1.4.4 in [Sta11]).∑
m≥0

mdxm =
Ad(x)

(1− x)d+1
.

Proof. Proof is induction on d. If d = 0, then it holds since A0(x) = 1 and
∑
m x

m = 1/(1−x). Now suppose
it holds for some d. Then by differenting and multiplying x for both sides we get∑

m≥0

md+1xm = x · (1− x)A′d(x) + (d+ 1)Ad(x)

(1− x)d+2

So it suffices to show that
Ad+1(x) = (1− x)A′d(x) + (d+ 1)Ad(x).

By seeing it coefficentwise, it suffices to show that

Ad+1,k = kAd,k + (d− k + 2)Ad,k−1

which is holds from the above property.

Theorem 1.5.13 (Worpitzky’s Identity).

xn =
∑
k≥1

An,k

(
x+ n− k

n

)
=
∑
k≥1

An,k

(
x+ k − 1

n

)
Proof. To see the second equality, use An,k = An,n+1−k and change index of sum from k to n + 1− k. For
the first equality, note that let

S = {(a1, · · · , an) : 0 ≤ ai < x, ai ∈ N}

Then we can count |S| by two ways.

• |S| = xn.

• From given sequence, we can generate a sequence of order by this; for any sequence (a1, · · · , an), we
get terms and σ ∈ Sn

1 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ x, σ = σ = σ1 · · ·σn
where σi is position of ti in original sequence. For example, if σ = 213 and t1 = 1, t2 = 2, t3 = 2 then
the original sequence is 212. However, this sequence of ti should compatible with σ, which is

compatibility: if i ∈ DES(σ) then ti < ti+1.

So if we give σ = 231 and t1 = 1, t2 = 2, t3 = 2, still this gives sequence 212, but it is not compatible
case since the condition that second minimal one and third minimal one is the same and has position
3 and 1 respectively implies position 1 should be written first and position 3 secondly.
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Thus,

#seq =
∑
σ∈Sn

#{(t1, · · · , tn) : (t1, · · · , tn) is compatible with σ}

Now we should ask that, given σ ∈ Sn, DES(σ) = {d1, · · · , dk−1}, how many such compatible
(t1, · · · , tn) exists?

Note that picking 5 nondecreasing sequence from [100] is((
100

5

))
=

(
100 + 5− 1

5

)
If we think about t = (t1, · · · , tn), then it is nondecreasing sequence. And note that, for example,
picking a sequence

1 ≤ t1 < t2 ≤ t3 ≤ x

is the same as picking
1 ≤ t1 ≤ t2 − 1 ≤ t3 − 1 ≤

a nondecreasing sequence. Hence, by the standard treatment for all positions in DES(σ), it is equiva-
lent to picking nondecreasing sequence

1 ≤ t′1 ≤ · · · ≤ t′n ≤ x− (k − 1)

since des(σ) = k − 1. Hence, for given σ, we had((
x− (k − 1)

n

))
=

(
x− (k − 1) + n− 1

n

)
=

(
x+ n− k

n

)
.

Hence,

xn =
∑
σ∈Sn

(
x+ n− k

n

)
where des(σ) = k − 1

and since number of σ ∈ Sn with des(σ) = k − 1 is An,k, thus

xn =

n−1∑
k=1

An,k

(
x+ n− k

n

)
.

Any permutation statistics with the same distribution as des(σ) is called Eulerian Statistics.

Claim 1.5.14. For π = π1π2 · · ·πn ∈ Sn, let

EXC(π) = {i : πi = π(i) > i}, weakEXC(π){i : πi = π(i) ≥ i}

which is called exceedances. It is Eulerian, i.e., the number of permutations in Sn with k exceedances is
An,k+1 (so is that with k + 1 weak exceedances.)

Proof. See [Sta11][p.39-40]. Let π ∈ Sn and represent it as standard notation; then

π = (a1, · · · , ai)(ai+1, · · · , ai1)(ai1+1, · · · ai2) · · · (aik−1+1, · · · , aik).

Then, if we permuting ai using π, there are two possible results; ai goes to ai+1 or ai goes to back, for
example, if il ≤ i ≤ il+1 then it goes to ail . And from the standard notation, this means ail = π(ai) > ai
since each cycle should start with the maximal element. And since

a1 < ai1 < · · · < aik ,

we get
ai < ail < ail+1

= ai+1.
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Thus we can summarize this result as

If π(ai) 6= ai+1, then ai < ai+1.

So if ai < ai+1 or i = d, then permuting ai by π gives ail , which is greater than or equal to ai or gives ai+1,
which is also greater than or equal to ai, thus

π(ai) ≥ ai

, where equality comes from the case when cycle containing ai is singleton.
Conversely, if w(ai) ≥ ai, if equal it implies cycle containing ai is singleton, hence ai+1 > ai by standard

notation or i = d. If w(ai) > ai then in case of w(ai) = ai+1 gives ai+1 > ai or in case of w(ai) = ail gives
ai < ail < ail+1

= ai+1, thus we can say that

ai < ai+1 or i = d iff w(ai) ≥ ai.

Hence,
d− des(π) = |{i ∈ [d] : π(i) ≥ i}|

which is called a set of weak exceedance of π. Now to get a relationship between weak exceedance and
exceedance of π, we should represent π in usual notation, i.e.,

π = π1 · · ·πd where πi = π(i).

permuting i. Then let
ui = d+ i− wd−i+1.

Note that

ud−i+1 < d− i+ 1 ⇐⇒ d+ 1− wd−(d−i+1)+1 < d+ 1− i ⇐⇒ i < wi

ud−i+1 > d− i+ 1 ⇐⇒ d+ 1− wd−(d−i+1)+1 > d+ 1− i ⇐⇒ i > wi

ud−i+1 < d− i+ 1 ⇐⇒ d+ 1− wd−(d−i+1)+1 < d+ 1− i ⇐⇒ i = wi

Thus, if w has k weak excedance, then corresponding terms in u does not have any excedance, which implies
d− k characters of u which is from no weak excedance turns out to be excedance.

Also note that w → u is bijection since applying this transformation twice we can always get the same
permutations, and it is definitely one-to one by construction.

Now, if w has k excedances, then its corresponding u has d − k weak excedances, so u has k descents.
Since it is the same sum of counting excedances of w or counting descents of u by permuting all possible
elements in Sn, so An,k+1 is the number of all permutations in Sn with k excedances. Similarly, if w has
k + 1 weak excedances, then w has d− k − 1 descents, so the reversing of w has k descents. Since reversing
is also a bijection, it is equivalent to counting permutations with k + 1 weak excedances is to counting
permutations with k descents. Done.

Definition 1.5.15 (Major index). If π = π1 · · ·πn ∈ Sn, then

maj(π) =
∑

i∈DES(π)

i.

For example,
σ ∈ S3 DES(σ) maj(σ) inv(σ)

123 ∅ 0 0
132 {2} 2 1
213 {1} 1 1
231 {2} 2 2
312 {1} 1 2
321 {1, 2} 3 3
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Claim 1.5.16 (Proposition 1.4.6 in [Sta11]).∑
σ∈Sn

qmaj(σ) =
∑
σ∈Sn

qinv(σ) = [n]q!

Proof. We already saw that
∑
σ∈Sn q

inv(σ) = [n]q!. So it suffices to show that∑
σ∈Sn

qmaj(σ) = [n]q!

Use induction. Given σ = σ1 · · ·σn−1 ∈ Sn− 1, insert n in n possible ways and check the major index on
the n new permutations. For example, let π = 356214. Then

DES(π) = {3, 4} =⇒ maj(π) = 3 + 4 = 7.

By adding 7 on π we get
new σ DES(new σ) maj(σ)

3562147 {3, 4} 7+0
3562174 {3, 4, 6} 7+6
3562714 {3, 5} 7+1
3567214 {4, 5} 7+2
3576214 {3, 4, 5} 7+5
3756214 {2, 4, 5} 7+4
7356214 {1, 4, 5} 7+3

To generalize this results, let π = π1 · · ·πn−1 ∈ Sn− 1, and think about the case of adding n. Let Aπ =
{π′ ∈ Sn : π′ is generated by adding n to fixed π ∈ Sn− 1}. Let

ψ : Aπ → N by ψ(π′) = maj(π′)

What we want to show is that
ψ(Aπ) = maj(π) + [n− 1] ∪ {0}.

If this is true, then∑
σ∈Sn

qmaj(σ) =
∑

σ∈Sn−1

(qmaj(σ)+
∑n−1
i=0 i = [n]q

∑
σ∈Sn−1

= [n]q([n− 1]q!) = [n]q!

where last equality comes from inductive hypothesis. (Also note that the first step holds when n = 1.)
To see this, all we left is just counting; let DES(π) = {d1, · · · , dk} where

d0 = 0 < d1 < · · · < dk < n = dk+1.

If n is added on (dj + 1)-th position, then it gives

π′ = · · ·πdjnπdj+1

since πdj < n > πdj+1,

DES(π′) = (DES(π) \ {dj , dj+1, · · · , dk})∪{dj+1, dj+1 +1 · · · , dk+1} =⇒ maj(π′) = maj(π)+k−j+1.

So
ψ(DES(π)) = maj(π) + {1, 2, · · · , k}.

If n is added on dk−j + 1 < i < dk−(j−1) + 1 position for j = 1, 2, · · · , k, then, it moves descents
dk−(j−1), · · · , dk to dk−(j−1) + 1, · · · , dk + 1 respectively, and make new descent i. Thus,

DES(π′) =
(
DES(π) \ {dk−(j−1), · · · , dk}

)
∪{i}∪{dk−(j−1) +1, · · · , dk+1} =⇒ maj(π′) = maj(π)+ i+ j
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Hence,

ψ({i : dk−j + 1 < i < dk−(j−1) + 1}) = maj(π) + j + (dk−j + 1, dk−(j−1) + 1) ∩ N, for j = 1, 2, · · · , k

For j = 0 case, for adding n on the last position, which is n, then it gives maj(π′) = maj(π) + 0 since no
new descents occur; otherwise, if {i : dk + 1 < i < dk+1 = n} is not empty in π, then adding n on such is
does not change previous descents, but gives new descent i. Hence,

ψ({i : dk−j + 1 < i < dk−(j−1) + 1}) =

{
{0} if given set is empty

{dk + 2, · · · , n− 1} ∪ {0}

And if given set is empty, then dk = n− 2 so that maj(π′) = maj(π) + (n− 2) + 1 = maj(π) + n− 1 occur
in j = 1 case with adding n in dk position. Now by counting with j, we get

j ψ({i : dk−j + 1 < i < dk−(j−1) + 1})

0

{
maj(π) + {0} if given set is empty,

maj(π) + {dk + 2, · · · , n− 1} ∪ {0} nonempty.

1

{
maj(π) + {dk−1 + 3, dk+1 = n− 1} if j = 0 case is {0},
maj(π) + {dk−1 + 3, · · · , dk + 1} otherwise

2 maj(π) + {dk−1 + 4, · · · , dk−1 + 2}
3 maj(π) + {dk−1 + 5, · · · , dk−1 + 3}
· · · · · ·
k − 1 maj(π) + {d1 + k + 1 · · · , d2 + k − 1}
k maj(π) + {k + 1, · · · , d1 + k}

Thus,
ψ([n− 1] \DES(π)) = maj(π) + ([n− 1] \ [k]) ∪ {0}

and from the above result ψ(DES(π)) = maj(π) + [k], done.

1.6 Composition

Let x1 + · · ·+xk = n. Then the number of N∪{0}-solutions is
(
n+k−1
n

)
by bar-ball tricks. And its P-solution

is
(
n−1
k−1
)
, since now we should assign + (bar) only n− 1 position without repeat.

Definition 1.6.1 (Composition). Any (x1, · · · , xk), xi ∈ P, i ∈ [k] with sum
∑k
i=1 xi = n is called a com-

position of n.

For example, 2 + 3 + 2 = 7 is a composition of 7.
Number of total composition of n is 2n−1, since it is just number of (nonempty) subsets of [n − 1], by

thinking fixing n − 1 positions among n balls which used for putting + sign. Then the number of balls in
each section divided by + sign represents composition.

For notation, if we let λ be an (unordered) composition of n by λ1, · · · , λk, then we denote

λ = (λ1, · · · , λk) where λ1 ≥ · · · ≥ λk ≥ 1.

and say that
λ ` n.

Note that k is nontrivial number, and λ is integer partition. For example,

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Let
P (n, k) := {λ : |λ| = n, λ has k parts.}, p(n, k) = |P (n, k)|, p(n) :=

∑
k≥0

p(n, k).
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Now, Ferrer’s diagram (or Young’s diagram) is a way of representing (unordered) partition. This
diagram is a set of blocks constructed as follow; Fix starting point (or block). Then, make λ1 many squares
(young diagram) or dots (Ferre diagram) on a first row, from the starting block to right. So the first row
has λ1 blocks including the block at starting point. Now, make λj many blocks, which starts at the below
of starting block of (j − 1)-th row to the right. For example, if λ = (6, 4, 2, 2, 1), then

If we read it vertically i.e., counting number of blocks in a row from left to right, we can get 5, 4, 2, 2, 1, 1
which is another partition of 15. So we call this as conjugate of λ, and denote it as

λ∗ = (5, 4, 2, 2, 1, 1)

Note that

• p(n, k) = p(n−1, k−1)+p(n−k, k). To see this we can decompose P (n, k) as 1) a partition containing
1 and 2) a partition not containing 1. To generate a partition containing 1, then make partition of
n− 1 with k − 1 parts, and just add 1 for k-th part. To generate a partition not containing 1, then to
make partition of n− k with k parts, then add 1 for each part. This gives a partition of n having no 1.

Note that this relation yields definition of p(n, 0) = 0, p(0, 0) = 1(n ≥ 1), p(n, k) = 0 if k > n.

•
P (n,≤ k)

λ∗←→ P (n, the largest part is of size ≤ k).

To see this, just see Young diagram of λ. Since λ has at most k parts, the columns has at most k, and
they are bijection. So,∑

n≥0

p(n,≤ k)xn =
∑

λ at most k part

x|λ| =
∑

λ∗ largest part is of size ≤ k

x|λ
∗|

If µ has the largest part ≤ k, then µ is a multiset such that

µ = {knk , (k − 1)nk−1 , · · · , 1n1}

which means nk many k, nk−1 many k − 1, · · · , n1 many 1, where ni ∈ N. Then,

∑
µ={knk ,(k−1)nk−1 ,··· ,1n1}

x|µ| =
∑

µ={knk ,(k−1)nk−1 ,··· ,1n1}

xn1+2n2+···+knk =

k∏
i=1

∞∑
ni=0

xini =

k∏
i=1

1

1− xi
.

Thus, ∑
n≥0

p(n)xn =

∞∏
i=1

1

1− xi
.

Now denote

P (∗,≤ m,≤ n) := {λ : λ has no more than m parts and each part is ≤ n.}

Actually, P (∗,≤ m,≤ n) has bijection with a set of all lattice paths from (0, 0) to (m,n). To see this,
think a young diagram and its boundary; if we assume that each block’ edges has distance 1 and put the
left upper vertice of blocks on (0, n) points in the coordinate space, then the rightmost vertice has (m,n) in
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the coordinate space. And its path from (0, 0) to (m,n) along the right side of the diagram gives a lattice
path. It’s lattice path is unique up to young diagram, thus those sets have a bijection between them.

Since we know that the number of lattice paths from (0, 0) to (m,n) is
(
n+m
n

)
,

p(∗,≤ m,≤ n) =

(
m+ n

n

)
.

And you can show it in the homework that ∑
λ∈P (∗,≤m,≤n)

q|λ| =

[
m+ n

n

]
q

1.7 12fold way

Let f : N → R where |N | = n, |R| = m. There are 12 cases, like this;

(N,R) \f all function 1-1 onto
N:distinguishable
R:distinguishable rn rn r!S(n, r)
N:indistinguishable
R:distinguishable

(
n+r−1
n

) (
r
n

) (
n−1
r−1
)

N:distinguishable
R:indistinguishable S(n,≤ r) =

∑r
i=1 S(n, i) χ(n ≤ r) S(n, r)

N:indistinguishable
R:indistinguishable p(n,≤ r) χ(n ≤ r) p(n, r)

To see this..

• Case 1: N,R are distinguishable. Then all possible function is just assgining r to one of element in N
hence each elements of R has n possibility, thus rn. For 1-1 functions, first element in R has n choices,
but second one has n−1 choices since first element takes at least one elements in N , and so on. Hence,
rn possible ways. For onto case, first of all, we should partitioning N by r nonzero subsets. This gives
S(n, r) possibilities, where S(n, r) is the Stirling number of second kind. Then there are r! ways to
assigining elements in R to given r partitions of N .

• Case 2: N is indistinguishable, and R is distinguishable. Then, actually, f : N → R and g : N → R is
distinct if and only if |f−1(r)| = |g−1(r)| for all r ∈ R. Thus, it is equivalent to just partitioning the
same balls into r parts, allowing empty part. Hence it is the same as bar-ball problem with r bar and
n ball, therefore

(
n+r−1
n

)
. For 1-1 correspondence, all preimage of element in R should be singleton or

empty set. And there should be n singleton, since f is a function. Thus, it is equivalent to choosing n
elements from R whose preimage is singleton, and assign emptyset for the others. So,

(
r
n

)
. For onto

case, note that no preimage of element in R is empty; and from the condition

|f−1(r1)|+ · · ·+ |f−1(r|R|)| = n,

it is the same as counting all positive solutions of above equation, which is just the number of ordered
k-partition of n, which is

(
n−1
r−1
)
.

• Case 3: N is distinguishable, and R is indistinguishable. Note that f gives a set of r disjoint subsets of
N (containing multiple emptysets in general) whose union is N . Since we do not distinguish elements
in R, two functions differ if and only if their corresponding a set of r sets are differ. And by removing
empty sets from the set, we can regard it as a partition of n with ≤ r parts. So S(n,≤ r) comes up. For
1-1, the function get r set which contains n singleton and emptysets (if r > n.) This is unique, since
we only think f and g differ if they have two distinct sets of r sets. So χ(n ≤ r) which is characteristic
function, is the answer. For the onto function, it gives a set of r sets consisting of nonempty disjoint
subset of N , which is just a partition of N . Hence, S(n, r).

• Case 3: N is indistinguishable, and R is indistinguishable. Then all function is just partitioning, since
now two functions are differ if their given r set’s cardinailities (without ordering) are differ; and this
cardinality form a partition number, thus p(n,≤ r). 1-1 is just equivalent, since cardinality of singleton
is just 1. For onto case, now we even distinguish two sets in r sets if they have the same cardinality;
thus it is just p(n, r).
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1.8 q-Analog and Gaussian Coefficients

Definition 1.8.1 (q-something).

q-integer: [q]q = 1 + q + q2 + · · ·+ qk−1 = 1−qk
1−q .

q-factorial: [n]q = [1]q[2]q · · · [n]q.

q-binomial coefficient:
[
n
k

]
q

=
[n]q !

[k]q ![n−k]q !

Actually we can derive those from a vector spaces over Fq. Use notation that

Vq(n) := vector space of dimension n over finite field Fq.

Then
Vq(n) = {(α1, · · · , αn) : αi ∈ Fq}

Proposition 1.8.2.
[
n
k

]
q

= the number of k-dimensional subspace of Vq(n), 0 ≤ k ≤ n.

Proof. Let U be a k-dimensional subspace of Vq(n). So U has some basis < e1, · · · , ek > where ei ∈ U, {ei}ki=1

is linearly independent from Vq(n). Now counting the number of ordered list. For e1, there are qn−1 choices,
since any vector except 0 is linearly independent. If we choose e1, then for e2, there are qn−q choices since we
should get rid of any element which is linear combination of e1, and the number of all such combination is q.
Similarly, for ej , then there are qn− qj−1 choices where qj−1 stands for the number of all linear combination
of e1, · · · , ej−1. Hence, for ek, there are (qn − qk−1) choices. Thus, the number of ordered basis in Vq(n) for
k-dimensional subspace is

(qn − 1)(qn − q) · · · (qn − qk−1).

Now fix U . Then, how many ordered basis exists for such fixed U? We can do the same argument replacing
Vq(n) by U . Thus it gives

(qk − 1) · · · (qk − qk−1).

Thus, its quotient is

(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1) · · · (qk − qk−1)
=

(qn−1)(qn−q)···(qn−qk−1)
(1−q)k

(qk−1)···(qk−qk−1)
(1−q)k

=
[n]q · · · [n− k + 1]q

[k]q!
=

[n]q!

[k]q![n− k]q!
.

Corollary 1.8.3.

1.
[
n
k

]
q

=
[
n

n−k
]
q
.

2.
[
n
k

]
q

= qn−k
[
n−1
k−1
]
q

+
[
n−1
k

]
q
.

Proof. For 1, Any k-dimensional vector space is complement to some n−k dimensional dimensional vector
space.

For 2, we can count k-dimensional space of Vq(n) in another way; first of all, fix a basis < e1, · · · , en >
of Vq(n), and let W be a subspace generated by a basis < e1, · · · , en−1 >. Then

1. To count the number of k dimensional subspace which is contained in W , it is just
[
n−1
k

]
q
.

To count the number of k-dimensional subspace U which is not contained in W , let’s say U be such
space. Then, since dimW = n− 1, dim(U ∩W ) = k − 1. Thus, U is spanned by basis of U ∩W and
f where f 6∈ W , so first of all, count all possible basis for U ∩W , which gives

[
n−1
k−1
]
q
. Now for f , if

we assume f = en +
∑n−1
i=1 ciei by scaling any f 6∈ W , then there exists qn−1 possible f , by choosing

c1, · · · , cn−1 ∈ Fq. And, if
spanU ∩W ∪ {f1} = spanU ∩W ∪ {f2}

then f1 − f2 ∈ U ∩W . And note that U ∩W consists of qk−1 vectors. Thus, for any possible f up to
scaling, f + v where v ∈ U ∩W will results in the same vectorspace. Hence,

Number of different U =

[
n− 1

k − 1

]
q

qn−1

qk−1
=

[
n− 1

k − 1

]
q

qn−k.
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There are two more combinatorial interpretation of [ ]q.

1. Lattice path: We already know that the number of lattice paths from (0, 0) to (m,n) is
(
n+m
n

)
.

Claim 1.8.4. ∑
L:(0,0)→(m,n)

qarea(L) =

[
m+ n

n

]
q

,

where area(L) means the area generated by the lattice path L and line segments [(0, 0), (0, n)] and
[(0, n), (m,n)].

Proof. Let N = m+ n. We want to show surjection and some kind of functional from m-dimensional
subspace of Vq(N) to the q-lattice path. Now start from a m-dimensional subspace K. Fix a basis in
Vq(N). Then, K is represented by m×N matrix consisting of basis on a row. (So row is the coordinate
of basis with respect to fixed basis of Vq(N).) Now we can transform this matrix to the reduced row
echelon form. Then, since rows are linearly independent,

(a) Each row starts with leading 1.

(b) First nonzero entry in row i+ 1 is on the right of first nonzero entry in row i.

(c) For each column containing leading 1, 1 is the only nonzero entry.

Thus, by get rid of columns containing 1, we get a new m× n matrix. And rewrite ∗ for entries which
may not be zero. For example, if m = 4, n = 3, N = 7,

n×N matrix→


1 ∗ 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗

→

∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 0 ∗

 .

If we reflect the matrix about y-axis, we get a Ferre-diagram consisting of ∗, hence it gives partition
in P (∗,≤ m,≤ n). i.e., partition has no more than m parts and each part is less than or equal to n.
In the example, we get λ = (3, 2, 2, 1).

If the pivot positions are 1 = a1 < a2 < · · · < an ≤ N , then

λi = n− ai + i = n− (ai − i).

To see this, from N columns, get rid of m columns containing leading 1, we get n. Now, we claim that
ai = i gives n stars; otherwise, by row echelon form , one column containing star which is left to the
ai-th column exists; done. Now, to see original statment, note that the number of star is decreasing
by 1 when ai changed to ai + 1 by the definition of row-echelon form. (Just see the picture.) Thus the
equation holds.

Thus, each element in P (∗,≤ m,≤ n) corresponds to some set of m-dimensional subspace of Vq(N).
Note that for each given λ ∈ P (∗,≤ m,≤ n), λ can generates qarea(λ) reduced row echelon form matrix,
and each matrix of these corresponds to the m-dimensional subspace. Hence,[
n+m

n

]
q

=
∑

U≤Vq(N)

1 =
∑

partition of U which gives the same λ

qarea(λ) =
∑

λ∈P (∗,≤m,≤n)

qarea(λ) =
∑

L:(0,0)→(m,n)

qarea(L).

Corollary 1.8.5. ∑
λ∈P (∗,≤m,≤n)

q|λ| =

[
n+m

n

]
q
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Proof. Note that area(λ) = |λ| since number of points in Ferrer diagram of λ is just area of λ.

Theorem 1.8.6 (q-binomial Theorem).

(1 + xq)(1 + xq1) · · · (1 + xqn) =

n∑
k=0

[
n

k

]
q

q(
k+1
2 )xk.

Proof. We already know that

∑
n≥0

p(n)xn =

∞∏
i=1

1

1− xi
=

∑
λ has ni parts of size i

x|λ|,

and ∑
λ has distinct ≤ k parts with each part is less than k

=

k∏
i=1

(1 + xi).

(We already showed first one; for the second one, note that RHS generates all possible distinct ≤ k
partitions where each part is less than k. )

Now from given equation,
(1 + xq)(1 + xq1) · · · (1 + xqn)

each term generated by multiplying all chosen term from the box (1 + xqj) is like

qlxk

and we can get combinatorial meaning from this; if we choose xqj1 , · · · , xqjk , then (jk, · · · , jl) form a
partition having distinct k parts and each part is less than n. Hence,

(1 + xq)(1 + xq1) · · · (1 + xqn) =
∑

λ has distinct part
each part ≤ n

x
# of parts

in λ q|λ| =

n∑
k=0

xk

 ∑
λ has k distinct part

each part ≤ n

q|λ|


To counting such λ = (λk > · · · > λ1 > 0), let µi = λi − i. Then,

n− k > µk ≥ · · · ≥ µ1 ≥ 0).

Hence, µ is a partition having less than or equal to k parts and each part is less than or equal to n−k.
Thus,

λ = µ+ (k, k − 1, · · · , 1).

Thus,

|λ| = |µ|+
(
k + 1

2

)
.

So,

n∑
k=0

xk

 ∑
λ has k distinct part

each part ≤ n

q|λ|

 =

n∑
k=0

xk

 ∑
µ∈P (∗,≤k,≤n−k

q|µ|+(k+1
2 )

 =

n∑
k=0

xkq(
k+1
2 )

∑
µ∈P (∗,≤k,≤n−k

q|µ|

=

n∑
k=0

xkq(
k+1
2 )
[
n

k

]
q

.

where last equality comes from the above corollary.
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2. Inversion of words. Let M be a multiset

M := {1ai , · · · , kak},

and n =
∑k
i=1 ai. Then, let

S(M) := { all distinct permutation of M}.

For example, if M = {12, 22}

S(M) = {1122, 1212, 1221, 1212, 2121, 2211}.

Then their inversion is

σ ∈ S(M) 1122 1212 1221 1212 2121 2211
inversion 0 1 2 2 3 4

Note that

|S(M)| =
(

n

a1, · · · , ak

)
.

Claim 1.8.7. ∑
w∈S(M)

qinv(v) =

[
n

a1, · · · , ak

]
q

:=
[n]q!∏k
i=1[ai]q

.

Proof. We’ll show that
k∏
i=1

[ai]q
∑

w∈S(M)

qinv(v) = [n]q.

Now construct a map
S(a1)× S(a2)× · · · × S(ak)× S(M)→ S(n)

such that for πa1 × · · · × πak × b ∈ S(a1)× S(a2)× · · · × S(ak)× S(M),

replacing js in b with πaj + aj−1 from left to right, j ∈ {1, · · · , k}, a0 = 0.

For example, if M = {13, 24}, then

S3 × S4 × S(M)→ S(7) by b1b2b3 × c1c2c3c4 × 2121212 7→ 1 3 2
7 4 5 6

= 7143526.

Note that it gives bijection; for example, from S(n), we can have a map to S(a1)×S(a2)×· · ·×S(ak)×
S(M) by, for b ∈ S(n)

change elements of b between ai−1 and ai to i, for i ∈ [k] to get π ∈ S(M) and

collecting all elements of b corresponding to i in π and let it be πi ∈ S(ai).

This recovers the original sequence always, and we already know that

|S(a1)× S(a2)× · · · × S(ak)× S(M)| =

(
k∏
i=1

ai!

)(
n

a1, · · · , ak

)
= n! = |S(M)|

so it is bijection done.

Also, observe that inversion of corresponding sequence is preserved; i.e., if π1× π2× · · · × πk ×w 7→ π,
then inversion occur in πj also occus in π with same position, and vice versa because order of elements
is preserved. Also, if inversion occur in w, then inversion occur in π and vice versa, because the
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corresponding elements in π of the bigger element in w have been added by ai which assures that the
corresponding element in π bigger than the other corresponding one. Hence,

inv(π) =

k∑
i=1

inv(πi) + inv(w).

Thus, by formular from inversion,

[n]q! =
∑
π∈Sn

qinv(π) =
∑

(π1,··· ,πn,w)

q
∑k
i=1 inv(πi)+inv(w) =

 k∏
i=1

∑
πi∈S(ai)

qinv(πi)

 ∑
w∈S(M)

qinv(w) =

k∏
i=1

[ai]q
∑

w∈S(M)

qinv(w)

gives ∑
w∈S(M)

qinv(w) =
[n]q!∏k
i=1[ai]q

=

[
n

a1, · · · , ak

]
q

.

Also note that given M = {1k, 2n−k}, we can make a lattice paths by relating 1 be horizontal and 2
be vertical; so we can use k horizontal steps and n− k vertical steps to go (k, n− k) from (0, 0). And
this lattice path bijectively corresponds to permutation of M .

2 Formal Power Series and Infinite Matrices

2.1 Ordinary and Exponential generating function.

Let f : N→ N be a function for counting. Then, we can represent it as {f(n)}∞n=0. Now let

F (x) :=
∑
n≥0

f(n)xn.

It is called ordinary generating function. Since we don’t care about convergence, F (x) ∈ C[[x]], which
is a space of formal power series. Hence, F +G and αF is well defined for G ∈ C[[x]], α ∈ C.

If A(x) =
∑
anx

n, B(x) =
∑
bnx

n, then let

cn =
∑
k≥0

akbn−k.

Then,

C(x) =
∑
n≥0

cnx
n = A(x)B(x).

This comes from just counting coefficient of A(x)B(x).
Also, we can differentiate and integrate the function, and some formal power series contains inverse.

Actually, there are two kind of inverse. One is 1
A(x) and the other is, given A(x), there exists B(x) such that

A(x)B(x) = 1. Note that B(x) exists if and only if A(0) = a0 6= 0. To see this, if a0 6= 0 then take b0 = 1
a0

and we can solve system of linear equation for coefficient of xn in A(x)B(x) by induction. Conversely, if
such B(x) exists, then b0a0 = 1 since it is only constant term of product, which implies a0 6= 0.

We can also define exponential generating function; for given {fn}n≥0 we get

F̂ (x) :=
∑
n≥0

fn
xn

n!
.

Then,

Ĉ(x) = Â(x)B̂(x) ⇐⇒ cn =
∑
k≥0

(
n

k

)
akbn−k.

since n! term is canceled out by xn

n! part in Ĉ(x). This means choose something by A structure and put B
structure on the remaining.
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2.2 q-analog of generating function.

We can also define

Fq(x) :=
∑
n≥0

f(n)
xn

[n]q!
.

Hence, by the same argument,

Cq(x) = Aq(x)Bq(x) ⇐⇒ cn =
∑
k≥0

[
n

k

]
q

akbn−k.

And note that if we set P be the lattice of all finite-dimensional subspaces of a vector space of infinite
dimension over Fq, ordered by inclusion. Then, factorial function of P is [n]q, and this poset is called
binomial poset . Intuitively, this is a poset such that for any x, y ∈ P with x ≤ y, the interval [x, y] only
depends on rank(y). See more detail on [Sta11][p.364].

Also there is a sequence of nonzero number {qi}. Then, let Qn =
∏n
i=1 qi. We can also make generating

function ∑
n≥0

fn
xn

Qn
.

Note that Qn can be regarded as the number of maximum choice in {x1, · · · , xn} where xi should be chosen
only qi numbers.

Remark 2.2.1 (Coefficient). If F (x) =
∑
n≥0 anx

n, then we denote an by

an =: [xn]F (X).

Definition 2.2.2 (Convergence). Let F1(x), · · · , be sequence of formal power series. We can define

Fi(x)→ F (x) ⇐⇒ ∀n ∈ N, [xn]Fi eventually [xn]F.

Note that this implies the sequence [xn]Fi converges to constant [xn]F in usual sense, i.e., ∃M > 0 such
that ∀m > M, [xn]Fm = [xn]F .

Or we can make equivalent definition.

Definition 2.2.3 (Degree). Let deg(F ) = min{i : [xi]F 6= 0}.

Claim 2.2.4. Fi → F if and only if limi→∞ deg(F (x)− Fi(x)) =∞.

Proof. Suppose Fi → F . For j = 1, there exists M > 0 such that [x](F (x) − Fi(x)) = 0 for all i > M ,
hence 1 6∈∈ {j : [xj ](F − Fi) 6= 0} for i > M . Hence limi→∞ deg(F (x) − Fi(x)) > 1. Now suppose
limi→∞ deg(F (x) − Fi(x)) > j − 1 for some j. Then, from convergence, we can take M ∈ N so that
[xj ](F − Fi) = 0 for any i > M . This implies j 6∈ {j : [xj ](F − Fi) 6= 0} for any i > M . Hence,
limi→∞ deg(F (x)− Fi(x)) > j. Thus by induction, limi→∞ deg(F (x)− Fi(x)) =∞.

Conversely, if limi→∞ deg(F (x) − Fi(x)) = ∞, then for any fixed j, there exists M > 0 such that
[xj ](F − Fi) = 0 for i > M . Since j was arbitrarily chosen it implies Fi → F .

For example, note that

∏
i≥1

1

1− xi
=
∏
i≥1

(1 + xi + x2i + · · · ) = lim
k→∞

k∏
i=1

(1 + xi + x2i + · · · ) = 1 + p1x
i + p2x

2i + · · ·

for some sequence p1. Hence to make infinite product make sense, for all N , PN is stabilized by finitely
many products. Namely, to compute coefficient, we really care about finitely many factors. So

∞∏
i=1

(1 + x+ · · ·+ xi)

31



make sense, and
∞∏
i=1

(1 + Fi(x))

is well-defined if and only if deg(Fi)→∞ as i→∞. To see this, if deg(Fi)→∞, then for any n ∈ N, ∃M > 0
such that [xn]Fi = 0 for all i > M , hence, to calculate coefficient of xn we only care about F1, · · · , FM , so we
can define the coefficient in finitely many operation. Conversely, if it is well-defined, then we can compute
coefficient by finitely many Fis, this implies [xn]Fi = 0 for i > M with fixed M > 0, done.

Also, composition of 2 formal power series

A(B(x)) =

∞∑
n=0

an(B(x))n

makes sense if and only if B(0) = 0. To see this, if B(0) 6= 0, then any xn term should consider all possible
B(x)i, i ∈ N since b0 generates xn for each power. Otherwise, if B(0) = 0, then xn term only care about
B(x), · · · , Bn(x).

Belows are useful Formal Power Series.

•
∑∞
n=0 x

n = 1
1−x .

•
∑∞
n=0

(
m
n

)
xn = (1 + x)m.

•
∑∞
n=0

(
m+n−1

n

)
xn = 1

(1−x)m , m ≥ 2.

•
∑∞
n=0

(
n
m

)
zn = zm

(1−z)m+1 .

•
∑∞
n=0

xn

n! = ex.

•
∑∞
n=0

xn

n = − log(1− x).

Proof. First one is trivial. For second one, it is just from binomial theorem. If m < 0, then since (1 + z)m

is the inverse of (1 + z)−m, we should show that
∑
n≥0

(
m
n

)
zm is the inverse of

∑
n≥0

(−m
n

)
zn. However, by

producting two sums, its coefficient is just from convolution that

n∑
k=0

(
−m
k

)(
m

n− k

)
=

(
0

n

)
by Vandermonde identity, hence just 1. For third one, it is actually the same as bar-ball problem with m
bars and n balls. To see the fourth one, it is index shift; namely,

zm

(1− z)m+1
= zm

∑
n≥0

(
n+m

m

)
zn =

∑
n≥0

(
n+m

m

)
zn+m =

∑
n≥0

(
n

m

)
zn.

Fifth one is also trivial and the last one is from calculus.

For example,

Claim 2.2.5.

F (z) =
∑
n≥0

(
2n

n

)
zn.

Proof. Let fn =
(
2n
n

)
. Then,

fn =
2n(2n− 1)

n2

(
2n− 2

n− 1

)
=

4n− 2)

n
fn−1.

Thus,
nfn = 4nfn−1 − 2fn−1.
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Let F (z) =
∑
fnz

n. Then,

F ′(z) = (
∑

fnz
n)′ =

∑
nfnz

n−1.

Thus, by multiplying zn−1 for both sides, we get

nfnz
n−1 = 4nfn−1z

n−1 − 2fn−1z
n−1

Now note that
(zF (z))′ = (

∑
fnz

n+1)′ =
∑

(n+ 1)fnz
n =

∑
nfn−1z

n−1

Thus,
F ′(z) = 4(zF (z))′ − 2F (z) = 4zF ′(z) + 2F (z).

By ODE calculation,
F ′

F
=

2

1− 4z
=⇒ logF = −1

2
log(1− 4z) + C.

For c, we have initial value for z = 0, since F (0) = 1. Thus, C = 0. Therefore,

F (z) =
1√

1− 4z
=
∑
n≥0

(
2n

n

)
zn.

Also check that
1√

1− 4z
=
∑
n≥0

(
− 1

2

n

)
(−4z)n.

To see this, note that (
1/2

n

)
= (−1)n

1 · 3 · · · (2n− 1)

n!2n

Thus, (
− 1

2

n

)
(−4z)n =

1 · 3 · · · (2n− 1)2n

n!
=

(
2n

n

)
since (

2n

n

)
=

(2n(2n− 2) · · · 2) ((2n− 1) · · · 3 · 1)

n!n!
=

1 · 3 · · · (2n− 1)2n

n!
.

Corollary 2.2.6.
n∑
k=0

(
2k

k

)(
2(n− k)

n− k

)
= 4n

Proof. Each coefficient of F 2 is

F 2 =
1

1− 4z
=
∑
n≥0

4nzn,

now apply convolution on F 2, done.

Theorem 2.2.7 (Binomial Inverse).

an =
∑
k≥0

(
n

k

)
bk ⇐⇒ bn =

∑
k≥0

(−1)n−k
(
n

k

)
ak.
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Proof. Let Â, B̂ are exponential series such that

B̂ = Âez.

Then, from ez =
∑∞
n=0

zn

n! and convolution,

bn
n!

=

n∑
k=0

1

(n− k)!

ak
k!
⇐⇒ bn =

n∑
k=0

(
n

k

)
ak.

Also, this holds if and only if B̂e−z = Â, and we know

an
n!

=

n∑
k=0

(−1)n−k

(n− k)!

bk
k!
⇐⇒ an =

n∑
k=0

(−1)n−k
(
n

k

)
bk.

Also,

Proposition 2.2.8 (Inversion formula from Stirling).

an =
∑
k

Sn,kbk ⇐⇒ bn =
∑
k

(−1)n−ksn,k

where Sn,k is the Stirling number of second kind (which count the number of ways to partition a set of n
elements into k nonempty subsets) and sn,k is the Stirling numbers of the first kind (which count the number
of permutations of n elements with k disjoint cycles).

Proof. We already prove that

xn =
∑
k

Sn,kx
k and xn =

∑
k

(−1)n−ksn,kx
k.

And {xn}n≥0, {xk}k≥0 are two bases of the polynomial. Hence, if we let A = (Sn,k)nk, B = (sn,k)nk, then
A,B are linear endomorphism of the vector space of polynomial which are inverse, i.e., AB = I. (Note
that this infinite matrix and its product is well-defined since for each element of product, only finitely many
nonzero terms occur.)

Actually, this proof can be done for any two polynomial sequences which are bases of polynomial. Below
are examples;

(1) Recall

xm =
∑
k≥0

k!Sm,kx
k =

∑
k≥0

k!Sm,k

(
x

k

)
.

Replace x by n,

nm :=

m∑
k=0

k!Sm,k

(
n

k

)
Now let an = nm, bk = k!Sm,k.

You can make m = n since even if k is big enough, then Sm,k or
(
n
k

)
will be zero. So

nn =

n∑
k=0

k!Sm,k

(
n

k

)
.

Thus,

bn = n!Sn,n =

n∑
k=0

(−1)n−k
(
n

k

)
kn.

where last inequality comes from the formular.

Sn,k =
1

k!

k∑
j=0

(−1)k−j
(
n

j

)
jk
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(2) f(x) is polynomial of degree n. {xk}∞k=0 is also a basis.

f(x) =

n∑
k=0

akx
k

where an 6= 0 since deg(f) = n. Let x = n.

f(n) =

n∑
k=0

(
n

k

)
k!ak ⇐⇒ n!an =

∑
k≥0

(−1)n−k
(
n

k

)
f(k).

by binomial Inversion.

If deg f < n =⇒ an = 0. So
∑
k(−1)n−k

(
n
k

)
f(k) = 0. Similarly, f(x+ 1), f(x+ 2), · · · all have degree

< n. which implies ∑
k

(−1)n−k
(
n

k

)
f(x+ k) = 0.

(To see this, just apply binomial inversion for f(x+n) =
∑n
k=0

(
n
k

)
k!a′kx

k. Note that such a′ks exist since
{xk} is a basis.) Let ∆ difference operator

∆f(k) := f(x+ 1)− f(x) = (E − I)f(x).

where E(f(x)) = f(x+ 1). Note that E is linear; just check.

Claim 2.2.9. deg(f) < n ⇐⇒ ∆nf = 0.

Proof.

∆n(f) = (E − I)n(f) =
∑
k

(−1)n−k
(
n

k

)
Ekf =

∑
k

(−1)n−k
(
n

k

)
f(x+ k) = 0.

Thus deg(f) < n =⇒ ∆n(f) = 0 by above argument. Convesely, if ∆n(f) = 0 for all x, then each
f(x+ n) has degree less than n, which implies f(x) has degree less than n, by inversion.

(3) Evaluation.
n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)
= X

It is related with Vandermonde. However, in this time, we use

n!an =
∑
k

(−1)n−k
(
n

k

)
f(k).

Let

f(k) :=

(
n+ k

n

)
=⇒ f(x) :=

(
x+ n

n

)
.

Note that this also can be represented using basis {xk},i.e.,

f(x) =
∑
k≥0

akx
k.

Then, by above formular, ∑
k

(−1)k
(
n

k

)
f(k) = (−1)nn!an.

Since f(x) =
∑
k≥0 akx

k, and
(
x+n
n

)
has leading term 1/n!,

an =
1

n!
.

This implies

(−1)n =

n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)
.
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2.3 Probabilistic Generating Function

Let

• Ω be a probability space

• X : Ω→ N be a random (discrete) variable.

• pn : Pr(X = n), the probability that X takes the value n, where pn ∈ [0, 1]/, i.e.,

pn = Pr(X = n) =
# structure with x = n

—total structure—

Definition 2.3.1. the probability generating function is denoted by PX(z), and defined as

PX(z) :=
∑
n≥0

pnz
n,

where PX(1) = 1. And the expected value of X is

EX :=
∑
n≥0

nPn = P ′X(1).

And the variance of X is
V arX = P ′′X(1) + P ′X(1)− (P ′X(1))2.

Example 2.3.2. Ω = Sn, let X = inv(π) for π ∈ Sn. Then,

PX(z) =
∑

n ≥ 0pnz
n

and pk = Pr(inv(π) = k) =
In,k
n! where In,k = #{π ∈ Sn : inv(π) = k}. Thus,

PX(z) =
∑

n ≥ 0pnz
n =

1

n!

∑
k≥0

In,kz
k =

1

n!

∑
π∈Sn

zinv(π) =
1

n!

n∏
i=1

(1 + z + · · ·+ zi−1).

whee last equality comes from Mahonian Statistics. (See inversion part.)

EX = P ′X(1) =
1

n!

(
n∏
i=1

(1 + z + · · ·+ zi−1)

)′∣∣∣∣∣
z=1

==

n∑
i=1

i− 1

2
=

1

2

(
n

2

)
.

Actually,

P ′X(z) =

n∑
i=1

 n∏
j 6=i

1 + z + · · ·+ zj−1

j

(1 + 2z + · · ·+ (i− 1)zi−2

i

)

P ′′X(z) =

n∑
i=1

 n∏
j 6=i

1 + z + · · ·+ zj−1

j

′(1 + 2z + · · ·+ (i− 1)zi−2

i

)

+

n∑
i=1

 n∏
j 6=i

1 + z + · · ·+ zj−1

j

(1 + 2z + · · ·+ (i− 1)zi−2

i

)′

and by letting z = 1, we get
(∏n

j 6=i
1+z+···+zj−1

j

)
= 1, and

(
1+2z+···+(i−1)zi−2

i

)
= 1

i

∑i−1
j=1 j = i−1

2 , thus

P ′′X(z)|z=1 =

n∑
i=1

i− 1

2

 n∏
j 6=i

1 + z + · · ·+ zj−1

j

′ + n∑
i=1

(
1 + 2z + · · ·+ (i− 1)zi−2

i

)′
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And  n∏
j 6=i

1 + z + · · ·+ zj−1

j

′ =

n∑
j 6=i

 n∏
k 6=i,j

1 + z + · · ·+ zk−1

k

(1 + 2z + · · ·+ (j − 1)zj−2

j

)

by letting z = 1, we get n∏
j 6=i

1 + z + · · ·+ zj−1

j

′∣∣∣∣∣∣
z=1

=

n∑
j 6=i

1 · j − 1

2
=

1

2

(
n

2

)
− i− 1

2
.

Thus

P ′′X(z)|z=1 =

n∑
i=1

i− 1

2
·
(

1

2

(
n

2

)
− i− 1

2

)
+

n∑
i=1

(
1 + 2z + · · ·+ (i− 1)zi−2

i

)′
and first term is just

n∑
i=1

i− 1

2
·
(

1

2

(
n

2

)
− i− 1

2

)
=
n(n− 1)

8

n∑
i=1

(i− 1)−
n∑
i=1

(i− 1)2

4
=
n2(n− 1)2

16
− n(2n2 − 3n+ 1)

24

hence

P ′′X(z)|z=1 =
n2(n− 1)2

16
− n(2n2 − 3n+ 1)

24
+

n∑
i=1

(
1 + 2z + · · ·+ (i− 1)zi−2

i

)′
And

n∑
i=1

(
1 + 2z + · · ·+ (i− 1)zi−2

i

)′∣∣∣∣∣
z=1

=

n∑
i=1

1 · 2 + 2 · 3 + · · ·+ (i− 2)(i− 1)

i
=

n∑
i=1

1

i

i−2∑
j=1

j(j + 1)

=

n∑
i=1

1

i

(
(i− 2)(i− 1)(2i− 3)

6
+

(i− 2)(i− 1)

2

)

=

n∑
i=1

(i− 1)(i− 2)

2i

(
(2i− 3)

3
+ 1

)
=

n∑
i=1

(i− 1)(i− 2)

3

=
1

3

(
n(n+ 1)(2n+ 1)

6
− 3

n(n+ 1)

2
+ 2n

)
=
n

9
(n2 − 3n+ 2).

Thus,

P ′′X(z)|z=1 =
n2(n− 1)2

16
− n(2n2 − 3n+ 1)

24
+
n

9
(n2 − 3n+ 2)

=
n(9n3 − 14n2 − 21n+ 26)

144

Thus variance is

V arX = P ′′X(1) + P ′X(1)− (P ′X(1))2 =
(n− 1)n(2n− 5)

72
.

Remark 2.3.3. EX can be computed easier. Let xij =

{
1 if i, j form inversion

0 o.w.
, and

X =

n∑
i<j

xij .
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For example, if n = 2, then,

EX =
∑

i < jE(xij) = Ex12 = 1 · Pr(21) + 0 · Pr(12) =
1

2

For general n,

EX =
1

2

(
n

2

)
by choosing 2 numbers then there are two possible way of arranging and only one arrange gives inversion.

Now think about lattice walk. Suppose we walk on Z. Let W denotes walk. Start at 0 at t = 0, and each
time go left or right with evenly distributed probability, i.e.,

Pr(Lef) = Pr(Right) = 1/2.

Basic problem is
What is Pr(W reaches m or −m)?

where m ∈ P = N \ {0}. Now make a condition on W hits ±m, such as, How many steps (X) does it need?
The answer is

Pr( W eaches m or −m.) = 1.

To see this we need some setting. Let G
(m)
n be the number of walks reach ±m for the first time at time n.

Then let
G(m)(z) =

∑
n≥0

G(m)
n zn.

Note that X is the number of steps used to hit ±m, so

Pr(X = n) =
G

(m)
n

2n

since each walks in G(m) has probability 2n. Thus,

PX(z) =
∑
n≥0

Pr(X = n)zn = G(m)(
z

2
).

Thus we get

1. PX(1) = G(m)(1/2)

2. EX = P ′X(1) = 1
2G

(m)(z/2)′|z= 1
2

= 1
2G

(m)(1/2)′.

Hence it suffices to find G(m)(z). Let E
(m)
n be the number of positive walk from 0 to 0 in n step, i.e., return

to the 0 for the first time at n step, not reaching m. So walk counted by E
(m)
n has always positive in the

middle. Then, for any walk reaching m we can decompose it as last partial walk from 0 to m which contains

all positive walk in the middle, and other walks from 0 to 0. Now let Ẽ
(m)
n be the number of positive walk

from 0 to 0 in n steps not reaching m. Note that their difference is E
(m)
n cannot touch 0 in the middle but

Ẽ
(m)
n does. Then,

Ẽ(m)
n =

∑
k≥0

E
(m)
k Ẽ

(m)
n−k

Thus, using convolution we can conclude that

Ẽ(m)(z) = E(m)(z)Ẽ(m)(z) + 1 =⇒ Ẽ(m)(z) =
1

1− E(m)(z)
. (2)

with the initial condition E
(m)
0 = 0, Ẽ

(m)
0 (Or you can think that actually, if we set whole structure A(z) :=

Ẽ
(m)
n , then it can be decomposed each walks following B(z) := E

(m)
n . Hence,

A(z) = 1 +B(z) +B(z)2 + · · ·
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where B(z)k stands for in case of partitioning the walk with k part following E
(m)
∗ , which implies A(z) is

the composition of 1/(1− x) and B(z), so we get the above equality.

Also we claim E
(m)
n = Ẽ

(m−1)
n−2 . Why? If we remove first two step of any walk counted by E

(m)
n , then it

gives a walk counted by Ẽ
(m−1)
n−2 . This gives

E(m)(z) = z2Ẽ(m−1) (3)

Now by applying (2), we get

E(m)(z) = z2Ẽ(m−1) =
z2

1− E(m−1)(z)
, E(1)(z) = 0.

Now set Am = E(m)(1/2). Then, Am = 1
4(1−Am−1)

, A1 = 0, and induction on m yields

Am =
m− 1

2m
, (m ≥ 1).

Thus, if we let Bm = E(m)(1/2)′, then using above two equations, we get

Bm =
2(m2 − 1)

3m
, (m ≥ 1).

Now let F
(m)
n be the number of positive walk from 0, and hitting m for the first time at time n. Then,

F
(m)
0 = 0, and

F (m)
n =

n∑
k=1

E
(m)
k F

(m)
n−k + F

(m−1)
n−1

where first term denotes the case when walk come back to 0 at k-step, and the last one denotes the case
when a walk hits m without touching 0 in the middle of steps. Thus, from the convolution, we get

F (m)(z) = E(m)F (m)(z) + zF (m−1).

Hence, by putting z = 1
2 , you can get

F (m)(1/2) =
1

m+ 1
, F (m)(1/2)′ =

2m(m+ 2)

3(m+ 1)
.

Remark 2.3.4. Also, how can you get such an induction?

Proof. This is called Ricatti recurrence; I will give just way of general exact form. If the recurrence has a
form

xn+1 =
axn + b

cxn + d

then let yn = cxn + d, so we can turn this equation into

yn+1 = α+
β

yn

and by letting yn := wn+1

wn
we get

wn+2 − αwn+1 + βwn = 0.

And we can solve this recurrence relation using characteristic equation, so done.

Thus, we can calculate G(m)(1/2) using above information. Let G
(m)
+,n is the number of walks counted by

G
(m)
n having positive first step. Then, these walks can be divided by two cases; One case is that it come

back to origin. It can be counted by E(m)(z)G(m)(z). The other case is not coming back to 0, in this case
we can count it using zF (m−1)(z). Hence,

G
(m)
+ (z) = E(m)(z)G(m)(z) + zF (m−1)(z)
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And by symmetry,
G(m)(z) = 2E(m)G(m) + 2zF (m−1)

Hence,

G(m)(z) =
2zF (m−1)(z)

1− 2E(m)(z)
,

and G
(m)
0 = 0. Thus,

G(m)(1/2) = 1

and

EX =
1

2
G(m)(1/2)′ = m2.

These are easy calculation if we get above inductions. The problem is how to get such formular for above.

3 Generating Function

Ordinary one is

F (x) =
∑
n≥0

fnx
n.

For example, let k be an integer ≥ 1. Let hn be the number of integer solution of x1 + · · ·+ xk = n. Then,
since it is just bar-ball problem, we know

hn =

(
n+ k − 1

n

)
=

((
k

n

))
.

So, its generating function is

Hk(x) =
∑
n≥0

(
n+ k − 1

n

)
xn =

1

(1− x)k

where last inequality comes from notes on useful identities. If we see the combinatorial meaning of Hk(x),
then

Hk(x) =
∑
n≥0

hnx
n =

∑
n≥0


∑

(x1,··· ,xk)∑
i xi=n
xi∈N

1

xn =
∑

(x1,··· ,xk)
xi∈N

xx1+···+xk =

k∏
i=1

(∑
xi∈N

xxi

)
=

1

(1− x)k
.

Similarly, fix k. Then, let an be the number of integer solution of x1+· · ·+xk = n where x1 ∈ S1, · · · , xk ∈ Sk
and each Si is a subset of N. Then by the same argument above,

Ak(x) =

k∏
i=1

( ∑
xi∈Si

xxi

)
.

Let bn be the number of non-negative integer solution of

3x1 + 4x2 + 2x3 + 5x4 = n.

Then let yi = cixi where ci denotes coefficient of each term in the above equation, then it turns out to be
counting integer solution of y1 + · · ·+ y4 = n such that yi ∈ ciN. Hence,

B(x) =
∑
n≥0

bnx
n =

1

1− x3
· 1

1− x4
· 1

1− x2
· 1

1− x5

Also, we can calculate the generating function with linear recurrence of degree k with constant coefficient.
(Homogeneous case).
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Example 3.0.1. Consider {an}∞n=0 satisfies

an = 5an−1 − 6an−2

with a0 = 1, a2 = −2.

Usual way of solving recurrence relation is

• Step 1: Find the characteristic equation, in this case, q2 = 5q − 6.

• Step 2: Find the roots of the equation. In this case, q = 2, 3.

• Step 3: Find general solution of the Recurrence relation; if you study ordinary difference equation,
then its solution is

an = c12n + c23n, c1, c2 ∈ R

• Step 4: Find c1, c2 with a0 = 1, a1 = −2. Using this information, you can get

c1 + c2 = 1, 2c1 + 3c2 = −2 =⇒ c1 = 5, c2 = −4.

Hence,
an = 5 · 2n − 4 · 3n.

However, if we think about its generating function A(x) =
∑
i≥0 aix

i,

A(x) = a0 + a1x+
∑
n≥2

anx
n = 1− 2x+

∑
n≥2

anx
n

From the recurrence relation,

A(x) = 1− 2x+
∑
n≥0

5an−1 − 6an−2)xn

= 1− 2x+ 5x

∑
n≥1

anx
n

− 6x2

∑
n≥0

anx
n


= 1− 2x+ 5x(A(x)− 1)− 6x2A(x)

implies

A(x) =
1− 7x

1− 5x+ 6x2
=

5

1− 2x
− 4

1− 3x
= 5

∑
n≥0

2nxn − 4
∑
n≥0

3nxn =
∑
n≥0

(5 · 2n − 4 · 3b)xn

which gives the same result.
In general, given recurrence relation

an = r1an−1 + · · ·+ rkan−k

with initial values, we get

A(x) = a0 + a1x+ · · ·+ ak−1x
k−1 +

∑
n≥k

anx
n

so by applying the recurrence relation on the sum, we can get

A(x) =
P (x)

Q(x)

and using partial fraction, we can get the general solution of the recurrence relation.

Theorem 3.0.2 (Theorem 3.1 in [Aig07] p.95). The followings ar equivalent.
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1. {hn}∞n=0 a solution of a linear recurrence relation of degree k with constant coefficient.

2. H(x), the ordinary generating function of hn, has a form H(x) = R(x)
Q(x) where R(x), Q(x) are polynomial

and degR < degQ = k

3.

H(x) =

l∑
i=1

Pi(x)

(1− αix)di

where deg(Pi) < di and
∑l
i=1 di = k

4. hn =
∑k
i=1 Pi(n)αni , where Pi(n) is a polynomial of n with degree less than di.

Proof. From 1 to 2 is just showed over. From 2 to 3 is just partial fraction. From 3 to 4 is just calculating
the fractions as formal power series, and from 4 to 1 is just definition of recurrence relation, done.

Example 3.0.3. Write (
√

2 +
√

3)1980 in decimal form. What is the last digit before and the 1st digit after
decimal point?

The idea of solving this example is that we can see (·)n as a solution of the recurrence relation. Also, we
can use (5 + 2

√
6)990 instaed of

√
2 +
√

3. The reason of change is to get integer coefficient on the recurrence
relation.

So consider

hn :=
(

5 + 2
√

6
)n

+
(

5− 2
√

6
)n

and let α1 = 5 + 2
√

6, α2 = 5− 2
√

6. This should be a solution of some quadratic equation, and we can get
the quadratic equation using Vieta’s formula. (Or in usual word, using the relationship between coefficients
of a polynomial and zeros of the polynomial.)

α1 + α2 = 10, α1α2 = 1 =⇒ q2 − 10q + 1 = 0.

So
hn = 10hn−1 − hn−2.

Thus, by letting n = 0 and 1 on the equation hn :=
(
5 + 2

√
6
)n

+
(
5− 2

√
6
)n

, we get

h0 = 2, h1 = 10.

Note that

0 < α2 = 5− 2
√

6 =
√

25−
√

24 <
1

2
.

Thus, αn2 → 0 as n→∞. Therefore, αn1 = hn−(tiny number), thus, since n is integer, then α1 = ∗.9 ∗ ∗ ∗ · · ·
for sufficiently large n. Thus if we know hn’s last digit, then since hn is integer, we are done. So let y be
the last digit of h990 − 1. Then yb mod 10,

hn ∼= −hn−2 mod 10

it gives sequence 2, 8, 2, 8, · · · thus
h990 ∼= 8 mod 10

which gives the last digit y = 7.

Example 3.0.4 (Catalan Number). Let C0 = 1, cn+1 = C0Cn +C1Cn−1 + · · ·+CnC0 =
∑n
i=0 CiCn−i. So,

1, 1, 2, 5, 14, 42, 132, 429, · · ·

we call this sequence as Catalan Number.
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Its combinatorial meaning can be found on the triangulartion of (n+ 2)polygon. For example, if n = 3,
think about the 5-gon, say P with vertices {0, 1, 2, 3, 4}. Then it has five triangulation, where

P ∪ {02, 03}, P ∪ {13, 14}, P ∪ {02, 04}, P ∪ {13, 03}, P ∪ {14, 24}.

Thus it has C3 = 5 triangulation. To see this for n, thinking about the triangulation of (n + 2)-gon with
triangle 0, k + 1, n+ 2.

n− k + 1 gonk + 2 gon

k + 1

0 n+ 2

Then the left remaining part is (k + 2)-gon and the right remaining part is (n − k + 2)-gon (note that the
number of elements from 0 to k+ 1 is k+ 2, and that of from k+ 1(−k+ 1) to n+ 2− (k+ 1) is n− k+ 2.),
thus, the triangulation containing triangle of 0, k + 1, n+ 2 is Ck · Cn−k. And k can permute {1, 2, · · · , n}.
Thus,

C0Cn + · · ·+ CnC0 = Cn

triangulations are possible.
Let C(z) be the ordinary generating function of Ck. Then,

C(z) =

∞∑
k=0

Ckz
k = 1 +

∞∑
k=1

Ckz
k = 1 +

∑
k≥0

k−1∑
i=0

CiCk−i−1z
k = 1 + z

∑
k≥0

k∑
i=0

CiCk−iz
k = 1 + zC2(z).

where the last equality comes from the convolution, C(z)C(z). Hence, C(z) is a solution of y = 1 + zy2.
Since

y =
1±
√

1− 4z

2z

and since C(0) = 1, we should choose limz→0 y = 1, which is

C(z) = y =
1−
√

1− 4z

2z
.

Numerically,

(1−4z)1/2 =
∑
n≥0

(
1/2

n

)
(−4z)n = 1+

∑
n≥1

1

2n

(
− 1

2

n− 1

)
(−4)nzn = 1−2

∑
n≥1

1

n

(
2n− 2

n− 1

)
zn = 1−2

∑
n≥0

1

n+ 1

(
2n

n

)
zn+1.

Thus,

1− (1− 4z)1/2 = 2z
∑
n≥0

1

n+ 1

(
2n

n

)
zn.

Hence,

C(z) =
1− (1− 4z)1/2

2z
=
∑
n≥0

1

n+ 1

(
2n

n

)
zn

which implies

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
− n

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
.
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3.1 Evaluating sums

1. Let A(x) =
∑
k≥0 akx

k. Let

sn =

n∑
k=0

ak

Then, for bi = 1 for all i,

S(x) =
∑
n≥0

(
n∑
k=0

akbn−k

)
xn = A(x)B(x) =

A(x)

1− x

since B(x) =
∑
n≥0 x

n = 1
1−x .

2. Let Sn =
∑n
k=0

(
2k
k

)
4−k, Then,

4nSn =

n∑
k=0

(
2k

k

)
4n−k

so using convolution,

∑
n≥0

4nSnx
n =

∑
k≥0

(
2k

k

)
xk

∑
k≥0

4kxk

 = (1− 4x)−1/2
1

1− 4x
= (1− 4x)

3
2

where the second equality comes from the note of Useful Identities. Thus,

4nsn =

(
−3/2

n

)
(−4)n = (2n+ 1)

(
2n

n

)
.

3. Let sn =
∑n
k=1(−1)k−1k

(
n
k

)
rn−k. By letting ak = (−1)k−1k, bn−k = rn−k,

sn =

n∑
k=0

(
n

k

)
akbn−k

since k = 0 =⇒ a0 = 0. Thus,

∑
n≥0

sn
xn

n!
=

∑
k≥0

ak
xk

k!

∑
k≥0

bk
xk

k!


=

∑
k≥0

(−1)k−1k
xk

k!

∑
k≥0

rk
xk

k!


= xe−x · erx = xe(r−1)x.

Thus, sn = n(r − 1)n−1.

4. “External approach.” Let sn =
∑n
k=0 something. Then,∑

n≥0

snx
n =

∑
n≥0

xn
∑
k≥0

something =
∑
k≥0

∑
n≥0

something · xn.

5. sn =
∑n
k=bn2 c

(
k

n−k
)
. Then the binomial coefficient is nonzero iff k > n − k and 2k ≥ n. Thus

sn =
∑
k≥0

(
k

n−k
)
. Then,

F (x) =
∑
n≥0

snx
n =

∑
n≥0

∑
k≥0

(
k

n− k

)
xn =

∑
k≥0

xk
∑
n≥0

(
k

n− k

)
xn−k =

∑
k≥0

xk
∑
j≥0

(
k

j

)
xj
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since j = n− k. But this j visits 0, 1, · · · , k, we can apply the binomial theorem; so

F (x) =
∑
k≥0

xk(1 + x)k =
1

1− x(1 + x)

Note that 1− x− x2 is the characteristic equation of sn+1 = sn + sn−1. Thus, from s0 = 1, s1 = 1, we
can conclude that

sn = Fn−1

where Fn is the Fibonacci sequence.

6. Some tricks using convolution. Let

sn =
∑
k≥0

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

(k + 1)
.

Let

S(x) =
∑
n≥0

snx
n =

∑
n≥0

xn
∑
k≥0

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

(k + 1)

=
∑
k≥0

(
2k

k

)
(−1)k

(k + 1)

∑
n≥0

(
n+ k

m+ 2k

)
xn

Note that ∑
n≥0

(
n+ k

m+ 2k

)
xn = x−k

∑
n≥0

(
n+ k

A

)
xn+k,

where A = m+ 2k. Thus by the useful identity 5,∑
n≥0

(
n+ k

m+ 2k

)
xn = x−k

∑
n≥0

(
n+ k

A

)
xn+k = x−k

xA

(1− x)A+1
.

Thus,

S(x) =
∑
k≥0

(
2k

k

)
(−1)k

(k + 1)

∑
n≥0

(
n+ k

m+ 2k

)
xn

=
∑
k≥0

(
2k

k

)
(−1)k

k + 1
x−k

xm+2k

(1− x)m+2k+1

=
xm

(1− x)m+1

∑
k≥0

(−1)k
1

k + 1

(
2k

k

)
xk

(1− x)2k

=
xm

(1− x)m+1

∑
k≥0

1

k + 1

(
2k

k

)(
− x

(1− x)2

)k

And we know that ∑
k≥0

1

k + 1

(
2k

k

)
zk = C(z)

the generating function of Catalan Series. Hence, from C(z) = 1−
√
1−4z
2z , we can get

C(− x

(1− x)2
) =

1− 1+x
1−x

−2x
(1−x)2

= (1− x),
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thus

S(x) =
xm

(1− x)m+1
C

(
− x

(1− x)2

)
=

(
x

1− x

)m
.

Thus,

sn = [xn]S(x) = [xn−m]
1

(1− x)m
=

(
n− 1

m− 1

)
.

from the useful identity 3.

7. “Exponential Convolution” Note that

hn =

n∑
k=0

(
n

k

)
fkgn−k ⇐⇒

∑
n≥0

hn
xn

n!
=

∑
n≥0

fn
xn

n!

∑
n≥0

gn
xn

n!

 .

For example, let σ ∈ Sn, then derangement of σ = σ1 · · ·σn is element in σ such that σi 6= i,∀i. So
any permutation is disjoint union of fixed part and derangement part. For example,

σ = 3214763,

derangement part is 32175 (position: 12357) and fixed part is 46. So, if we let dn be the number of
derangement in permutation, then

n∑
k=0

(
n

k

)
dk = n!

Thus, by convolution with bn−k = 1, ak = dk we can get

Ea(x)Eb(x) =
∑
n≥0

n!
xn

n!

and Eb(x) = ex. Hence,

Ea(x) =
e−x

1− x
.

where Ea(x) denotes the exponential generating function of an.

In general, if h-structure on set is the disjoint union of a set with f -structure and the other with g-structure,
then

Eh(x) = Ef (x)Eg(x).

If g = f , for example, f = g is the number of complete graph, i.e., f0 = 0, fn = 1? In this case, we should
remove repeated counting case, where f(S)g(T ) and f(T )g(S) for any partition {S, T} of [n]

hn =
∑

StT=[n]

f(S)f(T ) =
1

2

∑
StT=[n]

f(S)f(T ) =
1

2
(Ef )2.

Thus, if h is disjoint k-union with the same f -structure, then

Eh(x) =
1

k!
(Ef )k.

For example, Sn,k is the number of partitions of [n] into k blocks. So,

∑
n≥0

Sn,k
xn

n!
=

1

k!

−1 +
∑
n≥0

xn

n!

k

=
(ex − 1)k

k!

since underlying f structure is just nonempty set, i.e. fn = 1 if n > 0, f0 = 0.
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Theorem 3.1.1 (Compositional Formula). Let hn counts the partition of [n] into kblocks, and put f -structure
on each blocks, and put a g-structure on blocks themselves. Then,

hn =
∑
k≥1

gk
∑

{B1,··· ,Bk}πP (n,k)

f(|B1|) · · · f(|Bk|)

Hence, if h0 = 1, f0 = 0,
Eh = Eg(Ef (x)).

Proof. For fixed k, we have gk · 1
k! (Ef )k structure. So,

∑
n≥0

hn
xn

n!
=
∑
n≥0

∑
k≥1

gk
∑

{B1,··· ,Bk}πP (n,k)

f(|B1|) · · · f(|Bk|)xn =
∑
n≥0

∑
k≥1

gk
Ekf
k!

= Eg(Ef (x))

where second equality comes from the trick that distributing xn to each x|B1|, · · · , x|Bn| and use the above
formular on k.

There are some special cases.

• If gk = 1 for all k, then it is just exponential composition formular, i.e.,

Eh = eEf .

• if gk = tk, then

hn =
∑

π∈P (n)

t|#blocks|
|#blocks|∏
i=1

f(|Bi|) =
∑

h-structure on [n]

t#components

Thus,

Eh(x) =
∑

h-structure on [n]

t#componentsx#elements/ (#elements)!

and the composition formular gives
Eh(x) = etEf (x)

since etx =
∑
k≥0(tx)k. From this, we can get

∑
n≥0,k≥0

patition on n with k blocks

xntk

n!
= et(e

x−1).

using the composition formular, with Ef (x) is just (nonempty) structure for each k block. Similarly,∑
n≥0

B(n)
xn

n!
= ee

x−1

where B(n) is the Bell number, the number of partition of n with any disjoint sets. This also can be
derived from giving h structure, i.e., disjoint k sets and giving f -structure, just (nonempty).

• Let hn be the number of decomposition of [n] into nonempty blocks then linearly order each block.
Then the f -structure is fn = n! or f0 = 0. gn = 1, g0 = 0, since the block has only (nonempty)
structure. Thus,

Eh(x) = e
∑
n≥1 n!

xn

n! = e
x

1−x .
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• Let hn be the number of graphs on [n], i.e., e(
n
2). Then, let fn is the number of connected graph on

[n]. Then, by setting gn = 1, g0 = 0 (since a graph consisting of forests of connected graphs, so no
additional structure on connected components themselves.) Then,

Eh(x) = eEf (x).

Hence,

Ef (x) = logEh(x) = log

1 +
∑
n≥1

2(n2)x
n

n!


• Let hn be the number of decomposition of [n] into nonempty blocks then cyclic order each block. Then

the f -structure is fn = (n − 1)! or f0 = 0. gn = 1, g0 = 0, since the block has only (nonempty)
structure. Thus,

Eh(x) = e
∑
n≥1(n−1)!

xn

n! = e
∑
n≥1

xn

n = e− log(1−x) =
1

1− x
.

where the last equality comes from the useful identity 9.

Theorem 3.1.2 (Theorem 3.5 in [Aig07]: A permutation version of the compositional formula). Let f, g, h
be defined by

h(|X|) =
∑

σ∈S|X|

g(k)f(|C1|) · · · f(|Cn|)

with h0 = g(0), where C1, · · · , Cn are cycle of σ. Then, Eh(x) = Eg

(∑
n≥1 f(n)x

n

n

)
.

Proof. There are (j − 1)! ways of to make j-set into a cyclic permutation. Hence,

h(|X|) =
∑

{B1,··· ,Bk}∈
∏

(X)

g(k)(|B1| − 1)!f(|B1|) · · · (|Bn| − 1)!f(|Bn|)

thus by the compositional formula with new f ′n = (n− 1)!fn, we get

Eh(x) = Eg(
∑
n≥1

(n− 1)!fn
xn

n!
) = Eg

∑
n≥1

fn
xn

n



For example, let gk = 1 for all k, and fn = 1 only for n = 1, 2, then we are counting permutations with no
cycles of length greater than or equal to 3, in other words involutions, i.e., σ2 = e. Then,

Eh(x) = ex+x
2/2.

Proposition 3.1.3. Let S be a finite set. Given f, g : N→ K, define h1, · · · , h4 as follow;

1. h1(#S) = f(#S) + g(#S)

2. h2(#S) = #S · f(#S − 1)

3. h3(#S) = f(#S + 1)

4. h4(#S) = #Sf(#S)

Then,

1. Eh1
(x) = Ef + Eg

2. Eh2
(x) = xEf

3. Eh3
(x) = E′f
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4. Eh4(x) = xE′f

Proof. First one is trivial; it comes from the linearlity of the formal sum. For the second,∑
n≥0

hn
xn

n!
=
∑
n≥1

hn
xn

n!
=
∑
n≥1

fn−1
xn

(n− 1)!
= x

∑
n≥0

fn
xn

n!
= xEf (x).

where the fist equality comes from h2(0) = 0. Fo the third one,∑
n≥0

hn
xn

n!
=
∑
n≥0

fn+1
xn

n!
=
∑
n≥0

(fn+1
xn+1

(n+ 1)!
)′ = Ef (x)′

where the second equality comes from derivative of constant is zero. For the fourth one,∑
n≥0

hn
xn

n!
=
∑
n≥1

fn
xn

(n− 1)!
= x

∑
n≥1

fn
xn−1

(n− 1)!
= xEf (x)

where the last equality comes from (3).

3.2 Enumeration on trees

Tree has the labeled vertices V = [n], and a graph G = (V,E), where E ⊆
(
[n]
2

)
. Then tree is a connected

graph without cycle. For example,

5

2

1

6

4

3 7

1

2

3 2

1

3 1

3

2

above trees are all distinct tree. Let Tn = # trees on [n]. Note that T3 = 3, as seen above. Let rn = #
rooted trees on [n]. A rooted tree is a tree with a marked vertex, called root. For example,

1

2

3 2

1

3 1

3

2

those are example of rooted tree, where the root is black dots. Thus, for each tree, we can get three distinct
rooted tree. In general, for any tree with vertices n, we can get n distinct rooted tree by permuting root.
Hence,

rn = nTn.

Let fn = # rooted forests on [n]. A rooted forest is a graph without cycle and every connected component
is rooted tree. We claim that

fn = Tn+1.

To see this, note that for any forests with rooted tree, we can make tree with n + 1 vertices by adding 0
vertex and edges between root to 0. Also, we can get the rooted forest by deleting n + 1 labeled vertex.
(Note that labeling gives distinct tree even if their shape is the same, so this procedure is inverse to each
other.) Thus,

rn+1 = (n+ 1)Tn+1 = (n+ 1)fn.

Let y be the exponential generating function for rn, i.e.,

y =
∑
n≥1

rn
xn

n!
.
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and F (z) =
∑
n≥0 fn

zn

n! . Then,

zF (z) = z
∑
n≥0

fn
zn

n!
= z

∑
n≥0

rn+1
zn

(n+ 1)!
=
∑
n≥0

rn+1
zn+1

(n+ 1)!
= y.

Also, the number of rooted forests is just having disjoint unions and gives a rooted tree structures, hence by
the Exponential formular, (since blocks have no structure)

F (z) = ey.

Thus,
y = zey.

Let Pk(n) = # rooted forests on [n] with exactly k trees, i.e.,

fn =

n∑
k≥0

Pk(n).

Then, by the exponential formula, ∑
n≥0

Pk(n)
xn

n!
=

1

k!
yk

since it is just make partition of n into k blocks and gives rooted tree structure. Now fix a subset S ⊆ [n],
and let |S| =: k. Then,

PS(n) = # of rooted forest on [n] whose roots are exactly S.

So,
PS1(X) = PS2(X) ⇐⇒ |S1| = |S2|

Thus,

Pk(n) =

(
n

k

)
PS(n)

for |S| = k, S ⊆ [n].

Claim 3.2.1. PS(n) = knn−k−1.

Proof. If |S| = n, then Pn(n) = 1 = n · nn−n−1, so the equation holds. If |S| = 1, we know that Tn =
nn−2, rn = nn−1 using Prüfer code. Prüfer code is a bijection between rooted forests and [n]n−k−1 × S.

Prüfer code is an algorithm such that it sequentially remove the largest leave and write down its neighbor.
Then, for n vertices, with k trees, it remains n− k vertices, hence it write down neighbors n− k time. And
note that the last neighbor which the algorithm scribes is always in S So the possible number of Prüfer code
is knn−k−1, where k is the cardinality of S.

Bijectivity of the Prüfer code. The map from Prüfer code to rooted forest is injective, since if there is two
Prüfer code in the preimage, then the same rooted forests has the distinct neighborhood of leaves structure,
contradiction. Also, the other map is unique, since leaves-neighborhood structure of labeled tree is unique.

Corollary 3.2.2. Pk(n) =
(
n
k

)
knn−k−1 =

(
n−1
k−1
)
nn−k.

Hence,
Tn = P{1}(n) = nn−2, rn = nTn = nn−1, fn = Tn+1 = (n+ 1)n−1.

In a rooted forest, for any vertex v,

deg(v) = # children of v =

{
# edge incident to v if v is a root

# edge incident to v − 1 if v is not a root
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leaf is a vertex which is not a root and degree 0. So, for each rooted forests, we can represent it as ordered
degree sequence defined as below.

∆(F ) := (δ1, · · · , δn) where δi = deg(i),
∑
i

δi = n− k.

Theorem 3.2.3. For ∆ = (δ1, · · · , δn) where δi ≥ 0,
∑
i δi = n−k, let N(∆) be the number of rooted forests

on [n] whose ordered degree sequence is ∆. Then,

N(∆) =

(
n− 1

k − 1

)(
n− k

δ1, · · · , δn

)
.

Equivalently, ∑
F on [n]

x
deg(1)
1 · · ·xdeg(n)n =

(
n− 1

k − 1

)
(x1 + · · ·+ xn)n−k

where F is the rooted forests on [n].

Proof. LHS is

∑
(a1,··· ,an−k)′s
Prüfer code

=[n]n−k−1×S

xa1 · · ·xan−k =

 ∑
a1∈[n]

xa1

 · · ·
 ∑
an−1∈[n]

xan−1

(∑
an∈S

xan

)
= (x1 + · · ·+ xn)n−k−1

(∑
i∈S

xi

)

Summing over all S ∈
(
[n]
k

)
, we get

∑
F on [n]

F has k-components

x
deg(1)
1 · · ·xdeg(n)n = (x1 + · · ·+ xn)n−k−1

∑
|S|=k

∑
i∈S

xi

 .

where deg(l) is the number of children of vertex l ∈ [n]. Then, note that
(∑

|S|=k
∑
i∈S xi

)
=
(
n−1
k−1
)
(x1 +

· · ·xn). To see this, note that the way of choosing S with |S| = k with xi is
(
n−1
k−1
)
, since choose xi first and

choose the rest k− 1 elements from n− 1 elements. Since i was arbitrary, it gives the desired result. Hence,∑
F on [n]

F has k-components

x
deg(1)
1 · · ·xdeg(n)n = (x1 + · · ·+ xn)n−k

(
n− 1

k − 1

)
.

Now, given a rooted forest F , let
type(F ) := (r0, · · · )

where ri is the number of vertices of degree i,
∑
ri = n. For example, the forest F below

1

2

3

has type (2, 0, 1), and ∆(F ) = (0, 2, 0).

Claim 3.2.4. The number of forests with a given type (r0, r1, · · · ) is(
n

r0, · · · , rn

)(
n− 1

k − 1

)(
n− k

δ1, · · · , δn

)
where δ1, · · · , δn is any arrangement of r0 many 0 on ordered sequence ∆, r1 many 1 on ∆, etc. And this is
equivalent to (

n

r0, · · · , rn

)(
n− 1

k − 1

)
n− k

(0!)r0(1!)r1(2!)r2 · · ·
where k is given by

∑n
i=0 iri = n− k.
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Proof. Note that any arrangement of given type gives the same multinomials; i.e., if type is given by (2, 0, 1),
then there are three possible arrangement, (2, 0, 0), (0, 2, 0), (0, 0, 2) and all gives the same multinomial(

2
(0!)2(1!)0(2!)1

)
. Hence, done.

So, when k = 1, # of rooted trees of type r̄ = (r0, · · · , rn) is(
n

r0, · · · , rn

)
(n− 1)!

(0!)r0 · · · (n!)rn
.

3.3 Lagrange Inversion Formula

Laurent Powe series
f(x) =

∑
i≥n0

fix
i

Lemma 3.3.1. 1. [x−1]f ′(x) = 0

2. If f(x) is a formal power series with f0 = 0, f1 6= 0, then

[x−1]f(x)if ′(x) =

{
1 if i = −1

0 o.w.

Proof. First one is obvious since log x term is not included in f(x). To see the second one, note that

f if ′(x) =
1

i+ 1
(f i+1(x))′

Thus, if i 6= −1, then it is just another power series, so by the first result, it gives 0. If i = −1, then from
the assumption that f0 = 0, f1 6= 0, we can say f(x) = xg(x) for some g(x). This implies

1

f(x)
=

1

x
· 1

g0 + g1x+ · · ·
=

1

x
· 1

g0

(
1

1 + g1
g0
x+ · · ·

)
=

1

g0x

(
1− p+ p2 − p3 + · · ·

)
where p = g1

g0
x+ · · · , and use the geometric series for the last equality. Thus,

f ′(x)

f(x)
=
f1 + 2f2x+ 3f3x

3 + · · ·
f1x+ f2x2 + f3x3 + · · ·

=

(
f1 + 2f2x+ 3f3x

3 + · · ·
)

f1x
· 1

1 + f2
f1
x+ f3

f1
x2 + · · ·

=

(
f1 + 2f2x+ 3f3x

3 + · · ·
)

f1x

1

1 + p

=
1 + 2 f2f1x+ 3 f3f1x

2 + · · ·
x

(
1− p+ p2 − p3 + · · ·

)
So [x−1] f

′(x)
f(x) = 1, since other terms containing at least x except 1 in numerator.

Theorem 3.3.2 (Lagrange Inversion Formula). Let f(x) be a formal power series, with f0 = 0, f1 6= 0. Let
g(x) be the compositional inverse of f(x), i.e.,

g(f(x)) = f(g(x)) = x.

Then,

[xn]g(x) =
1

n
· [x−1](f(x))−n.

Proof. Let g(x) =
∑
bix

i. From g(f(x)) = x, we know that

x =
∑
i≥1

bif(x)i.
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By taking derivative, we get

1 =
∑
i≥1

ibif
i−1(x)f ′(x).

Now divide both sides by fn(x), so we can get

1

fn(x)
=
∑
i≥1

ibif
i−1−n(x)f ′(x).

Then,

[x−1]
1

fn(x)
=
∑
i≥1

ibi[x
−1]f i−1−n(x)f ′(x) = nbn = n[xn]g(x).

by the above lemma.

There exists an alternate form; let f(x) = x
φ(x) ⇐⇒ g(x) = xφ(g(x)). Then,

[xn]g(x) =
1

n
[xn−1]φn(x).

To see this, note that f(g(x)) = x = g(f(x)). Hence by the above theorem, we can get

[xn]g(x) =
1

n
· [x−1] (f(x))

−n
=

1

n
· [x−1]

φn(x)

xn
=

1

n
[xn−1]φn(x).

In the textbook, it says that if f(x) = xG(x) ⇐⇒ g(x) = x
G(g(x)) , then

[xn]g(x) =
1

n
[xn−1]G−n(x).

We can derive this just thinking [x−1] 1
fn(x) = [x−1]x−nG−n(x) = [xn−1]G−n(x).

Corollary 3.3.3 (Textbook version). Let F (z) = zG(F (z)), G(0) 6= 0, then

[xn]F (z) =
1

n
[zn−1]Gn(z).

We already show this using above theorem, but we can show it using combinatorial argument.

Proof. Assume

G(z) = g0 +
g1
1!
z +

g2
2!
z2 + · · · .

Then,

Gn(z) =
(
g0 +

g1
1!
z +

g2
2!
z2 + · · ·

)n
=

∑
r0,··· ,rn

(
n

r0, r1, · · · , rn

)
gr00

(g1
1!
z
)r1 (g2

2!
z2
)r2
· · ·
(gn
n!
zn
)rn

=
∑

r0,r1,··· ,rn

(
n

r0, r1, · · · , rn

)
gr00 · · · grnn

zr1+2r2+···+nrn

(0!)r0(1!)r1(2!)r2 · · · (n!)rn

Thus,

[zn−1]Gn(z) =
∑

r0,··· ,rn∑n
i=0 iri=n−1

(
n

r0, r1, · · · , rn

)
gr00 · · · grnn

1

(0!)r0(1!)r1(2!)r2 · · · (n!)rn
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Then if we just thinking type (r0, · · · , rn), then gr00 · · · grnn =
∏
i∈[n] gdeg(i), so

(n− 1)![zn−1]Gn(z) =
∑

r0,··· ,rn∑n
i=0 iri=n−1

(
n

r0, r1, · · · , rn

)
gr00 · · · grnn

(n− 1)!

(0!)r0(1!)r1(2!)r2 · · · (n!)rn

=
∑

T : rooted tree on n vertices

gr00 g
r1
1 · · · grnn

since
∑

r0,··· ,rn∑n
i=0 iri=n−1

(
n

r0,r1,··· ,rn

) (n−1)!
(0!)r0 (1!)r1 (2!)r2 ···(n!)rn counts the number of rooted trees on n vertices, and

gr00 g
r1
1 · · · grnn counts how many vertices with specific degree occurs. So we can think gr00 g

r1
1 · · · grnn as a degree

counter for each rooted tree T the summation visit.
Now, note that the desired equation

[xn]F (z) =
1

n
[zn−1]Gn(z)

is equivalent to say that for the representation F (z) =
∑
n≥1

fn
n! z

n,

fn
n!

=
1

n
· 1

(n− 1)!

∑
T : rooted tree on n vertices

gr00 g
r1
1 · · · grnn

which is equivalent to say that

fn =
∑

T : rooted tree on n vertices

gr00 g
r1
1 · · · grnn .

Thus, it suffices to show that if fn =
∑
T : rooted tree on n vertices g

r0
0 g

r1
1 · · · grnn , then y = Ef satisfy y = zG(y),

where Ef (z) =
∑
n≥1 fn

zn

n! . This is because such F satisfying the condition F (z) = zG(F (z)) is unique; to
see this, if H also satisfies the equation H(z) = zG(H(z)), then

(F −H)(z) = z(G(F (z))−G(H(z)) = z

∑
k≥1

gk(F (z)k −H(z)k)


and by comparing each coefficients of xk using induction, we can conclude F = H, thus done.

To see this, we need a combinatorial picture; suppose fn =
∑
T : rooted tree on n vertices g

r0
0 g

r1
1 · · · grnn . And

note that any rooted tree on [n+ 1] can be regarded as a rooted forest on [n] by deleting its root. So,

fn+1 = (n+ 1) ·
∑

T1∪···∪Tk on [n+1]\{root}

(
ḡT1 · · · ḡTk

)
· gk

which means, (n + 1) is just the number of ways of choosing a root, and the summation just permutes all
possible rooted tree with component k, where 1 ≤ k ≤ n, and then each component of the forest should
have particular degree counts ḡT = gr00 · · · grnn where (r0, · · · , rn) is type of the tree T , and the last gk term
counts the root. Thus,

fn+1

n+ 1
=

∑
T1∪···∪Tk on [n+1]\{root}

(
ḡT1 · · · ḡTk

)
· gk.

Also, if we let ḡk as sum of all ḡT with |T | = k, then ḡk = f|Tk|, so we can apply the compositional formular
(theorem 3.3 in [Aig07]) to get

fn+1

n+ 1
= [xn]G(F (z)).

(Note that this can be derived by representing the sum as a sum of partitions of [n+ 1] \ {k}.) Hence,

F (z) =
∑
n≥1

fn
zn

n!
= z

∑
n≥0

fn+1

n+ 1

zn

n!
= z

∑
n≥0

([xn]G(F (z)))
zn

n!
= zG(F (z))

as desired.
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Corollary 3.3.4 (Lagrange Inversion formula).

1. Suppose f(x) ∈ xC[[x]] and g(x) = f 〈−1〉(x), i.e., compositional inverse. Then,

[xn]g(x) =
1

n
[x−1]f−n(x)

[xn]gk(x) =
k

n
[x−k]f−n(x)

=
k

n
[x−1]xk−1f−n(x)

[xn]H(g(x)) = [xn]
H ′(x)

fn(x)
for any H.

2. Let f(x) = x
φ(x) where φ(x) ∈ C[[x]], φ(0) 6= 0, and let g(x) = xφ(g(x)). Then,

[xn]g(x) =
1

n
[xn−1]φn(x)

[xn]gk(x) =
k

n
[xn−k]φn(x)

[xn]H(g(x)) = [xn]H ′(x)φn(x) for any H.

3. Let f(x) = xG(x) ⇐⇒ g(x) = x
G(g(x)) . Then,

[xn]g(x) =
1

n
[xn−1]G−n(x)

[xn]gk(x) =
k

n
[xn−k]G−n(x)

n[xn]H(g(x)) = [xn−1]H ′(x)G−n(x) for any H.

Proof. For (i), the proof of second inequality follows almost same procedure for proving the first equality,
which we proved earlier. Let gk(x) =

∑
i≥k bix

i. Then,

xk =
∑
i≥k

pif(x)i.

By differentiation and dividing both sides by fn(x), we get

kxk−1

fn(x)
=
∑
i≥k

ipif(x)i−n−1f ′(x).

Then,

[x−1]
∑
i≥k

ipif(x)i−n−1f ′(x) = npn

since f(x)i−n−1f ′(x) = 1
i−n

d
dx

(
f i−n(x)

)
for i 6= n, thus any other values except i = n gives zero, and i = n

value is npn as we shown above. And, for LHS,

kxk−1

fn(x)
=

kxk−1

(f1x+ f2x2 + · · · )n
=

kxk−n−1

(f1 + f2x+ · · · )n

Thus,

[x−1]
kxk−1

fn(x)
= npn = n[xn]g(x)

Now note that

[x−1]
kxk−1

fn(x)
= k[x−1]

xk−1

fn(x)
= k[x−k]f−n(x)

For the third inequality, note that H consists of linear sum of xk’s hence it suffices to show that H = xk,
and this case is what we proved earlier, done.

For other cases, just put such functions on the first case, and thinking the index number.
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There are several examples of applications of Lagrange Inversion Formula.

1. Let rn be the number of rooted tree. Then, y =
∑
n≥1 rm

xn

n! satisfies

y = xey

as we shown above, (introducing the rooted forest). Then, by the version 2 of Lagrange Inversion
Formula, we have

y = xφ(y) where φ(x) = ex

so
rn
n!

= [xn]y =
1

n
[xn−1]enx =

1

n
[xn−1]

∑
k≥0

nk

k!
xk =

1

n
· nn−1

(n− 1)!

Thus,
rn = nn−1.

Also,

[xn]yk =
k

n
[xn−k]enx =

k

n

nn−k

(n− k)!
.

Since ∑
k≥0

Pk(n)
xk

n!
=
yk

k!

where Pk(n) is the number of rooted forests on [n] with exactly k trees, and this equation is also shown
in above. Thus,

Pk(n)
k!

n!
=
k

n
· nn−k

(n− k)!
=⇒ Pk(n) =

(
n− 1

k − 1

)
nn−k.

2. For catalan number, let

y =
∑
n≥0

Cnz
n

By the Catalan number’s generating function, we get

y = zy2 + 1.

To apply LIF,

(a) Let g = zy and g = g2 + z =⇒ g(1 − g) = z. So, g is compositional inverse of f(z) = z(1 − z).
Hence by applying version 3, on G(z) := 1− z, we get

[zn]g(z) =
1

n
[zn−1](1− z)−n =

1

n

(
−n
n− 1

)
(−1)n−1 =

1

n

(
n+ (n− 1)− 1

n− 1

)
=

1

n

(
2n− 2

n− 1

)
.

Thus,

cn = [zn+1]g =
1

n+ 1

(
2n

n

)
.

(b) Let g = y − 1. Then, 1 + g = z(1 + g)2 + 1 and g = z(1 + g)2. Then to use the version 2 of LIF,
let φ(z) = (1 + z)2. Then,

[zn]g(z) =
1

n
[zn−1]φn(z) =

1

n
[zn−1](1 + z)2n =

1

n

(
2n

n

)
=

1

n

(
2n− 2

n− 1

)
.
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3.4 Generating function for Integer Partition

Let λ = (λ1, · · · , λk) ≥ 0 be a k-tuple such that λ1 + · · ·+ λk. Then denote λ ` n and call that λ partitions
n. And size of λ, say |λ| is n. Now denote

p(n) := #{λ ` n}
p(n,≤ k) := #{λ ` n : the largest part of λ is less than or equal to k }.

Then we have ∑
n≥0

p(n,≤ k)zn =
1

(1− z)(1− z2) · · · (1− zk)
=

k∏
i=1

1

1− zi

since

1

(1− z)(1− z2) · · · (1− zk)
= (1 + z + z2 + · · · )︸ ︷︷ ︸

a1 parts of size 1

(1 + z2 + z4 + · · · )︸ ︷︷ ︸
a2 parts of size 2

· · · (1 + zk + z2k + · · · )︸ ︷︷ ︸
ak parts of size k

=
∑

λ=(λ1,··· ,λl)
λi≤k

z|λ|.

And the last sum is just the same one as
∑
n≥0 p(n,≤ k)zn. Now, below one counts how many parts the λ

has using generating function;

∑
λ=(λ1,··· ,λl)

λi≤k

t#part(λ)z|λ| = (1 + tz + t2z2 + · · · )(1 + tz2 + t2z4 + · · · ) · · · (1 + tzk + t2z2k + · · · ) =

k∏
i=1

1

1− tzi
.

where each exponent of t in paranthese of 1/(1−zl) counts how many parts with size l occur on the partition.
If k →∞, then

lim
k→∞

∑
n≥0

p(n,≤ k)zn = lim
k→∞

k∏
i=1

1

1− zi
=

∞∏
i=1

1

1− zi
=
∑
n≥0

p(n)zn.

Similarly,

lim
k→∞

∑
λ=(λ1,··· ,λl)

λi≤k

t#part(λ)z|λ| =

∞∏
i=1

1

1− tzi
.

Now define
p(n, k) = #{λ ` n : with exactly k parts} = #{λ ` n, λ1 = k}

since every λ ` n with exactly k parts has conjugate λ∗ having λ∗1 = k and |λ∗| = n. So counting such
conjugates is the same as counting those with exactly k parts. Thus,

∑
n≥0

p(n, k)zn =
zk

(1− z) · · · (1− zk)

since size k parts occur at least once in every λ counted by p(n, k) and vice versa.
Now let λ is a partition having ≤ k parts and the highest summand is ≤ m. Then, in the section of

Gaussian Coefficient, we proved that ∑
λ∈Par(;≤k;≤m)

q|λ| =

(
m+ k

k

)
q

and ∑
λ∈Par(;k;≤m)

q|λ| =

(
m+ k − 1

k

)
q

.
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The second one can be derived by counting any path with at most k parts and the highest summand at most
m− 1, then add size k block on the first line of the Ferrer diagram, and conjugate it.

+size k

size m− 1

Then,

p(n, distinct) = #{λ ` n;λ1 > λ2 > · · · } =
∑
n≥0

p(n, distinct)znt#part(λ) =

∞∏
i=1

(1 + zit)

since exactly 1 case of size i occur.
From

∑
n≥0 p(n)zn =

∏∞
i=1

1
1−zi , we can derive the number of λ with exactly k distinct parts as

∑
λ=(λ1>···>λk>0)

z|λ| =
∑

µ: partition

z|µ|+(k+1
2 ) = z(

k+1
2 )

k∏
i=1

1

1− zi

since any such partition can be decomposed with

λ = µ+ (k, k − 1, · · · , 1).

Thus by counting all partition with at most k parts and adding (k, k− 1, · · · , 1) we can construct every such
partition.

3.4.1 Euler’s Pentagonal Theorem

Theorem 3.4.1.
∞∏
i=1

(1− zi) =

∞∑
n=−∞

(−1)nz
3n2+n

2

Motivation of the theorem is from computing p(n); Note that∑
n≥0

p(n)zn

 ∞∏
i=1

(1− zi) =

∞∏
i=1

1

1− zi
∞∏
i=1

(1− zi) = 1

And we can observe that

∞∏
i=1

(1− zi) = 1− z − z2 + z5 + z7 − z12 − z15 + z22 + z26 + · · ·

To see this, combinatorially,
[zn]LHS = E(n)−O(n)

where E(n) is the number of partitions of n with an even number of distinct parts and O(n) is the number
of partitions of n with a odd number of distinct parts. This is because

∞∏
i=1

(1− zi) =
∑

ki∈{1,0}
i∈N

(−1)
∑∞
j=1 kiz

∑∞
j=1 jkj .
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From choosing each box of (1− zi) we have ki = 1 or 0, and sign is determined by evenness or odddness of
the number of chosen box.

Now we claim that

E(n)−O(n) =

{
(−1)m n = 3m2±m

2

0 o.w.

And actually, this claim gives the name pentagonal, since the nonzero index 1, 5, 12, 22, · · · with changed
sign compared with preceding term is just number of points in the expanding pentagon with length n ∈ N;

For example, above black dots gives 1, and black and blue dots gives 5, and black,blue and red dots gives
1 + 4 + 7 = 11, and so on.

Now to prove the claim, we need to investigate the Ferrer diagram; think below diagram for example.

a

b

a is the number of points in the last line of the diagram (blue region), and b is the number of points in the
farthest diagonal line (red region). Then, if a > b, move part of red region to bottom of the a parts. If a ≤ b
then move part of blue region to outside of red region. So in the above example,

is the result. Also, for below diagram
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below is the result of the operation.

This gives a bijection between underlying sets of E(n) and O(n) generically. “Generically” means that,
actually this bijection cannot holds when blue region and red region contains nonempty intersection, and
a = b or a = b + 1 holds. (Note that any other difference, the above operation still works since each
operation requires min(a, b) amounts of position for max(a, b) region. Only nonempty intersection with
a = b or a = b+ 1 cannot satisfy this requirement.)

So from this we can count such bad cases; as a table it occur when

a b
1 1
1 2
2 2
2 3
3 3
· · · · · ·

And note that a, b in the “bad” cases determines whole diagram, since it determines all boundary of the
diagram. Actually, in any bad case,

ab+
b(b− 1)

2
=

3b2 ± b
2

points occur. Thus for each n, if n = 3b2±b
2 , then only one case occur, and since it has b parts, so sign is

determined by b, i.e., (−1)b, done.
For more information, see [DK16] by google.

3.4.2 Jacobi Triple Identity

Theorem 3.4.2 (Jacobi Triple Identity).

∏
k≥1

(1 + zqk)(1 + z−1qk−1)(1− qk) =

∞∑
n=−∞

q
n(n+1)

2 zn

Remark that if we put q3 → q and z = −q−1, then the above equation gives

∏
k≥1

(1− q3k−1)(1− q3k−2)(1− q3k) =
∏
k≥1

(1− qk) =︸︷︷︸
Euler’s Pentagonal Thm

∞∑
n=−∞

(−1)nq
3n2+n

2

In fact, it has original form, which is

∏
m≥1

(1− x2m)(1 + x2m−1y2)

(
1 +

x2m−1

y

)
=

∞∑
n=−∞

xn
2

y2n

You can see it by putting x =
√
q and y2 =

√
qz.

Also, this is equivalent to saying that

∏
k≥1

(1 + zqk)(1 + z−1qk−1) =

( ∞∑
n=−∞

q
n(n+1)

2 zn

)
·

( ∞∏
k=1

1

1− qk

)
.
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Note that 1
1−qk =

∑
n≥0 p(n)qn.

To prove the theorem, let F (z) :=
∏
k≥1(1 + zqk)(1 + z−1qk−1). First step is to find out combinatorial

interpretation of F (z). So if we choose n+i z-terms from
∏
k≥1(1+zqk) and i z-terms from

∏
k≥1(1+z−1qk−1)

then it gives zn. Thus,

[zn]F (z) =
∑

λ:λ1>···>λn+i

µ:µ1>···>µi>0

q
∑n+i
j=1 λi−

∑i
l=1(µl−1) =

∑
λ:λ1>···>λn+i>0
µ:µ1>···>µi>0

q|λ|+|µ̃| =
∑

λ:λ1>···>λn+i>0
µ̃:µ̃1>···>µ̃i≥0

q|λ|+|µ̃|

where µ̃ = (µ1 − 1, · · · , µi − 1). Second step is let

F (z) =

∞∑
n=−∞

an(q)zn.

Then, by replacing z with qz, we get

F (qz) =
∏
k≥1

(1 + (zq)qk)(1 + z−1q−1qk−1) = F (z)
1 + z−1q−1

1 + zq
=

1

zq
F (z).

Note that second step can be attained from comparing each terms in F (z) and F (qz); F (qz) has (1+(zq)−1)
term but has no (1 + zq) term. This implies

∞∑
n=−∞

an(q)qnzn = F (qz) =
1

qz
F (z) =

∞∑
n=−∞

an(q)q−1zn−1

By equating coefficient of zn−1, we get

an−1(q)qn−1 = an(q)q−1,∀n ∈ Z =⇒ an(q) = qnan−1(q),∀n ∈ Z.

So, if n ≥ 0, then

an(q) = q(
n+1
2 )a0(q)

and for n < 0, we have

an(q)qn+1 = an+1(q),∀n ∈ Z =⇒ an(q) = q−(n+1)−(n+2)−···−1−0a0(q) = q
−n(−n+1)

2 a0(q) = q(
n+1
2 )a0(q),∀n ∈ Z\N.

since −(n+ 1)− (n+ 2)− · · · − 1− 0 is just sum from 0 to |n| − 1. Hence, in any case,

an(q) = q(
n+1
n )a0(q).

Thus,

F (z) = a0(q)
∑
n∈Z

q(
n+1
2 )zn

Step three is just show what a0(q) is. It suffices to show that

a0(q) =

∞∏
k=1

1

(1− qk
.

Then, from step 1, we know

a0(q) = [z0]F (z) =

∞∑
i=1

∑
λ:λ1>···>λi>0
µ̃:µ̃1>···>µ̃i≥0

q|λ|+|µ̃|

and actually, any partition can be decomposed by two distinct partitions, one has nonzero elements; to see
this, just think the Ferrer diagram, and cut the diagram by diagonal line, and the upper part with diagonal
one gives λ and the lower part without diagonal gives µ̃. Thus, a0(q) counts all possible partitions, so

a0(q) =
∑
n≥0

p(n)qn =

∞∏
k=1

1

(1− qk
,

done.
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4 Gentle introduction to WZ method

We want to prove or disprove the given equation∑
k≥0

f(n, k) = F (n).

Then, divide both sids to get 1, in this case, ∑
k≥0

f(n, k)

F (n)
= 1.

Let F (n, k) = f(n,k)
F (n) . Then our goal is to check that∑

k≥0

F (n, k) = 1,

independent of n. And it suffices to check that

1.
∑
k≥0 (F (n+ 1, k)− F (n, k)) = 0 for all n.

2. Check the value
∑
k≥0 F (n, k) in case of n = 0.

To deal with the first condition, our dream is as below;

1. Dream1: If ∃G(n, k) such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k)

then
A∑

k=B

F (n+ 1, k)− F (n, k) =

A∑
k=B

G(n, k + 1)−G(n, k) = G(n,A+ 1)−G(n,B).

2. Dream2: For A sufficiently large and B sufficiently small,

G(n,A) = 0 = G(n,B).

Then, G(n,A+ 1)−G(n,B) = 0.

For example, think about
∑n
k=0

(
n
k

)
= 2n. Then, it is equivalent to say

n∑
k=0

(
n
k

)
2n

= 1.

Let F (n, k) =
(nk)
2n . Then,

G(n, k) = −
(
n
k−1
)

2n+1
.

Then we can check that
G(n, k + 1)−G(n, k) = F (n+ 1, k)− F (n, k)

Actually if we compare F (n+1, k)+G(n, k) and F (n, k)+G(n, k) using Pascal’s identity, you can check that
it is true. Thus, for any sum between A,B with respect to k the Dream1 comes true. Also, for k < 1, k > n,
G(n, k) = 0. Hence our dreams come true, and by checking the case n = 1, actually

∑n
k=0 F (0, k) = 1 = 20,

done.
The pair (F,G) is called WZ-pair . W denotes WilfZeilberger pair. How to find G(n, k)? There is a

algorithmic way of finding it. It is known as Gosper’s algorithm . Our question can be refined as follow;
given

D(n, k) = F (n+ 1, k)− F (n, k)
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we want to find G(n, k) such that G(n, k + 1)−G(n, k) = D(n, k), i.e.,

G(n, k + 1) =

k∑
i=−∞

D(n, i).

So, first we want to ask is that G(n, k) has whether closed form or not. Now suppose that D(n, k) is
hypergeometric function. Then, Gosper’s algorithm says that there exists an algorithm which will tell you
in finite time either G(n, k) with closed form exists or not. And meaning of hypergeometric function is that

D(n+ 1, k)

D(n, k)
,
D(n, k + 1)

D(n, k)

are rational function of n and k.

5 Sieve Method

5.1 Principle of Inclusion-Exclusion

We just abbreviate this principle as PIE. Let A1, A2, · · · , An be subset of X. Then,∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ =

∣∣∣∣∣⋂
i

Ai

∣∣∣∣∣ = |X| −
∑
i

|Ai|+ (−1)2
∑
i≤j

|Ai
⋂
Aj |+ · · ·+ (−1)n|A1 ∩A2 ∩ · · · ∩An|.

For special case, if i = 1, then
|A| = |X| − |Ā|.

|A ∪B| = |A|+ |B| − |A ∩B|.

In application, let X be universe. Then there are n properties p1, · · · , pn. For T ⊆ [n], let

N=T = #{x ∈ X : x has exactly all properties pi in T}

and
N⊇T = #{x ∈ X : x has at least all properties pi in T}

Now define
Ai := {x ∈ X : x has property pi}.

So if T = {1, 2, 3}, then
N⊇T = |A1 ∩A2 ∩A3|.

Now, PIE can be restated as

Theorem 5.1.1 (Principle of Inclusion-Exclusion).

N=∅ =
∑
T⊆[n]

(−1)|T |N⊇T .

If N=T , N⊇T depend on |T | but not content of T , which we say homogeneous case , then let fk := N=T

and gk = N⊇T for |T | = k. Then, PIE implies

f0 =

n∑
k=0

(−1)k
(
n

k

)
gk.

For example,
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1. Think the problem of finding the number of integer solutions of

x1 + · · ·+ xn = k.

Then by bar-ball technique, we know the number of nonnegative integer solution is
(
n+k−1

k

)
. Also,

the number of integer solutions such that xi ≥ ai for any ai ∈ Z is the same as nonnegative integer
solution of

n∑
i=1

yi = k −
∑

ai.

since any solution (yi)
n
i=1 can be translated to (xi)

n
i=1 = (yi)

n
i=1 + (ai)

n
i=1.

Now, using PIE, we can count the number of integer solution when each xi has an upper bound. For
example, let x1 + x2 + x3 = 200 and x1 ≤ 100, x2 ≤ 101, x3 ≤ 102. Then let

X = { nonnegative integer solution of x1 + x2 + x3 = 200}
A1 = { solutions where x1 ≥ 101}
A2 = { solutions where x1 ≥ 102}
A3 = { solutions where x1 ≥ 103}.

Then, |A1 ∪A2 ∪A3| is the desired answer, and we can calculate it via PIE.

For special case, where
x1 + · · ·+ xn = k, 0 ≤ xi < s, xi ∈ N,

we can get

|Ai1 ∩Ai2 ∩ · · · ∩Aij | = #{(y1, · · · , yn) ∈ Nn : y1 + · · ·+ yn = k − js}

=

(
k − js+ n− 1

n− 1

)
.

Thus, we can define gj , so it gives

N=∅ =

n∑
j=0

(−1)j
(
n

j

)(
k − js+ n− 1

n− 1

)
.

If s = 1, then the number of solution is δ0,k, since if k 6= 0 then there is no solution. Thus

N=∅ =
n∑
j=0

(−1)j
(
n

j

)(
k − j + n− 1

n− 1

)
= δ0,k.

2. Evaluate
m∑
k=0

(−1)k
(
m

k

)(
n− k
r

)
where m ≤ r ≤ n.

Idea is to regard
(
n−k
r

)
as some kind of N≥T for |T | = k. We can design a combinatorial situation; fix

m elements, say {1, 2, · · · ,m} from [n] and X be set of all r-subsets of [n]. Let

pi := {T ⊆ [n] : i 6∈ T},∀i ∈ [m].

Then,

N⊇T = # r-subsets of [n] not containing |T | elements =

(
n− k
r

)
.

And,

N=∅ = # r-subsets of [n] containing 1, 2, · · · ,m. =

(
n−m
r −m

)
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Thus, by PIE and above equation, we get(
n−m
r −m

)
= N=∅ =

m∑
k=0

(−1)k
(
m

k

)(
n− k
r

)
where m ≤ r ≤ n.

Also note that

N=T = # r-subsets of [n] not containing elements in T but containing elements in [m]− T

which is (
n−m

r −m+ k

)
where k = |T |.

Theorem 5.1.2 (5.1 in [Aig07]). Let E be a finite set. f, g are two functions from 2E to R. Then,

f(A) =
∑
T⊇A

g(T ) ⇐⇒ g(A) =
∑
T⊇A

(−1)|T |−|A|f(T ),∀A ∈ 2E .

Proof. If we let f̄ , ḡ are vectors of dimension 2n induced by 2E , then the above statement is equivalent to

f̄ = Mḡ ⇐⇒ ḡ = M−1f̄

where M,M−1 are 2n × 2n matrices indexed by I = 2E such that

MS,T = χ(S ⊆ T ).

Then,
M−1S,T = (−1)|T |−|S|χ(S ⊆ T ).

Actually, to verify this M,M−1 works, we need a proof of the theorem; assume LHS. Then,

∑
T⊇A

(−1)|T |−|A|f(T ) =
∑
T⊇A

(−1)|T |−|A|
∑
U⊇T

g(U) =
∑
U⊇A

 ∑
U⊇T⊇A

(−1)|T |−|A|

 g(U).

And if |U \A| = m, then ∑
U⊇T⊇A

(−1)|T |−|A| =

m∑
k=0

(−1)k
(
m

k

)
= (1− 1)m = δm,0.

Thus, ∑
T⊇A

(−1)|T |−|A|f(T ) =
∑
U⊇A

 ∑
U⊇T⊇A

(−1)|T |−|A|

 g(U) = (−1)|A|−|A|g(A) = g(A).

Conversely, if we assume RHS, then

∑
T⊇A

g(T ) =
∑
T⊇A

∑
U⊇T

(−1)|U |−|T |f(U) =
∑
U⊇A

 ∑
U⊇T⊇A

(−1)|U |−|T |

 f(U)

Then, if |U \A| = m, then ∑
U⊇T⊇A

(−1)|U |−|T | =

m∑
k=0

(−1)m−k
(
m

k

)
(1− 1)m = δm,0,

so ∑
T⊇A

g(T ) =
∑
U⊇A

 ∑
U⊇T⊇A

(−1)|U |−|T |

 f(U) = (−1)|A|−|A|f(A) = f(A).
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Corollary 5.1.3. Let f(T ) = N⊇T , g(T ) = N=T . Then,

1. N=A =
∑
T⊇A(−1)|T |−|A|N⊇T

2. Let Np :=
∑
|A|=pN=A, i.e., # of elements having exactly p of the n properties. Then,

Np =
∑
|A|=p

∑
T⊇A

(−1)|T |−pN⊇T =
∑

T :|T |≥p

(−1)|T |−pN⊇T ·
∑

A:A⊆T,|A|=p

1 =

n∑
k=p

(−1)k−p
(
k

p

) ∑
T :|T |=k

N⊇T .

If it is homogenoeus case, then

Np =

(
n

p

) n∑
k=p

(−1)k−p
(
n− p
k − p

)
gk.

3.
f(A) =

∑
T⊆A

g(T ),∀A ∈ 2E ⇐⇒ g(A) =
∑
T⊆A

(−1)|A|−|T |f(T ).

Proof. First one is derived from letting g(A) = N=A, f(A) = N⊇A. For the second one, just note that∑
A:A⊆T,|A|=p 1 =

(
k
p

)
if |T | = k, then counting T with respect to |T |.

For the third one, do the same thing as we did for proving theorem 5.1.

There are some examples.

1. Let Dn = # of derangements = #{π ∈ Sn : πi 6= i for all i}. Let X := Sn, and property i is πi = i,
Ai := {π ∈ Sn : π has property i}, Then,

Dn = #|
⋃
i

Ai|.

And we know that

|X| = n!, |Ai| = (n− 1)!, |Ai ∩Aj | = (n− 2)!, · · · |Ai1 ∩ · · · ∩Air | = (n− r)!

for generic case, i.e., i1, · · · , ir are distinct. Thus, we can define

gk = (n− k)!

And by the formula,

Dn = #|
⋃
i

Ai| =
n∑
k=0

(−1)k
(
n

k

)
gk =

n∑
k=0

(−1)k
n!

k!

Thus,

Dn = n!

n∑
k=0

(−1)k

k!
,

and since
∞∑
k=0

(−1)k

k!
= e−1,

we know that Dn ∼ n!
e approximately.

Note that if we fix a permutation a1, · · · , an, then

#{π ∈ Sn : πi 6= ai} = Dn.
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Then,

Np = #{π ∈ Sn : π has exactly p fixed pt} =

(
n

p

) n∑
k=p

(−1)k−p
(
n− p
k − p

)
(n− k)!

=

(
n

p

) n∑
k=p

(−1)k−p
(n− p)!
(k − p)!

=

(
n

p

)
(n− p)!

n∑
k=p

(−1)k−p

(k − p)!

And if we denote k − p = j, then

(n− p)!
n∑
k=p

(−1)k−p

(k − p)!
= (n− p)!

n−p∑
j=0

(−1)j
1

j!
= Dn−p

Thus,

Np =

(
n

p

)
Dn−p.

2. Let π ∈ Sn with π = π1 · · ·πn. Then

DES(π) = {i : πi > πi+1}, β(S) = {π ∈ Sn : DES(π) = S} for S ∈ 2[n−1], α(S) = {π ∈ Sn : DES(π) ⊆ S}.

Then we have
α(S) =

∑
T⊆S

β(T )

and

α(S) =

(
n

s1, s2 − s1, · · · , sk − sk−1, n− sk

)
=

(
n

∆s

)
which is shown in previous section, where s = {s1, · · · , sk}, s1 ≤ · · · ≤ sk. Then, by the corollary
version 3 and above, we have

β(S) =
∑
T⊆S

(−1)|S|−|T |α(T ) =
∑

T={si1 ,··· ,sij }⊆S

(−1)k−j
(

n

s1, s2 − s1, · · · , sk − sk−1, n− sk

)
.

Lemma 5.1.4. Let f be a function defined on [0, k+ 1]× [0, k+ 1] satisfying fij = f(i, j) =

{
1 i = j

0 i > j
. and

let
Ak :=

∑
1≤i1<i2<···<ij≤k

(−1)k−jf(0, i1)f(i1, i2) · · · f(ij , k + 1).

Then,
det(F ) = Ak

where F is a matrix with index [0, k]× [0, k] such that Fij = f(i, j + 1), i.e.,

F =


f01 f02 f03 · · · f0,k+1

f11 f12 f13 · · · f1,k+1

0 f22 f23 · · · f2,k+1

· · · · · · · · · · · · · · ·
0 0 0 · · · fk,k+1


with fii = 1.
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Proof. Note that empty sequence should be counted. For k = 1,

Ak = f(0, 1)f(1, 2)− f(0, 2) = f(0, 1)f(1, 2)− f(1, 1)f(0, 2) = det(F ).

Now suppose it holds for 1, 2, · · · , k. Then, for k + 1 case, we know that

detF = f01 · det


f12 f13 · · · f1,k+1

f22 f23 · · · f2,k+1

0 · · · · · · · · ·
0 0 · · · fk,k+1

− f11 det


f02 f03 · · · f0,k+1

f22 f23 · · · f2,k+1

0 · · · · · · · · ·
0 0 · · · fk,k+1


=

∑
1=i1<i2<···<ij≤k+1

44

(−1)k−j+1f(0, 1)f(1, i2) · · · f(ij , k + 1)

+
∑

2≤i1<i2<···<ij≤k+1
44

(−1)k−j+1f(0, i1)f(i1, i2) · · · f(ij , k + 1)

Note that (−1) for first term occurs from determinant since it fixes i1, so actually it gives (−1)k−(j−1), and
for the second term occurs from −f11.

From this lemma, and by letting f(i, j) = 1!
(sj+1−si)! for undefined part, we get

β(S) = n! det

[
1

(sj+1 − si)!

]
with convention s0 = 0, sk+1 = n.

Also, we can think about q-version of α and β, i.e.,

β(S) =
∑
π∈Sn

DES(π)=S

1 =⇒ βq(S) =
∑
π∈Sn

DES(π)=S

qinv(π).

and
α(S) =

∑
π∈Sn

DES(π)⊆S

1 =⇒ βq(S) =
∑
π∈Sn

DES(π)⊆S

qinv(π).

Claim 5.1.5. ∑
π∈Sn

DES(π)=S

qinv(π) =

(
n

s1, s2 − s1, · · · , sk − sk−1, n− sk

)
q

To see this, we can represent a permutation as a filling of a squares. For example, π = 4275136 is
represented as below table.

7 *
6 *
5 *
4 *
3 *
2 *
1 *

1 2 3 4 5 6 7

Now from this we can obtain DES(π). Note that if Des(π) ⊆ S, then sequence is increase in each interval
[0, s1], (s1, s2], · · · , (n− sk, n].

s1 s2 − s1 · · · n− sk
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Note that row denotes index i, and column denotes πi. Let S = {s1, · · · , sk}. Then, from above picture, if
DES(π) ⊆ S, then at least π has increasing sequence from i = 1 to i = s1. This can be denoted by s1 × n
table with π1 < π2 < π3. For example, if S = {3, 5}, then

3 *
2 *
1 *

1 2 3 4 5 6 7

Now think about inversion occured by this example. For the first column, it has index greater than s1 = 3,
which gives 3 inversions. By the same argument, the second column gives three inversions, the fifth and
sixth column gives one inversions. This can be denoted by gray color below;

3 *
2 *
1 *

1 2 3 4 5 6 7

Note that this inversion must occur regardless of position of πi with i = s1 +1 to i = n. And for given π with
fixed π1, · · · , πs1 , the possible permutations can be derived by permutation group isomorphic to Sn− s1,
although we need a index coordination. Hence, we can see that

{π ∈ Sn : DES(π) ⊆ S} ∼=
⋃

πf=(π1,π2,··· ,πs1 )∈[n]
s1

π1<π2<···<πs1

πf × Tπf

where
Tπf = {π′ ∈ [n]n−s1 : πf + π′ gives a permutation in Sn} ∼= {π′ ∈ Sn− s1}

Note that all isomorphism implies just bijection. This bijection can be proved using the above table; since
permutation table has a star at (i, j) if and only if i-th row and j-th column has unique star at (i, j), so by
removing row and columns containing stars correponds to (1, π1), · · · , (s1, πs1), we get a (n− s1)× (n− s1)
table whose row and column has unique star, which gives bijection to Sn− s1.

Note that, as we shown above, for each π ∈ Sn, inversion generated first s1 term depends only on those
first s1 terms, regardless of terms after index s1. Hence, we can rewrite the equation as∑

π∈Sn
DES(π)⊆S={s1,··· ,sk}

qinv(π) =
∑
π∈Sn

π1<···<πs1

qinvf (πf )+inv(π
′)

where πf , π
′ are unique decomposition derived from above bijection, and invf (πf ) is the number of inversion

of π generated by the first s1 factors.
Now note that set of possible π′ for fixed πf is isomorphic to Sn− s1 as shown above. And this

isomophism still preserve inv(π′) since this inversion also can be calculated by table which delete s1 × n
below part and delete each columns indexed by π1, · · · , πs1 , which actually gives the bijection. Since inv(π′)
is only determined by factors in π′ in Sn− s1, and since this table still give a bijection, we can say that
inv(π′) is preserved. This argument is clear from picture; for π as below,

7 *
6 *
5 *
4 *
3 *
2 *
1 *

1 2 3 4 5 6 7
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has π′

7 *
6 *
5 *
4 *

1 2 3 4 5 6 7

which is isomorphic to 3124 ∈ S4. So inversion of 3124 is inversion of π′.

7 *
6 *
5 *
4 *

1 3 5 6

From this, we can say that

∑
π∈Sn

DES(π)⊆S={s1,··· ,sk}

qinv(π) =
∑
π∈Sn

π1<···<πs1

qinvf (πf )+inv(π
′) =

 ∑
π∈Sn

π1<···<πs1

qinvf (πf )


 ∑

π∈Sn−s1
DES(π)⊆S′

qinv(π)


Now it suffices to show that what

(∑
π∈Sn

π1<···<πs1
qinvf (πf )

)
is. If we calculate it, then by induction, we can

apply the same argument for s2 − s1 from new S′ and SSn−s1 , and inductively apply for s3, · · · , sk. To see
this, I claim that if we project the table

3 *
2 *
1 *

1 2 3 4 5 6 7

onto the x-axis, we get a table
1 * * *

1 2 3 4 5 6 7

This can be turned out into a sequence generated from a multiset M = {1s1 , 2n−s1} by assgining empty
set be 2 and change star to 1. We claim that this is bijective; to see bijection, note that this projection
is reversible; since we know s1, and ∗ is ascending order, there exists reverse operation. Also, we claim
that inversion of π generated by first s1 elements is the same as inversion generated by the corresponding
sequence; to see this, just observe that each the number of gray cells in a column is exactly same as the
number of stars right to the column. And by the proposition 1.7.1 in [Sta11], we have ∑

π∈Sn
π1<···<πs1

qinvf (πf )

 =

(
n

s1

)
q

.

Now by inductively apply this result, we get

∑
π∈Sn

DES(π)⊆S

qinv(π) =

(
n

s1

)
q

 ∑
π∈Sn−s1
DES(π)⊆S′

qinv(π)


=

(
n

s1

)
q

·
(
n− s1
s2 − s1

)
q

· · ·
(
n− s1 − s2 − · · · − sk

n− sk

)
q

=

(
n

s1, s2 − s1, · · · , n− sk

)
q

.
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5.2 Möbius inversion

Definition 5.2.1. A set P with a relation ≤ on P is called partially ordered set if the relation is

1. reflexive, i.e., ∀a ∈ P, a ≤ a

2. antisymmetry, i.e., ∀a, b ∈ P, a ≤ b, b ≤ a =⇒ a = b

3. transitive, i.e., ∀a, b, c ∈ P, a ≤ b, b ≤ c =⇒ a ≤ c.

Note that this gives us a diagram, called Hasse diagram, i.e., a diagram drawn by all pair of covers with
line goes upward, i.e., if x < y and there is no z ∈ P such that x < z < y, then we call x is covered by y,
and draw a line from x vertex to y vertex as upward.

For example,

1. Let P be a set of real #, ≤ be a numerical oder. Then, [n],Z,N is called a chain, i.e., set with linear
ordering. (Every two elements a, b has a ≤ b or b ≤ a.)

2. Let P be a power set of a set S, and ≤ be an inclusion. We just call this case as ordered by inclusion.
For example, let Bn = {S ⊆ [n]}. Then S ≤B T if and only if S ⊆ T . If n = 2 we can draw the Hasse
diagram

{1}

{1, 2}

∅

{2}

3. Let Dn = {i : i is positive factor of n}. And let i ≤ j ⇐⇒ i|j. Then, if n = 12, D12 = {1, 2, 3, 4, 6, 12}
and the Hasse diagram of Dn is

4

12

2

6

3

1

4.
πn = {set partition of [n]}.

Define ≤ as refinement, i.e.,

π ≤ σ ⇐⇒ each block of σ is a union of blocks in π.

For example, if σ = 1256/347 and π = 12/34/56/7 then π ≤ σ. If n = 3, it gives

12/3

123

13/2

1/2/3

1/23

There are several properties.
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(a) y covers x if x ≤ y and there is no z such that x ≤ z ≤ y.

(b) interval [x, y] is defined by
[x, y] = {z ∈ P : x ≤ z ≤ y}

Thus, x, y ∈ [x, y]. And ∅ is not interval.

(c) P is called locally finite if every interval of two elements in P is finite. For example, N,Z are
locally finite.

(d) Hasse diagram is a graph having vertex set as P and edge xy when y covers x.

(e) minimum 0̂ is an element in P s.t. 0̂ ≤ x for all x ∈ P .

(f) maximum 1̂ is an element in P s.t. x ≤ 1̂ for all x ∈ P .

Note that 0̂, 1̂ may not exists; for example, see below Hasse diagram.

x y

z w

In this case, x, y are minimal elements, z, w are maximal elements, but there is no 0̂, 1̂.

Definition 5.2.2 (Incidence algebra). Let (P,≤) be a locally finite poset. Then, let Int(P ) is defined as set
of all intervals of P , i.e.,

Int(P ) := {[x, y] : x ≤ y, x, y ∈ P}.
Let k be a field of characteristic 0. Then the incidence algebra I(P, k) consists of all functions f : Int(P )→ k
with multiplication

f ∗ g(x, y) =
∑

z∈[x,y]

f(x, z)g(z, y).

Note that

• ∗ is not commutative in general, but associative.

• δ(x, y) :=

{
1 x = y

0 o.w.
is the two-sided identity.

• f can be viewed as a formal expression

f =
∑
x≤y

axy[x, y]

so that f(x, y) = axy for any [x, y] ∈ Int(P ). In this case, we can define f ∗ g for formal expression by
defining multiplication on Int(P ) such that

[x, y] ∗ [w, z] = δyw[x, z].

• If P is finite or countable, we can denote f with matrix form; list elements of P as

x1, x2, · · · ,

such that if xi ≤P xj then i < j. This is called linear extension of P . Then, we can make Mf with
size |P | × |P | where

(Mf )x,y =

{
f(x, y) if x ≤ y
0 o.w.

.

This gives f ∗ g = MfMg, and Mf is upper triangular. Also

Mf is invertible ⇐⇒ f(x, x) 6= 0∀x ∈ P.
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• There exists a special element in I(P, k), which is called zeta function ζ,

ζ(x, y) =

{
1 x ≤ y
0 x 6≤ y

.

Note that

ζ2(x, y) = ζ ∗ ζ(x, y) =
∑
x≤t≤y

1 = |[x, y]|

ζk(x, y) =
∑

x=t0≤t1≤···≤tk=y

1

Thus,

(ζ − δ)k(x, y) =
∑

x=t0<t1<···<tk=y
1,

i.e., the number of chains x = t0 < t1 < · · · < tk = y with length k from x to y. Then,

∞∑
k=0

(ζ − δ)k =
1

δ − (ζ − δ)
=

1

2δ − ζ

since δ is identity in this algebra. Thus, (2δ − ζ)−1(x, y) counts the total number of chains from x to
y.

(Note that to say the above sum rigorously, we should define a topology by saying that f1, f2, · · ·
converges to f if for any t ∈ P and s ≤ t, ∃N = N(s, t) ∈ N such that fn(s, t) = f(t) for any n ≥ N .
This definition of convergence gives a closure of each set, thus we can generate the topology. And in
this topology the above infinite series should converges )

Definition 5.2.3 (Möbius function). Let µ = ζ−1. This is the Möbius function of P , i.e.,

µ ∗ ζ = ζ ∗ µ = δ.

Explicitly, we can define

µ(x, y) :=

{
1 x = y

−
∑
x≤t<y µ(x, t) for all x < y in P .

To see the definition is true, we need a left inverse;

Lemma 5.2.4.

f−1l (x, y) :=

{
1

f(x,y) if x = y

1
f(y,y)

(
−
∑
x≤z<y f

−1(x, z)f(z, y)
)

is a left inverse of f ∈ I(P, k) having property that f(x, x) 6= 0 for all x ∈ P . Similarly,

f−1r (x, y) :=

{
1

f(x,y) if x = y

1
f(x,x)

(
−
∑
x<z≤y f(x, z)f−1(z, y)

)
is the right inverse, and f−1l = f−1r .

Note that this definition is inductively well-defined.

Proof. Notes that this is just rearranging the equation
∑
x≤z≤y f

−1(x, z)f(z, y) = 0. Similarly,

f−1r (x, y) :=

{
1

f(x,y) if x = y

1
f(y,y)

(
−
∑
x≤z<y f(x, z)f−1(z, y)

)
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is just rearranging of the equation.
∑
x≤z≤y f

−1(x, z)f(z, y) = 0. Hence f ∗ f−1r = f−1l ∗ f = δ therefore

f−1r = f−1r ∗ δ = f−1r ∗ f ∗ f−1l = δ ∗ f−1l = f−1l .

Then definition of explicit form of µ is derived straightforward; just put f = ζ and think ζ(x, y) = 1 if
x ≤ y.

1. For the power set of [3], we have Möbius function with values as below;

12/3

123

13/2

1/2/3

1/23

µ 1/2/3/ 12/3 13/2 23/1 123
1/2/3 1 -1 -1 -1 2
12/3 1 -1
13/2 1 -1
23/1 1 -1
1/2/3 1

2.

3. For simple poset [2] with 1 < 2, we know µ(1, 1) = 1 = µ(2, 2) But µ ∗ ζ(1, 2) = 0 implies µ(1, 2) = −1.
For [3], we have

µ(x, x) = 1, µ(x− 1, x) = −1, µ(x− 2, x) = 0

since
µ(1, 3) = −µ(1, 1)− µ(1, 2)

by the explicit definition. Thus, for [n], we know that

µ(x, x) = 1, µ(x− 1, x) = −1, µ(x, y) = 0 if |x− y| > 1.

since for the last case, y = k + x for some k > 1, hence

µ(x, y) = −µ(x, x)− µ(x, x+ 1)− · · · − µ(x, y − 1)

and inductively µ(x, x+ 2) = 0, µ(x, x+ 3) = 0, · · · , µ(x, y − 1) = 0 implies µ(x, y) = 0.

Definition 5.2.5. An order ideal I of a poset P is a subset I ⊆ P such that if t ∈ I, s ≤ t =⇒ s ∈ I.
Similarly, a principal order ideal 〈t〉 of a poset P is an ideal generated by t; i.e., t is the unique maximal
element of an Ideal.

Theorem 5.2.6 (Möbius Inversion Formula). Assume P be a poset such that every principal order ideal is
finite. Then, ∀f, g : P → k ∈,

g(x) =
∑
y≤x

f(y),∀x ∈ P ⇐⇒ f(x) =
∑
y≤x

g(y)µ(y, x).
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Proof. Note that kP , a space of functions from P to k is a vector space. We claim that I(P, k) is a subset
of End(kP ), a set of all linear transformation from kP to itself by defining right action as below; forall
π ∈ I(P, k),

f.π(t) =
∑
s≤t

f(s)π(s, t).

To see this, note that standard basis of kP is {ex}x∈P such that ex(y) =

{
1 x = y

0 o.w.
Thus it suffices to show

that action of I(P, k) is well-defined and linear. Let π ∈ I(P, k). Then, as we defined above, f.π is a still
function in kP . Also f.δ(t) = f(t) and

f.π ∗ ψ =
∑
s≤t

f(s)π ∗ ξ(s, t) =
∑
s≤t

f(s)
∑
s≤z≤t

π(s, z)ξ(z, t) =
∑
z≤t

∑
s≤z

f(s)π(s, z)ξ(z, t)

=
∑
z≤t

∑
s≤z

f(s)π(s, z)

 ξ(z, t) = ((f.π).ξ)(t).

where the change of indices of the double sum is well-defined from the finite sum property. And for any
f, g ∈ kP ,

(f + g).π(t) =
∑
s≤t

(f(s) + g(s))π(s, t) = f.π(t) + g.π(t) and cf.π(t) = c
∑
s≤t

f(s)π(s, t)

from finite sum’s linerity.
Then our desired statement is equivalent to saying that

f.ζ = g ⇐⇒ f = g.µ.

This is easily shown since

f.ζ = g ⇐⇒ (f.ζ).µ = g.µ ⇐⇒ f.(ζµ) = g.µ ⇐⇒ f.δ = g.µ ⇐⇒ f = g.µ.

See some examples.

1. For [n], we already know that

µ(i, j) =


1 i = j

−1 i+ 1 = j

0 o.w.

Now the above theorem tells us that

g(i) =
∑
k≤i

f(k) =

i∑
k=0

f(k) ⇐⇒ f(i) = g(i)− g(i− 1).

2. Assume P,Q poset. Then we can define product of two poset as a poset such that

P ×Q := {(x, y) : x ∈ P, y ∈ Q} and (x, y) ≤ (x′, y′) ⇐⇒ x ≤ x′ in P, y ≤ y′ in Q.

Now let µP , µQ be Möbius function of P and Q. Then, we claim that

µP×Q = µP · µQ, i.e.,µP×Q((x, y), (x′, y′)) = µP (x, x′)µQ(y, y′).

To see this, note that
µP×Q((x, y), (x, y)) = 1 = µP (x, x) · µQ(y, y).
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and by interchanging index of finite double sum we have

∑
(x,y)≤(u,v)≤(x′,y′)

µP (x, u)µQ(y, v) =

 ∑
x≤u<x′

µP (x, u)

 ∑
y≤v<y′

µQ(y, v)

 = δx,x′δy,y′ = δ(x,y),(x′,y′)

where δ is kronerker delta function. Now, by inductively, if we assume we proved the desired statements
for every pair of elements less than (x′, y′), then

µP×Q((x, y), (x′, y′)) = −
∑

(x,y)≤(u,v)<(x′,y′)

µP×Q((x, y), (u, v)) = −
∑

(x,y)≤(u,v)<(x′,y′)

µP (x, u)µQ(y, v)

= −δ(x,y),(x′,y′) + µP (x, x′)µQ(y, y′) = µP (x, x′)µQ(y, y′)

since (x, y) < (x′, y′).

Now if P,Q are [n], [m] ⊂ N, then

µP×Q((x, y), (x′, y′)) =


1 x = x′, y = y′ or x′ = x+ 1, y = y + 1

−1 x = x′, y′ = y + 1 or x′ = x+ 1, y′ = y

0 o.w.

These are trivial by above claim.

3. Let Bn = 2[n], i.e., power set of [n]. Then each subset S of [n] corresponds to positive indicator

(ε1, · · · , εn)S ∈ {0, 1}n where εi =

{
1 i ∈ S
0 i 6∈ S

for all i ∈ [n]. Also, S ⊆ T if and only if (s1, · · · , sn)S ≤

(t1, · · · , tn)T coordinatewise. So we just think Bn ∼= [2] × · · · × [2] with n copies. Now from the
coordinatewise ordering we have Möbius function µBn and it has a property that

µBn(S, T ) = µ[2](s1, t1) · · ·µ[2](sn, tn)

since coordinatewise ordering is just prouduct of posets [2] with natural ordering. And we know that

µ[2](s, t) =

{
1 s = t

−1 s < t

thus,
µBn(S, T ) = µ[2](s1, t1) · · ·µ[2](sn, tn) = (−1)|T−S|.

Hence, by the Möbius inversion formula,

g(T ) =
∑
S⊆T

f(S) ⇐⇒ f(T ) =
∑
S⊆T

g(S)(−1)|T−S|.

4. Let Dn = {a : a ∈ P, a|n} where P = N without zero. And order the set by divisibility, i.e.,

a ≤ b ⇐⇒ a
∣∣ b.

Let n = pα1
1 · · · p

αk
k . Then, elements in Dn is

a = pa11 · · · p
ak
k , b = pb11 · · · p

bk
k

with 0 ≤ ai, bi ≤ αi for all i ∈ [k]. So,

a ≤ b ⇐⇒ a
∣∣- b ⇐⇒ ai ≤ bi,∀i ∈ [k].
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So Dn
∼= [α1 + 1]× · · · × [αk + 1] with usual ordering. Hence,

µ(a, b) =


0 unless b/a is sqaurefree

(−1)r b/a = pi1 · · · pir for distinct prime

1 b = a

In the number theory, just let µ(b/a) := µ(a, b) as abuse of notation. In this notation, for any integer
m ∈ Dn,

µ(m) =

{
0 if p2|m
(−1)r if m = pi1 · · · pir for distinct primes

.

So Möbius inversion formula,

g(n) =
∑
d|n

f(d) ⇐⇒ f(n) =
∑
d|n

g(d)µ(n/d).

Definition 5.2.7 (Lattice). A poset P is a lattice if ∀x, y ∈ P,

1. They have the unique least upper bound called x ∨ y (called join.)

2. They have the greatest lower bound called x ∧ y (called meet.)

Note that u is the least upper bound of x and y when every upper bound v of x and y satisfies v ≥ u, and
upper bound of x and y is an element u such that u ≥ x, u ≥ y simultaneously. (Lower bound is defined in
a similar way.)

For example,

1. In [n],
i ∨ j = max(i, j), i ∧ j = min(i, j)

2. In Bn,
S ∨ T = S ∪ T, S ∧ T = S ∩ T

3. In Dn,
a ∨ b = lcm(a, b), a ∧ b = gcd(a, b)

4. In L (Vn), a set of all subspaces of Vn ordered by inclusion,

S ∨ T = span(S ∪ V ), S ∧ T = S ∩ T.

Counter example is below which we see previously. Note that 0̂, 1̂ may not exists; for example, see below
Hasse diagram.

x y

z w

In this case, x, y are minimal elements, z, w are maximal elements, but there is no z ∨ w or x ∧ y.

Theorem 5.2.8 (Weisner’s theorem, 3.9.3 in [Sta11]). For a finite lattice L, note that 0̂, 1̂exists by taking
join or meet of every elements. If L has at least 2 elements, let a 6= 1̂. Then,∑

x∧a=0̂

µ(x, 1̂) = 0
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and it gives a recurrence relation

µ(0̂, 1̂) = −
∑
x:x 6=0̂
x∧a=0̂

µ(x, 1̂).

Similarly, it has a dual form; for a 6= 1̂, ∑
x∨a=1̂

µ(0̂, x) = 0

and it gives a recurrence relation

µ(0̂, 1̂) = −
∑
x:x 6=1̂
x∨a=1̂

µ(0̂, x).

To prove the Weisner’s theorem, we need a kind of construction in [Sta11][p. 314]. For any lattice L, let
A(L, k) be the semigroup algebra of L with the meet operation over k, i.e., A(L, k) is a k-vector space with
basis L, with bilinear multiplication s · t = s ∧ t. We call A(L, k) as Möbius algebra.

Now for each t ∈ L, define

δt =
∑
s≤t

µ(s, t)s.

If we regard δt as a function of t ∈ L, and s in the above sum as identity function, then by the Möbius
inversion theorem,

t =
∑
s≤t

δs.

Note that {δt}t∈L is a k-basis ofA(L, k) since it is linearly independent (by inductive construction
∑
s≤t µ(s, t)s

Then, let A′(L, k) = ⊕t∈Lkt where each kt ∼= k with multiplication defined as follow; for each identity
elements δ′t ∈ kt,

δ′tδ
′
s = δtsδ

′
t.

where δts is kronecker delta function. Let θ : A(L, k)→ A′(L, k) by θ(δt) = δ′t

Claim 5.2.9. θ is isomorphism of algebra.

Proof. First of all, it is clear that θ is a vector space isomorphism, since it maps basis to basis. So it suffices
to show that it is multiplicative homomorphism. Let t′ =

∑
s≤t δ

′
s ∈ A′(L, k). Then,

θ(s ∧ t) = θ

 ∑
u≤s,u≤t

δu

 =
∑

u≤s,u≤t

δ′u =

∑
u≤s

δ′u

∑
u≤t

δ′u

 = θ(s)θ(t).

Now we can prove the Weisner’s theorem.

Proof of the Weisner’s theorem. First of all, note that

a′δ′
1̂

=

∑
t≤a

δ′t

 δ′
1̂

=
∑
t≤a

δt,1̂δ
′
t =

{
0 if a′ 6= 1̂′

δ′
1̂

a′ = 1̂′
.

Thus, by the isomorphism θ,

aδ1̂ =

{
0 if a 6= 1̂

δ1̂ if a = 1̂
.

From this, if we denote aδ1̂ =
∑
t∈L ct · t, then c0̂ = 0. Also, from the definition of δ1̂,

aδ1̂ = a
∑
t∈L

µ(t, 1̂)t =
∑
t∈L

µ(t, 1̂)a ∧ t.
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Also, if we denote aδ1̂ =
∑
t∈L ct · t, then c0̂ =

∑
t∧a=0̂ µ(t, 1̂).

Dual form is derived by the algebra generated by Möbius inversion formular for dual form, which is also
have an isomorphism with A′(L, k).

Recurrence relation is derived by just moving µ(0̂, 1̂) term in the right side.

There are some examples.

1. Let Vn be a vector space over Fn, L(Vn) = {W ⊆ Vn : W is a subspace of Vn over Fn} ordered by
inclusion. Then,

[u,w] ∼= L(w/u), by u 7→ 0̂, w 7→ 1̂.

So to calculate µ(u,w), it suffices to calculate µm = µ(0̂, 1̂) in L(Vm) for suitable m, where m =
dimw − dimu. Also note that µ0 = 1. To calculate µn in general, let a be a 1-dimensional subspace
of Vn. Let X ∈ L(Vn) such that span(X, a) = Vn with X 6= Vn. Then, X is a (n − 1)-dimensional
subspace and a 6∈ X. So by above argument, for all such X,

µ(0̂, x) = µn−1.

And the number of all (whether it contain a or not) (n − 1) dimensional subspace of Vn is
(
n
n−1
)
q
,

which we showed in the previous section. By the same argument, for fixed X, the number of subspaces
of dimension n− 1 containing a is

#{X = span(x′, a) : x′ is n− 2 dimensional subspaces of Vn} =

(
n− 1

n− 2

)
q

.

To see this, we need to recall the argument of proving(
n

k

)
q

= qn−k
(
n− 1

k − 1

)
q

+

(
n− 1

k

)
q

.

Let W be n − 1 dimensional vector space doesn’t containing a. Then, for any U with k = n − 2
dimensional subspace which doesn’t contained in W , U has a basis as union of a basis of U ∩W and
{f} where f 6∈ W . Then, our desired number is such U having a as its basis. Such U is just counted
by setting f = a and count all possible number of a basis U ∩W generating distinct vector space.
Then, if we just thinking W as a whole space, the number of possible distinct n− 2 subspace U ∩W
is
(
n−1
n−2
)
q
. So

#{X = span(x′, a) : x′ is n− 2 dimensional subspaces of Vn} =

(
n− 1

n− 2

)
q

.

Also,
(
n−1
k

)
q

represents (n − 2)-dimensional subspaces which is contained in W , therefore it doesn’t

contain a so we only care about the first case, done.

Hence the number of desired X is(
n

n− 1

)
q

−
(
n− 1

n− 2

)
q

=

(
n

1

)
q

−
(
n− 1

1

)
q

= [n]q−[n−1]q = (1+q+· · ·+qn−1)−(1+q+· · ·+qn−2) = qn−1.

Thus,
µn = −qn−1µn−1

since µn counts only case of X having (n− 1)-dimension and having no a, and each such space has the
same Möbius function value µn−1. Also we know µ0 = 1. Hence by induction,

µn = (−1)nq(
n
2).
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2. Πn := { all set of partitions of [n]} ordered by refinement, i.e. π ≤ σ iff each block of σ is a union of
blocks of π. Thus,

0̂ = 1/2/ · · · /n, (n-blocks)1̂ = 123 · · ·n, (1-block.)

If π ≤ σ, then σ covers π means π can be created by choosing one block in σ and chop it to make it
two blocks. Thus we can make a grade such that

rank(π) := n−# blocks in π.

Note that the number of elements in πn of rank k is Sn,n−k, by definition of the stirling number of
second kind. Now we can find out what the meet and join in this poset. For example, if

σ = 125/3/47/68, π = 124/3/57/6/8

then
σ ∧ π = 12/3/4/5/6/7/8

since each blocks are determined by

{πi ∩ σj 6= ∅ : each πi, σj is block of π, σ respectively}.

And,
σ ∨ π = 12547/3/68.

This is determined by this simple rule; let πi, σj be a two block. Then think πi∆σj = πi ∪ σj \ πi ∩ σj ,
i.e., symmetric difference. If there is another block containing such symmetric diffference, then union
with those blocks, and find the symmetric difference again, and union the related blocks, and so on.
Since each partition is finite, this process must be terminated.

Or geometric way of seeing this π ∨ σ is represent these as a path on linear graph, i.e. joining two
vertices if they are in the same block.

1 2 3 4 5 6 7 8

σ:
π:

Then σ ∨ π is just set of all connected component as a block in the above graph.

Now investigate what the interval of this poset is. Let σ = 1234/5678, π = 12/3/4/57/6/8. Then,
σ ≥ π, thus

[π, σ] =





{1, 2}, {3}, {4}
{1, 2, 3}, {4}
{1, 2, 4}, {3}
{1, 2}{3, 4}
{1, 2, 3, 4}

×



{5, 7}, {6}, {8}
{5, 7, 6}, {8}
{5, 7, 8}, {6}
{5, 7}{6, 8}
{5, 7, 6, 8}


∼= Π3 ×Π3

where ΠA denotes a set of partitions of A and Πn := Π[n] for all n ∈ N. This is easily generalized; if
σ ≥ π and each block of σ, say σ1, · · · , σk consists of union of π’s block, i.e., σj = {πj1, · · · , πjtj}, then

[π, σ] ∼= [0̂, σ/π] ∼= Πt1 × · · · ×Πtk

From this and the product rule of the Möbius function, we have

µ(π, σ) = µt1(0̂, 1̂)× · · · × µtk(0̂, 1̂).

Thus to calculate µ(π, σ) for any π, σ, it suffices to calculate πn(0̂, 1̂) for any n. First of all,

µ1(0̂, 1̂) = 1
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since Π1 = {{1}}, thus
µ1(0̂, 1̂) = µ({1}, {1}) = 1.

For µn, we can use the Weisner theorem. First of all, let a = 123 · · · (n − 1)/n. Then all t ∈ Πn

such that a ∧ t = 0̂ is t = 0̂ or t consists of {i, n} and singletons for each element in [n] \ {i, n} for
i = 1, · · · , n. To see this, if t 6= 0̂ has {n} as a singleton, then t itself is a ∧ t. If a block containing n
has more than 1 other element, say i, j are in the block containing n with i 6= j, then at̂ contains {i, j}.
Thus all possible t having a ∧ t = 0̂ should contain two element block {i, j}, and the other elements
should form a singleton, otherwise a∧ t has nonsingleton block. Thus, such possible number of nonzero
t is (n− 1). And for each such t, µ(t, 1̂) = µn−1 since t has n− 1 blocks and 1̂ is just one block. Hence,
by Weisner’s theorem,∑

t∧a=0

µ(t, 1̂) = 0 =⇒ µn = µ(0̂, 1̂) = −
∑
t 6=0̂
t∧a=0

µ(t, 1̂) = −(n− 1)µn−1.

Hence, by considering µ1 = 1, we can get

µn = (−1)n−1(n− 1)!.

5.3 Involution Principle

Suppose a set S is disjoint union of S+ ∪ S−. Then, φ : S → S is an involution if for any x ∈ S with
φ(x) 6= x, x and φ(x) has different sign, i.e., x ∈ S+, φ(x) ∈ S− or vice versa. Then, we can divide

φ(S+) = φ(S+) ∩ S+ ∪ φ(S+) ∩ §−.

We call φ(S+) ∩ S+ be fixed points in S+. Similarly, φ(S−) ∩ S− be fixed points in S−. So,

|S+| − |Fix(S+)| = |S−| − |Fix(S−1)|.

We can think of special case when Fix(S−) = ∅. Then,

1. |S−| ≤ |S+|.

2. |Fix(φ)| = |S+| − |S−|

from above equation. For example, which is very artificial, note that

N∅ =
∑
T

(−1)|T |N≥T =
∑

T : even

N≥T −
∑
T :odd

N≥T

from the Sieve method, where we assume that there exists a universe X and n “bad properties,” and

N=A = #{x ∈ X : x has exactly properties in A}
N≥A = #{x ∈ X : x has properties at least in A}
N∅ = #{x ∈ X : x has no bad properties}.

Now set
S = {(x, Z, T ) : where x ∈ X,Z is a set of properties x has , T is a subset of Z}.

Then, S+ := {(x, Z, T ) ∈ S : |T | is even}, S− := {(x, Z, T ) ∈ S : |T | is odd}. From this setting, we can
denote the above principle of inclusion-exclusion formula N∅ =

∑
T : evenN≥T −

∑
T :oddN≥T as

N∅ = |S+| − |S−|.

In this case we can define an involution explicitly; let

φ : (x, Z, T ) 7→ (x, Z, T ′) where T ′ :=

{
T ∪ {i} if i 6∈ T
T \ {i} if i ∈ T

.
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where i is the minimal element of Z. (Note that Z ⊆ [n] since we index bad properties by [n].) Then, only
fixed elements is when Z = ∅. Then, (x, ∅, T ) = (x, ∅, ∅), and they are in S+. Thus

N∅ = |Fix(S+)| = |S+| − |S−| =
∑

T : even

N≥T −
∑
T :odd

N≥T .

There are examples for involution principle.

• Ballot Sequence. Let n ∈ N, then a ballot sequence with length 2n is a seqeunce a1 · · · a2n with
ai ∈ {±1} such that

k∑
i=1

ai ≥ 00,

2n∑
i=1

= ai = 0.

For example, if n = 3, then 
+ + + − − −
+ + − + − −
+ + − − + −
+ − + + − −
+ − + − + −

 .

Then, we can represent the ballot sequence as a Dyck path, a path from (0, 0) to (2n, 0) such that
each path comprises of ↗,↘ which stands for +,− respectively, and that the path is always above on
y = 0. Also, we can represent it as a Catalan path, a path from (0, 0) to (n, n) such that each path
comprises of →, ↑ which stands for +,− resepctively, and that the path is always below than y = x.
This condition above and below are from the condition that partial sum of the sequence is greater than
or equal to 0.

Claim 5.3.1. The number of ballo sequence with length 2n is the same as n-th catalan number 1
n+1

(
2n
n

)
.

Classical proof. We can calculate it by counting catalan paths using involution principle. Note that the
number of catalan path is just the number of paths from (0, 0) to (n, n) which never touch y = x+ 1.
To calculate this, we need to count such paths touching y = x+ 1.

Now let φ be a map from lattice path from (0, 0) to (n, n) to a lattice path (0, 0) to (n− 1, n+ 1) such
that if a path touches y = x + 1, we reflect the last portion of the original path, i.e., a partial path
from the last touched point to (n, n) with respect to y = x+ 1. For example,

y

x

y = x+ 1

(n, n)

(n− 1, n+ 1)

dashed red path is φ of straight blue path. Now we can see that there is 1-1 correspondence between
a set of lattice paths from (0, 0) to (n, n) touching y = x + 1 and a set of lattice paths from (0, 0) to
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(n − 1, n + 1). To see this, note that every path from (0, 0) to (n − 1, n + 1) touch y = x + 1, thus φ
maps it to a path from (0, 0) to (n, n). And note that reflection is injective. Thus, from the formula of
counting lattice paths, the number of paths from (0, 0) to (n, n) touching y = x+ 1 is

(
2n
n+1

)
, thus the

number of catalan paths is (
2n

n

)
−
(

2n

n+ 1

)
=

1

n+ 1

(
2n

n

)
.

• We want to prove that (
n

k

)
≤
(

n

k + 1

)
if k <

⌊
n− 1

2

⌋
.

Combinatorial proof. Note that
(
n
k

)
is the number of lattice paths from (0, 0) to (n−k, k). Then we can

define φ in the sense of above definition; reflect the last portion of lattice path from (0, 0) to (n−k, k),
i.e., a portion from last point of the path touching y = x + 2k − n + 1. Then, if k <

⌊
n−1
2

⌋
, then

this y = x + 2k − n + 1 touches x-axis when x > 0, otherwise it touches y axis when y > 0. Thus,
k <

⌊
n−1
2

⌋
, then every path from (0, 0) to (n− k, k) can be injectively mapped into a path from (0, 0)

to (n− k − 1, k + 1), which implies
(
n
k+1

)
≥
(
n
k

)
.

• We want to show (
n

k − 1

)(
n

k + 1

)
≤
(
n

k

)2

in a combinatorial way. Note that a sequence {ai} has log-concave if ai−1ai+1 ≤ a2i .
Let Lk be a set of lattice paths (n − k) east steps and k north steps. Our goal is to construct an
injective map

Lk−1 × Lk+1 → Lk × Lk.

From last example, i.e.,
(
n
k

)
≤
(
n
k+1

)
if k <

⌊
n−1
2

⌋
, we know that a sequence |Lk| =

(
n
k

)
is unimodal, i.e.,

has a unique peak. And note that log concave implies unimodality, since the relationship ai
ai−1

≥ ai+1

ai

on ratio shows that until the ratio decrease below 1, the sequence increase, and after this point, the
sequence decrease.

To see the injective map, note that we can draw any pair (P1, P2) in Lk−1 × Lk+1 in a following way;
draw P1 as usual, and draw translated P2, starting at (1,−1) and ending at (n− k, k). For example,

y

x

y = x+ 1

(n− k + 1, k − 1)

(n− k, k)
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Then take a map φ : Lk−1 × Lk+1 to Lk × Lk by (P1, P2) ∼= (P1, P2 + (1,−1)) 7→ (P ′1, P
′
2) where

P ′1 = first part of P1 before last intersection point of P1 ∩ P2

+ last part of P2 before last intersection point of P1 ∩ P2

P ′2 = first part of P2 before last intersection point of P1 ∩ P2

+ last part of P1 before last intersection point of P1 ∩ P2

Then P ′1 ∈ Lk, and P ′2 is a path from (1,−1) to (n− k + 1, k − 1), which is equivalent to a path from
(0, 0) to (n − k, k), so P ′2 ∈ Lk. So this is well-defined map. And it is injection since distinct pair in
Lk−1, Lk+1 gives different image in the coordinate space, thus gives different image.

Now note that it may not be a surjection, since there exists a non crossing pair of paths (Q1, Q2) ∈
Lk × (Lk + (1,−1)), as below.

y

x

y = x+ 1

(n− k + 1, k − 1)

(n− k, k)

• Given points A,B,C,D ∈ Z2, with property that AD and BC meets at one point, the number of
noncrossing paths (A→ B,C → D) is

det

(
#P (A→ B) #P (A→ D)
#P (C → B) #P (C → D)

)
,

where P (A → B) is a set of lattice paths from A to B. To see this, note that a crossing pairs
(P1, P2) in P (A → B) × P (C → D) has canonically mapped into a set of crossing pairs in P (A →
D) × P (C → B), as we did in previous example; take first part of P1 and last part of P2 with
respect to their last intersection, and vice versa. Also, from the condition AD and BC, every pair in
P (A→ D)×P (C → B) is crossing pair. Hence the number of crossing pairs in P (A→ B)×P (C → D)
is just #P (A→ D)×#P (C → B), so the number of noncrossing pairs in P (A→ B)× P (C → D) is

#P (A→ B)×#P (C → D)−#P (A→ D)×#P (C → B) = det

(
#P (A→ B) #P (A→ D)
#P (C → B) #P (C → D)

)
.

• Think about ballot sequence. Let A1, · · · , An be candidates, and they received m1 ≥ m2 ≥ · · · ≥ mn

votes from the ballot. Then, how many ways of sequential voting which reveals voting lead, i.e., A1

leads A2, A2 leads A3, · · · , An−1 leads An in the any middle step of counting vote?

We can generate a combinatorial model for it. We can think it as a lattice path on Zn, starting at
~0 = (0, · · · , 0) ∈ Zn and ends at ~m = (m1, · · · ,mn) with allowed step ei ∈ Zn, a standard vector such
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that (ei)j =

{
1 i = j

0 i 6= j
. Then for each point ~x = (x1, · · · , xn) in this lattice path should satisfy the

inequality x1 ≥ · · · ≥ xn. This is equivalent to say that the lattice path never cross (n−1) hyperplanes
x2 = x1 + 1, · · · , xn = xn−1 + 1. If we say such lattice path is ‘good’ lattice path and the other lattice
paths as ‘bad’ lattice path, then

#Good(~0→ ~m) = #F (~0→ ~m)−#Bad(~0→ ~m)

where Good(~0 → ~m) denotes a set of good lattice paths, F (~0 → ~m denotes a set of all lattice paths,
and Bad(~0 → ~m) denotes a set of bad lattice paths. Actually we know that for any two points
~A = (a1, · · · , an) and ~B = (b1, · · · , bn),

#F ( ~A→ ~B) =

( ∑n
i=1 bi −

∑ai
i=1

b1 − a1, · · · , bn − an

)
.

since each lattice path is just choosing each step for n directions.

Now the idea for general n case is just do reflection with respect to those n − 1 hyperplanes. To do
this, we can expand this problem not only counting path from 0 to ~m, but also couting path from other
points to ~m. Define

eπ := (1− π(1), 2− π(2), · · · , n− π(n)),∀π ∈ Sn.

Then, eid = ~0, and eπ satisfies x1 ≥ x2 ≥ · · · ≥ xn if and only if π = id since, the inequality condition
requires that

i− π(i) ≥ i+ 1− π(i+ 1),∀i

so π(i+ 1)− π(i) ≥ 1, which is equivalent to say that π = id.

Now reflect the first segment of a path from eπ → ~m with respect to xi − xi+1 = −1. This means we
change eπ to e′π, where

eπ = (1− π(1), 2− π(2), · · · , i− 1− π(i− 1), i− π(i), i+ 1− π(i+ 1), i+ 2− π(i+ 2), · · · , n− π(n))

e′π = (1− π(1), 2− π(2), · · · , i− 1− π(i− 1), i− π(i+ 1), i+ 1− π(i), i+ 2− π(i+ 2), · · · , n− π(n))

i.e., take a point which has the distance with xi − xi+1 = −1 the same as eπ. (You can check that
their middle point is in xi − xi+1 = −1 easily.) Then,

i− π(i+ 1) = i− π′(i), i+ 1− π′(i+ 1) = i+ 1− π(i) =⇒ π′ = π · (i, i+ 1) =⇒ sgn(π) = −sgn(π′).

Hence, ⋃
π∈Sn

sgn(π)= even

Bad(eπ → ~m)
1−1←−−→

⋃
π∈Sn

sgn(π)= odd

Bad(eπ → ~m)

Thus, ∑
π∈Sn

sgn(π)|Bad(eπ → ~m)| = 0.

This implies that

|Bad(~0→ ~m)|+
∑

π∈Sn,π 6=id

sgn(π)|Bad(eπ → ~m)| = 0

Then we know that
|Bad(~0→ ~m)| = |F (~0→ ~m)| − |Good(~0→ ~m)|

and
Bad(eπ → ~m) = F (eπ → ~m), if π 6= id

since eπ itself changed by reflection implies every path from eπ to ~m must cross the hyperplane. And
also note that

sgn(π) = (−1)length(π) = (−1)inv(π)
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where length of π implies the least number of transpositions representing π, which implies inv(π).
Thus,

|Good(~0→ ~m)| =
∑
π∈Sn

sgn(π)F (eπ → ~m).

And we know that from ~m = (m1, · · · ,mn),

F (eπ → ~m) =

( ∑
mi −

∑n
i=1(i− π(i))

m1 − 1 + π(1), · · · ,mn − n+ π(n)

)
=

( ∑
mi

m1 − 1 + π(1), · · · ,mn − n+ π(n)

)
since

∑n
i=1(i− π(i)) = 0 from the bijectiveness of π. Thus,

|Good(~0→ ~m)| =
∑
π∈Sn

sgn(π)F (eπ → ~m)

=

(
n∑
i=1

mi

)
! ·
∑
π∈Sn

sgn(π)
1

(m1 − 1 + π(1))! · · · (mn − n+ πn)!

=

(
n∑
i=1

mi

)
! · det

[
1

(mi − i+ j)!

]
where the last equality comes from the definition of determinant using uniqueness of antisymmetric
function.

5.4 The Lemma of Gessel - Viennot

Think about a complete bipartite graph

A1

A2

· · ·

An

B1

B2

· · ·

Bn

each edge between Ai to Bj has weight mij .

Definition 5.4.1. A matching is a set of n-disjoint edges from A’s to B’s, i.e. a system of path (P1, · · · , Pn)
from A’s to B’s such that Pi’s are disjoint paths starting at a point in A’s and ending at a point in B’s. We
say that such path is vertex disjoint paths.

Now let G be an acyclic (i.e., no directed cycles in a graph) direct weighted (finite) graph having V (G) =
{Ai, Bi}ni=1. Then for two set of vertices A = {A1, · · · , An}, and B = {B1, · · · , Bn}, for a path from a point
v ∈ A,w ∈ B, let

w(P ) = πe∈Pw(e).

For example, if P = e1 → e2 → e3 then w(p) = π3
i=1w(ei). Now build a n× n matrix m such that

Mij =
∑

P :Ai→Bj

w(P ).

Then for a given vertex disjoint path system (P1, · · · , Pn), our goal is calculate

detM =
∑

VD path system
σ∈Sn

sgn(σ)w(P (Ai → Bσ(i))

We can summarize this as follow;
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Lemma 5.4.2 (Gessel-Viennot). Let G = (V,E) is a finite acyclic digraph, and each cycle e in E has a
weight w(e). Fix two set of vertices A = {A1, · · · , An} ⊂ V and B = {B1, · · · , Bn} ⊂ V . For any path P in
G, define

w(P ) :=
∏
e∈P

w(e).

For a path system P = (P1, · · · , Pn), define

w(P) =

n∏
i=1

w(Pi).

And let Pσ be a path system such that

Pσ := (P1, · · · , Pn) where Pi is a path from Ai to Bσ(i).

Now define a n× n matrix M where

Mij =
∑

P :Ai→Bj

w(P ).

Then,

det(M) =
∑
σ∈Sn

sgn(σ)M1σ(1) · · ·Mnσ(n) =
∑
σ∈Sn

sgn(σ)

 ∑
P :A1→Bσ1

w(P )

 · · ·
 ∑
P :An→Bσn

w(P )


=
∑
σ∈Sn

sgn(Pσ)w(Pσ)

by defining sgn(Pσ) = sgn(σ).
Then the lemma conclude that

det(M) =
∑

Pσ: vertex disjoint

sgn(Pσ)w(Pσ).

where vertex disjoint means that if no two path has a vertex in common.

Basic idea of showing this lemma is in below picture;

A1

A2

B2

B1

If the given path system contains a pair of paths crossing to each other, for example, (A1 → B1, A2 → B2),
then this can be canceled by a path system containing a pair of paths (A1 → B2, A2 → B1) since they are
transposition relation, so their sign should be negative.

Proof. Just need to show that ∑
Pσ : not vertex disjoint

sgn(Pσ)w(Pσ) = 0.

To achieve this, we define an involution
Pσ →Pσ′

both are not vertex disjoint such that

w(Pσ) = w(Pσ′) and sgn(σ) = −sgn(σ′).

Now describe the involution we want to get.
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1. Find the smallest i such that Pi intersection other paths .

2. Find the 1st intersection point z on Pi.

3. Let j be the smallest index > i such that Pj passes z.

Now define the operation as swapping the part of Pi and Pj , i.e.,

P ′i = Pi(Ai → z) + Pj(z → Bσ(j)), P
′
j = Pj(Aj → z) + Pi(z → σ(i))

where + is concatenation in the above. Then this operation is clearly involution, since applying twice gives
identity, and send every Pσ with sgn(σ) = 1 to σ′ = σ · (i, j), which is odd sign. And this involution only
change the sign. Since such involutive image always exists for nonvertex disjoint paths, the sum of weights
all nonvertex disjoint paths are zero. done.

There are quick aplications.

1. det(M) = det(M t). To prove this, letG be a complete bipartite graph from (A1, · · · , An) to (B1, · · · , Bn)
with w(Ai, Bj) = mij . Then,

detM =
∑
σ∈Sn

sgn(Pσ)w(Pσ).

For each σ, there is only one Pσ consisting edges (so it is only one vertex-disjoint system.)

Similarly, det(M t) is the same thing for path systems from B to A. And for each path Pσ from A to
B, there exists a path Pσ−1 from B to A, such that if Pσ send Ai to Bσ(i), then Pσ′ send Bi to Bσ−1(i).
And they have the same sign since σ and σ−1 has the same sign in Sn. So, two determinants are the
same.

2. det(MM ′) = det(M) · det(M ′) (Note that M ′ is not a transpose of M but any matrix having same
dimension with M .) To see this let G be a complete bipartite graph with V = {Ai, Bi}ni=1 with resepct
to weight Mij and G′ be a complete bipartite graph with V = {Bi, Ci}ni=1 with resepct to weight M ′ij .
Then,

(MM ′)ij =
∑
k

MikM
′
kj =

∑
P :Ai→Cj

w(P )

where P : Ai → Cj is a path from Ai to Cj by concatenating two graph G,G′. By the lemma, we have

det(MM ′) =
∑

Pσ vertex disjoint
from A to C

sgn(σ)w(Pσ).

And from the complete bipartitiness, each vertex disjoint path system comprises by paths having only
two edge; A → B → C, so we can decompose this path by Pσ1 : A → B and Pσ2 : B → C, both are
unique vertex disjoint edges of σ1, σ2, respectively. Thus, if we denote Pσ as a path system consists
of A→ C with Ai to Cj (note that we abuse the notation.) then,

det(MM ′) =
∑
σ∈Sn

sgn(σ)w(Pσ) =
∑
σ∈Sn

∑
(σ1,σ2)∈Sn2

σ2σ1=σ

sgn(σ1)sgn(σ2)w(PA→B,σ1
)w(PB→C,σ2

)

=

( ∑
σ1∈Sn

sgn(σ1)w(PA→B,σ1
)

)( ∑
σ2∈Sn

sgn(σ2)w(PB→C,σ2
)

)

where PA→B,σ1
) is a path system consists of matching of σ1 from A to B. Note the the last inequality

comes from the fact that for given σ and σ1, σ2 is determined uniquely as σ−11 σ, thus it is just the
same as permuting all elements in Sn2, done.
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3. More intersecting graphs. Suppose Ai = (ai, 0), Bi = (0, bi) with 0 ≤ ai < · · · < an, 0 ≤ b1, · · · , bn).
Now each edge in grid on the 2-dimensional coordinate space has weight 1. We denote path system
from A to B be a path on the grid graph from A to B. Then, let

Mij =
∑

P :Ai→Bj

w(P ) =
∑

p:Ai→Bj

1 =

(
ai + bj
aj

)
by counting lattice path from Ai to Bj which has equivalent to counting lattice path from 0 to (ai, bj).
Then, the GV lemma says that

det

((
ai + bj
ai

)n
i,j=1

)
=

∑
Pσ : vertex disjoint

sgn(σ)w(Pσ) =
∑

Pσ : vertex disjoint

sgn(σ)

since weight of any path, or path system should be 1. Now note that a path in Pσ is vertex disjoint
if and only if σ = id. To see this note that if there exists a path from A1 to Bj with j 6= 1, then any
path from A to B1 must cross the path A1 → Bj , so j = 1, Do the same argument on 2, 3, · · · , n, done.
Thus,

det

((
ai + bj
ai

)n
i,j=1

)
=

∑
Pσ : vertex disjoint

sgn(σ) =
∑

Pid: vertex disjoint

1

thus the determinant is just number of noncrossing path systems from Ai to Bi .

4. Similarly, let 0 ≤ ai < · · · < an, 0 ≤ b1, · · · , bn). What is the determinant of M where Mij =
(
ai
bj

)
?

Thinking a picture where
Ai = (0,−ai), Bj = (bj ,−bj).

Then, the number of lattice paths from Ai to Bj is
(
bj+(−bj)−(−ai)

bj

)
=
(
ai
bj

)
. However, in this case, by

the same argument above, we can see that the only vertex disjoint path occur when σ = id, thus the
determinant is just the number of noncrossing path system from Ai to Bi, i = 1, 2, · · · , n. Moreover, if
ai = m+ i− 1, bj = j− 1, then there exists only one noncrossing path system occur; see below picture,
which shows when n = 4,m = 3.

A1

A2

A3

A4

B1

B2

B3

B4

In general, we claim that the only possible noncrossing path has a form Ai → Ai + (i− 1, 0)→ Bi. If
i = 1, trivially done, since they’re in the same vertical line. For i+ 1 case, note that this path should
follow a line from Ai+1 to Ai+1 + (i+ 1− 1, 0), otherwise the path touch Ai → Bi constructed before.
Then the only one way to construct the remaining path is to follow Ai+1 + (i + 1 − 1, 0) → Bj+1

vertically. Thus, in this case,

det

((
m+ i− 1

j − 1

))
= 1.
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5. Noncrossing Dyck paths. We defined the Dyck Path before. Now we want to counting noncrossing
Dyck paths from a set of points A to B. Note that if n = 1, then the number of Dyck path is 1, when
n = 2, 3, and n = 3 then 14. Now define

Ai = (−2i, 0), Bi = (2(i− 1 + n), 0).

and a path system from A = {A1, · · · , An} to B = {B1, · · · , Bn} consisting of Dyck path from Ai to
Bσ(i) for some σ for i ∈ [n] as Dyck path of semi-length n. Then say the Dyck path of semi-length
n is noncrossing if no two paths cross each other. Note that from the picture we can easily get only
noncrossing Dyck path occur when σ = id, by the same argument above. Now define Mij be the
number of paths in the digraph from {Ai}ni=1 to {Bi}ni=1 consisting of all possible Dyck paths. (Thus,
we implicitly assume that w(e) = 1 for each edge in Dyck path,) Then, from the section of Catalan
number, we know

M =


Cn Cn+1 · · · Cn+k−1
Cn+1 Cn+2 · · · Cn+k
· · · · · · · · · · · ·

Cn+k−1 Cn+k · · · Cn+2k−2

 .

By the GV Lemma, we get

detM =
∑
σ∈Sn

sgn(σ)w(Pσ) = # of vertex disjoint path from Ai to Bi.

Now, if n = 1, then we can show that # of vertex disjoint path from Ai to Bi = 1 as follow; let
A0 = 0 = B0. Then there exists only a path from A0 to B0, which is just vertex 0. Then by induction,
we can see that only path from Ai to Aj is just a triangle path, by the similar argument as we did in
the previous example. Thus,

det


C0 C1 · · · Cn
C1 C2 · · · Cn+1

· · · · · · · · · · · ·
Cn Cn+1 · · · Cn+2(k−1)

 =
∑
σ∈Sn

= 1.

6. Let A = (0, 0), B = (b1, b2) and x is a lattice point in a rectanular generated by A and B. Then,

LP (A→ B; avoid x) = LP (A→ B)− LP (A→ x)LP (x→ B).

Question is, what is the number of LP (A → B, avoids x1, · · · , xn)? To see this, let’s make a path
system from (A, x1, · · · , xn) to (B, x1, · · · , xn) with assumption that for any σ 6= id, any path in Pσ is
not vertex disjoint. Then, by the lemma,

#LP (A→ B; avoids x1, · · · , xn) = detM where M =

 LP (A→ B) LP (A→ x1) · · ·
LP (X1 → B) · · · · · ·

· · · · · · LP (xn → xn)

 .

6 Enumeration of Patterns

6.1 Symmetries and Patterns

Think about a geometric figure. For example, regular n gon can have symmetry represented by D2n, dihedral
n group. Now think any graph G = (V,E) and a coloring of vertice c : V → N. Then the symmetry g acting
on c, say g ∗ c is another coloring. For example, consider a 5-gon colored with ∗ − • − ∗ − • − • − (∗). If we
set g be a rotating this 5-gon by 2π

5 , then we can just let g ∗ c := c ◦ g meaning that

g ∗ c(v) = c(g.v),∀v ∈ V.
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So for above example,

∗

∗

∗

∗

if we say c as left, then g ∗ c is the right. (Note that in other text book, they define g ∗ c = c ◦ g−1.) Now say
that 2 coloring c, c′ are equivalent if there exists g such that g∗c = c′. Then a pattern denotes an equivalence
class. Our goal is just count the number of patterns. For example,

1. As we showed above, think n polygon with distinct vertices. Then symmetry can be given by Cn, a
cyclic group with n. Then the number of patterns is just the number of circular permutations, which
is (n− 1)!.

2. Let n-polygon with colored vertice be given, such that coloring is k coloring, i.e., range of k has a
cardinality k, and symmetric group is just Cn. Then we call a pattern as necklace, since it looks like
a pattern in real necklace. And a pattern induced from k-colors for vertices with symmetric group Dn

is called key-chain.

We can formalize above argument as below; Given a finite set N,R consider all map f : N → R, and say f
be coloring of N with color in R. Let G be a finite group acting on N , and each g acts a a permutation of
N .

Definition 6.1.1. Two maps f and f ′ are equivalent f ∼ f ′ whenever ∃g ∈ G such that

f ′ = g ∗ f := f ◦ g.

And we call an equivalence class as a pattern.

Think about a group G acting on a set X, for example, a set of all colorings. Then, for all x ∈ X, we
can define

• Orbit of x: M(x) := {gx : g ∈ G}

• Stabilizer of x: Gx := {g ∈ G : gx = x}

• Fixed point of g: Xg := {x ∈ X : gx = x}.

For example, let G = C4 = {e, ρ, ρ2, ρ3} and let X be a set of all possible 2 coloring of vertex in a cycle of

four vertices. Let x =

∗
∗ then,

M

 ∗ ∗
 =


∗
∗ ,

∗
∗

 = {x, ρ(x)}.

Gx = {e, ρ2}

Xρ2 =

 ,

∗
∗
∗

∗ ,

∗
∗ ,

∗
∗


Then the number of orbits of X under G is |{M(x) : x ∈ X}|. Note that M(x) = M(y) or M(x)∩M(y) = ∅
for any x, y ∈ X. Now observe that ∑

x∈X
|Gx| =

∑
g∈G
|Xg|.
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Both just count the number of {(g, x) : gx = x}. Also,

|Mx| = |G|/|Gx|.

To see this, note that Mx = {gx : g ∈ G}. So if g1x = gix, this implies x = g−11 gix, thus g−11 gi ∈ Gx, say
Gx = {a1, · · · , aj}. Then,

g−11 = gi = aj for some j ⇐⇒ gi = g1aj , for some j.

Exactly, |Gx| many gix are same g1x. Since g1 is arbitrarily chosen, such analysis can be applied for any g.
Hence,

|Mx| = |G|/|Gx|.
Lemma 6.1.2 (Burnside Frobenius Formula).

#orbits =
1

|G|
∑
g∈G
|Xg|.

Proof. Note that ∑
g∈G
|Xg| =

∑
x∈X
|Gx| =

∑
o: orbits

∑
x∈o
|Gx|

If x, y ∈ o, then |Mx| = |My| =⇒ |Gx| = |Gy| from the formular |Mx| = |G|/|Gx|. Thus,∑
g∈G
|Xg| =

∑
o: orbits

∑
x∈o
|Gx| =

∑
o: orbits

∑
x∈o
|Gx| · |Mx| = |G| ·# orbits.

There are several applications.

1. Coloring of N = [n] with R = {1, 2, · · · , r}. If G = {id}, then the number of homogeneous coloring is
just any function from N to R, so rn. By the above formula

#orbits =
1

1
(Xid) = rn

thus all elements of X is fixed elements.

2. Coloring of N = [n] by R = [r]. Let G = Sn. Then by the above formula,

#orbits =
1

n!

∑
πSn

|Xπ|

Now note that a coloring can be fixed by π if and only if all element in the same cycle of π receives
the same color. Thus, |Xπ| = r#cycle(π). Hence,

#orbits =
1

n!

∑
πSn

r#cycle(π) =
1

n!
r(r + 1) · · · (r + n− 1) =

(
r + n− 1

n

)
This is come from the Stirling number of first kind. See proposition 1.3.7 in [Sta11][p.33]. And recall
that the number of nonnegative number solutions of x1 + · · ·+ xr = n is

(
r+n−1
n

)
.

3. For example, think about 2 coloring of a rectangular, with symmetric group C4 = {e, ρ, ρ2, ρ3}. Then

g |Xg|
e 24

ρ 2
ρ2 22

ρ3 2

By letting r = 2, we get

#orbit =
1

4
(r4 + r2 + 2r)

by the above lemma.
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4. Let G = Cn. X be a set of all words of length n on alphabet {1, 2, · · · , r}. Then, ρk ∈ G acts on X by
sending ai to ai+k where i+ k denotes i+ k mod n. Then, by the lemma,

#necklace =
1

n!

∑
g∈G
|Xg|.

If n is a prime, then
g |Xg|
e rn

ρ r
· · · r
ρn−1 r

(Think that multiplicative subgroup of Zn is cyclic.) Thus,

#necklace =
1

n!

∑
g∈G
|Xg| =

1

n
(rn + (n− 1)r).

5. Think about pentagon with vertices

1

5

4 3

2

Let X be a set of r colorings of vertices, G = D5 = {ρi, τρi}4i=0, where ρ is rotating once counterclock-
wise, and τ is reflection. Then,

g Permutation induced from g |Xg|
e (1)(2)(3)(4)(5) rn

ρi (i, i+ 1, · · · , i− 1)m r
τ (1)(25)(34) r3

And τρi has a decomposition with 3 cycles since the same reflection works for different one. Hence, by
the formula,

#orbits =
1

10
(r5 + 4r + 5r3).

6.2 Cycle index

From above applications, we can observe that if g is a permutation of set X, a set of r colorings. Then,

|Xg| = |Coloring that are fixed by g| = r#cycle(g).

So we can introduce a generating function called cycle index. For each g ∈ G, g induces a permutation of
X, so it has cycle decomposition c1, · · · , ck. Define that

mono(g) := zk1 , · · · , zki

where ki denotes the length of cycle ci of the cycle decomposition of g. For example,

g Permutation induced from g mono(g)
e (1)(2)(3)(4)(5) z51
ρi (i, i+ 1, · · · , i− 1)m z5
τ (1)(25)(34) z1z

2
2
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So, if g has e1 cycles of length 1, e2 cycles of length 2, · · · , el cycles of length l, and so on, then

mono(g) = ze11 · · · z
el
l · · · .

Then define a cycle index; let

PG(z1, · · · , zn) =
1

|G|
∑
g∈G

mono(g),

where n = |X|. For example,

PD5
(z) =

1

10
(z51 + 4z5 + 5z1z

2
2).

Note that if we put zi = r for any i, then

PG(r, · · · , r) = # of patterns.

New question is, how many 2-coloring of vertices of a pentagon using exactly 3 black and 2 whites? Let X ′

be a subset of X with such colorings. Then,

g Permutation induced from g |X ′g|
e (1)(2)(3)(4)(5)

(
5
3

)
ρi (i, i+ 1, · · · , i− 1)m 0
τ (1)(25)(34) 2

Since |X ′| =
(
5
3

)
, and X ′τ can be constructed by choosing a vertex in 1 cycle as a black, and choosing one

of the 2-cycle as black and the other as white. This can be applied for τρi for any i = 1, · · · , 5. Hence, the
number of orbits are 10+5×2

10 = 2.
Now think about the general case; 2-coloring with p elements black, and q elements white, with p+q = n.

To compute X ′g, we need some cycles of g are black, and other cycles are white. So the total number of
elements in black cycle is p, and that of white cycles is q. Assume there are xi many cycles of length i that
are black, i = 1, 2, · · · , k for some k. Then, if we assume g has li cycle of length i, then

0 ≤ xi ≤ li,
k∑
i=1

xi · i = p.

Then,

mono(G)(x11 + 1, · · · , xn + 1) = (x1 + x0)l1 · · · (xk + x0)lk =
∑

all two colorings of cycle g

x# black elements .

is just mono(G)(x11 + 1, · · · , xn + 1). Thus,

[xp]
∑

all two colorings of cycle g

x# black elements = # of patterns with p black and q white elements generated by g.

Hence, the number of patterns with exactly p blacks and q white is

[xp]PG(x+ 1, x2 + 1, · · · , xn + 1)

If we let 1 = y, actually, we can track of white elemtns, i.e.,

[yq]PG(x+ y, x2 + y2, · · · , xn + yn).

So, for general r colors, we can track it by

[xp11 · · ·xprr ]PG(z1, · · · , zn)

where zi =
∑n
j=1 x

i
n.
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6.3 The Theorem of PólyaRedfield

Theorem 6.3.1 (PólyaRedfield). Let X be a set of elements and G be a group of permutations on X.
Let {u1, · · · , uk} be a set of k colors and C be a set of coloring of X. Then, the generating function of
inequivalent coloring in C according to the number of colors of each color k is∑

f : inequivalent coloring of C

u
#{x with color 1}
1 u

#{x with color 2}
2 · · ·u#{x with color 1}

k = PG(z1, · · · , zk)

where zi =
∑k
j=1 u

i
j

Proof. We already show in above.

Example 6.3.2. Think about D4 on a rectangular

4

2

1

3 . Then,

g Permutation induced from g mono(g)
e (1)(2)(3)(4) z41
ρ1 (1234)m z4
ρ2 (13)(24)m z22
ρ3 (1432)m z4
τ (14)(23) z22
τρ1 (13) z21z2
τρ2 (12)(34) z22
τρ3 (24) z21z2

Thus,

PG(z1, · · · , z4) =
1

8
(z41 + 3z21 + 2z4 + 2z21z2).

If we want to find 2-colorings, then by the theorem,∑
f : inequivalent 2-coloring

x#{x with coloring 1}y#{x with coloring 2} = PG(x+ y, x2 + y2, x3 + y3, x4 + y4)

= x4 + x3y + 2x2y2 + xy3 + y4.

7 Catalan numbers and structures

7.1 Example of catalan structures.

Note that Cn := 1
n+1

(
2n
n

)
is a catalan number, which we dealt on previous lecture. For the first values we

know that
C0 = 1, 1, 2, 5, 14, 42, 132, · · · .

We already know that

Cn+1 =

n∑
k=0

CkCn−k and C(x) :=

∞∑
n=1

Cnx
n =

1−
√

1− 4x

2x
.

There are fundamental structures related to the Catalan numbers.

• Triangulation of (n+ 2)-gon.

• Ballot seqeunce

• Dyck Path: above three topics were dealt previously.
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• Binary trees.

Definition 7.1.1. A tree is called binary tree if it is generated by below recursive process; first of all,

∅ be a binary tree. And if T1, T2 are binary, then so is T1 T2

root

.

For example,

∅

Then,
Cn = # of binary tree with n vertices.

• Now we can define a complete binary tree, which is a binary tree such that every vertex v either have
two children or no child. Note that we can convert binary tree to complete binary tree by adding edges
which is denoted by dashed line in the above figure. Thus,

Cn = # complete binary tree with n interval vertices

where interval vertex means a vertex with child. This comes from the bijection from complete binary
tree to binary tree; to see the inverse operation, just remove all leaves from the complete tree.

• Plane tree.

Definition 7.1.2. A tree is plane tree if it can be generated by following recursive process;

1. ({•}, ∅) is a plane tree.

2. If P1, · · · , Pm are plane tree, then so is P1
· · · Pm

root

.

Then we can show that
Cn = # plane trees with n+ 1 vertices.

For example, when n = 0, then only a verte is plane tree. If n = 1, then • − • is the only one plane
tree. If n = 2, • − root − • and root − • − • are those. (The latter is just when case m = 1 with
P1 = • − •. For n = 3, there are five cases, where the top vertex is root of the tree.
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• Parenthesization (Bracketing.) Think about the number of ways of apply a binary operation to
n + 1 vertices; if n = 0, then no case exists. If n = 1, the only one way is (x1x2). If n = 2,
((x1x2)x3), (x1, (x2, x3)), and for n = 3,

(((x1x2)x3)x4), ((x1, x2)(x3, x4)), ((x1(x2, x3))x4), (x1((x2x3)x4)), (x1(x2(x3x4))).

There exists a map from plane tree to binary tree; for example, let r(v), a rank of v be a length from v to
the root. Then r(root) = 0. Then, generate binary tree by this process; make a line graph for r(v) = 1.
Then, for a set with rank v, we can partition it by its parent. (v must have only one parent by construction
of plane tree, and the parent has r(v) = 1. ) Then, for each parent v, attach the line graph generated by
a partition of {w : r(w) = 2} having v as its parent. Do the same thing for r(v) = 3, 4, and so on. For
example,

root

a b c

d e f g

h i j

a b c

d e f g

h i j

And bracket can be converted into a complete binary tree by using preorder system. For example,

(((x1x2)x3)x4)

can be represented to the binary tree

1 2

3

4

traveling the most left vertices for each level.
Thus, we can have bijection among plane tree, ballot sequence, parenthesization with complete binary

tree.

Lemma 7.1.3 (Cyclic lemma). Cn = 1
n+1

(
2n
n

)
= 1

2n+1

(
2n+1
n

)
.

This is already shown in previous chapter.

Lemma 7.1.4 (Ramney’s lemma). For any sequence a1, · · · , a2n+1 containing n+1 +1’s and n −1’s, exactly
one cyclic shift is a strict ballot sequence, i.e., any partial sum starting at 1 to i ∈ [2n+ 1] is strictly greater
than 0, i.e.,

j∑
i=1

bi > 0,∀j ∈ [2n+ 1].

There are
(
2n+1
n

)
sequences we can partition it by cyclic shift. Then the lemma says that each orbit ahs

a one “strict ballot sequence.” Since each orbit has exactly 2n+ 1 elements, hence

# strict ballot sequence =

(
2n+ 1

n

)
1

2n+ 1
= Cn.

Proof. Think +1 as ↗, i.e., (0, 0)→ (1, 1) and −1 be ↘, i.e., (0, 0)→ (1,−1). Then, we can make a kind of
path from (0, 0) to (2n+ 1, 1). If we copy this path from (0, 0) to (2n+ 1) and paste it to the point starting
at (2n + 1, 1), then we have a path from (0, 0) to (4n + 2, 2). Then there are the lowest point. Take the
rightmost lowest point. Note that this point is in the region where x ∈ [0, 2n+ 1], since the pasted path goes
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one unit north. Now if we think the rightmost lowest point as (0, 0), then by construction, its path from
new (0, 0) to (2n + 1, 1) doesn’t contain a point touching x = 0 except (0, 0), so the partial sum is always
strict, done.

To see its uniqueness, if there are two strict ballot sequence a1, · · · , a2n+1 and ai, · · · , a2n+1, a1, · · · , ai−1,
note that

i−1∑
j=1

aj ≥ 1,

2n+1∑
j=i

aj ≥ 1 =⇒ 1 = a1 + · · · a2n+1 ≥ 2

contradiction.

There is a variation of cycle lemma, called Spitzer’s lemma.

Lemma 7.1.5 (Spitzer’s lemma). Let a1, · · · , an be a real number with property that

1.
∑N
i=1 ai = 0

2. Read cyclically no other nonempty sum of consecutive ai’s is 0, i.e. total sum is zero but any consecutive
sum is nonzero.

Then, there exists unique cyclic shift b1, · · · , bn such that

k∑
i=1

bi ≥ 0,∀k ∈ [n]

Proof. Take a path (0, 0)→ (1, a1)→ (1, a1) + (2, a1 + a2)→ · · · → (N,
∑N
i=1 ai) = (N, 0). Then we can do

the same thing as above, starting at the lowest point.
To see the uniqueness, if it is not unique, then there exists two positive partial sum, but sum of these

partial sums are just total sum which is zero, contradiction. This is also just following proof of Ramney’s
lemma.

Application of Spitzer’s lemma is here; let gcd(r, s) = 1 for some r, s ∈ N. Then, the number of lattice
paths from ~0 to (r, s) stay weakly below the line y = s

rx, i.e. a diagonal line between ~0 and (r, s), is

1

r + s

(
r + s

r

)
.

Proof. Take a path from ~0 to (r, s). Then we can denote it by a sequence of r east step and s north steps.
Then generate a sequence a1, · · · , ar+s whre

ai =

{
s for east step

−r for north step

which corresponds to the each step at time i. So, the total sum is zero, and consecutive partial sum is
nonzero, since gcd(r, s) = 1. Then the lattice path stays below y = s

rx if and only if any partial sum is
greater then 0. To see this, if we had k east step and q north step such that k/q ≤ s/r, i.e., a point in the
path is still stay below then the line y = s

r , then k/q ≤ s/r is equivalent to ks − qr > 0 ( this cannot be
equal to 0 from coprime condition) which is equivaent to sum from a1 to ak+q is greater than 0, done.

7.2 NC matching of [n]

This is about parint of 2n points with noncrossing diagonals. i.e., there is no 2 blocks B1, B2 such that
i, j ∈ B1, k, l ∈ B2, and i < k < j < l. From this definition, we just think of case when points are in linear,
and block partition by an edge should not cross one another if we restrict edge be upward on the line of
points. For example,

the left one is noncrossing but the right one is crossing pair.
We know that Cn is just number of noncrossing matchings on [2n].
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• Pattern avoidance in permutation pattern σ ∈ Sk: Define a map from the given sequence of distinct
number a1, · · · , ak. let std(a1, · · · , ak) be a permutation obtained from replacing the ith minimal entry
with i. For example,

std(35127) 7→ 34125.

So std only care about the relative order of entry. Given a permutation π ∈ Sn with n ≥ k, say π
contains σ if there exists a subsequence π′ of π such that std(π′) = σ. (Note that std comes from
“standardization.”) For example, if σ = 123 and π = 75326148, then π has subsequences 148, 268
whose standardization is 123. Otherwise, we say that π avoids σ. Let

Avn(σ) = {π ∈ Sn : π avoids σ}.

Then it is known that for any σ ∈ S3,
|Avn(σ)| = Cn.

For any permutation σ = σ1 · · ·σn, let σr := σnσn−1 · · ·σ1, i.e., reversing the permuation, and let

σc := (n+ 1− σ1) · · · , (n+ 1− σn).

Then,
|Avn(σ)| = |Avn(σn)| = |Avn(σc)|

since applying the same map (•)r, (•)c on Avn(σ) gives a bijection. Also, if

|Avn(π)| = |Avn(σ)|

for some π, σ then we say π and σ is wilf-equivalent, i.e., π
w∼ σ.

• Noncrossing partition. Let NCn be a set of noncrossing partitions of [n]. Precisely, π = (B1, · · · , Bk) ∈
Πn is noncrossing if and only if no i, j ∈ Br1 , k, l ∈ Br2 satisfy i < k < j < l for any r1, r2 ∈ [k]. We

can represent it by convex hull on a points where j ∈ [n] is represented by e
π
2 i−

j2π
n i. For example,

[n] = 9 with noncrossing partition (136)(2)(45)(79)(8) can be represented as

1

2

3

4

56

7

8

9

or

1 2 3 4 5 6 7 8 9

or

1 2 3 4 5 6 7 8 9

To see why the cardinality of NCn is Cn, think about a convex hull on a circle representing noncrossing
partition π which is arbitrarily chosen, and let k be a maximum element in the block containing 1.
Then, π is disjoint union of 1) noncrossing partition of {1, 2, · · · , k} such that 1 and k are in the same
block, and 2) noncrossing partition of {k + 1, · · · , n}, which gives Cn−k by inductive hypothesis. And
to calculate 1) note that it is 1− 1 relationship with a noncrossing partition of {1, · · · , k − 1} by just
adding or deleting k from the partitions. Thus it gives Ck−1 way, hence

#NCn =

n∑
k=1

Cn−kCk−1 = Cn

Now, we claim that
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Claim 7.2.1. NCn is a lattice, i.e., ∀π, σ ∈ NCn, there exists the unique greatest lower bound and
the least upper bound.

Note that Πn, a lattice of partition is defined from the Poset structure such that π ≤ σ if π refines σ,
i.e., every block in π is subset of block in σ.

Proof. Define meet as π ∧ σ = {πi ∩ σj 6= ∅ : πi ∈ π, σj ∈ σ}. Then, since it is just meet in Πn, and
NCn is subposet of Πn, it suffices to show that this meet is also noncrossing. To see this, if we take
any two block in π ∧ σ and each two elements from those blocks, then we can take two blocks from
π or σ distinguishing those two elements (at least one of π or σ distinguish them,) thus it satisfies
noncrossing relationship.

However, in case of defining join, thing is not easy. Actually, join in Πn may not be a noncrossing
partition. For example, let π = 135− 2− 4− 6 and σ = 1− 3− 5− 246, then π ∨ σ = 135− 246, which
is crossing partition. To solve this, we need theorem in lattice.

Theorem 7.2.2. Let P be a finite poset which is meet-closed and P has 1̂. Then P is a lattice, i.e.,
∀x, y ∈ P , x ∨ y exists.

Proof of the theorem. For all x, y ∈ P , take S = {z : z ≥ x, z ≥ y}. Then, S 6= ∅ since 1̂ ∈ S. Also,
S is finite since P is finite. Since P is meet closed, let u = ∧z∈Sz, i.e., meet of all z ∈ S. Then,
u = x ∨ y.

In NCn, 1̂ = 123 · · ·n, and meet closed as we shown above. Thus, by the theorem, NCn is a lattice.

What is cover relation in NCn? We call σ is a cover of π ∈ NCn such that there exists no π′ ∈ NCn
such that π < π′ < σ.

Lemma 7.2.3. If π is in NCn and π has at least 3 blocks. it always possible to find π′ ∈ NCn such
that π < π′ < 1̂.

Proof. Take π′ be unioning any two blocks of π.

From the proof of lemma, if σ covers π, then #block(σ) = #block(π)− 1. (Otherwise we can construct
a noncrossing partition between σ and π, contradiction.) Hence, NCn can be graded by rank(π) =
n−#blocks(π). From this, we can conclude that NCn is a poset having a layer, wihch is self-symmetric,
thus we can calculate a Möbius function of NCn. For example, NC4 looks like this;
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1. Self-dual property in NCn: there exists an involution τNCn(k)→ NCn(n+1−k) where NCn(k)
means a set of NC partitions having k blocks. For example, let π = 138 − 2 − 4 − 57 − 6. Then
we can put it in the circle with points 1, 2, · · · , 8 as below.

1

2

3

4

5

6

7

8

Now draw new number 1′, · · · , 8′ in reverse order between 1, 2, · · · , 8 and draw a convex hull which
can be partitioned by above convex hull. For example,

1

2

3

4

5

6

7

8
7′

6′

5′

4′3′

2′

1′

8′

This red convex hull denote 145 − 23 − 67 − 8. This labeling gives involution. (Note that other
labeling of prime points may not be involution.) To see this why it is involution, draw a line
between 8 and 8′ through 4 and 4′ and think about mirror symmetry.

So if n is odd number, then involution gives a bijection for the subset of NCn having a middle
rank.

How many fixed points here? If n is even, then no fixed points exist. If n = 2m+ 1 is odd, then
Cm fixed points exists. Also, |NCn(k)| = 1

n

(
n
k

)(
n
k−1
)
, which is called Narayana number.

2. Now think about interval [π, σ] ⊆ NCn.

(a) Case 1: Let π = 0̂ = 1− 2− · · · − n, and let σ = (B1, · · · , Bk). Then, we can see that

[0̂, σ] =

k∏
i=1

NC(Bi).

To see this, note that any partition τ less than σ is refinement of σ, so if we think all blocks
in τ contained in Bi for arbitrarily chosen i, they form a noncrossing partition of Bi.

(b) In general, for example, let σ = 1, 6, 9, 12−245−3−78−10, 11, π = 19−25−3−4−6−78−
10− 11− 12. Then we can generate this interval by cartesian product of subinterval; namely,

[π, σ] = [(1, 9− 6− 12), (1, 6, 9, 12)]× [(25− 4), (245)]× [3, 3]× [78, 78]× [10− 11, (10, 11)]

This is because for τ ∈ [π, σ], each block of τ refining σ but π should be refining of τ , so for
each block in σ, block of τ has also noncrossing property. And to calculate each summand
of cartesian product, we can use the involution, since involution preserves cardinality. Note
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that each subinterval has 1̂ in those points. Thus, by applying involution, it goes to 0̂. For
example, in above case, we get

[(1, 9− 6− 12), (1, 6, 9, 12)] 7→ [1− 6− 9− 12, (1, 12− 6, 9)] ∼= NC2 ×NC2

[(25− 4), (245)] 7→ [2− 4− 5, 24− 5] ∼= NC2 ×NC1

[3, 3] 7→ [3, 3] ∼= NC1

[10− 11, (10, 11)] 7→ [10− 11, (10, 11)] ∼= NC2

So, [π, σ] =
∏
NCi for some proper index i which can be repeated, which implies

µ(π, σ) =
∏

µNCi(0̂, 1̂).

(c) Now calculate sn = µn(0̂, 1̂). First three values are easy; s1 = 1, s2 = −1, s3 = 2. Actually,
s4 = −5 by computing directly. Now we claim that

Claim 7.2.4. sn = (−1)n−1Cn−1.

Proof. Recall Weisner’s theorem, i.e., if a 6= 1̂, then

µ(0̂, 1̂) = −
∑
x:x 6=1̂
x∨a=1̂

µ(0̂, x).

In NCn, let a = 1 − 2 − 3 − · · · − (n − 2) − (n − 1, n). Then, if x ∨ a = 1̂ but x 6= 1̂,
then x cannot have a block included in [n − 2]; then we can construct a greater element of
x and a by only thinking the remaining elements in x except that block. So every block in
x has to intersect with {n − 1, n}. This implies x has only two block, one block containing
n − 1 and the other block containing n. To satisfy noncrossing condition, this x looks like
{{1, 2, · · · , k− 1, n}, {k, · · · , n− 1}}. Thus all possible x 6= 1̂ is when k = 1, · · · , n− 1. Hence
each block size is k, n− k, so

µ(0̂, x) = µ(NCi ×NCn−i = si × sn−i

so

µNCn(0̂, 1̂) = −
n−1∑
i=1

sisn−i.

And from the initial condition, we can get

si = (−1)i−1Ci−1.
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