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Abstract

This note is based on the lecture of Real Variable I given by professor Ken Dykema on Spring 2017
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1 Selected review

1.1 Notation and ordering

N := {1, 2, · · · },Z := {· · · ,−1, 0, 1, · · · },Q =

{
p

q
: p, q ∈ Z, q 6= 0

}
,

R := set of real number, C = R + iR

Definition 1.1 (Relation). A relation on a set X is a subset R ⊂ X × X. (x, y) ∈ R can be written as
xRy.

Definition 1.2 (Partial order, total order). A partial order on X is a relation R on X such that

(i) xRx,

(ii) xRy and yRx =⇒ x = y

(iii) xRy and yRz =⇒ xRz

A partial order R is linear or total ordering if ∀x, y ∈ X, either xRy or yRx.

Example 1.3. (i) ≤ on R is total

(ii) ⊆ on P(X) = {S : S ⊆ X}. This is partial order but not total order if |X| ≥ 2.

(iii) Lexical ordering of words is a total ordering.

Definition 1.4 (Poset). A partially ordered set or poset is (X,≤) where X is a set and ≤ is a partial
order on X.

Definition 1.5 (Maximal element). If X is a poset, there is a maximal element z ∈ X, such that ∀y ∈ X
and z ≤ y, then y = z.

Now we have four basic propositions related to each other.

Lemma 1.6 (Zorn’s Lemma). Let (X,≤) be a poset and suppose that every totally ordered subset L of X
has an upper bound. (i.e., ∀L ⊆ X, endowed with the partial ordering inherited from X is totally ordered;
namely, ∀u ∈ X such that ∀t ∈ L, t ⊆ u.)

Then, X has a maximal element.

Axiom 1.7 (Axiom of choice). Let X be a set and let {Xα}α∈Λ be a collection of nonempty subset of X.
Then, ∃f : Λ→ X such that ∀α ∈ Λ, f(α) ∈ Xα.

Definition 1.8 (Well-ordering). A well-ordering on a set X is a total ordering such that every subset of
X has a smallest element.

Example 1.9. N with usual ordering is well-ordering. However, Z with usual ordering is not an well-
ordering. Nor is the usual ordering on R.

Principle 1.10 (The well-ordering principle). Every set can be endowed with a well-ordering.

Principle 1.11 (The Hausdorff Maximal Principle). Every poset has a maximal totally ordered subset E,
i.e., if ∃E′ ⊆ X such that E ⊆ E′ ⊆ X, then E′ is linearly ordered.

Theorem 1.12. Zorn’s lemma, Axiom of choice, the well-ordering principle, and the Hausdorff maximal
principle are equivalent and independent with ZF axioms of set theory.
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Proof. 1. (Haus) =⇒ (Zorn) Take a maximal linearly ordered subset E of X given by the Hausdorff
maximal principle. Then it has an upper bound z by the condition of Zorn’s lemma. Then, z ∈ E,
otherwise E is not a maximal linearly ordered subset. Then, z is a maximal element, since if ∃z′ ∈ X
such that z ≤ z′, then e ≤ z′,∀e ∈ E, thus z′ ∈ E, contradicting the maximality of E.

2. (Zorn) =⇒ (Haus) Let (P(X),⊆) be a collection of linearly ordered subsets of X and inclusion.
This is a poset. Also, every totally ordered subset L of P(X) has an upper bound ∪l∈Ll. Thus, by the
Zorn’s lemma, it has a maximal element E. Note that E is linearly ordered by construction. Also, it
is maximal linearly ordered, since if there exists E′ such that E ⊂ E′ ⊆ X and E′ is linearly ordered,
then E′ ∈ P(X), thus E is not a maximal element, contradiction.

3. (Zorn) =⇒ (Well) Let W = {(≤i .Ei) :≤i is a partial ordering on Ei}. Then, give a partial ordering
on W as inclusion; i.e., (≤i .Ei) ≤ (≤j .Ej) if Ei ⊂ Ej , ≤i and ≤j agrees on Ei, and ∀x ∈ Ej \Ei and
∀y ∈ Ej , y ≤j x. Then, if W ′ ⊆ W be a totally ordered subset of W , then it has an upper bound, by
(≤∞,∪E∈W ′E). Hence, by Zorn’s lemma, it has a maximal element (≤, E). And E = X, otherwise,
∃x ∈ X \ E, thus, we can have well ordering on E ∪ {x} by extending ≤ as y ≤ x for all y ∈ E,
contradicting to maximality.

4. (Well) =⇒ (AC) Let {Xα}α∈A is a nonempty collection of nonempty sets, given the condition of
AC. Then let X = ∪α∈AXα. By the well ordering principle, there exists an well ordering on X. Thus,
subset Xα has a minimal element by the well ordering principle. Let f : A→ ∪α∈AXα by f(α) = the
minimal element of well ordering on Xα. Hence, f(α) ∈ Xα by definition.

5. (AC) =⇒ (Haus) It uses transfinite induction, but I don’t understand.

1.2 Cardinality

Cardinal is the ”size” of a set.

Definition 1.13. Let X,Y be sets. Then, card(X) ≤ card(Y ) means

∃f : X
one−to−one
↪−−−−−−−−→ Y.

card(X) = card(Y ) means

∃f : X
bijection−−−−−−→ Y.

card(X) ≥ card(Y ) means

∃f : X
surjection−−−−−−−→→ Y.

Theorem 1.14 (Schroder-Bernstein Theorem, Theorem 0.8 in [1] p. 7).

card(X) ≥ card(Y ) and card(X) ≤ card(Y ) =⇒ card(X) = card(Y ).

Also,
card(X) ≤ card(Y ) ⇐⇒ card(Y ) ≤ card(X).

Proof. Suppose card(X) ≤ card(Y ). Then, ∃f : X → Y which is injective. Let x0 ∈ X and define g : Y → X
by

g(y) =

{
f−1(y) if y ∈ f(X),

x0 otherwise.

Then g is surjective.
Conversely, if card(Y ) ≥ card(X), there exists g : Y → X which is surjective. Thus, g−1({x}) is a

nonempty by surjectivity, and disjoint with other pull back of singleton because g is a function. Thus,
∃f ∈

∏
x∈X g

−1({x}), and it is an injection from X to Y .
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Proposition 1.15 (Proposition 0.7 in [1] p.7). For any X,Y sets, either card(X) ≤ card(Y ) or card(Y ) ≤
card(X).

Proof. Let J be a set of all injections from subsets of X to Y . Then, ∀f ∈ J, f ⊆ X × Y . Thus J have
a poset by inclusion. Thus, every totally ordered subset of J has an upper bound derived by unioning all
members of the subset. Hence, by Zorn’s lemma, it has a maximal element f : A ⊆ X → B ⊆ Y . If both
x ∈ X \A and y ∈ Y \B exists, we can extend f : A∪{x} → B∪{y} as f(x) = y, contradicting maximality.
Thus, either A = X or B = Y , this implies either card(X) ≤ card(Y ) or card(Y ) ≤ card(X).

Definition 1.16 (Countable Set). A set X is called countable if it is either finite or card(X) = card(N).
Otherwise, it is called uncountable.

Proposition 1.17. If Xα is countable for any α ∈ A and A is also countable, then ∪α∈AXα is countable.

Proof. Since Xα is countable, ∃fα : N → Xα which is surjective. Thus, let f : N × A → ∪α∈AXα by
f(n, α) = fα(n) is also surjective. And since we also have a surjective map N→ N× N→ N×A, done.

Theorem 1.18. R is uncountable, and card(R) = card(P(N))

We need a lemma for showing R is uncountable.

Lemma 1.19. For any set X, card(X) < card(P(X))

proof of the lemma. f : X → P(X) by x 7→ {x} is an injection. Thus, card(X) ≤ card(P(X)). Also, if
g : X → P(X), then let Y = {x ∈ X : x 6∈ g(x)}. Then, Y 6∈ g(X), otherwise ∃x′ ∈ X such that g(x′) = Y ,
thus absurdity comes; if x′ ∈ Y , then x′ 6∈ Y by definition of Y , otherwise if x′ 6∈ Y = g(x′), then x ∈ Y by
defintion of Y . Thus, g is not a surjective.

proof of the theorem. Let

f : P(N)→ R by f(A) =

{∑
n∈A 2−n if |A| =∞

1 +
∑
n∈A 2−n otherwise.

Thus, f is injective. Conversely, let

g : P(Z)→ R by g(A) =

{
log(

∑
n∈A 2−n) if A is bounded,

0 otherwise.

Then g is surjective since every positive real number has a base-2 decimal expansion.
card(R) = card(P(N)) > card(N), so R is uncountable.

Definition 1.20 (Equivalence Relation). A relation ∼ on X is an equivalence relation if

(i) ∀x ∈ X,x ∼ x

(ii) ∀x, y ∈ X,x ∼ y =⇒ y ∼ x

(iii) ∀x, y, z ∈ X,x ∼ y, y ∼ z =⇒ x ∼ z

If ∼ is an equivalence relation on X, we write [x] = {y ∈ X : x ∼ y} for the equivalence relation of x ∈ X,
and {[x] : x ∈ X} forms a partition of X, i.e., disjoint subsets of X.

Proof. If x 6=∼ y but [x] ∩ [y] 6= ∅, ∃z ∈ [x] ∩ [y], x ∼ z ∼ y =⇒ x ∼ y, contradiction.
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2 Measure theory

2.1 Introduction and σ-algebra

Naturally, µ([a, b]) = b−a, which is weight of [a, b]. However, this usual concept has defect when we integrate
by Riemann sum; not all function is integrable.

Definition 2.1. A measure on a set X assigns values µ(E) ∈ [0,+∞] to subset E ⊆ X.

Remark 2.2. Desired properties for a volume measure on Rn

(1) If E1, E2, · · · is a sequence of (pairwise) disjoint subsets of X, then

µ(∪∞j=1Ej) =

∞∑
j=1

µ(Ej).

(2) If E and F ⊆ Rn are congruent by translation, then µ(E) = µ(F ).

(3) µ([0, 1]n) = 1

However,

Theorem 2.3. 6 ∃ such a volume measure defined on the set P(Rn) of all subsets of Rn.

Proof. It suffices to prove the case when n = 1. Define an equivalence relation ∼ on R by x ∼ y iff x ∼ y ∈ Q.
It is well defined since x− x = 0 =⇒ x ∼ x, x− y ∈ Q =⇒ y − x ∈ Q and x− y, y − z ∈ Q =⇒ x− z =
(x− y) + (y − z) ∈ Q.

Let D ⊆ [0, 1) be a subset containing exactly one element from each equivalence class of ∼ . Clearly, it
depends upon the Axiom of Choice.

Given r ∈ Q ∩ [0, 1), let

Dr = ((D + r) ∩ [0, 1))∪ ((D + r − 1) ∩ [0, 1)) = {x+ r : x ∈ D ∩ [0, 1− r)}∪ {x+ r− 1 : x ∈ D ∩ [1− r, 1)}.

If y ∈ (D+r)∩ (D+r−1), then y = x+r = z+r−1 for some x, z ∈ D, hence, y−r = x ∈ D, y−r+1 =
z ∈ D. However, since x = z − 1, x ∼ z ⇐⇒ y − r ∼ y − r + 1.

Claim 2.4. If r, s ∈ Q ∩ [0, 1], and r 6= s, then Dr ∩Ds = ∅.

Proof. If y ∈ Dr ∩Ds, then either y− r, y− s ∈ D or y− r+ 1, y− s ∈ D. For the first case, y− r− (y− s) =
s− r ∈ Q, thus y − r ∼ y − s. Also note that y − r 6= y − s since r 6= s. However, D has only one element
from each equivalence set, contradiction. For the second case, y − r + 1 − (y − s) = s − r + 1 ∈ Q, thus
y − r + 1 ∼ y − s. The only possible situation is y − r + 1 = y − s, then r − s = 1, contradiction since
r, s ∈ [0, 1).

Claim 2.5.
∑
r∈Q∩[0,1)Dr = [0, 1).

Proof. Let a ∈ [0, 1) then a belongs to some equivalence class of ∼. So, ∃q ∈ Q such that a− q ∈ D. Thus
0 ≤ a− q < 1, since D ⊂ [0, 1). Since 0 ≤ a < 1,

−1 < −a ≤ −q < 1− a < 1 =⇒ −1 < q < 1.

If 0 ≤ q < 1, then a ∈ Dq, otherwise, a ∈ Dq+1. In any case, a ∈
∑
r∈Q∩[0,1)Dr = [0, 1). Since other direction

of inclusion is obvious, done.
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Now we can go back to the main argument. Suppose for contradiction, a countable additive volume
measure µ on P(R) exists. Then,

µ(Dr) = µ(r +D ∩ [0, 1− r)) + µ((r − 1) +D ∩ [1− r, 1)) = µ(D ∩ [0, 1− r)) + µ(D ∩ [1− r, 1)) = µ(D).

So,

1 = µ([0, 1)) = µ(∪r∈Q∩[0,1)Dr =
∑

r∈Q∩[0,1)

µ(Dr) =
∑
N
µ(D),

since Q∩ [0, 1) is countable. Hence, if µ(D) = 0, 1 = 0, contradiction. If µ(D) 6= 0, 1 =∞, contradiction.

Theorem 2.6 (Banach Tarski Paradox). Let n ≥ 3 and U, V ⊆ Rn be bounded set. Then, ∃k ∈ N, E1, · · · , Ek, F1, · · · , Fk,

and {Ej} and {Fj} are pairwise disjoint, such that U =
∑k
j=1Ej , V =

∑k
j=1 Fj but Ej and Fj are congruent

to each other for all j. A and B are congruent to each other means that we can get one from the other by a
composition of translation, rotation, and reflection.

Proof. See https://people.math.umass.edu/∼weston/oldpapers/banach.pdf

Corollary 2.7. For n ≥ 3, 6 ∃µ : P(Rn)→ [0,+∞] satisfying

(1) µ is finitely additive, i.e., if k ∈ N, E1, · · ·Ek ⊆ Rn are disjoint then µ(∪kj=1Ej) =
∑k
j=1 µ(Ej).

(2) E,F are congruent, then µ(E) = µ(F ).

(3) µ([0, 1)n) = 1.

Definition 2.8. Let X be sets, a ⊆ P(X), and a 6= ∅. We say a is an algebra of subsets of X if

(i) n ∈ N, E1, · · · , En ∈ a =⇒ ∪nj=1Ej ∈ a.

(ii) E ∈ a =⇒ Ec = X \ E ∈ a.

We say a is a σ-algebra if also belows are hold;

(i’) E1, E2, · · · ∈ a =⇒ ∪∞j=1Ej ∈ a

Observation 2.9. If a is an algebra of subsets of X, then

(1) X = E ∪ Ec ∈ a and ∅ = Xc ∈ a

(2) If E1, E2, · · ·En ∈ a, then ∩nj=1Ej =
(
∪nj=1E

c
j

)c ∈ a (De Morgan)

(3) If a is a σ-algebra, then ∩∞j=1Ej =
(
∪∞j=1E

c
j

)c ∈ a (De Morgan)

Example 2.10. (1) a = P(X).

(2) a = {∅, X}.

(3) a = {E ⊆ X : either E or Ec is countable }

(4) ξ ⊆ P(X) then we denote the σ-algebra generated by ξ as

σ-alg (ξ) :=
⋂

a⊂P(X)
a is a σ-algebra

ξ⊆a

a,

e.g., if ξ = {B} for some B ⊆ X then σ-alg (ξ) = {∅, X,B,Bc}.

Lemma 2.11. If ξ ⊆ F ≤ P(X), then σ-alg (ξ) ≤ σ-alg (F) .
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Proof. σ-alg (F) contains ξ, thus it contains σ-alg (ξ)

(5) Let X be a topological space, e.g., X is a metric space such as Rn. Let TX be the set of all open subsets
of X. Then, Borel σ-algebra of X is BX := σ-alg (TX) And its member is called Borel sets.

Definition 2.12 (Gδ-set and Fσ-set). Denote Gδ-set be a countable intersection of open sets. Also, denote
Fσ-set be a countable union of closed sets. Similarly, let Gδσ-set be a countable union of Gδ-set, and
Fσδ-set be countable intersection of Fσ-set.

Proposition 2.13 (Proposition 1.2 in [1]). BR is generated by any of the following:

(a) the open intervals; ξ1 = {(a, b) : a, b ∈ R, a < b}

(b) the closed intervals; ξ2 = {[a, b] : a, b ∈ R, a < b}

(c) the half-open intervals; ξ3 = {(a, b] : a, b ∈ R, a < b} or ξ4 = {[a, b) : a, b ∈ R, a < b}

(d) the open rays; ξ5 = {(a,∞) : a ∈ R} or ξ6 = {(−∞, a) : a ∈ R}

(e) the closed rays; ξ7 = {[a,∞) : a ∈ R} or ξ8 = {(−∞, a] : a ∈ R}

Proof. First of all, ξ2 ⊆ BR since the complement of closed set is open, and ξ5, ξ6, ξ7, ξ8 ⊆ BR since they
are either open or closed sets. Also, ξ3, ξ4 are Gδ-set, which is in BR since it is closed under countable
intersections. Thus, σ-alg (ξi) ⊆ BR for all i = 1, 2, · · · , 8

For (a), since ξ1 ⊂ TR, σ-alg (ξ1) ⊆ BR. To show the other direction of inclusion, it suffices to show that
TR ⊆ σ-alg (ξ1) . Note that

(−∞, b) =

∞⋃
m=1

(b− n, b) ∈ σ-alg (ξ1) , (a,∞) =

∞⋃
n=1

(a, a+ n) ∈ σ-alg (ξ1) .

Note that every open subsets of R is a countable union of disjoint open intervals, so TR ⊆ σ-alg (ξ1) =⇒
BR ⊆ σ-alg (ξ1) .

For (b), note that (a, b) =
⋃∞
n=1[a + n−1, b − n−1] ∈ σ-alg (ξ2), thus ξ1 ⊆ σ-alg (ξ2) . Therefore, BR =

σ-alg (ξ1) ⊆ σ-alg (ξ2) ⊆ BR, done.
For (c), note that (a, b) =

⋃∞
n=1(a, b − n−1] ∈ σ-alg (ξ3) or (a, b) =

⋃∞
n=1[a + n−1, b) ∈ σ-alg (ξ4), thus

ξ1 ⊆ σ-alg (ξ3) ∩ σ-alg (ξ4). Therefore, BR = σ-alg (ξ1) ⊆ σ-alg (ξ3) ⊆ BR and BR = σ-alg (ξ1) ⊆ σ-alg (ξ4) ⊆
BR, done.

For (d), note that (a, b] = (a,∞) ∩ (b,∞)c ∈ σ-alg (ξ5), thus ξ3 ⊆ σ-alg (ξ5), therefore BR = σ-alg (ξ3) ⊆
σ-alg (ξ5) ⊆ BR. Also, [a, b) = (−∞, a)c∩(b,∞) ∈ σ-alg (ξ6), thus ξ4 ⊆ σ-alg (ξ6), therefore BR = σ-alg (ξ4) ⊆
σ-alg (ξ6) ⊆ BR. done.

For (e), note that [a, b) = [a,∞) ∩ [b,∞)c ∈ σ-alg (ξ7), thus ξ6 ⊆ σ-alg (ξ7), therefore BR = σ-alg (ξ6) ⊆
σ-alg (ξ7) ⊆ BR. Also, (a, b] = (−∞, a]c ∩ (−∞, b] ∈ σ-alg (ξ8), thus ξ3 ⊆ σ-alg (ξ8), therefore BR =
σ-alg (ξ3) ⊆ σ-alg (ξ8) ⊆ BR. done.

Let A be a set and ∀α ∈ A, let Xα be a nonempty set, and let mα be a σ-algebra of subsets of Xα. Let

X =
∏
α∈A

Xα := {(xα)α∈A : xα ∈ Xα} = {f : A→
⋃
α∈A

Xα s.t. ∀α ∈ A, f(α) ∈ Xα}.

(Note that it uses the Axiom of Choice when A is infinite.) For example, if A = {1, 2, · · · , n},

∏
α∈A

Xα =

n∏
j=1

Xj = X1 ×X2 × · · · ×Xn.

For β ∈ A, we let πβ :
∏
α∈AXα → Xβ is the coordinate projection given by πβ((Xα)α∈A) = Xβ .
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Definition 2.14. Let mα be a σ-algebra on X. The product σ-algebra m =
⊗

α∈Amα is the σ-algebra
of subsets of X generated by {π−1

α (E) : α ∈ A,E ∈ mα}.

Proposition 2.15 (Proposition 1.3 in [1]). If A is countable, then m = ⊗α∈Amα is the σ-algebra generated
by ξ = {

∏
α∈AEα : Eα ∈ mα}.

Proof. Clearly, m ⊆ σ-alg (ξ) since for any F ∈ mβ ,

π−1
β (F ) =

∏
α∈A

Eα

where Eα =

{
F if α = β

Xα otherwise.

But in general,
∏
α∈AEα = ∩α∈Aπ−1

α (Eα) ∈ m if A is countable. Thus, σ-alg (ξ) ⊆ m, done.

Proposition 2.16 (Proposition 1.4 in [1]). Suppose mα = σ-alg (ξα) for some ξα ⊆ P(Xα). Let m =
⊗α∈Amα. Then,

1) m = σ-alg (T1) where T1 = {π−1
α (E) : α ∈ A,E ∈ ξα}.

2) If A is countable, then m = σ-alg (T2) where T2 = {
∏
α∈AEα : Eα ∈ ξα}.

Proof. For (1), note that m = σ-alg
(
{π−1

α (E) : α ∈ A,E ∈ mα}
)

by definition. Since T1 ⊆ ξα, σ-alg (T1) ⊆
σ-alg (ξα) = mα, thus, σ-alg (T1) ⊆ m.

To show m ⊆ σ-alg (T1) , we must show that ∀F ∈ mα, π
−1
α (F ) ∈ σ-alg (T1) . Fix α ∈ A. Let

n = {G ⊆ Xα : π−1
α (G) ∈ σ-alg (T1)}.

Claim 2.17. n is a σ-algebra on Xα.

proof of the claim. If Gi ∈ n for i ∈ N,

π−1
α

( ∞⋃
n=1

Gn

)
=

∞⋃
n=1

π−1
α (Gn) ∈ σ-alg (T1) =⇒

∞⋃
n=1

Gn ∈ n.

Also, ∀G ∈ n, π−1
α (Xα \ G) = X \ π−1

α (G) ∈ σ-alg (P1) . So X \ G ∈ n. Thus, n is closed under countable
union and complementary.

Now it suffices to show that mα ⊆ n, since if it is true, then for any E ∈ mα, π−1
α (E) ∈ σ-alg (T1) , thus

m ⊆ σ-alg (T1) . Note that

∀E ∈ ξα, π−1
α ∈ T1 ⊆ σ-alg (T1) =⇒ E ∈ n =⇒ ξα ⊆ n,

by definition of T1, n. Thus,
mα = σ-alg (ξα) ⊆ σ-alg (n) = n.

For (2), m ⊆ σ-alg (T2) since for any F ∈ mβ ,

π−1
β (F ) =

∏
α∈A

Eα

where Eα =

{
F if α = β

Xα otherwise.

But in general,
∏
α∈AEα = ∩α∈Aπ−1

α (Eα) ∈ m if A is countable. Thus, σ-alg (ξ) ⊆ m, done.
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2.2 Measures

Definition 2.18 (Measurable space and measure). A measurable space (X,m) is a pair of nonempty set
X and σ − algebra m of subsets of X. A measure on (X,m) is µ : m→ [0,∞] satisfying

(i) µ(∅) = 0

(ii) µ is countably additive, namely, if E1, E2, · · · are disjoint, then µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei).

Then, we say (X,m, µ) is a measure space.

Note that countably additive implies finite additive.

Definition 2.19 (Properties of a measure space). A measure space (X,m, µ) is

• A probability space if µ(X) = 1.

• finite if µ(X) < +∞

• σ-finite if ∃E1, E2, · · · such that X =
⋃∞
j=1Ej, µ(Ej) <∞,∀j ∈ N.

• semi-finite if ∀E ∈ m s.t. µ(E) =∞, ∃F ∈ m s.t. F ⊂ E and 0 < µ(F ) <∞.

Note that σ-finite implies semifinite.
Our principal goal is to construct a nice measure space.

Example 2.20 (Examples). .

1. Counting measure. (X,P(X), µ), µ(E) =

{
|E| if E is finite

∞ otherwise.

2. Dirac mass (X,P(X), δx) for some x ∈ X, s.t. δx(E) =

{
1 if x ∈ E
0 otherwise.

3. (X,m, µ), µ(E) =

{
1 if x ∈ E
0 otherwise.

4. Let X be any uncountable set. m = {E ⊆ X : either E or Ec is countable}. µ(E) =

{
0 if E is countable

∞ otherwise.

Remark 2.21 (Counter-example). Let X be any uncountable set. m = {E ⊆ X : either E or Ec is

countable}. µ(E) =

{
0 if E is finite

∞ otherwise.
Then, it is not countably additive. However, µ is finitely additive,

i.e., if E1, · · · , En ∈ m are disjoint, then µ(
⋃n
i=1Ei) =

∑n
i=1 µ(Ei). So it is called µ is finite additive

measure.

Theorem 2.22 (Theorem 1.8 in [1]). Let (X,m, µ) be a measure space

(a) Monotonicity. If E,F ∈ m and E ⊆ F , then µ(E) ≤ µ(F ).

(b) Subaddiditivity. If E1, E2, · · · ∈ m,µ(
⋃∞
i=1Ei) ≤

∑∞
i=1 µ(Ej)

(c) Continuity from below. If E1 ⊆ E2 ⊆ · · · , then µ(
⋃∞
k=1Ek) = limk→∞ µ(Ek).

(d) Continuity from above (limited). If E1 ⊇ E2 ⊇ · · · , and µ(Ej) < ∞ for some j ∈ N, then
µ(∩∞n=1En) = limn→∞ µ(En).
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Proof. For (a), note that F = E ∪ (F \ E), thus

µ(F ) = µ(E) + µ(F \ E) ≥ µ(E).

For (b), let F1 = E1, Fn = En \
(⋃n−1

i=1 Ei

)
. Then, Fi are disjoint, and ∪nk=1Ek = ∪nk=1Fk. Thus,

µ(

∞⋃
k=1

Ek) = µ(

∞⋃
k=1

Fk) =

∞∑
k=1

µ(Fk) ≤
∞∑
k=1

µ(Ek),

by monotonicity.
For (c), let F1 = E1, Fn = En \ En−1. Then, ∪∞k=1Ek = ∪∞k=1Fk, and Fk are disjoint. Thus,

µ(

∞⋃
k=1

Ek) =

∞∑
k=1

µ(Fk) = lim
n→∞

n∑
k=1

µ(Fk) = lim
n→∞

µ

(
n⋃
k=1

Fk

)
= lim
n→∞

µ(En).

For (d), we need a lemma;

Lemma 2.23. If E ⊆ F , E,F ∈ m, and µ(F ) <∞, then µ(F \ E) = µ(F )− µ(E).

proof of the lemma. By (a), µ(E) ≤ µ(F ), and µ(F ) = µ(E)+µ(F \E). Thus, µ(F )−µ(E) = µ(F \E).

Without loss of generality, assume µ(E1) <∞. Then,

µ(E1)− lim
n→∞

µ(En) = lim
n→∞

µ(E1 \En) = µ

( ∞⋃
n=1

(E1 \ En)

)
= µ

(
E1 \

( ∞⋂
n=1

En

))
= µ(E1)−µ

( ∞⋂
n=1

En

)

where first and last equality comes from the lemma, and second equality comes from (c), and the other’s are
comes from set theoretic operation. Thus, limn→∞ µ(En) = µ (

⋂∞
n=1En)

Example 2.24. Suppose (R,P(R),counting measure). Then, µ((0, 1)) =∞. µ(∩nk=1(0, 1
k )) = µ(∅) = 0. This

shows that µ(Ej) <∞ for some j is needed for making (d) true.

Definition 2.25 (Null set). Let (X,m, µ) be a measure space. A null set is E ∈ m such that µ(E) = 0. A
statement is said to hold almost everywhere, µ-almost everywhere, a.e., or µ−a.e. if it holds for all
x in the complement of a null set.

Example 2.26. For example, f : X → R vanishes almost everywhere means ∃ a null set E s.t. f(x) = 0
for all x ∈ Ec.

Definition 2.27. A measure space (X,m, µ) is said to be complete if E ∈ m,µ(E) = 0 and F ⊆ E =⇒
F ∈ m,µ(F ) = 0.

Theorem 2.28 (Theorem 1.9 in [1]). Let (X,m, µ) be a measure space and let N = {N ∈ m : µ(N) = 0}.
Let m̄ = {E ∪ F : E ∈ m,∃N ∈ N s.t. F ⊆ N} Then, m̄ is a σ-algebra and ∃! extension µ̄ : m̄→ [0,∞] of
µ s.t. µ̄ is a measure on (X, m̄).

Definition 2.29. (X, m̄, µ̄) is the completion of (X,mµ).

Proof. Show m̄ is a σ-algebra. LetG1, G2, · · · ∈ m̄. We haveGj = Ej∪Fj for some Ej ∈ m and Fj ⊆ Nj ∈ N .
Then,

G :=

∞⋃
j=1

Gj =

 ∞⋃
j=1

Ej

 ∪
 ∞⋃
j=1

Fj

 .
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Note that
⋃∞
j=1Ej ∈ m by countable additivity of m and ∞⋃

j=1

Fj

 ⊆ ∞⋃
j=1

Nj ∈ N ,

thus
(⋃∞

j=1 Fj

)
∈ N . This implies G ∈ m̄.

Let G = E ∪ F ∈ m̄, where E ∈ m, F ⊆ N ∈ N . Since F ⊆ N , F c = N c ∪ (N \ F ). Thus,

Gc = Ec ∩ F c = Ec ∩ (N c ∪ (N \ F )) = (Ec ∩N c) ∪ (Ec ∩ (N \ F )) .

Since Ec ∩N c ∈ m since it is σ-algebra and Ec ∩ (N \F ) = Ec ∩N ∩F c ⊆ N. Hence Gc ∈ m̄. Therefore, m̄
is a σ-algebra.

Let’s define µ̄ : m̄→ [0,∞] extending µ by µ̄(E ∪ F ) = µ(E).

Claim 2.30. µ is well-defined.

Proof. If E1, E2 ∈ m, F1 ⊆ N1, F2 ⊆ N2, with N1, N2 ∈ N and E1 ∪ F1 = E2 ∪ F2. It suffices to show that
µ(E1) = µ(E2). Note that

E1 ⊆ E2 ∪ F2 ⊆ E2 ∪N2 =⇒ µ(E1) ≤ µ(E2) + µ(N2) = µ(E2).

Similarly,
E2 ⊆ E1 ∪ F1 ⊆ E1 ∪N1 =⇒ µ(E2) ≤ µ(E1) + µ(N1) = µ(E1).

This implies µ(E1) = µ(E2).

Thus, µ̄ extends µ. Thus, µ̄(∅) = µ(∅) = 0. And,

Claim 2.31. µ̄ is countably additive. Let G1, G2, · · · ∈ m̄ be disjoint. Write each Gi = Ei ∪ Fj for some
Ej ∈ m, Fj ⊆ Nj ∈ N . Note that Ei’s are disjoint. Let G = ∪∞j=1Gj. Then

G =

 ∞⋃
j=1

Ej

 ∪
 ∞⋃
j=1

Fj

 .

Since
(⋃∞

j=1Ej

)
⊆
(⋃∞

j=1Nj

)
∈ N , G ∈ m̄. Thus,

µ̄(G) = µ

 ∞⋃
j=1

Ej

 =

∞∑
j=1

µ(Ej) =

∞∑
j=1

µ̄(Gj).

For uniqueness, suppose µ′ : m̄ → [0,∞] is a measure that extends µ. It suffices to show µ′ = µ̄. Let
G ∈ m̄. Then, G = E ∪ F for E ∈ m, F ⊆ N ∈ N . Then,

µ(E) = µ′(E) ≤ µ′(G) ≤ µ′(E ∪N) = µ(E ∪N) = µ(E) + µ(N) = µ(E).

Thus, µ′(G) = µ(E) = µ̄(G) =⇒ µ′ = µ.

11



2.3 Outer measure

Definition 2.32 (Outer measure). An outer measure on a nonempty set X is a function µ∗ : P(X) →
[0,∞] s.t.

(i) µ∗(∅) = 0

(ii) Monotonicity. A ⊆ B =⇒ µ∗(A) ≤ µ∗(B).

(iii) Subadditivity. µ∗(∪∞j=1Aj) ≤
∑∞
j=1 µ

∗(Aj).

Proposition 2.33 (Proposition 1.10 in [1]). Let ξ ⊆ P(X) s.t. ∅ ∈ ξ,X ∈ ξ. Let ρ : ξ → [0,∞] be a
function s.t. and ρ(∅) = 0. Let µ∗ : P(X)→ [0,∞] be given by

µ∗(A) = inf


∞∑
j=1

ρ(Ej) : E1, E2, · · · ∈ ξ, A ⊆
∞⋃
j=1

Ej

 .

Then µ∗ is an outer measure.

Proof. (i) µ∗(∅) = 0, because ∅ ⊆
⋃∞
j=1 ∅ =⇒ 0 ≤ µ∗(∅) ≤

∑∞
j=1 ρ(∅) = 0.

(ii) Monotonicity If A,B ∈ P(X), A ⊆ B, then whenever Ej ∈ ξ and B ⊆
⋃∞
j=1Ej , then

A ⊆ B ⊆
∞⋃
j=1

Ej =⇒ µ∗(A) ≤
∞∑
j=1

ρ(Ej) =⇒ µ∗(A) ≤ µ∗(B)

by taking infimum. So, µ∗(A) ≤ µ∗(B), by taking the infimum.

(iii) Subadditivity Suppose A1, A2, · · · ∈ P(X). We want to show µ∗(
⋃∞
k=1Ak) ≤

∑∞
k=1 µ

∗(Ak). Let ε > 0.
Choose Ek,1, Ek,2, · · · ∈ ξ such that

Ak ⊆
∞⋃
j=1

Ek,j and µ∗(Ak) ≤
∞∑
j=1

ρ(Ek,j) ≤ µ∗(Ak) +
ε

2k
.

Existence of such sets is assured by the definition of infimum. Then,

A :=

∞⋃
k=1

Ak ⊆
∞⋃
k=1

∞⋃
j=1

Ek,j =⇒ µ∗(A) ≤
∞∑
k=1

∞∑
j=1

ρ(Ek,j) =

∞∑
k=1

µ∗(Ak) +
ε

2k
=

∞∑
k=1

µ∗(Ak) + ε.

Since ε was arbitrary, µ∗(A) ≤
∑∞
k=1 µ

∗(Ak).

Definition 2.34 (µ∗-measurable). Let µ∗ be an outer measure on X, and let A ⊆ X. We say A is µ∗-
measurable if

∀E ⊆ X,µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

Note that µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) is true by subadditivity.

Theorem 2.35 (Caratheodory extension theorem). Let µ∗ be an outer measure on X. Let M be the
collection of all µ∗-measurable subsets of X. Then, M is a σ-algebra and the restriction of µ∗ to M is a
complete measure.

Proof. Step by step approach.

Step I: Show ∅ ∈ M. Let E ⊆ X. Then, µ∗(E ∩ ∅) + µ∗(E ∪ ∅) = 0 + µ∗(E) = µ∗(E).
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Step II: Show A ∈M =⇒ Ac ∈M. If A ∈M, E ⊆ X, then

µ∗(E ∩Ac) + µ∗(E ∩ (Ac)c = µ∗(E ∩Ac) + µ∗(E ∩A) = µ∗(E)

from the µ∗ measurability of A.

Step III: Show M is an algebra of subsets of X and µ∗|M is finitely additive. Let A,B ∈M.

(i) Show A ∪B ∈M. Let E ⊆ X. Then,

µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) = µ∗(E∩A∩B)+µ∗(E∩A∩Bc)+µ∗(E∩Ac∩Bc)+µ∗(E∩Ac∩B).

since A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), by subadditivity,

µ∗(E∩(A∪B)) ≤ µ∗(E∩(A∩B))+µ∗(E∩(A∩Bc))+µ∗(E∩(Ac∩B)) = µ∗(E)−µ∗(E∩Ac∩Bc).

Thus,
µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c) ≥ µ∗(E),

where the last inequality also comes from the subadditivity. Thus, A ∪B ∈M.

(ii) Show if A∩B = ∅ then µ∗(A∪B) = µ∗(A) + µ∗(B). Assume A∩B = ∅. Let E = A∪B.
From the µ∗-measurability of A,

µ∗(A ∪B) = µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(A) + µ∗(B).

Step IV: Show M is a σ-algebra, and µ∗|M is countable additive.

(i) Show M is a σ-algebra. Let Dj ∈ M, D :=
⋃∞
j=1Dj . We want to show D ∈ M. Let

Ak = Dk \
⋃k−1
j=1 Dj . Then, A1, A2, · · · are disjoint. Let Bk :=

⋃k
j=1Aj =

⋃k
j=1Dj . Then,

B1 ⊆ B2 ⊆ · · · and D :=
⋃∞
k=1Bk. Then, ∀k ∈ N, Ak, Bk ∈M.

We will show by induction on k, that ∀E ⊆ X,

µ∗(E ∩Bk) =

k∑
j=1

µ∗(E ∩Aj). (1)

If k = 1, then B1 = A1, thus the equation (1) hold. If K ≥ 2, since Ak ∈M,

µ∗(E ∩Bk) = µ∗(E ∩Bk ∩Ak) + µ∗(E ∩Bk ∩Ack)

Since Bk ∩Ak = Ak, Bk \Ak =
⋃k−1
j=1 Aj = Bk−1, since Ai’s are disjoint. Thus,

µ∗(E ∩Bk) = µ∗(E ∩Ak) + µ∗(E ∩Bk−1) =

k∑
j=1

µ∗(E ∩Aj),

where the last equality comes from the inductive hypothesis.

Thus, for any k ∈ N.

µ∗(E) = µ∗(E∩Bck)+µ∗(E∩Bk) = µ∗(E∩Bck)+

k∑
j=1

µ∗(E∩Aj) ≥ µ∗(E∩Dc)+

k∑
j=1

µ∗(E∩Aj),

since Bk ⊆ D =⇒ Bck ⊇ Dc. Therefore, by taking limit,

µ∗(E) ≥ µ∗(E ∩Dc) +

∞∑
j=1

µ∗(E ∩Aj).
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Also, since D =
⋃∞
j=1Aj , thus by countable subadditivity,

µ∗(E ∩D) ≤
∞∑
j=1

µ∗(E ∩Aj).

So,

µ∗(E) ≥ µ∗(E ∩Dc) +

∞∑
j=1

µ∗(E ∩Aj) ≥ µ∗(E ∩Dc) + µ∗(E ∩D) ≥ µ∗(E).

So we have equality and D ∈M.

(ii) Show µ∗|M is countable additive. We will use the setting in (i). Suppose D1, D2, · · · are
disjoint set in (i). Then, ∀j ∈ N, Aj = Dj . Take E = D above. Then,

µ∗(D) = µ∗(E ∩Dc) +

∞∑
j=1

µ∗(E ∩Aj) = µ∗(∅) +

∞∑
j=1

µ∗(Aj) =

∞∑
j=1

µ∗(Aj).

Step V: Show µ∗|M is complete, i.e., suppose N ∈ M, µ∗(N) = 0, and F ⊆ N =⇒ F ∈ M. Let
E ⊆ X. We want to show that µ∗(E) = µ∗(E ∩ F ) + µ∗(E ∩ F c). Since E ∩ F ⊆ N ,

µ∗(E ∩ F ) ≤ µ∗(N) = 0

by monotonicity. So, µ∗(E ∩ F ) = 0. Then,

µ∗(E) ≤ µ∗(E ∩ F ) + µ∗(E ∩ F c) = µ∗(E ∩ F c) ≤ µ∗(E).

Thus µ∗(E) = µ∗(E ∩ F ) + µ∗(E ∩ F c) =⇒ F ∈M.

Caratheodory extension can be used for extending algebra with premeasure to σ-algebra and measure.

Definition 2.36 (Premeasure). A premeasure on a set X is µ0 : a → [0,+∞], where a is an algebra of
subsets of X, and

1. µ0(∅) = 0

2. if A1, A2, · · · ∈ a, disjoint and if A :=
⋃∞
j=1Aj ∈ a,

µ0(A) =

∞∑
j=1

µ0(Aj).

The motivating example is following; Let

a := {∅} ∪


n⋃
j=1

(aj , bj ] : n ∈ N,−∞ ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ ∞


with

µ0

 ∞⋃
j=1

(aj , bj ]

 =

n∑
j=1

(bj − aj).

Since it is countably additive and monotone, µ0 is a premeasure.
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Theorem 2.37 (Theorem 1.13 and 1.14 in [1] p. 31). Let a be an algebra of subsets of X and let µ0 :
a → [0,+∞] be a premeasure. Let µ∗ : P(X) → [0,+∞] be the outer measure constructed from µ0 as a
proposition 1.10., i.e.,

µ∗(E) = inf


∞∑
j=1

µ0(Aj) : Aj ∈ a, E ⊆
∞⋃
j=1

Aj

 .

Then,

(i) µ∗|a = µ0

(ii) If A ∈ a, A is µ∗-measurable.

Thus, by the Caratheodory extension theorem, (σ-alg (a) , µ∗|σ-alg(a)) is a measure on σ-alg (a) . Also,

(iii) If ν : σ-alg (a) → [0,+∞] is any measure such that ν|a = µ0, then ∀E ∈ σ-alg (a) , ν(E) ≤ µ∗(E) with
equality if µ∗(E) <∞.

(iv) If µ0 is σ-finite, then µ∗|σ-alg(a) is the unique measure on σ-alg (a) extending µ0.

Proof. 1. Show µ∗|a = µ0. Let Ea. For all i ∈ N,

{
Ai = E1 if i = 1

Ai = ∅ otherwise.
Then, µ∗(E) ≤ µ0(E) by

subadditivity. To show µ∗(E) ≥ µ0(E), let Aj ∈ a such that E ≤
⋃∞
j=1Aj . Let

Bn := E ∩

An \ n−1⋃
j=1

Aj

 .

Then, Bn ∈ a, Bi’s are disjoint. Also,

∞⋃
n=1

Bn = E ∩

 ∞⋃
j=1

Aj

 = E.

Since µ0 is a premeasure,

µ0(E) =

∞∑
n=1

µ0(Bn) ≤
∞∑
n=1

µ0(An).

By taking the infimum on {An}∞n=1,
µ0(E) ≤ µ∗(E).

2. If A ∈ a, A is µ∗-measurable. Let E ⊆ X. We must show that µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac).
Let ε > 0, choose B1, B2, · · · ∈ a such that E ⊆

⋃∞
j=1Bj , and

µ∗(E) + ε ≥
∞∑
j=1

µ0(Bj).
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By definition of µ∗, such Bjs exist. Then,

µ∗(E) + ε ≥
∞∑
j=1

µ0(Bj)

=

∞∑
j=1

(µ0(Bj ∩A) + µ0(Bj ∩Ac)) , since Bj ∩A and Bj ∩A ∈ a.

=

∞∑
j=1

µ0(Bj ∩A) +

∞∑
j=1

µ0(Bj ∩Ac)

≥ µ∗(E ∩A) + µ∗(E ∩Ac), since E ∩A ⊆
∞⋃
j=1

Bj ∩A.

By taking limε→0 on both sides, we get desired inequality.

3. If ν : σ-alg (a)→ [0,+∞] is any measure such that ν|a = µ0, then ∀E ∈ σ-alg (a) , ν(E) ≤ µ∗(E)
with equality if µ∗(E) < ∞. Note that µ is a measure derived by caratheodory extension theorem
and µ∗. Let An ∈ a such that E ⊆

⋃∞
n=1An. We want to show that ν(E) ≤

∑∞
n=1 µ0(An).

By subadditivity of ν,

ν(E) ≤ ν(

∞⋃
n=1

An) ≤
∞∑
n=1

ν(An) =

∞∑
n=1

µ0(An) =⇒ ν(E) ≤ µ(E). (2)

Let ε > 0. Choose An ∈ a such that E ⊆
⋃∞
n=1An and µ(E) + ε ≥

∑∞
n=1 µ0(An). Let A :=

⋃∞
n=1An.

Then, if µ(E) <∞,

µ(A) = µ(A \ E) + µ(E) =⇒ µ(A \ E) = µ(A)− µ(E) ≤

( ∞∑
n=1

µ0(An)

)
− µ(E) ≤ ε.

Also, for any n ∈ N, ν(
⋃n
j=1Aj) = µ0(

⋃n
j=1Aj) since

⋃n
j=1Aj ∈ a, thus by letting Bn :=

⋃n
j=1Aj ,

ν(A) = ν

( ∞⋃
n=1

Bn

)
= lim
n→∞

ν(Bn) = lim
n→∞

µ(Bn) = µ(A).

Therefore,
µ(E) ≤ µ(A) = ν(A) = ν(E) + ν(A \ E) ≤ ν(E) + µ(A \ E) ≤ ν(E) + ε.

where second equality comes from continuity from below w.r.t. ν, and third equality comes from the
inequality (2), the last equality comes from the continuity from below w.r.t. µ. Therefore, by lettign
ε→ 0, we have ν(E) = µ(E) if µ(E) <∞.

4. If µ0 is σ-finite, then µ∗|σ-alg(a) is the unique measure on σ-alg (a) extending µ0. By hypoth-

esis, ∃A1, A2, · · · ∈ a such that X =
⋃∞
i=1Ai with µ(Ai) <∞,∀i ∈ N. Replcae An by An \

⋃n−1
j=1 Aj if

necessary, we may assume that Ans are disjoint, without loss of generality. Then, ∀E ∈ σ-alg (a) ,

ν(E) = ν

( ∞⋃
n=1

E ∩An

)
=

∞∑
n=1

ν(E ∩An) =

∞∑
n=1

µ(E ∩An) = ν(E).

where second equality comes from the countable additivity of ν, third equality comes from ν = µ for
any measurable set having finite measure, and the last equality comes from the countable additivity of
µ.
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2.4 Borel measure on the real line

Proposition 2.38 (Special case of proposition 1.7). Let ξ ⊆ P(R) be the collection of all half open intervals,
closed at the right, i.e.,

ξ = {(a, b] : a, b ∈ R, a < b} ∪ {(−∞, b] : b ∈ R} ∪ {(a,+∞) : a ∈ R} ∪ {R, ∅}.

Let a be the set of all finite union of elements of ξ. Then a is an algebra of subsets of R.
If I1, I2 ∈ ξ and I1 ∩ I2 6= ∅ or if dist(I1, I2) := inf{|x− y| : x ∈ I1, y ∈ I2} = 0, then I1 ∪ I2 ∈ ξ. Thus,

each elements of a can be written uniquely as a finite union of separated elements of ξ, where I1 and I2 are
separated if dist(I1, I2) > 0.

Proof. We must show followings;

(i) ∅ ∈ a; it holds by definition of a.

(ii) If A1, · · · , An ∈ a =⇒ ∪nj=1Aj ∈ a. ; it holds by definition of a.

(iii) If A ∈ a =⇒ Ac ∈ a. Suppose A =
⋃n
j=1 Ij with I1, I2, · · · In ∈ ξ, where they are separated. Suppose

each Ij is bounded. Thus, Ij = (aj , bj ] for some aj , bj ∈ R for 1 ≤ j ≤ n. By renumbering if necessary,
we may assume that a1 < b1 < a2 < b2 < · · · < an < bn. Then,

Ac = (−∞, a1] ∪ (b1, a2] ∪ · · · ∪ (bn−1, an] ∪ (bn,∞) ∈ a.

Thus, a is an algebra.

Notation 2.39 (Construction of Lebesgue-Stieltjes measures). Let F : R → R be an increasing (i.e. non-
decreasing) functions that is right continuous, (i.e., ∀a ∈ R, limx→a+ F (x) = F (a).) Set

F (−∞) := lim
x→−∞

F (x) ∈ R ∪ {−∞}, F (∞) := lim
x→∞

F (x) ∈ R ∪ {+∞}.

Let µ0 : ξ → [0,∞] be

µ0((a, b]) = F (b)− F (a)

µ0((a,+∞)) = F (+∞)− F (a)

µ0((−∞, b]) = F (b)− F (−∞)

µ0(R) = F (+∞)− F (−∞)

µ0(∅) = 0.

Then, we extend µ0 to a as follow; If A ∈ a, then A has unique representation as A =
⋃n
j=1 Ij for some

separated I1, · · · , In ∈ ξ, by the previous proposition. Let µ0(A) :=
∑n
j=1 µ0(Ij)

Proposition 2.40 (Proposition 1.15 in [1] p.33). µ0 is a premeasure on a.

Proof. Note that µ0(∅) = 0. We must show that if A1, A2, · · · ∈ a are disjoint and if
⋃∞
j=1Aj ∈ a, then

µ0(

∞⋃
j=1

Aj) =

∞∑
j=1

µ0(Aj).

Without loss of generality, assume ∀j ∈ N, Aj ∈ ξ. Since
⋃∞
j=1Aj ∈ a, we may write

∞⋃
j=1

Aj =

n⋃
k=1

Ik

17



for some separated I1, I2, · · · , In ∈ ξ, by the previous proposition. Let Fk = {j ∈ N : Aj ⊆ Ik}. It will suffice
to show that

µ0(Ik) =
∑
j∈Fk

µ0(Aj);

since µ0(
⋃∞
j=1Aj) =

∑n
k=1 µ0(Ik). Thus we may assume that

∞⋃
j=1

Aj = I = (a, b] ∈ ξ,

and we want to show

µ0(I) =

∞∑
j=1

µ0(Aj).

Suppose I = (a, b]. We may write Aj = (aj , bj ]. To show µ0(I) ≥
∑∞
j=1 µ0(Aj), it suffices to show

n∑
j=1

µ0(Aj) ≤ µ0(I)

for all n ∈ N. After renumbering, we may assume that

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b.

Thus,

µ0(I) = F (b)− F (a) ≥ F (bn)− F (a1)

≥ F (bn)− (F (bn−1)− F (an))− (F (bn−2)− F (an−1))− · · · − (F (b1)− F (a2))− F (a1)

=

n∑
j=1

µ0(Aj).

By letting n→∞, we have µ0(I) ≥
∑∞
j=1 µ0(Aj).

To show reverse direction, i.e., µ0(I) ≤
∑∞
j=1 µ0(Aj)., we need compactness argument. Let ε > 0. From

the right continuity of F , we can get δ > 0 such that

F (a+ δ)− F (a) < ε < ε

and δj > 0 such that

F (bj + δj)− F (bj) ≤
ε

2j
,

for each a and bj which we setup in the previous paragraph. Then,

[a+ δ, b] ⊆ I ⊆
∞⋃
j=1

(aj , bj + δj),

where second subset equation is derived from the assumption
⋃∞
j=1Aj = I. Since [a+ δ, b] is closed bounded

set, thus it is compact. Therefore, ((aj , bj + δj))
∞
j=1 has a finite subcover. So by renumbering if necessary,

we can assume that [a + δ, b] ⊆
⋃p
j=1(aj , bj + δj). Also, we can assume that {(aj , bj + δj}pj=1 is a minimal

subcover.
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After renumbering again, we can assume

a1 < a+ δ < b1 + δ

a+ δ ≤ a2 < b1 + δ < b2 + δ2

a3 < b2 + δ2 < b3 + δ3

· · ·
al+1 < bl + δl < bl+1 + δl+1

· · ·
ap < bp−1 + δp−1 ≤ b < bp + δp.

We can draw above inequalities in a line segment.

a1

(

a a2

(

b1 + δ1

)

a3

(

b2 + δ2

) · · ·

ap

(

bp−1 + δp−1

)

b
bp + δp

)

Thus,

µ(I) = F (b)− F (a)

< F (b)− F (a+ δ) + ε

≤ F (bp + δp − F (a+ δ) + ε

≤ F (bp + δp)− F (a1) + ε

≤ F (bp + δp) +

p−1∑
l=1

(F (bl + δl)− F (al+1)− F (a1) + ε

=

p∑
l=1

(F (bj + δj)− F (aj)) + ε

Since F (bj + δj) <
ε
2j + F (bj),

µ(I) ≤
p∑
l=1

(F (bj + δj)− F (aj)) + ε

≤
p∑
l=1

(F (bj)− F (aj) +
ε

2σ(j)
) + ε

≤
p∑
l=1

(F (bj)− F (aj)) + 2ε

≤
p∑
l=1

µ0(Aj) + 2ε

<

∞∑
j=1

µ0(Aj) + 2ε

where σ is a permutation of N accounting for the reordering. Thus,

µ0(I) <

∞∑
j=1

µ0(Aj) + 2ε,
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and by letting ε→ 0,

µ0(I) ≤
∞∑
j=1

µ0(Aj) + 2ε.

Thus we are done if a, b are finite.
If a = −∞, then, using the cover [−M, b], we get an inequality

F (b)− F (−M) ≤
∞∑
j=1

µ0(Ij) + 2ε.

Also, if b =∞, then we get inequality F (M)− F (a) ≤≤
∑∞
j=1 µ0(Ij) + 2ε. In any case, by letting M →∞

and ε→ 0, we get desired inequality.

Note that compactness is used to use such interlacing argument. Without compactness, it is too compli-
cated.

Theorem 2.41 (Theorem 1.16 in [1] p.36). (a) If F : R → R is nondecreasing and right continuous func-
tion, there exists unique measure µF : βR → [0,∞] such that µF ((a, b]) = F (b) − F (a) for all a, b ∈
R, a < b.

(b) If G : R→ R is also right increasing right continuous function, then µG = µF if and only if G− F = c
for some constant c.

(c) If µ : βR → [0,+∞] is a measure such that µ((a, b]) < +∞ for every a, b ∈ R with a < b, then letting

F (x) =


µ((0, x]) x > 0

0 x = 0

−µ((x, 0]) x < 0.

Then µ = µF .

(d) (c*) If µ : BR → [0, k] for some k > 0 is a finite measure, then µ = µG where G(x) = µ((−∞, x]).

For example, µF ((a, b]) = F (b)− F (a) = µ((0, b]) + µ((a, 0]) if a < 0, b > 0.

Proof. Take the premeasure µ0 constructed in the proposition 1.15 on A which is an algebra generated by
the half open interval (h-interval). Use the general construction of an outer measure from the proposition
1.10. Use the Caratheodory’s extension theorem (1.11) and proposition 1.13 and theorem 1.14 to conclude
that µ∗|σ-alg(A) is a measure extending µ0.

For (b), if G − F = c, then trivially holds since µG((a, b]) = G(b) − G(a) = F (b) − F (a) = µF ((a, b]).
Conversely, if µG = µF , then G(b)− F (b) = G(a)− F (a) for any a, b, thus, G− F = c for some constant.

For (c), and (c*), it is derived from the uniqueness of µ as a extension of µ0, since both has the same
premeasure and both are finite measure.

We call µF in (a) the Lebesgue Stieltjes measure associated to F . Recall that the Caratheodory’s
extension theorem actually gives us a complete measure on the σ-algebra of all µ∗-measurable sets. We let
MF denote this σ-algebra (possibly larger than BR) and we denote also by µF :MF → [0,∞] the measure
constructed on MF . (And call also this the Lebesgue Stieltjes measure associated to F .

Example 2.42 (Special Cases).

1. F (x) = x. Then µF ((a, b]) = b − a. Then µF is called the Lebesgue measure. We write L = MF

called the set of Lebesgue measurable sets. We may write m = µF .
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2. Fix x ∈ R. Let F (t) =

{
0 if t < x

1 if t ≥ x.
Then µ((a, b]) =

{
1 if x ∈ (a, b]

0 o.w.
and MF = P(R) and

µF (E) =

{
1 if x ∈ E
0 o.w.

This µF = δx is called Dirac Mass.

Remark 2.43. For any Lebesgue Stieltjes measure,

µF ({x}) = lim
δ→0

µF ((x− δ, x]) = F (x)− lim
δ→0

F (x− δ) =︸︷︷︸
right cts

F (x)− F (x−).

2.5 Regularity Properties

Now fix increasing right continuous function F , let M =MF , µ = µF .

Lemma 2.44 (Lemma 1.17 in [1], p.35). For any E ∈M,

µE = inf{
∞∑
j=1

µ((aj , bj)) : aj , bj ∈ R, aj < bj , E ⊆
∞⋃
j=1

(aj , bj)}.

Proof. We know that LHS ≤ RHS since

µ(E) ≤︸︷︷︸
monotonicity

µ

 ∞⋃
j=1

(aj , bj)

 ≤︸︷︷︸
subadditivity

∞∑
j=1

µ(aj , bj).

For LHS ≥ RHS, if µ(E) = +∞, then there is nothing to show. Thus, assume that µ(E) < +∞. Let ε > 0.
By construction, ∃Aj ∈ A such that E ⊆

⋃∞
j=1Aj and µ(E) + ε ≥

∑∞
j=1 µ(Aj), from subadditivity on RHS.

Without loss of generality, we can assume that Aj = (cj , dj ] for cj , dj ∈ R, cj < dj . Choose bj > dj such that

F (bj) < F (dj) +
ε

2j
.

Then,

µ((cj , dj ]) ≤ µ((cj , bj ]) = F (bj)− F (cj) ≤ F (dj)− F (cj) +
ε

2j
= µ((cj , dj ]) +

ε

2j
= µ(Aj) +

ε

2j
.

Thus,

µ(E) + ε ≥
∞∑
j=1

µ(Aj) ≥
∞∑
j=1

(
µ((cj , bj)−

ε

2j

)
.

Hence,

µ(E) + 2ε >

∞∑
j=1

(µ((cj , bj)) .

Since E ⊆
⋃∞
j=1(cj , bj), we can take infimum on both sides to conclude that

µ(E) + 2ε > inf{
∞∑
j=1

µ((aj , bj)) : aj , bj ∈ R, aj < bj , E ⊆
∞⋃
j=1

(aj , bj)}.

By letting ε→ 0, we get desired inequality.

Theorem 2.45 (Theorem 1.18 in [1] p.36). If E ∈M, then

µ(E) = inf{µ(U) : U is open in R, E ⊆ U} (3)

µ(E) = sup{µ(K) : K is compact in R,K ⊆ E}. (4)
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Proof. For (3), ≤ is clear by the monotonicity of µ. For ≥, if µ(E) = +∞, there is nothing to show. Assume
µ(E) < +∞. By the Lemma 1.17, given ε > 0, ∃aj < bj such that E ⊆

⋃∞
j=1(aj , bj) and

µ(E) + ε >

∞∑
j=1

µ((aj , bj)) ≥︸︷︷︸
subadditivity

µ

 ∞⋃
j=1

(aj , bj)

 .

Since
⋃∞
j=1(aj , bj) is open set containing E, we can take infimum on both sides, to get

µ(E) + ε > inf{µ(U) : U is open in R, E ⊆ U}.

By letting ε→ 0, we have the desired inequality.
For (4), also ≥ is clear by the monotonicity. To show ≤, assume first that E is bounded, say E ⊆

[−r, r].r > 0. So, µ(E) ≤ µ([−r, r]) < +∞. Then E is closed and bounded thus E is compact and µ(E) <
+∞. Thus,

µ(E \ E) = µ(E)− µ(E) < +∞.

By (3), ∃U which is open in R such that E \ E ⊆ U and µ(U) < µ(E \ E) + ε. Let

K = E \ U ⊆ E ⊆ [−r, r].

Then K is also closed and bounded, thus K is compact. Also, K ⊆ E \
(
E \ E

)
= E and

µ(K) = µ(E \U) = µ(E \ (E ∩U)) = µ(E)− µ(E ∩U) ≥ µ(E)− µ(U) > µ(E)− (µ(E \E) + ε) = µ(E)− ε.

Hence,
µ(K) ≥ µ(E)− ε

By taking supremum on both sides,

µ(E)− ε < sup{µ(K) : K is compact and K ⊆ E}.

Letting ε→ 0, we get ≤ inequality of (4).

Corollary 2.46. Take general E ∈M. Then,

µ(E) = sup{µ(E ∩ [−n, n]) : n ∈ N}
= sup
n∈N
{sup{µK : K is compact and K ⊆ E ∩ [−n, n]}}

= sup{µ(K) : K is compact and K ⊆ E}.

Proof. When E is bounded, everything is clear. If E is not bounded, then first two equality is clear. And
the last equality is also clear since K in the left side is contained in the rightside, and vice versa, from the
Heine-Borel theorem that any compact set in R is bounded.

Lemma 2.47. If E ∈M, then ∀ε > 0,∃V an open subset of R such that E ⊂ V, µ(V \ E) < ε.

Proof. If µ(E) < +∞, then µ(V \E) = µ(V )−µ(E) and we find V using theorem 1.18. If µ(E) = +∞, then
we can write E =

⋃
n∈Z(E∩ (n, n+1]). For each n ∈ Z, we find Vn is open in R such that E∩ [n, n+1] ⊂ Vn,

and µ(Vn \ (E ∩ (n, n+ 1])) < ε
2|n|

.
Let V =

⋃
n∈Z Vn then V is open in R, thus

µ(V \E) = µ

((⋃
n∈Z

)
\ E

)
= µ

(⋃
n∈Z

(Vn \ E)

)
≤
∑
n∈Z

µ(Vn\E) ≤
∑
n∈Z

µ(Vn\(E∩(n, n+1]) ≤
∑
n∈Z

ε

2|n|
= 3ε.
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Theorem 2.48 (Theorem 1.19 in [1]p. 36). Let E ⊆ R. Then, the following are equivalent.

1. E ∈M.

2. E = V \N for some Gδset V and N ∈M such that µ(N) = 0.

3. E = H \N for some Fσset H and N ∈M such that µ(N) = 0.

Note that Gδ set is a set of countable intersection of open sets and Fσ set is a set of countable union of
closed sets.

Proof. (ii) =⇒ (i) and (iii) =⇒ (i) are clear. To show (i) =⇒ (ii), by the previous lemma, ∀n ∈ N,∃Vn,
which is open in R such that E ⊆ Vn and µ(Vn \ E) < 1

n . Replacing Vn by ∩nk=1Vn if necessary, we may
without loss of generality assume V1 ⊇ V2 ⊇ · · · ⊇ E. Let V =

⋂∞
n=1 Vn. Then, V ∈ Gδ and V ⊇ E. Let

N = V \ E. Then, E = V \N and

µ(N) ≤ µ(Vn \ E) ≤ 1

n
,∀n ∈ N.

Hence µ(N) = 0.
To see (i) =⇒ (iii), let E ∈M. By (ii), Ec = V \N , where V ∈ Gδ, N ∈M such that µ(N) = 0. Thus,

E = (V ∩N c)c = V c ∪N

and V c ∈ Fσ, since the complement of Gδ set is Fσ set.

Corollary 2.49. If L ∈ M such that µ(L) = 0. Then, ∃ a Gδ-set V ∈ BR such that L ⊆ E and µ(V ) = 0.
Thus, the Lebesgue Stieltjes measure is the completion of BR. (Every union of borel set with a null set is
Lebesgue Stieltjes measurable and every null set in Lebesgue Stieltjes measurable set is contained in a set of
null sets in BR.) Thus µ is the completion of µ|BR .

Proof. It is just direct application of the theorem.

From this fact we can use the notation

L :=MF where F (x) = x,m := µF .

Theorem 2.50 (Theorem 1.21 in [1] p.37). If E ∈ L, and s, r ∈ R, then s+E, rE ∈ L and m(s+E) = m(E),
m(rE) = |r|m(E).

Proof. Since A is invariant under translation and dilations, so does BR. Since m(E) = m(E + s) and
m(rE) = |r|m(E) for any finite unions of intervals E, which implies m|A has a translation invariant and
dilation invariant as a premeasure. Thus, by the theorem 1.14, these property holds for BR. Now for any
E ∈ L with m(E) = 0, ∃F ∈ BR such that m(F ) = 0 with E ⊆ F , then

m(E + s) ≤ m(F + s) = m(F ) = 0 and m(rE) = |r|m(E) ≤ |r|m(F ) = 0 =⇒ m(E + s) = 0 = m(rE).

Since every measurable set in L can be represented as union of Fσset and a null set, and measures of these
two sets are invariant under dilation and translation, we can conclude that every measure of measurable set
is invariant under dilation and translation.

2.6 Revisit Cardinal Numbers.

Definition 2.51 (Cardinal Numbers). Two sets A and B have the same size if ∃f : A → B that is one-
to-one and onto B. There is a class of sets, i.e., a collection that is too big to be a set, called cardinal
numbers. The Cardinality of a set A is the unique cardinal number that has the same size as A.

Remark 2.52. For example, 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, · · · ,N0 = ℵ0, called aleph zero.
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Definition 2.53. If κ and λ are cardinal numbers, we write κ ≤ λ if for sets A and B having cardinalities
κ and λ respectively, ∃ a one-to-one function f : A→ B.

Theorem 2.54 (Schroder-Bernstein Theorem). If κ ≤ λ and λ ≤ κ, then κ = λ

Proof. Already proved above.

Proposition 2.55 (Proposition 0.7 in [1] p.7). For any X,Y sets, either card(X) ≤ card(Y ) or card(Y ) ≤
card(X).

Proof. Already proved above.

Definition 2.56 (Cardinal Arithmetic). Suppose card(A) = κ, card(B) = λ. Then,

κ+ λ := card(A ∪· B), κ · λ = card(A×B), κλ = card(AB)

where ∪· implies the disjoint union of two sets, and AB := {f : B → A}.

Thus, card(2A) = card(P(A)) = 2κ.

Theorem 2.57. If κ, λ are infinite cardinals, then

κ+ λ = max(κ, λ) = κ · λ

Also, for any cardinals κ, λ, µ,
(κλ)µ = (κλ·µ).

Proof. Incomplete.

Theorem 2.58 (Cantor). If κ is any cardinal then κ ≤ 2κ but κ 6= 2κ.

Proof. Let A be a set with card(A) = κ. Then there exists a one-to-one function

f : A→ 2A by a 7→ fa(x) =

{
1 if x = a

0 otherwise.

Thus, κ ≤ 2κ. Suppose for κ = 2κ. Then, there exists a bijection g : A→ 2A = {0, 1}A . Let

F : A×A→ {0, 1} with F (a1, a2) = (g(a1))(a2).

Let φ : A→ {0, 1} be defined by
φ(a) 6= F (a, a) for all a ∈ A.

Then, φ ∈ {0, 1}A = g(A), thus ∃a ∈ A such that g(a) = φ. Then, φ(a) = g(a)(a) = F (a, a), contradiction.

Theorem 2.59. card(R) = 2ℵ0 = card(P(N)), and this give [0, 1] to its decimal expansions.

Proof. It is already proved in theorem 1.18.

Theorem 2.60 (Theorem 1.21 in [1] p. 37, revisited). If E ∈ L =MF , F (x) = x, m = µF then ∀r, s ∈ R,
s+ E ∈ L and rE ∈ L, and m(s+ E) = m(E) and m(rE) = |r|m(E).
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Proof. Let B′ = {E ∈ BR : s + E ∈ BR}. Then B′ is a sub σ-algebra of BR with (a, b) ∈ B′ for all a, b ∈ R,
with a < b. Thus, B′ = BR. Let B′′ = {E ∈ BR : m(s+E) = m(E)}. Then B′′ is a sub σ-algebra of BR since

B′′ ⊃ {(a, b) : a, b ∈ R, a < b},

hence for all E ∈ BR, m(E) = inf{m(U) : U open in R, E ⊆ U} implies

m(s+ E) = inf{m(s+ U) : E ⊆ U,U is open in R} = inf{m(U) : E ⊆ U,U is open in R} = m(E).

Now let E ∈ L. Then, ∃F ∈ BR, N ′ ∈ BR such that m(B′) = 0 and E = F ∪N for some N ⊆ N ′. Therefore,

m(s+ E) = m(s+ F ∪ s+N) = m(s+ F ) +m(s+N) ≤ m(F ) +m(N ′) = m(F ) = m(E).

So s+ E ∈ L and m(s+ E) = m(E). By the similar argument, m(rE) = |r|m(E).

Remark 2.61. A totally ordered set (Ω,≤) is well-ordered if every nonempty subset of Ω has a minimal
element. Let Ω̃ be an well-ordered set. For x ∈ Ω̃, let

Px := {y ∈ Ω̃ : y ≤ x and y 6= x},

Let
U = {x ∈ Ω̃ : Px is uncountable}.

If U = ∅, let Ω = Ω̃. Otherwise, let z = min(U), which exists by the well-ordering property of Ω̃. Then, let

Ω := {x ∈ Ω̃ : x < z} = Pz.

Then, Ω is uncountable since z ∈ U and Ω = Pz. Moreover, ∀x ∈ Ω, Px is countable since z is the least
element in U . Also, by restricting ≤ to Ω gives an well-ordering on Ω.

Proposition 2.62. Every countable subset of Ω has an upper bound.

Proof. Suppose E ⊆ Ω is countable. Suppose for contradiction, E has no upper bound. Then, ∀y ∈ Ω,∃e ∈ E
such that e 6≤ y, i.e., y < e, from the total ordering. Thus, y ∈ Pe, Ω =

⋃
e∈E Pe. However, Pe is countable,

and countable union of countable sets is also countable. Thus, Ω is countable, contradiction.

Proposition 2.63. If Ω′ is any uncountable set endowed with a well-ordering ≤′ having the property that
∀x ∈ Ω′, {y ∈ Ω′ : y ≤′ x, x 6= y} is countable, then (Ω′,≤′) is order isomorphic to (Ω,≤), i.e., there exsits
a bijection function preserving order.

Proof. It is standard Zorn’s lemma argument. Let A = {Py : ∃ sub-order isomophism Py → Ω}. Then, every
chain of A has maximal element by the total-ordering. Hence, A has the maximal element, by the Zorn’s
lemma. Since for all y ∈ Ω′, Py has sub-order isomorphism with Ω using bijection of N. Thus, its maximal
element must contain every Py, which is Ω′ itself.

Definition 2.64 (Hereditary). Given H ⊆ Ω, we say H is hereditary if x ∈ H, y ∈ Ω, y ≤ x =⇒ y ∈ H.
Let

H© := {φ : H → H ′ : H is a hereditary subset of Ω, H ′ is a hereditary subset of Ω′, φ is an order-isomorphism}.

We order H© by defining φ1 ≤ φ2 if φ2 extends φ1. This is a partial ordering, so Zorn’s lemma says that if
H© is not empty and every totally ordered subset of H© has an upper bound, then H© has a maximal element.

Proof. Note that H© is not empty since the map {min(Ω)} 7→ {min(Ω′)} ∈ H©. Also, if {φλ : λ ∈ Λ} is a
totally ordered subset of H©, we can construct an upper bound of the subset as

φ :
⋃
λ∈Λ

dom(φλ)→
⋃
λ∈Λ

range(φλ) by φ(x) = φλ(x) since for some λ, x ∈ dom(φλ).

Then, φ is order-isomorphism and
⋃
λ∈Λ dom(φλ),

⋃
λ∈Λ range(φλ) are hereditary in Ω,Ω′ respectively. Thus,

φ is in H© and it is an upper bound of {φλ : λ ∈ Λ} .
Hence, by the Zorn’s Lemma, there exists a maximal element of H©, say ψ.
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Proposition 2.65. ψ is a surjective order-isomorphism, i.e., dom(ψ) = Ω, range(ψ) = Ω′.

Proof. Suppose for contradiction, let dom(ψ) 6= Ω. Then, dom(ψ) ≤ Px for some x since dom(ψ) is heredi-
tary. Without loss of generality, such x is minimal; i.e., there is no y such that y ≤ x, y 6= x but dom(ψ) ⊆ Py.
This is possible since Ω is totally ordered set. Then, Px is countable by the construction of Ω. So range(ψ)
is countable, which implies range(ψ) ( Ω′.

Let y = min(Ω′ \ range(ψ)). Then, dom(ψ)∪ {x} is also hereditary by choice of x, as is range(ψ)∪ {y}.
Let ψ̃ : dom(ψ) ∪ {x} → range(ψ) ∪ {y} be

ψ̃(a) =

{
ψ(a) if a 6= x

y if a = x.

Then, ψ̃ ∈ H©, ψ ≤ ψ̃, ψ 6= ψ̃, thus ψ is not a maximal element, contradiction.

Definition 2.66 (Ordinal). Let (Ω,≤) constructed in the above is the first uncountable ordinal. Then,
0 := min(Ω), 1 := min(Ω \ {0}), 2 = min(Ω \ {0, 1}), · · · , w = min(Ω \N0), w+ 1 = min(Ω \ (N0 ∪ {w})), · · · .
Thus, countable ordinals are

0, 1, 2, · · · , w, w + 1, w + 2, · · · , 2w, 2w + 1, · · · , 3w, 3w + 1, · · · , w2, w2 + 1, · · · ,

The first uncountable cardinal is card(Ω), denoted card(Ω) = ℵ1.

Remark 2.67 (Continuum Hypothesis). α1 = c = 2ℵ0 .

Example 2.68 (Transfinite recursion). Let’s construct σ-alg (ξ) for some ξ ⊆ P(X). We will construct Ra
for every a ∈ Ω to show that

⋃
a∈ΩRa = σ-alg (ξ) . Let R0 = ξ ∪ {∅}. If a ∈ Ω has an immediate predecessor

b, i.e., if a is a successor ordinal, i.e., if b = max({x ∈ Ω : x < a} exists, then we let Ra be a set of all
countable union and complements of such union of elements from Rb. If a is not a successor ordinal, then
we let Ra =

⋃
x∈Ω:x<aRx.

Claim 2.69.
⋃
a∈ΩRa = σ-alg (ξ).

Proof. ≤ is clear from the construction. More correctly, it follows by the transfinite induction on W that
Ra ⊆ σ-alg (ξ) ,∀a ∈ Ω. Indeed, R0 ⊆ σ-alg (ξ). If a ∈ Ω and if Rx ∈ σ-alg (ξ) for all x < a, then we must
shown that Ra ⊆ σ-alg (ξ) . If a = b+ 1, then Ra ⊆ σ-alg (Rb) ⊆ σ-alg (ξ) by the inductive hypothesis. If a
is not a successor ordinal, then Ra =

⋃
x<aRx ⊆ σ-alg (ξ), by the inductive hypothesis that for each x < a,

Rx ⊆ σ-alg (ξ) .
For ≥, we must show that R :=

⋃
a∈ΩRa is σ-algebra. If E ∈ Ra for some a ∈ Ω, then Ec ∈ Ra by

the construction of Ra. Suppose E1, E2, · · · ∈ R. Let a(j) ∈ Ω such that Ej ∈ Ra(j) for all j ∈ N. By
the proposition, {a(j)}j∈N has an upper bound b ∈ Ω. Thus, ∀k ∈ N, Ek ⊆

⋃∞
j=1Ra(j) ⊆ Rb. And by

construction,
⋃∞
k=1Ek ∈ Rb+1 =⇒

⋃∞
k=1Ek ∈ R.

Thus, R is σ-algebra.

Proposition 2.70. Suppose ξ ⊆ P(X) is countably infinite. Then, card(σ-alg (ξ)) = c.

Proof. We have σ-alg (() ξ) =
⋃
α∈ΩRα, where Ω is the first uncountable ordinal. Then, by our construction,

card(R0) = card(ξ ∪ {∅}) = ℵ0.

Claim 2.71. ∀α > 0, card(Rα) = c.

Proof. By the transfinite induction, we assume that the assertion holds for all α ∈ Ω, α < β ∈ Ω. And show
it holds for β. Note that

card(R1) ≤ card(P(ξ)) = 2ℵ0 = c.
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1. Case 1: β ∈ Ω is β = β0 + 1. Then, Rβ consists of all countable union of sets from Rβ0 , and their
complement B, so

c = 2α0 ≤ card(Rβ) ≤ card(RN
β0

) = cα0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c.

2. Case 2: β ∈ Ω is not a successor ordinal. Then,

Rβ =
⋃
α<β
α∈Ω

Rα and card(Rβ) ≤ ℵ0 · c = c

Note that {α ∈ Ω : α < β} is countable, by construction of Ω.

By the claim,

card(σ-alg (ξ)) = card

(⋃
a∈Ω

Ra

)
≤ cardΩ · c = ℵ1 · c ≤ cċ = c.

Corollary 2.72. card(BR) = c

Proof. {(a, b) : a, b ∈ Q} generates BR as a σ-algebra.

Definition 2.73 (The Cantor Set). Let C0 = [0, 1]. C1 = C0 \ ( 1
3 ,

2
3 ) = [0, 1

3 ] ∪ [ 2
3 , 1], and C2 = C1 \(

( 1
9 ,

2
9 ) ∪ ( 7

9 ,
8
9 )
)
, and so on. Now let C =

⋂∞
n=1 Cn. Then C is totally disconnected, i.e., no two points are

connected by the line segment. However, it is still uncountable.

Elements of [0, 1] have base 3 expansions x =
∑∞
j=1

aj
3j for aj ∈ {0, 1, 2}, and these expansions are unique

except when x = n
3p , n ∈ N0 when x will has two such expansions

aj = 0∀j > p or aj = 2∀j < p.

And we choose the expansion tha avoids having any aj = 1 if possible. Actually,

C = {x ∈ [0, 1] : x =

∞∑
j=1

aj
3j

for some aj ∈ {0, 2}}.

Then we have a bijection θ : C → {0, 2}N. Thus, card(C) = c

Lemma 2.74. m(C) = 0.

Proof.

m(C) = lim
n→∞

m(Cn) = lim
n→∞

(
2

3

)n
= 0,

by the continuity from above.

Proposition 2.75. card(L) = 2c.

Proof. Note that P(C) ⊆ L ⊆ P(R) and card(P(C)) = 2c = card(P(R)) gives the desired result.
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3 Integration

3.1 Measurable function

Definition 3.1 (Measurable function). Let (X,m) and (Y, n) are measurable spaces and let f : X → Y . f
is measurable or (m,n)-measurable if ∀E ∈ m, f−1(E) ∈ m.

Observation 3.2. If also (Z, a) is a measurable space and if g : Y → Z is (n, a)-measurable, then g ◦ f :
X → Z is (m,α)-measurable.

This is because every inverse image of α-measurable set is n-measurable, and its inverse image of f is
also m-measurable.

Proposition 3.3 (Proposition 2.1 in [1] p.43). If n = σ-alg (ξ) , then f : X → Y is (m,n)-measurable iff
∀E ∈ ξ, f−1(E) ∈ m.

Proof. If f is (m,n)-measurable, then trivially f−1(E) ∈ m for all E ∈ ξ ⊆ σ-alg (ξ).
If ∀E ∈ ξ, f−1(E) ∈ m, let A = {E ⊆ Y : f−1(E) ∈ m}. Then, ξ ⊆ A. It suffices to show that

σ-alg (ξ) ⊆ A. Note that A is closed under complement since f−1(Ec) = X − f−1(E) = f−1(E)c for any
E ∈ A. Also, ∅ ∈ A since f−1(∅) = ∅ ∈ m. Finally, A is closed under countable union since

f−1(

∞⋃
j=1

Ej) =

∞⋃
j=1

f−1(Ej) ∈ m.

Hence, A is a σ-algebra, containing ξ. Thus, σ-alg (ξ) ⊆ A, hence f is (m,n)-measurable.

Corollary 3.4 (Corollary 2.2 in [1] p.44). If X and Y are topological spaces and if f : X → Y is continuous
function, then f is (BX ,BY )-measurable.

Proof. Note that

BY = σ-alg ({V ⊂ Y : V is open}) ,BX = σ-alg ({U ⊂ X : U is open}) ,

and V is open in Y implies f−1(V ) is open. Thus, by the above proposition, f is (BX ,BY )-measurable.

Remark 3.5 (Convention). If (X,m) is a measurable space and if f : X → R (or f : X → C), then we will
say f is measurable or m-measurable if it is (m,BR)-measurable (or (m,BY )-measurable).

Observation 3.6. If f : R → R and g : R → R are both L-measurable, i.e., Lebesgue measurable, then by
the convention, f is (L,BR)-measurable, thus g ◦ f need not be L-measurable.

Proposition 3.7 (Proposition 2.3 in [1] p. 44). Given (X,m) and f : X → R, the followings are equivalent.

(i) f is m-measurable

(ii) ∀a ∈ R, f−1((−∞, a)) ∈ m.

(iii) ∀a ∈ R, f−1((−∞, a]) ∈ m.

(iv) ∀b ∈ R, f−1((b,∞)) ∈ m.

(v) ∀b ∈ R, f−1([b,∞)) ∈ m.

Proof. Note that (i) =⇒ (ii), (iii), (iv), (v), since the given sets are all Borel set. Conversely, from the
proposition 1.2, we know that the given sets can generates the Borel σ-algebra, therefore from the proposition
2.1, we can concluded that f is m-measurable.
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Definition 3.8 (σ-algebra generated by {fα}α∈A). Let X be a set. Fix a set A and ∀α ∈ A, fix (Yα,mα)
a measurable space. Suppose fα : X → Yα is a function. Then, σ-algebra generated by {fα}α∈A is
σ-alg

(
{f−1
α (E) : α ∈ A,E ∈ mα}

)
. This is the smallest σ-algebra of subsets of X making all the functions

fα measurable.

For example, let Y =
∏
α∈A Yα and let πα : Y → Yα. Denote the α-th coordinate projection, then the

product σ-algebra is ⊗α∈Anα, which is the σ-algebra generated by (πα)α∈A. (See definition 2.14 of this note.)

Lemma 3.9. Let A be a set and ∀α ∈ A, let (Yα, nα) be a measurable space. Let Z be a set, and let
fα : Z → Yα be a function for each α ∈ A. Let n ⊆ P(Z) be the σ-algebra generated by (fα)α∈A. Let (X,m)
be a measurable space. Let g : X → Z be a function.

Then, g is (m,n)-measurable iff ∀α ∈ A, fα ◦ g is (m,nα)-measurable.

Proof. To show if part, note that n is generated by {f−1
α (E) : α ∈ A,E ∈ nα}. Thus, for g to be (m,n)-

measurable, it suffices to show that ∀α ∈ A,∀E ∈ nα, g−1(f−1
α (E)) ∈ m. And it is true, since for any E ∈ nα,

f−1
α (E) ∈ n by definition, and g−1(F ) ∈ m for any F ∈ n. Let F = f−1

α (E) and we’re done.
To see only if part, suppose g is (m,n)-measurable. Then, by definition of n, fα is (n, nα) measurable

for each α ∈ A. Thus, fα ◦ g is (m,nα)-measurable; done.

Proposition 3.10 (Proposition 2.4 in [1] p.44). Let (X,m) and ∀α ∈ A, (Yα, nα) be measurable spaces. Let
Y =

∏
α∈A Yα and n = ⊗α∈Anα. Let g : X → Y . Then, g is (m,n) measurable if and only if ∀α ∈ A, πα ◦ g :

X → Yα is (m,nα)-measurable.

Proof. Just special case of the above lemma.

Remark 3.11 (Recall a product of metric space). A metric space is (X, d) where d is a metric on X.
And U ⊆ X is called open if ∀x ∈ U , ∃ε > 0 such that Bε(X) := {y ∈ X : d(x, y) < ε} ⊆ U.

If (X1, d1), · · · , (Xn, dn) are metric spaces, then we equip X =
∏n
j=1Xj with the product metric e.g.,

d(∞)((xj)
n
j=1, (yj)

n
j=1) = max

1≤j≤n
dj(xj , yj),

which is equivalent to any of

d(p)((xj)
n
j=1, (yj)

n
j=1) =

 n∑
j=1

dj(xj , yj)
p

 1
p

.

Definition 3.12 (Separability). A metric space (X, d) is separable if there exists a countable subset D ⊆ X
that is dense in X.

Proposition 3.13 (Proposition 1.5 in [1] p.23). Let (Xj , dj), 1 ≤ j ≤ n be metric space and let X =∏n
j=1Xj be equipped with d(∞). Then ⊗nj=1BXj ⊆ BX . If (X1, d1), · · · (Xn, dn) are all separable, then we get
⊗nj=1BXj = BX .

Proof. By definition of product σ-algebra, ⊗nj=1BXj = σ-alg
(
{π−1

j (U) : 1 ≤ j ≤ n,U is open in Xj}
)
. since

each πj is continuous from X to Xj , each π−1
j (U) is open, so π−1(U) ∈ BX . Suppose ∀j ∈ [n], Xj has a

countable dense set Dj . Then, D =
∏n
j=1Dj is dense in X, and D is countable. Hence X has countable

dense subset D. And we note the standard result;

Remark 3.14 (Standard result). For D, which is countable dense in X, every open set in X is the union
of a subfamily of {B 1

l
(x) : x ∈ D, l ∈ N}, where B 1

l
:= {y ∈ X : d(x, y) < 1

l }.

Proof. See the topology stuff and prove it.
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Now we want to prove ⊗nj=1BXj ⊇ BX . Let U ⊆∈ X be open. It suffices to show that U ∈ ⊗nj=1BXj .
Since U is countable union of sets of B 1

l
(x), x ∈ D, it suffices to show that each B 1

l
(x) ∈ ⊗nj=1BXj . We

choose d = d(∞), defined above. Then, B 1
l
(x) =

∏n
j=1B 1

l
(xj) ∈ ⊗nj=1BXj .

Corollary 3.15 (Corollary 1.6 in [1] p.23 and more.). BC ∼= BR2 ∼= BR ⊗ BR. BRn = ⊗nj=1BR.

Corollary 3.16 (Corollary of proposition 2.4 in [1]). If (X,m) is a measurable space and f : X → C, then
f is (m,BC)-measurable iff Ref , Imf are (m,BR)-measurable.

Proof. From the above corollary, BC ∼= BR2 ∼= BR ⊗ BR.

Proposition 3.17 (Proposition 2.6 in [1] p.45). If f, g : X → C are m-measurable, then f + g, fg are also
m-measurable.

Proof. Let H : X → C×C be H(x) = (f(x), g(x)). Then, H is (by proposition 2.4 of the [1]) (m,BC ⊗BC)-
measurable. Let φ : C × C → C be φ(z, w) = z + w and ϕ : C × C → C be ϕ(z, w) = zw. Then, φ, ϕ
are continuous, thus, they are (BC2 ,BC)-measurable. Thus, φ ◦ H = f + g and ϕ ◦ H = fg are (m,BC)-
measurable.

Remark 3.18. Consider R̄ = [−∞,∞]. We topologize it by making an order preserving bijection [−∞,∞]→
[−1, 1] into a homeomorphism. If (X,m) is a measurable space and f : X → [−∞,+∞] we say f is m-
mesaurable if it is (m,BR̄)-measurable.

Lemma 3.19. Let f : X → [−∞,∞] is m-measurable iff ∀a ∈ R, f−1((a,+∞]) ∈ m.

Proof. We proved it in the proposition 2.3 in [1].

Proposition 3.20 (Proposition 2.7 in [1] p. 45). Suppose fj : X → [−∞,∞], j ∈ N is m-measurable. Then,

g1 = sup
j∈N

fj , g2 = inf
j∈N

fj , g3 = lim sup
j→∞

fjg4 = lim sup
j→∞

fj

are measurable.

Proof.

g−1
1 ((a,+∞]) =

∞⋃
j=1

f−1
j ((a,+∞]) ∈ m

since
sup
j∈N

fj(x) > a ⇐⇒ ∃j ∈ N such that fj(x) > a.

So g1 is m-measurable. Since g2 = − supj∈N(−fj(x)), so g2 is also m-measurable. And note that

g3 = inf
n∈N

sup
j≥n

fj(x) = inf
n∈N

hn(x),

where hn(x) = supj≥n fj . Note that hn(x) is also m-measurable, since it is also supremum of countably
many functions up to renumbering. Hence, g3 is m-measurable. Similarly,

g4 = sup
n∈N

inf
k≥n

fj(x)

is also m-measurable.

Corollary 3.21 (Corollary 2.8 in [1] p.46). If f, g : X → [−∞,∞] are m-measurable, then max(f, g)(x) :=
max(f(x), g(x)) and min(f, g)(x) := min(f(x), g(x)) are m-measurable.

Proof. Let f1 = f, fn = g for any n ≥ 2, then max(f, g)(x) = supn∈N fn,min(f, g)(x) = infn∈N fn, thus they
are m-measurable.
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Corollary 3.22 (Corollary 2.9 in [1] p.46). If fj : X → [−∞,∞] is m-measurable, and if f(x) :=
limj→∞ fj(x) exists for all x, then f(x) is m-measurable. If we replace [−∞,∞] to C, the statement still
holds.

Proof. If f(x) := limj→∞ fj(x) exists for all x, then f(x) = lim supj→∞ fj(x) = lim infj→∞ fj(x), thus it
is m-measurable by the proposition 2.7. Also, in case of C, we know that f(x) := limj→∞ fj(x) exists iff
Ref(x) := limj→∞Refj(x) exists and Imf(x) := limj→∞ Imfj(x) exists, from the corollary 2.5 in [1]. Thus,
we know Ref and Imf are m-measurable by the statement for the case [−∞,∞], which we just proved.
Thus, f = Ref + iImf is also m-measurable, from proposition 2.6.

Definition 3.23 (Characteristic function and Simple function). Let X be a set and E ⊆ X, then the

characteristic function of E is 1E(x) :=

{
1 if x ∈ E
0 otherwise.

A simple function on X is a function of the

form f =
∑n
j=1 aj1Ej for some n ∈ N and some aj ∈ C and Ej ⊆ X.

Observation 3.24. Let f : X → C is a simple function iff im(f) is a finite set. Suppose {z1, · · · , zn} =
im(f). Then,

f =
n∑
j=1

zj1Ej

where Ej = f−1({zj}). We call the above representation as the standard form of the simple function f .

Definition 3.25 (Positive and negative part, polar decomposition). If f : X → R̄, we define the positive
and negative parts of f to be

f+(x) = max(f(x), 0), f−(x) = max(−f(x), 0).

Then f = f+ − f−, and |f | = f+ + f−. Thus, if f is measurable, then f+, f− are measurable by the
corollary 2.8, thus |f | is measurable by the proposition 2.6. Conversely, if f+ and f− are measurable, then
by proposition 2.6, f is measurable. Also, if f : X → C, we have a polar decomposition:

f = (sgnf)|f |, where sgn(z) =

{
z
|z| if z 6= 0

0 otherwise.

Again, if f is measurable, then so are |f | by the proposition 2.6. And note that if U ⊆ C is open, then
sgn−1(U) is open or a form V ∪ {0}, where V is also open, thus V ∪ {0} is a Borel measurable set. Thus,
sgn(z) is Borel measurable by proposition 2.1. Thus, sgn(f) is measurable.

Remark 3.26. If f, g are simple, then so are f +g and fg, since their image is also finitely many, therefore
we can represent it as the standard form.

Observation 3.27. If (X,m) is measurable space and if f =
∑n
j=1 zj1Ej is a simple function in standard

form, then f is m-measurable iff ∀j, Ej ∈ m.

Proof. Note every inverse image is the union of some Ej ’s, therefore, f is measurable iff Ej ’s are in m.

Theorem 3.28 (Theorem 2.10 in [1] p.47). Let (X,m) be a measurable space.

(a) Let f : X → [0,∞] be m-measurable. Then, ∃ a sequence (φn)∞n=1 of m-measurable simple functions
such that φ1 ≤ φ2 ≤ · · · ≤ f and φn → f pointwise with uniform convergence on subsets of X where f
is bounded.

(b) If f : X → R̄ or f : X → C is m-measurable, then ∃ a sequence (φn)∞n=1 of m-measurable simple
functions such that |φ1| ≤ |φ2| ≤ · · · ≤ |f |, φn → f pointwise with uniform convergence on subsets of X
where f is bounded.
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Proof of (a). Let E
(n)
k = f−1([k−1

2n ,
k
2n ]) for all k ∈ [2n]. Let F (n) = f−1([2n,+∞]). Let

φn =

22n∑
k=1

k − 1

2n
1
E

(n)
k

+ 2n1F (n) .

See below picture for understanding the φn.

Thus, φn ≤ φn+1 since the latter is cut more finer than the former one, and the value of function is always
greater then or equal to that of the former. Also, φn ≤ f since it is defined to have a minimum value of each
inverse image of intervals, which f has a value.

If Y ⊆ X and f(Y ) ⊆ [0, 2p], then ∀x ∈ Y, ∀n ≥ p,

|f(x)− φn(x)| ≤ 1

2n
.

Thus, fn uniformly converge to f on any subset Y of X, which f is bounded.

Proof of (b). Suppose f : X → R̄. Let (ψ
(+)
n )∞n=1 and (ψ

(−)
n )∞n=1 be approximating sequences for f+ and f−

obtained from part (a). Then, ∀n ∈ N, ψ(+)
n ψ

(−)
n = 0. Thus, we know |f | = f+ + f− and f+f− = 0. Hence,

|ψn| := ψ(+)
n + ψ(−)

n

has the desired properties.
If f : X → C, then letting (ψn)∞n=1 and (ρn)∞n=1 be the approximating sequence of Ref and Imf . Then,

φn := ψn + iρn have the desired properties.

Definition 3.29 (Almost everywhere). If P (x) is a property that depends on x ∈ X, and if (X,M,µ) is a
measure space, we say P holds µ-almost everywhere or µ-a.e. if it holds for all x ∈ E for some E ∈ m
such that µ(Ec) = 0.

Lemma 3.30. Suppose (X,m, µ) is a complete measure space, E ∈ m, B ⊆ X such that B∆E ∈ m, where
∆ is symmetric difference. Suppose µ(B∆E) = 0. Then, B ∈ m.

Proof. By the completeness of µ, E \B and B \ E ∈ m since they are subset of B∆E. Thus,

B = (B ∩ E) ∪ (B \ E) = (E \ (E \B)) ∪ (B \ E) ∈ m.

Proposition 3.31 (Proposition 2.11 in [1] p.47). Let (X,m, µ) be a complete measure space and suppose
(Y, n) is a measurable space.

(a) If f, g : X → Y , f is measurable, and f = g µ-a.e., then g is measurable.

(b) Suppose fj : X → C (or R̄) and f : X → C (or R̄) such that fj → f µ-a.e. and ∀j ∈ N, fj is measurable,
then f is measurable.

Note that a.e. implies there exists E ∈ m such that µ(Ec) = 0 and ∀x ∈ E, (a) f(x) = g(x) or (b)
limj→∞ fj(x) = f(x).

Proof. For (a), Let E be as described. LetA ∈ n. It suffices to show that g−1(A) ∈ m. But g−1(A)∆f−1(A) ⊆
Ec, and we know µ(Ec) = 0. Thus, g−1(A)∆f−1(A) ∈ m from the completeness of µ, and µ(g−1(A)∆f−1(A)) =
0. However, f−1(A) ∈ m. By the above lemma, g−1(A) ∈ m.

For (b), let f̃j = fj1E and f̃ = f1E where E is described above. Then, f̃j = fj a.e. and f̃ = f a.e. and

limj→∞ f̃j = f̃ . By part (a), ∀j ∈ N, f̃j is measurable. By proposition 2.7, f̃ is measurable. By part (a) f is
measurable.
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Proposition 3.32 (Proposition 2.12 in [1] p.48). Let (X,m, µ) and let (X, m̄, µ̄) be its completion. If
f : X → C (or R̄) is m̄-measurable, then there exists g : X → C (or R̄) such that g is m-measurable and
f = g µ̄-a.e.

Proof. Using the theorem 2.10, there exists a sequence (φn)∞n=1 of simple m̄-measurable functions, φn : X →
C (or R̄) such that φn → f pointwisely. Writing

φn =

k(n)∑
j=1

z
(n)
j 1

E
(n)
j

in standard form, where z
(n)
j ∈ C, E(n)

j ∈ m̄. Since m̄ is the completion of m, we have E
(n)
j = F

(n)
j ∪ A(n)

j

for some F
(n)
j ∈ m and A

(n)
j ⊆ N

(n)
j where µ(N

(n)
j ) = 0, N

(n)
j ∈ m. Let N =

⋃∞
n=1

⋃k(n)
j=1 N

(n)
j ∈ m. Then

µ(N) = 0. Let

ψn := φn1Nc =

k(n)∑
j=1

z
(n)
j 1

E
(n)
j

 1Nc .

ψn is an m-measurable simple functions and ψn → f · 1Nc pointwise. By proposition 2.7, g := f · 1Nc is
m-measurable and g = f m-a.e. Since N is still null set with respect to µ̄, g = f µ̄-a.e.

3.2 Integration of Nonnegative Functions

Definition 3.33 (Integration). Fix a measure space (X,m, µ). Let φ : X → [0,+∞) be a measurable simple
function. In standard form

φ =

n∑
j=1

cj1Ej ,

where E1, · · · , En ∈ m are disjoint, and cj ≥ 0.
We define the integral of φ with respect to µ to be∫

φdµ :=

n∑
j=1

cjµ(Ej) ∈ [0,+∞].

If A ∈ m, we define ∫
A

φdµ(=

∫
φ · 1Adµ) :=

n∑
j=1

cjµj(Ej ∪A).

Other notation for integral is as below;∫
φdµ =

∫
φ

∫
φ(x)dµ(x) =

∫
φ(x)µ(dx),

such notations depends on the context.

Proposition 3.34 (Proposition 2.13 in [1] p.49). Let φ, ψ : X → [0,+∞] be measurable simple functions.

(a) If c ≥ 0, then
∫
cφ = c

∫
φ.

(b)
∫
φ+ ψ =

∫
φ+

∫
ψ

(c) If φ ≤ ψ, then
∫
φ ≤

∫
ψ.

(d) The map m 3 A 7→
∫
A
φdµ is a measure.
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Proof. For (a), if φ =
∑n
j=1 cj1Ej as a standard form, then∫

cφ =

n∑
j=1

ccjµ(Ej) = c

n∑
j=1

cjµ(Ej) = c

∫
φ.

For (b), (c), write φ =
∑n
j=1 aj1Ej , ψ =

∑m
j=1 bj1Fj as a standard form. Then, use

φ =

n,m∑
i,j

aj1Ej∩Fj , ψ =

n,m∑
i,j

bj1Ei∩Fj .

Then, ∫
φ+ ψ =

n,m∑
i,j

(ai + bj)µ(Ei ∩ Fj) =

n,m∑
i,j

aiµ(Ei ∩ Fj) +

n,m∑
i,j

bjµ(Ei ∩ Fj) =

∫
φ+

∫
ψ.

And, if φ ≤ ψ, then for each (i, j) ∈ [n]× [m], ai ≤ bj , thus∫
φ =

n,m∑
i,j

aiµ(Ei ∩ Fj) ≤
n,m∑
i,j

bjµ(Ei ∩ Fj) =

∫
ψ.

For (d), let

ν(A) :=

∫
A

φdµ =

∫
φ1Adµ =

n∑
i=1

aiµ(Ei ∩A).

Clearly, ν() = 0. Let A1, A2, · · · ∈ m be disjoint sets, and let A =
⋃∞
i=1Ai. It suffices to show that ν(A) =∑∞

j=1 ν(Aj). We have

ν(A) =

n∑
i=1

aiµ(Ei ∩A)

=

n∑
i=1

ai(

∞∑
j=1

µ(Ei ∩Aj))

=

∞∑
j=1

n∑
i=1

aiµ(Ei ∩Aj)

=

∞∑
j=1

∫
Aj

φdµ

=

∞∑
j=1

ν(Aj),

as desired.

Remark 3.35 (Remark in class). If ψ =
∑m
j=1 cj1Rj for cj ≥ 0, Rj ∈ m is not necessarily disjoint, then by

the linearlity properties, ∫
φdµ =

m∑
j=1

cjµ(Rj).

Remark 3.36 (Remark by Byeongsu Yu). Acutally, in this case, since we deal with [0,+∞], we don’t have to
worry about the condition of interchanging two sums. However, for future reference, I leave some proposition
which may be useful.
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Proposition 3.37 (Condition of finite and infinite sum). Let I be non-empty and finite, and suppose that
for each x ∈ I the series

∑∞
y=0 fx,y converges. Then the series

∑∞
y=0

∑
x∈I fx,y also converges, and we have

∑
x∈I

∞∑
y=0

fx,y =

∞∑
y=0

∑
x∈I

fx,y.

Proof. We have

∑
x∈I

∞∑
y=0

fx,y =
∑
x∈I

(
lim
n→∞

n∑
y=0

fx,y

)
(by definition)

= lim
n→∞

(∑
x∈I

n∑
y=0

fx,y

)
(since addition is continuous)

= lim
n→∞

(
n∑
y=0

∑
x∈I

fx,y

)
(interchanging finite sums)

=

∞∑
n=0

∑
x∈I

fx,y. �

The proof shows that the result holds in any abelian [topological group][1] (or even semigroup), the mini-
mum structure needed to talk about infinite series. (For instance, this means that you can use it in topological
vector spaces without having to resort to vector-valued integration.)

We cannot omit the assumption that for each x ∈ I the series
∑∞
y=0 fx,y converges, as illustrated by the

following example.

Example 3.38. Let I := {−1, 1}. For all x ∈ I and y ∈ N we define fx,y := x · y. Now we have

∞∑
y=0

∑
x∈I

fx,y =

∞∑
y=0

(−y + y) =

∞∑
y=0

0 = 0,

whereas ∑
x∈I

∞∑
y=0

fx,y =

( ∞∑
y=0

−y

)
+

( ∞∑
y=0

y

)
= −∞+∞,

which is undefined.

Definition 3.39 (L+ and integration on measurable function). Let

L+ := {f : X → [0,+∞] : f is m-measurable}.

For f ∈ L+, we define ∫
fdµ := sup{

∫
φdµ : φ : X → [0,+∞], φ ≤ f}.

Observation 3.40. (1) If φ : X → [0,+∞) is a simple measurable function, then φ ∈ L+, and∫
φdµ︸ ︷︷ ︸

new definition

=

∫
φdµ︸ ︷︷ ︸

old definition

.
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(2) If f, g ∈ L+, f ≤ g =⇒
∫
f ≤

∫
g, since we are taking supremum of a subset.

(3) If f ∈ L+, c ≥ 0, then cf ∈ L+ and
∫
cf = c

∫
f.

Remark 3.41 (Remark for MCT). Note that if f1 ≤ f2 ≤ · · · , then lim inf fn = lim sup fn pointwisely, since
monotonic sequence converges in the extended real line. (If it is bounded, then the Monotone Convergence
Theorem of the Real number assures such convergence. If it is not bounded, then lim inf fn =∞, otherwise it
is bounded, contradiction. Since fi can be a constant function, this can be applied to the increasing sequence
of the real number. Therefore, limits in the condition of Theorem 2.14 are well-defined.

Theorem 3.42 (Theorem 2.14 in [1] p.50, Monotone Convergence Theorem (MCT)). Let (fn)∞n=1 be a
sequence in L+, with f1 ≤ f2 ≤ · · · . Let

f(x) := lim
n→∞

fn(x) = sup
n∈N

fn(x) ∈ [0,+∞].

Then,
f ∈ L+

and ∫
fdµ = lim

n→∞

∫
fndµ = sup

n∈N

∫
fndµ.

Proof. By the Corollary 2.9, f is measurable, thus f ∈ L+. Since fn ≤ f, ∀n ∈ N,∫
fn ≤

∫
f, ∀n ∈ N =⇒

∫
f ≥ lim

n→∞

∫
fndµ.

Let φ : X → [0,+∞] be a simple measurable function such that φ ≤ f . Let 0 < α < 1, and define

En := {x ∈ X : fn(x) ≥ αφ(x)}.

Since fn ↗ f,En ↗, i.e.,
E1 ⊆ E2 ⊆ E3 ⊆ · · ·

since fn ≤ fn+1 for any n ∈ N. Since
lim
n→∞

fn(x) = f(x)

for all x ∈ X, we have
∞⋃
n=1

En = lim
n→∞

En = X.

Since A 7→
∫
A
φdµ is a measure by the theorem 2.13 (d), we have∫

φdµ = lim
n→∞

∫
En

φdµ

by continuity from below. However,

α

∫
En

φdµ =

∫
En

αφdµ ≤
∫
En

fndµ ≤
∫
fndµ.

Thus,

α

∫
φdµ = lim

n→∞
α

∫
En

φdµ ≤ lim
n→∞

∫
fndµ.

Let α→ 1, thus ∫
φdµ ≤ lim

n→∞

∫
fndµ.
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Take the supremum of all φ, we get ∫
fdµ ≤ lim

n→∞

∫
fndµ.

Thus,

lim
n→∞

∫
fndµ =

∫
fdµ =

∫
lim
n→∞

fndµ.

Remark 3.43 (Consequence of MCT). Given f ∈ L+, from the theorem 2.10, ∃(φn)∞n=1, a sequence of
measurable simple functions such that 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f such that limn→∞ φn = f pointwise. By the
MCT,

∫
fdµ = limn→∞

∫
φndµ.

Example 3.44 (MCT needs ’M’ for monotonic). Let (R,BR,m). Define φn := n · 1(0, 1n ). Then, φn → 0
pointwise. However, ∫

φndµ = 1 6→
∫

0dµ = 0,

since φn → 0 is not monotonic convergent.

Theorem 3.45 (Theorem 2.15 in [1] p.51). Let fn ∈ L+, for all n ∈ N. Let f =
∑∞
n=1 fn. Then, f ∈ L+

since each partial sum is measurable, and limit of measurable function is also measurable, by the Corollary
2.9 in [1].

Also,
∫
fdµ =

∑∞
i=1

∫
fndµ.

Proof. Step 1: Show
∫
f1 + f2dµ =

∫
f1dµ+

∫
f2dµ. Let

φ1 ≤ φ2 ≤ · · · ≤ f1

ψ1 ≤ ψ2 ≤ · · · ≤ f2

be simple measurable functions with φn → f1, ψn → f2. Then, (φn+ψn)∞n=1 is an increasing sequence
of measurable simple functions converging to f1 + f2. So,∫

(f1 + f2)dµ =︸︷︷︸
(MCT)

lim
n→∞

∫
(φn + ψn)dµ =︸︷︷︸

Theorem
2.13(b)

lim
n→∞

(

∫
φn +

∫
ψn) =︸︷︷︸

(MCT)

∫
f1dµ+

∫
f2dµ.

Step 2: Use induction on N. If it holds for N − 1 and 2, such that N − 1 ≥ 2, then∫ N∑
n=1

fn =

∫ ((N−1∑
n=1

fn

)
+ fN

)
=︸︷︷︸

inductive
hypothesis

for 2

∫ (N−1∑
n=1

fn

)
+

∫
fN =︸︷︷︸

inductive
hypothesis

for N−1

N∑
n=1

∫
fndµ

Step 3: Note that ∫ ∞∑
i=1

fi =

∫
lim
n→∞

n∑
i=1

fi =︸︷︷︸
(MCT)

lim
n→∞

n∑
i=1

∫
fndµ.

Proposition 3.46 (Proposition 2.16 in [1] p.51). Let f ∈ L+, then∫
f = 0 ⇐⇒ f = 0 a.e.
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Proof. Suppose f = 0 a.e.. If φ : X → [0,+∞) is simple and φ = 0 a.e., then in standard form,

φ =

n∑
j=1

cj1Ej

and cj 6= 0, thus µ(Ej) = 0 for each j ∈ [n]. Thus,∫
φ =

n∑
j=1

cjµ(Ej) = 0.

Then now take the simple function ψ : X → [0,+∞) such that ψ ≤ f . Then, ψ = 0 a.e., since f = 0 is a.e.
and ψ ≤ f. So,

∫
ψ = 0 as shown above. Thus∫

f := sup

{∫
ψ : ψ : X → [0,+∞), ψ is simple, ψ ≤ f

}
= 0

To show the converse, let En = f−1([ 1
n ,+∞]). Then,

0 ≤ 1

n
1En ≤ f =⇒ 0

∫
1

n
1En ≤

∫
f = 0,

for all n ∈ N. Thus,
1

n
µ(En) = 0 =⇒ µ(En) = 0,

for all n. However, let E :=
⋃∞
n=1En = f−1((0,+∞]). Then,

µ(E) ≤︸︷︷︸
subadditivity of µ

∞∑
n=1

µ(En) = 0.

Therefore, f = 0 a.e.

Corollary 3.47 (Corollary 2.17 in [1] p.51, The almost everywhere MCT). Suppose fn ∈ L+ for all n ∈ N,
and f ∈ L+. Suppose that for almost every x ∈ X,

f1(x) ≤ f2(x) ≤ · · · (5)

and
lim
x→∞

fn(x) = f(x) (6)

Then,

lim
n→∞

∫
fn =

∫
f.

Proof. By hypothesis, ∃E ∈ m s.t. µ(E) = 0 and ∀x ∈ Ec, the equation (3) and (4) holds. Then,
fn1Ec ↗ f1Ec pointwisely. Thus, by the Monotone Convergence Theorem,

lim
n→∞

∫
fn1Ec =

∫
f1Ec .

However, ∫
fn =

∫
(fn1Ec + fn1E) =︸︷︷︸

Theorem 2.15

∫
fn1Ec +

∫
fn1E︸ ︷︷ ︸

=0 by Proposition 2.16

=

∫
fn1Ec (7)
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And similarly, ∫
f =

∫
(f1Ec + f1E) =︸︷︷︸

Theorem 2.15

∫
f1Ec +

∫
f1E︸ ︷︷ ︸

=0 by Proposition 2.16

=

∫
f1Ec (8)

Thus,

lim
n→∞

∫
fn = lim

n→∞

∫
fn1Ec =

∫
f1Ec =

∫
f,

as desired.

Proposition 3.48 (Proposition 2.18 in [1] p.52, Fatou’s Lemma). Let (fn)∞n=1 be any sequence in L+. Then,∫
lim inf

n→∞
fn ≤ lim inf

n→∞

∫
fn.

Before proving this, note the natural example;

Example 3.49 (Natural Example). Let fn = n ·1(0, 1n ),∀n ∈ N, and let µ = m, the Lebesgue measure. Then,

lim infn→∞ fn = 0. However,
∫
fn = 1 for any n ∈ N. Thus,∫

lim inf
n→∞

fn = 0 ≤ 1 = lim inf
n→∞

∫
fn.

Proof of the Fatou’s Lemma. Let gk = infn≥k fn. Then,

g1 ≤ g2 ≤ · · ·

and define
f := lim

k→∞
gk = lim

k→∞
inf
n≥k

fn = sup
k→∞

inf
n≥k

fn = lim inf
n→∞

fn.

By the Monotone convergence theorem, ∫
f = lim

k→∞

∫
gk.

However, ∀n ≥ k,

gk ≤ fn =⇒
∫
gk ≤ inf

n≥k

∫
fn.

Thus ∫
f =︸︷︷︸

(MCT)

sup
k≥1

∫
gk ≤ sup

k≥1
inf
n≥k

∫
fn =︸︷︷︸

definition

lim inf
n→∞

∫
fn.

Corollary 3.50 (Corollary 2.19 in [1] p.52). If fn ∈ L+ for (n ≥ 1) and f ∈ L+ and if fn → f a.e., then∫
f ≤ lim inf

n→∞

∫
fn.

Proof. If fn → f everywhere, then apply the Fatou’s lemma. In general, use the same method as a proof
of the almost everywhere MCT. Let E ∈ m such that µ(E) = 0, and ∀x ∈ Ec, fn(x) → f(x) pointwisely.
Then, fn1Ec → f1Ec pointwisely. Thus, by the Fatou’s lemma,∫

f1Ec ≤ lim inf
n→∞

∫
fn1Ec .

Also, we already know that
∫
fn =

∫
fn1Ec for any n ∈ N by the equation (5) and

∫
f =

∫
f1Ec by the

equation (6). Thus, ∫
f =

∫
f1Ec ≤ lim inf

n→∞

∫
fn1Ec = lim inf

n→∞

∫
fn,

as desired.
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Observation 3.51 (Proposition 2.20 in [1] p.52). If f ∈ L+,
∫
f < +∞, then µ({x : f(x) = +∞}) = 0, and

{x : f(x) > 0} is σ-finite.

Proof. Suppose µ({x : f(x) = +∞}) > 0. Then,

+∞ >

∫
f ≥

∫
{x:f(x)=+∞}

f =∞× µ({x : f(x) = +∞}) =∞,

contradiction. Also, note that ∫
{x:n>f(x)> 1

n}
f ≤

∫
f <∞

. Thus, µ({x : n > f(x) > 1
n}) < ∞. Let En = {x : n > f(x) > 1

n} and Fn = En \
(
∪n−1
i=1 Ei

)
. for any

n ∈ N, and let F0 = {x : f(x) = +∞}. Then, Fn’s are disjoint and
⋃N
n=1 Fn = EN for any N ∈ N, thus⋃∞

n=0 = {x : f(x) > 0}. Thus,

{x : f(x) > 0} ∩ Fn ≤ Fn =⇒ µ({x : f(x) > 0} ∩ Fn) ≤ µ(Fn) <∞.

Thus, {x : f(x) > 0} is σ-finite.

3.3 Integration of complex functions

Definition 3.52 (Integrability of extended real-valued function). Let f : X → R̄ be in L+. We have
f+ = max(f, 0) and f− = max(−f, 0). Thus, by the Corollary 2.8 in [1], f+, f− are in L+. And note that
f = f+ − f−, and |f | = f+ + f−. We say f is integrable if

∫
|f | < +∞, and then we can define∫

f :=

∫
f+ −

∫
f−.

Proposition 3.53 (Proposition 2.21 in [1] p.53). The set of integrable (thus measurable) real-valued function
on X is a real vector space, on which integration (f 7→

∫
f) is a linear functional.

Proof. For the first assertion, let f, g : X → R be integrable. Let a ∈ R. Note that + defined for function
already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with
field multiplication and distibutivity. Also, 1 ∈ R satisfies 1 · f = f . Therefore, it suffices to show that f + g
and af are integrable, and

∫
af = a

∫
f ,
∫
f + g =

∫
f +

∫
g.

Note that

|af | = |a||f | =⇒
∫
|af | =

∫
|a||f | = |a|

∫
|f | <∞,

thus af is integrable. Also,∫
|f + g| ≤︸︷︷︸

triangle ineq.

∫
|f |+ |g| =

∫
|f |+

∫
|g| < +∞,

thus f + g is also integrable.
If a > 0, then (af)+ = af+ and (af)− = af−, thus∫

af =

∫
af+ −

∫
af− =︸︷︷︸

Theorem 2.15

a

(∫
f+ −

∫
f−

)
= a

∫
f.

If a < 0, then (af)+ = −af−, (af)− = −af+, so∫
af =

∫
(−af−)−

∫
(−af+) = a

∫
f+ − a

∫
f− = a(

∫
f+ −

∫
f−) = a

∫
f.
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Let h = f + g. Then, h+ − h− = f+ − f− + g+g−, thus

h+ + f− + g− = h− + f+ + g+ =⇒
∫
h+ + f− + g− =

∫
h− + f+ + g+

Thus, by the theorem 2.15,∫
h++

∫
f−+

∫
g− =

∫
h−+

∫
f++

∫
g+ =⇒

∫
h+−

∫
h− =

∫
f+−

∫
f−+

∫
g+−

∫
g− =

∫
f+

∫
g.

Definition 3.54 (Integrable in complex valued function). Let f : X → C be a measurable function. We say
f is integrable if

∫
|f | <∞. Note that

|f | ≤ |Ref |+ |Imf | ≤ 2|f |.

So f is integrable iff Ref and Imf are integrable. We define∫
f :=

∫
Ref + i

∫
Imf.

Proposition 3.55. The set of complex valued integrable function is a complex vector space and integration
(i.e. f 7→

∫
f) is a linear functional.

Proof. For the first assertion, let f, g : X → R be integrable. Let a ∈ C. Note that + defined for function
already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with
field multiplication and distibutivity. Also, 1 ∈ C satisfies 1 · f = f . Therefore, it suffices to show that f + g
and af are integrable, and

∫
af = a

∫
f ,
∫
f + g =

∫
f +

∫
g.

Note that

|af | = |a||f | =⇒
∫
|af | =

∫
|a||f | = |a|

∫
|f | <∞,

thus af is integrable. Also,∫
|f + g| ≤︸︷︷︸

triangle ineq.

∫
|f |+ |g| =

∫
|f |+

∫
|g| < +∞,

thus f + g is also integrable.
If a = b+ ic, then af = bRef − cImf + i(bImf + cRef) Then,∫

af =︸︷︷︸
Def.

∫
(bRef − cImf) + i

∫
(bImf + cRef)

=︸︷︷︸
Thm 2.21 in [1]

b

∫
Ref − c

∫
Imf + i

(
b

∫
Imf + c

∫
Ref

)

= b

(∫
Ref + i

∫
Imf

)
+ ci

(∫
Ref + i

∫
Imf

)
= a

∫
f.

Also,∫
f + g =︸︷︷︸

Def.

∫
(Ref + iImf +Reg+ iImg) =︸︷︷︸

Thm 2.21 in [1]

∫
Ref + i

∫
Imf +

∫
Reg+ i

∫
Img =

∫
f +

∫
g

Thus, integration is also a linear functional.
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Notation 3.56 (L1 space). L1 or L1(µ) denotes

L1 = L1(µ) := {f : X → C : f is measurable and integrable}.

Also,
L1
R(µ) := {f : X → R : f is measurable and integrable}.

Proposition 3.57 (Proposition 2.22 in [1] p.53). If f ∈ L1, then |
∫
f | ≤

∫
|f |.

Proof. Case 1: when Imf = 0 everywhere. Then,∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ f+ −
∫
f−

∣∣∣∣ ≤ ∫ |f+|+
∣∣∣∣∫ f−

∣∣∣∣ =

∫
f+ +

∫
f− =

∫
f+ + f− =

∫
|f |

Case 2: when
∫
Imf = 0. Then,∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ Ref

∣∣∣∣ ≤︸︷︷︸
by case 1

∫
|Ref | ≤

∫
|f | .

Case 3: General Cases. Note that
∫
f = eiθ

∣∣∫ f ∣∣ for some θ, since it is just complex number. Thus,
let g = e−iθf. Then, ∫

g = e−iθ
∫
f = |

∫
f | ≥ 0.

However, we know that ∫
g =

∫
Reg + i

∫
Img.

By case 2, ∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ g

∣∣∣∣ ≤ ∫ |g| = ∫ |f |.
Definition 3.58. If we have f ∈ L1 and if E ∈ m, then define

∫
E
f :=

∫
f1E .

Recall the proposition 2.16 in [1] that if h ∈ L+, then
∫
h = 0 ⇐⇒ h = 0 a.e.

Proposition 3.59 (Proposition 2.23 in [1] p.54). Let f, g ∈ L1. Then, TFAE.

1.
∫
E
f =

∫
E
g for all E ∈ m.

2.
∫
|f − g| = 0.

3. f = g a.e.

Proof. (ii) ⇐⇒ (iii): Since |f−g| ∈ L+, by the proposition 2.16 in [1],
∫
|f−g| = 0 if and only if |f−g| = 0

a.e. Also, |f − g| = 0 a.e. if and only if f = g a.e.
(iii) =⇒ (i): Note that∣∣∣∣∫

E

f −
∫
E

g

∣∣∣∣ =

∣∣∣∣∫ (f − g)1E

∣∣∣∣ ≤︸︷︷︸
Thm 2.22

∫
|f − g| = 0.

(i) =⇒ (iii): Assume it was not true that f = g a.e. Then it suffices to find E ∈ m such that∫
E
f 6=

∫
E
g. Let h = f − g. Then, ∫

E

f −
∫
E

g =

∫
E

h.
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By hypothesis, it is not true that h = 0a.e., and we seek E such that
∫
E
h 6= 0. Without loss of generality, h

is real valued. Also, without loss of generality, it is not true that h+ = 0 a.e. Let E = h−1((0,+∞)). Then,
µ(E) > 0. So, ∫

E

h =

∫
E

h+ =

∫
h+ > 0

by the converse statement of proposition 2.16. If h is general complex valued function, then h = Reh+ −
Reh− + iImh+ − iImh−, and at least one of terms of h is nonzero a.e. by the assumption. Say Reh+ is
nonzero a.e. Then, let E = Reh+((0,∞)). So,∫

E

h =

∫
E

h+ =

∫
h+ > 0,

by the converse statement of proposition 2.16.

Definition 3.60 (Pseudometric on L1). Let ρ : L1 × L1(µ)→ [0,+∞) by ρ(f, g) =
∫
|f − g|. Then, by the

proposition 2.23 in [1], ρ(f, g) = 0 ⇐⇒ f = g a.e. Also, ρ(g, f) = ρ(f, g) and ρ(f, h) ≤ ρ(f, g) + ρ(g, h).
Thus, ρ is pseudo-metric on L1. We introduce the equivalence relation

f ∼ g ⇐⇒ f = g a.e.

Using this, we can redefine

L1 := L1(µ) := {f : X → C : f is measurable and

∫
|f | < +∞}/ ∼ .

Then ρ becomes a metric on L1(µ), the L1-metric.

Remark 3.61 (Abuse of notation). By (standard) abuse of notation, we continue to write f ∈ L1 rather
than [f ] ∈ L1.

Notation 3.62. If µ̄ is the completion of µ, then we have the natural identification of L1(µ) ∼= L1(µ̄), since
by the proposition 2.12, if f : X → C is µ̄-measurable, then there exists g : X → C a µ-measurable function
such that f = g a.e.

Theorem 3.63 (Theorem 2.24 in [1] p.54, Dominated Convergence Theorem). Let (fn)∞n=1 be a sequence
in L1. Suppose 1) fn → f a.e., 2) ∃g ∈ L+ such that

∫
g < +∞ and 3) ∀n ∈ N, |fn| ≤ g a.e.

Then f ∈ L1 and
∫
f = limn→∞

∫
fn.

Proof. By redefining on a null set using the proposition 2.12, we may, without loss of generality, assure that
fn → f pointwise. And, ∀n ∈ N, |fn| ≤ g holds everywhere. Thus, f is measurable by the theorem 2.11 (b).
Moreover, |f | ≤ g, and since g is integrable,∫

|f | < +∞ =⇒ f ∈ L1.

By considering the real and imaginary parts, we may without loss of generality assume that each fn is
real-valued. We have

−g ≤ fn ≤ g.

Thus,
g + fn ∈ L+.

So, ∫
g +

∫
f =

∫
(g + f) =

∫
lim
n→∞

(g + fn) ≤︸︷︷︸
Fatou’s Lemma

lim inf
n→∞

∫
(g + fn) =

∫
g + lim inf

n→∞

∫
fn.
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Thus,
∫
f ≤ lim infn→∞

∫
fn. Replacing fn by −fn, we get

− inf f =

∫
−f ≤︸︷︷︸

Fatou’s Lemma

lim inf

(
−
∫
fn

)
= − lim sup

n→∞

∫
fn.

Thus, lim supn→∞
∫
fn ≤

∫
f . Thus, limit exists and

lim
n→∞

∫
fn =

∫
f.

Theorem 3.64 (Theorem 2.27 in [1] p.56). Fix a measure space (X,m, µ). Suppose f : X × (c, d) → C
satisfies ∀t ∈ (c, d), x 7→ f(x, t) is integrable, i.e., x 7→ f(x, t) ∈ L1(µ). Let F (t) :=

∫
f(x, t)dµ(x).

(a) If ∃g ∈ L1 such that
1) ∀x, ∀t, |f(x, t)| ≤ g(x)

and
2) for fixed t0 ∈ (c, d),∀x, lim

t→∞
f(x, t) = f(x, t0) (continuity w.r.t t)

then limt → t0F (t) = F (t0).

(b) If ∃g ∈ L1 and if

1) ∀x, ∀t, ∂f
∂t

(x, t) exists,

and

2)

∣∣∣∣∂f∂t (x, t)

∣∣∣∣ ≤ g(x),

then

1) F ′(t0) exists and 2) F ′(t0) =

∫
∂f

∂t
(x, t)dµ(x).

Proof. Note that the conditions of (a) satisfies the DCT’s condition. Let {tn} be a sequence in (c, d)
converging to t0. Then,

lim
n→∞

F (tn) = lim
n→∞

∫
f(x, tn)dµ(x) =︸︷︷︸

(DCT)

∫
lim
n→∞

f(x, tn)dµ(x) =

∫
f(x, t0)dµ(x) = F (t0).

For the part (b), let tn be a sequence in (c, d) \ {t0} such that tn → t0. Then,

lim
n→∞

F (tn)− F (t0)

tn − t0
= lim
n→∞

∫
f(x, tn)− f(x, t0)

(tn − t0)
dµ(x).

By the Mean Value Theorem, ∀x,∀n, ∃t∗ ∈ (c, d) such that f(x,tn)−f(x,t0)
tn−t0 = ∂f

∂t (x, t∗). Thus,∣∣∣∣f(x, tn)− f(x, t0)

tn − t0

∣∣∣∣ ≤ ∣∣∣∣∂f∂t (x, t∗)

∣∣∣∣ ≤ g(x).

Therefore, for all x and for each n ∈ N, f(x,tn)−f(x,t0)
tn−t0 satisfies each condition of DCT. Thus,

lim
n→∞

F (tn)− F (t0)

tn − t0
= lim
n→∞

∫
f(x, tn)− f(x, t0)

(tn − t0)
dµ(x) =︸︷︷︸

(DCT)

∫
lim
n→∞

f(x, tn)− f(x, t0)

tn − t0
dµ(x) =

∫
∂f

∂t
(x, t0)dµ(x).

Thus, since tn was arbitrary,

F ′(t0) = lim
n→∞

F (tn)− F (t0)

tn − t0
=

∫
∂f

∂t
(x, t)dµ(x)

as desired.
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Remark 3.65 (Recall of Riemann Integral). Let [a, b] be a compact interval. By a partition of [a, b] we
shall mean a finite sequence P = {tj}n0 such that

a = t0 < t1 < · · · < tn = b.

Let f be an arbitrary bounded real-valued function on [a, b]. For each partition P we define

SP f =

n∑
j=1

Mj(tj − tj−1), sP f =

n∑
j=1

mj(tj − tj−1)

where Mj ,mj are supremum and infimum of f on [tj−1, tj ]. Then define

Ība = inf
P
SP f, I

b
a sup

P
sP f,

where the infimum and supremum are taken over all partitions P . If Ība = Iba, there common value is

Riemann inegral
∫ b
a
f(x)dx and f is called Riemann integrable.

Theorem 3.66 (Theorem 2.28 in [1] p.57). (a) If f : [a, b] → R is Riemann integrable then f ∈ L1(m),

where m is Lebesgue measure, and
∫ b
a
f(t)dt =

∫
[a,b]

fdm.

(b) f is Riemann integrable if and only if {x ∈ [a, b] : f is discontinuous at x} has Lebesgue measure zero.

Proof. Suppose that f is Riemann integrable. For each partition P , let

GP =

n∑
j=1

Mj1(tj−1,tj ], gP =

n∑
j=1

mj1(tj−1,tj ].

Thus, SP f =
∫
GP dm and sP f =

∫
gP dm. Then, since f is Riemann integrable, there exists {Pk}∞k=1, a

sequence of partitions such that Pk ⊆ Pk+1 and SPkf →
∫ b
a
f and sP f →

∫ b
a
f as k →∞. Now note that

GPk ≥ GPk+1
≥ f and gPk ≤ gPk+1

≤ f.

Thus, it is monotonic and bounded, thus converge by the Monotone Convergence theorem. Hence, we can
define

G := lim
k→∞

GPk , g := lim
k→∞

gPk .

Then, by definition,
g ≤ f ≤ G.

Thus, since GPk is bounded by GP1
, and gPk is bounded by f , we can apply the Dominated Convergence

theorem to conclude that
G, g are integrable

and ∫
G =︸︷︷︸

(DCT )

lim
k→∞

∫
GPk =︸︷︷︸

Def.

lim
k→∞

SPkf =︸︷︷︸
Riemann
integrable

∫ b

a

f,

∫
g =︸︷︷︸

(DCT )

lim
k→∞

∫
gPk =︸︷︷︸

Def.

lim
k→∞

sPkf =︸︷︷︸
Riemann
integrable

∫ b

a

f.

Thus, ∫
(G− g)dm = 0 =⇒︸ ︷︷ ︸

Prop 2.16

G = g a.e. =⇒ G = f a.e.
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Note that G is the limit of a sequence of simple function, by Proposition 2.11 (b), G is measurable. Also,
since m is complete measure, thus by Proposition 2.11 (a), f is measurable. Thus,∫

[a,b]

f =︸︷︷︸
from f=g a.e.

∫
Gdm =

∫ b

a

f.

Hence (a) is proved.

Remark 3.67 (Remarks in book). 1. the imporper Riemann integral can be also viewed as Lebesgue in-
tegral, using DCT.

2. Lebesgue integral gives more powerful convergence theorem.

3. Lebesgue integral is applied wider class of functions; this gives a complete metric for some important
function spaces. For example, L1(µ) is complete, and it can be seen when we deal with Thm 2.25 which
is disguised form of theorem 5.1.

Now, fix (X,m, µ)

Theorem 3.68 (Theorem 2.25 in [1] p.55). If {fn}∞n=1 is a sequence in L1 and
∑∞
n=1

∫
|fn| < +∞, then∑∞

n=1 fn converges a.e. to a function f ∈ L1, and
∫
f =

∑∞
n=1

∫
fn.

Proof. Note that
∑∞
n=1 |fn| : X → [0,+∞] is measurable and∫ ∞∑

n=1

|fn| =
∞∑
n=1

∫
|fn| <︸︷︷︸

Given condition

∞

by theorem 2.15. Thus,
∑∞
n=1 |fn| ∈ L1, thus it is finite on a set of full measure. Since

∞∑
n=1

fn ≤
∞∑
n=1

|fn|,

∑∞
n=1 fn converges almost everywhere. Therefore, we can define

f =

∞∑
n=1

fn.

Note that f is measurable since it is limit of sequence of measurable function. Since ∀N ∈ N,

|
N∑
n=1

fn| ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1,

we can apply the Dominated Convergence Theorem to conclude that f ∈ L1 and∫
f =

∫
lim
N→∞

N∑
n=1

fn =︸︷︷︸
(DCT)

lim
N→∞

∫ N∑
n=1

fn =︸︷︷︸
Thm 2.13

lim
N→∞

N∑
n=1

∫
fn =

∞∑
n=1

∫
fn

Theorem 3.69 (Completeness of L1). L1(µ) is complete with respect to ρ(f, g) =
∫
|f − g|dµ.
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Proof. Let (fn)∞n=1 be a Cauchy sequence in L1. Let (fnk)∞k=1 be a subseqeunce such that

∀k ∈ N, ρ(fnk , fnk+1
) ≤ 2−k.

Now we want to define

f := fn1
+

∞∑
k=1

(fnk+1
− fnk).

We have ∫
|fn1
|+

∞∑
k=1

∫
|fnk+1

− fnk | <
∫
|fn1
|+

∞∑
k=1

2−k <∞.

Thus, by the theorem 2.5, fn1
+
∑∞
k=1(fnk+1

− fnk) converges a.e. to a function in L1. Say that function f .
Then,

f =︸︷︷︸
a.e.

lim
p→∞

(
fn1

+

p∑
k=1

(
fnk+1

− fnk
))

= lim
p→∞

fnp+1
.

Hence,

ρ(f, fnp+1
) =

∫
|f − fnp+1

|dµ

=

∫
|fn1 +

∞∑
k=1

(fnk+1
− fnp+1)− (fn1 +

p∑
k=1

(fnk+1
− fnp+1))|dµ

=

∫
|
∞∑

k=p+1

(fnk+1
− fnk)|

≤
∫ ∞∑

k=p+1

|fnk+1
− fnk |

=︸︷︷︸
Thm 2.25

∞∑
k=p+1

∫
|fnk+1

− fnk |

=

∞∑
k=p+1

ρ(fnk+1
, fnk)

<

∞∑
k=p+1

2−k = 2−p → 0 as p→∞.

Thus, fnk → f ∈ L1 in a metric ρ.

Corollary 3.70 (Corollary of the proof). If fn → f in L1-metric, ρ, then ∃ a subseqeunce (fnk)∞k=1 such
that fnk → f a.e. as k →∞.

Proposition 3.71 (Proposition 1.20 in [1] p. 37, Exercise 1.26). Let µ be a Lebesgue-Stieltjes measure, i.e.,
µ((a, b]) = G(b) − G(a) for some G : R → R, nondecreasing right continuous function, and let E ∈ mµ, a
Borel σ-algebra with respect to µ, such that µ(E) < +∞, ε > 0. Then, ∃F ⊆ R such that F is a finite union
of bounded open intervals such that µ(E∆F ) < ε.

Proof. We proved theorem 1.18, i.e., ∃U ⊆ R such that U is open and E ⊆ U and µ(U) < µ(E) + ε
2 . We

have U =
⋃∞
j=1 Ij for disjoint open intervals (or empty sets) Ij . Thus,

µ(U) =

∞∑
j=1

µ(Ij).
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Let N ∈ N such that
N∑
j=1

µ(Ij) > µ(U)− ε

2
.

If Ij is unbounded, then ∃ a bounded open interval I ′j ⊆ Ij such that

µ(I ′j) > µ(Ij)−
ε

8
.

If Ij is bounded, take I ′j = Ij . Let F =
⋃N
j=1 I

′
j . Then, F ⊆ U , and

µ(F ) > µ(U)− ε

4
− ε

8
− ε

8
= µ(U)− ε

2

Note that since µ is arbitrary measure and µ(U) <∞, this measure gives finite value for unbounded interval
conatined in U . Thus the above inequality is derived.

Thus,
E∆F = (E \ F ) ∪ (F \ E) ⊆ (U \ F ) ∪ (U \ E),

therefore,

µ(E∆F ) ≤ µ(U \ F ) + µ(U \ E) ≤ ε

2
+
ε

2
= ε.

Theorem 3.72 (Theorem 2.26 in [1] p.55, Approximation of f ∈ L1). Let (X,m, µ) be a measure space and
let f ∈ L1(µ), ε > 0. Then, ∃ a simple function φ ∈ L1(µ) such that∫

|f − φ|dµ < ε.

If µ is a Lebesgue Stieltjes measure, then φ can be taken of the form φ =
∑n
j=1 αj1Ej where E1, · · · , En

are bounded open intervals in R. Moreover, ∃ a continuous function g : R→ R with bounded supports, such
that

∫
|f − g|dµ < ε.

Proof. Suppose µ is any measure. By theorem 2.10, ∃ a sequence (φn)∞n=1 of simple functions such that
φn → f pointwise and

|φ1| ≤ |φ2| ≤ · · · ≤ |f |.
Thus, |φn − f | → 0 pointwisely and |φn − f | ≤ 2|f |. Therefore, by the Dominated Convergence Theorem,

lim
n→∞

∫
|φn − f |dµ =︸︷︷︸

DCT

∫
lim
n→∞

|fn − f |dµ =

∫
0dµ = 0.

Now suppose µ is Lebesgue Stieltjes measure. Note that we can represent

φn =

Nn∑
j=1

αj1Ej

for some disjoint intervals Ej ∈ m and αj 6= 0 for any j ∈ N. Also, we know that µ(E∆F ) =
∫
|1E \ 1F |

for any E,F ∈ m. Thus for φn, each 1Ej can be approximated by 1Fj with µ(Ej∆Fj) <
1

αj2j
ε, where Fj is

finite union of bounded open intervals. Define φ′n :=
∑Nn
j=1 αj1Ej . Then,

∫
|φn − φ′n| =

∫ ∣∣∣∣∣∣
Nn∑
j=1

αj(1Ej − 1Fj )

∣∣∣∣∣∣ ≤︸︷︷︸
Trianlge Ineq.

∫ Nn∑
j=1

|αj ||1Ej − 1Fj | =︸︷︷︸
Thm 2.13

Nn∑
j=1

αj

∫
|1Ej − 1Fj |

=

Nn∑
j=1

αjµ(Ej∆Fj) =︸︷︷︸
Def. of µ(Ej∆Fj)

Nn∑
j=1

ε

2j
< ε.
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Thus, we can approximate f by φ′(n), since
∫
|f − φ′n| ≤

∫
|f − φ|+

∫
|φ− φ′| ≤ 2ε for suitable n.

To find a continuous function, it suffices to approximate simple functions φn, which means that it will
suffices to approximate 1(a,b) for some a, b ∈ R since by the argument every simple function is consists of
1(a,b) for some a, b ∈ R. Thus, construct a continuous function gδ as follow for some δ > 0;

gδ :=


x−a+δ

2δ if x ∈ (a− δ, a+ δ]

1 if x ∈ (a+ δ, b− δ]
−x−b−δ2δ if x ∈ (b− δ, b+ δ)

0 otherwise.

It looks like below picture;

a− δ a a+ δ b− δ b b+ δ

Thus, ∫
|1(a,b) − gδ|dµ ≤ µ(a− δ, a+ δ) + µ(b− δ, b+ δ)→ 0 as δ → 0.

Thus, use this approximation to approximate the simple functions.

3.4 Modes of Convergence

Definition 3.73 (Modes of Convergence). Fix (X,m, µ) and let fn : X → C for n ∈ N, and f : X → C be
measurable function. We say that fn converges to f (asn→∞)

• uniformly;
∀ε > 0,∃N ∈ N s.t. ∀x ∈ X,∀n ≥ N, |f(x)− fn(x)| < ε.

• pointwise;
∀ε > 0,∀x ∈ X,∃N ∈ N s.t. ∀n ≥ N, |f(x)− fn(x)| < ε.

• almost everywhere; ∃E ∈ m such that µ(E) = 0 and

∀ε > 0,∀x ∈ Ec,∃N ∈ N s.t. ∀n ≥ N, |f(x)− fn(x)| < ε.

• in measure;

∀ε > 0,∃N ∈ N s.t. ∀n ≥ N, |µ({x ∈ X : |fn(x)− f(x)| ≥ ε})| ≤ ε,

which is equivalent to say that

∀ε > 0, lim
n→∞

µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) = 0.

• in L1;

∀ε > 0,∃N ∈ N s.t. ∀n ≥ N,
∫
|fn − f |dµ ≤ ε

which is equivalent to say that

lim
n→∞

∫
|fn − f |dµ = 0.
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• almost uniformly;

∀δ > 0,∃E ∈ m with µ(E) < δ, s.t. ∀ε > 0,∃N ∈ N s.t. ∀x ∈ X,∀n ≥ N, |1Ecf(x)− 1Ecfn(x)| < ε

which is equivalent to say that ∀δ > 0,∃E ∈ m such that µ(E) < δ and 1Ecfn converges uniformly to
1Ecf .

Also, we say a sequence of measurable function (fn)∞n=1 is Cauchy in measure if

∀ε > 0, µ({x : |fn(x)− fm(x)| ≥ ε})→ 0 as m,n→∞,

i.e., ∃M ∈ N such that ∀n,m ≥M , µ({x : |fn(x)− fm(x)| ≥ ε}) < ε. Clearly, if (fn) converges in measure,
then it is Cauchy in measure.

We can describe the relationship between modes of convergence as below.
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Figure 1: Modes of Convergence; Red represents counterexample. Green represents with some condition.
Blue represents implying.

Now we can deal with the counter examples in the above complete digraph. For all example, we assume
that (R,L,m), Lebesgue measure space.
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represents implying. Non-edge implies there exists counter example.

Example 3.74 (CE1). Let

fn =
1

n
1(0,n).

Then, fn → 0 uniformly (therefore almost uniformly), but fn 6→ 0 in L1, since ∀n ∈ N,
∫
|fn| = 1.

Example 3.75 (CE2). Let

fn =
1

n
1(n,n+1).

Then, fn → 0 pointwisely, but fn 6→ 0 in L1, since ∀n ∈ N,
∫
|fn| = 1. Also, µ({x : |fn(x)−0|≥ 1

2
}) = 1 for

all n ∈ N. Hence, fn 6→ 0 in measure. Also, fn 6→ 0 almost uniformly since for δ = ε < 1, every E with
µ(E) < δ, Ec ∩ [n, n+ 1] 6= ∅, thus it gives

|fn1Ec(x)| = 1 > ε at x ∈ [n, n+ 1] ∩ Ec.

Example 3.76 (CE3). Let
fn = n1[0, 1n ]

Then, fn → 0 almost uniformly and a.e. (except { 0}), but fn 6→ 0 in L1, since ∀n ∈ N,
∫
|fn| = 1. Also,

fn 6→ 0 pointwisely since fn(0) = 1 for any n ∈ N.
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Also note that fn 6→ 0 uniformly or pointwisely since fn(0) = 1 for any n ∈ N.

Example 3.77 (CE4). Let

f1 = 1[0,1], f2 = 1[0, 12 ], f3 = 1[ 12 ,1], f4 = 1[0, 14 ], f5 = 1[ 14 ,
1
2 ], f6 = 1[ 12 ,

3
4 ], f7 = 1[ 34 ,1],

and in general,
fn = 1[ j

2k
, j+1

2k
] where n = 2k + j with 0 ≤ j < 2k.

Then, fn → 0 in L1. Also, for any ε > 0, we set N ∈ N such that 1
N < ε, therefore,

µ({x ∈ R : |fn(x)− 0| ≥ ε}) ≤ 1

N
< ε.

Hence fn → 0 in measure. However, ∀x ∈ [0, 1], (fn(x))∞n=1 diverges. Hence, fn 6→ 0 a.e., thus not
pointwisely. (thus not uniformly.)

Example 3.78 (CE5). Let

fn =
x2 + nx

n

Then, for any fixed x ∈ R, and ε > 0,

|fn(x)− x| = |x
2

n
| → 0 as n→∞.

Thus, fn → x pointwisely (hence a.e.). However, if x is not fixed, then for any n ∈ N, there exists x ∈ R
such that x > n, hence

|fn(x)− x| = |x
2

n
| ≥ |n

2

n
| = |n| > ε.

Thus it does not uniformly converge.

Example 3.79 (CE6). Let
fn = n1[0, 1

n2 ]

Then, fn → 0 in L1, but fn 6→ 0 not almost uniformly, since for any δ, we have E = [0, 1
N2 ] with 1

N2 < δ,
such that for any n ≥ N ,

|1Ecfn − 0| = n for x ∈ Ec ∩ [0, δ].

Hence it is not uniformly convergent or almost uniformly convergent.

Now we can deal with blue lines and green lines.

Proposition 3.80 (Proposition 2.29 in [1] p.61). If fn → f in L1 then fn → f in measure.

Proof. Let En,ε = {x : |fn(x)− f(x)| ≥ ε}. We must show that ∀ε > 0, µ(En,ε)→ 0. However,∫
|fn − f |dµ ≥ εµ(En,ε).

Thus, by the sandwich lemma with L1 convergence, we can conclude that µ(En,ε)→ 0 as n→∞.

Theorem 3.81 (Revised Theorem 2.30 in [1] p.61). Suppose (fn)∞n=1 is Cauchy in measure. Then, ∃ a
subsequence (fnk)∞k=1 that converges almost uniformly to some measurable function f : X → C. Moreover,
fn → f in measure and if h : X → C is measurable and fn → h in measure, then h = f a.e.

Note that the above theorem is more powerful than that in Folland, since almost uniform convergence
implies a.e. convergence.
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Proof. Given j ≥ 1, let Nj be s.t. for any n,m ≥ Nj ,

µ({x : |fn(x)− fm(x)| ≥ 2−j}) < 2−j .

Let n1 < n2 < · · · be a sequence in N such that ∀j ∈ N, nj ≥ Nj . Write gj = fnj . Let

Ej := {x : |gj(x)− gj+1(x)| ≥ 2−j}.

Then, µ(Ej) < 2−j Now let Fk =
⋃∞
j=k Ej . Then,

µ(Fk) ≤
∞∑
j=k

µ(Ej) < 21−k.

Thus, if x ∈ F ck , then for any l1 > l2 ≥ k,

|gl1(x)− gl2(x)| ≤︸︷︷︸
Triangle ineq.

l2−1∑
j=l1+1

|gj(x)− gj+1(x)| <
l2−1∑
j=l1

2−j < 21−l1 . (9)

This implies (gj)
∞
j=1 is Cauchy for all x ∈ F ck .

Now let F =
⋂∞
k=1 Fk. Then, µ(F ) = 0 and ∀x ∈ F c, (gj(x))∞j=1 is Cauchy as a sequence of C. Thus, we

can well define f(x) such that

f(x) =

{
limj→∞ gj(x) if x ∈ F c

0 otherwise.

Claim 3.82. gj → f almost uniformly.

Proof of the claim. From the equation (9), we can get ∀x ∈ F ck ,∀l ≥ k,

|f(x)− gl(x)| ≤ 21−l

by taking l2 →∞ in the equation (9). Thus, gl1F ck → f1F ck uniformly, and from the fact that µ(Fk) < 21−k

for any k ∈ N, we can conclude that gl → f almost uniformly.

Claim 3.83. fn → f in measure.

Proof of the claim. Define

G(n) := {x : |fn(x)−f(x)| ≥ ε}, G1(n, j) :=
{
x : |fn(x)− gj(x)| ≥ ε

2

}
, and G2(j) :=

{
x : |gj(x)− f(x)| ≥ ε

2

}
.

Then, from the trianlge inequality, ∀j ∈ N,

G(n) ⊆ G1(n, j) ∪G2(j). =⇒ µ(G(n)) ≤ µ(G1(n, j)) + µ(G2(j)).

Now it suffices to show that limn→∞ µ(G(n)) = 0. Let δ > 0. Since fn is Cauchy in measure, for some
ε
2 < δ,∃N ∈ N such that ∀n ≥ N , which implies nj ≥ N , therefore

µ(G1(n, j)) = µ(
{
x : |fn(x)− gj(x)| ≥ ε

2

}
) ≤ ε

2
< δ.

Since gj converges in measure to f , for some ε
2 < δ, ∃J ∈ N such that ∀j ≥ J ,

µ(G2(j)) = µ(
{
x : |gj(x)− f(x)| ≥ ε

2

}
) ≤ ε

2
< δ.

Thus, take j such that n(j) ≥ N and j ≥ J , and take n such that n ≥ N . Then, µ(G(n)) < 2δ, as
desired.
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Claim 3.84. if h : X → C is measurable and fn → h in measure, then h = f a.e.

Proof of the claim. If fn → h in measure, then define

H := {x : |f(x)− g(x)| ≥ ε}, H1(n) :=
{
x : |f(x)− fn(x)| ≥ ε

2

}
, and H2(n) :=

{
x : |fn(x)− h(x)| ≥ ε

2

}
.

Then, for all n ∈ N,
H ⊆ H1(n) ∪H2(n) =⇒ µ(H) ≤ µ(H1(n)) + µ(H2(n)).

Since fn → f in measure and fn → h in measure, µ(H1(n)) + µ(H2(n)) → 0 as n → ∞. Thus, by the
sandwich lemma, µ(H)→ 0 as n→∞. This implies f(x) = g(x) when x ∈ Hc, thus f = g a.e.

Corollary 3.85 (Corollary 2.32 in [1] p.62). If fn → f in L1, then there exists a subseqeunce (fnj )
∞
j=1 such

that fnj → f a.e.

Proof. By theorem 2.29, fn → f in measure, and by theorem 2.30, there exists a subseqeunce (fnj )
∞
j=1 such

that fnj → f almost uniformly, which implies fnj → f a.e.

Also note that [1] doesn’t have 2.31 Statement. Weird.

Theorem 3.86 (Egoroff’s theorem, Theorem 2.33 in [1] p.62). Suppose µ(X) < +∞ and (fn : X → C)∞n=1

be a sequence of measurable functions such that fn → f a.e. Then, fn → f almost uniformly, i.e., ∀δ > 0,
∃E ∈ m such that µ(E) < δ and fn1Ec → f1Ec uniformly.

Proof. Let A ∈ m satisfy µ(A) = 0 and ∀x ∈ Ac, fn(x)→ f(x) pointwisely. Let

En(k) =

{
x ∈ X : ∃p ≥ n with |fp(x)− f(x)| ≥ 1

k

}
.

Then,
En(k) ⊇ En+1(k) ⊇ · · ·

and
∞⋂
n=1

En(k) = {x ∈ X : for infinitely many p ∈ N, |fp(x)− f(x)| ≥ 1

k
} ⊆ A.

Thus, µ(
⋂∞
n=1En(k)) = 0. Since X is finite measure space, by continuity from above of µ,

lim
n→∞

µ(En(k)) = 0.

Thus, given δ > 0, ∀k ∈ N, ∃nk such that

µ(Enk(k)) < δ2−k.

Let Eδ =
⋃∞
k=1Enk(k). Then,

µ(Eδ) ≤
∞∑
k=1

µ(Enk(k)) < δ

∞∑
k=1

2−k = δ.

Claim 3.87. fn1Ecδ → f1Ecδ uniformly.

Proof of the claim. If x ∈ Ecδ then x ∈ Enk(k)c for any k ∈ N, thus ∀p ≥ nk,

|fp(x)− f(x)| < 1

k
,

as desired.
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Homework 3.88 (Exercise 34 in [1] p.63). Suppose |fn| ≤ g ∈ L1 and fn → f in measure. Then,

(a)
∫
f = limn→∞

∫
fn

(b) fn → f in L1.

Proof. 1.
∫
f = limn→∞

∫
fn

Proof. Suppose that fn is real valued function first. Then, by the exercise 33’s argument, there exists
a subsequence of fn, say fnjk which converges to f pointwisely almost everywhere. Since fnjk ∈ L

1 for

any k ∈ N, and dominated by g, thus by the Dominated Convergence Theorem, f ∈ L1.

Now note that g− fn ≥ 0 and g+ fn ≥ 0 from the given condition that |fn| ≤ g. Also, g− fn → g− f
in measure, since for any ε,

{x ∈ X : |g − fn − (g − f)| ≥ ε} = {x ∈ X : |fn − f | ≥ ε} = {x ∈ X : |g + fn − (g + f)| ≥ ε}.

Thus, by the exercise 33, we have two inequalities such that∫
g + f ≤ lim infn→∞

∫
g + fn =

∫
g + lim inf

n→∞

∫
fn∫

g − f ≤ lim infn→∞
∫
g − fn =

∫
g − lim sup

n→∞

∫
fn.

Thus,

lim sup
n→∞

∫
fn ≤

∫
f ≤ lim inf

n→∞

∫
fn

implies limn→∞ fn exists and limn→∞ fn =
∫
f. It is actually the same argument of proving Dominated

Convergence Theorem, when sequence coverges in measure.

For the case of f is complex function, then fn = Refn + iImfn, thus
∫
Ref = limn→∞

∫
Refn and∫

Imf = limn→∞
∫
Imfn. Therefore,∫
f =

∫
Ref + i

∫
Imf = lim

n→∞

∫
(Refn + iImfn) = lim

n→∞

∫
fn,

as desired.

2. fn → f in L1.

Proof. First of all, |fn − f | → 0 in measure, since

{x ∈ X : ||fn(x)− f(x)| − 0| ≥ ε} = {x ∈ X : |fn(x)− f(x)| ≥ ε},

for any ε. Also, since fnjk → f pointwisely a.e. and |fnjk | ≤ g for any k ∈ N, thus |f | ≤ g. Hence,

|fn − f | ≤ |fn|+ |f | ≤ 2g ∈ L1. Thus, by the part (a),

0 =

∫
0 = lim

n→∞

∫
|fn − f |.

Thus, by the definition of L1 convergence, fn → f in L1.

Homework 3.89 (Exercise 39 in [1] p.63). If fn → f almost uniformly, then fn → f in a.e. and in measure.
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Proof. fn → f almost uniformly implies that ∀δ > 0,∃E ∈ m such that µ(E) < δ and 1Ecfn converges
uniformly to 1Ecf . Thus, let δ = 1

n and En is corresponding set satisfying the condition of almost uniformly
convergence. Then, let E =

⋂∞
n=1En. Then,

µ(

∞⋂
n=1

En) <
1

n
,∀n ∈ N,

therefore µ(
⋂∞
n=1En) = 0 but 1Ecfn converges uniformly to 1Ecf . Since uniform convergence implies

pointwise convergence, we can conclude that fn → f a.e. except E, which is null set.
Also, for any ε > 0, we know that there exists N ∈ N such that ∀n ≥ N ,

En ⊇ {x ∈ Ecn : |fn(x)− f(x)| ≥ ε} = ∅.

Thus,

{x ∈ X : |fn(x)− f(x)| ≥ ε} ⊆ En =⇒ µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) ≤ µ(En) ≤ 1

n
,

for any n ≥ N . Thus take n such that ε > 1
n , then we can conclude that for any m > n,

µ({x ∈ X : |fm(x)− f(x)| ≥ ε}) ≤ µ(Em) ≤ 1

m
<

1

n
< ε.

Thus, fn → f in measure.

3.5 Product Measures

Let (X,m, µ) and (Y, n, ν) be measure spaces. Recall that

Definition 3.90. m⊗n is the σ-algebra of subsets of X×Y generated by {A×Y : A ∈ m}∪{X×B : B ∈ n}.

Definition 3.91 (Rectangle). A (measurable) rectangle in X × Y is A×B for A ∈ m,B ∈ n. Let a be
the algebra of sets consisting of finite disjoint unions of measurable rectangles.

Check that a is an algebra. Recall that a is an algebra of subsets of X if

(i) n ∈ N, E1, · · · , En ∈ a =⇒ ∪nj=1Ej ∈ a.

(ii) E ∈ a =⇒ Ec = X \ E ∈ a.

Note that
(A×B) ∩ (E × F ) = (A ∩ E)× (B ∩ F ).

So, for disjoint union of (Ai ×Bi)ni=1 and (Ej × Fj)mj=1,(
n⋃
i=1

Ai ×Bi

)
∩

 m⋃
j=1

Ei × Ej

 =

n⋃
i=1

m⋃
j=1

(Ai ∩ Ej)× (Bi ∩ Fj) ,

and (Ai ∩ Ej)× (Bi ∩ Fj)s are disjoint. So a is closed under taking intersection. From the fact that

(A×B)c = (Ac ×Bc) ∪ (A×Bc) ∪ (Ac ×B),

we know that (
n⋃
i=1

(Ai ×Bi)

)c
=

n⋂
i=1

(Ai ×Bi)c ∈ a,

thus a is closed under complement.
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For (i), let n ∈ N, E1, · · · , En ∈ a. Then, define Fk = Ek \
⋂k−1
j=1 Ej ∈ a. Then, each Fk are disjoint,

hence
n⋃
k=1

Ek =

n⋃
k=1

Fk ∈ a,

as desired.

Our goal is to find a measure on m⊗ n such that

A×B 7→ µ(A)µ(B).

We would like to define π : a → [0,+∞] such that π(
⋃n
i=1Ai × Bi) =

∑n
i=1 µ(Ai)µ(Bi) for (finite) disjoint

family of rectangles Ai ×Bi.

Claim 3.92. Let π : a → [0,+∞] by π(
⋃n
i=1Ai × Bi) =

∑n
i=1 µ(Ai)µ(Bi) for (finite) disjoint family of

rectangles Ai ×Bi. Then, π is well-defined.

Proof. Let R ∈ a. Then R =
⋃n
i=1Ai × Bi for some finite disjoint family rectangles, by construction of a.

Then,

1R(x,y) =

∞∑
i=1

1Ai(x) · 1Bi(x).

Thus,

n∑
i=1

µ(Ai)ν(Bi) =

n∑
i=1

∫
1Ai(x)dµ(x)

∫
1Bi(y)dν(y) =︸︷︷︸

Thm 2.13

∫ ∫
1Ai(x)1Bi(y)dµ(x)dν(y) =

∫ ∫
1R(x,y)dµ(x)dν(y).

It means that any finite family of disjoint rectangles representing R, π gives the same value. Thus, we can
conclude that π doesn’t depends on a rectangle, which means π is well-defined function from a→ [0,+∞].

Claim 3.93. π is a premeasure.

Proof. Suppose R ∈ a such that R =
⋃∞
p=1 Sp for some Sp ∈ a. We want to show that

π(R) =

∞∑
p=1

π(Sp).

Note that

1R(x, y) =

∞∑
p=1

1Sp(x, y).

Thus, let fn =
∑n
p=1 1Sp(x, y). Then, limn→∞ fn = 1R(x, y) and fn ≤ fn+1 for any n ∈ N. Thus, we can

apply the Monotone Convergence Theorem. Hence,

π(R) =

∫ (∫
1R(x, y)dµ(x)

)
dν(y) =

∫ (∫ ∞∑
p=1

1Sp(x, y)dµ(x)

)
dν(y) =︸︷︷︸

MCT

∫ ∞∑
p=1

(∫
1Sp(x, y)dµ(x)

)
dν(y).

And we need a lemma that each
(∫

1Sp(x, y)dµ(x)
)

is measurable by dν(y).

Lemma 3.94. If S ∈ a, then y 7→
(∫

1S(x, y)dµ(x)
)

is ν-measurable function.

Proof of the Lemma. If S = A×B, then∫
1S(x, y)dµ(x) =

{
µ(A) if y ∈ B
0 if y 6∈ B.

In general, if S ∈ a, by the proposition 2.6 stating that sum of measurable function is also measurable, the
given function is measurable.
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Thus, let gn(y) :=
∑∞
p=1

(∫
1Sp(x, y)dµ(x)

)
. Then by the Lemma, gn is ν-measurable, and limn→∞ gn =∑∞

p=1

(∫
1Sp(x, y)dµ(x)

)
and gn(y) ≤ gn+1(y) for any n ∈ N. Thus, we can apply the Monotone Convergence

Theorem, hence,

π(R) =︸︷︷︸
MCT

∫ ∞∑
p=1

(∫
1Sp(x, y)dµ(x)

)
dν(y) =︸︷︷︸

MCT

∞∑
p=1

∫ (∫
1Sp(x, y)dµ(x)

)
dν(y) =

∞∑
p=1

π(Sp),

as required. Since π(∅) = 0 clearly, thus π is a premeasure on a.

Claim 3.95. m⊗ n = σ-alg (a)

Proof. Apply the Proposition 1.3 in [1][p.23].

Claim 3.96. There exists a measure µ× ν on m⊗ n that extends π. If µ and ν are σ-finite, then π is also
σ-finite, thus µ× ν is the unique measure on m⊗ n satisfying A×B 7→ µ(A) · µ(B) for any A ∈ m,B ∈ n.

Proof. Apply the theorem 1.14 in [1][p.31].

Thus, µ× ν(A×B) = µ(A)× ν(B) for any A ∈ m,B ∈ n.

Definition 3.97. We call µ× ν obtained by the above claim is the product measure of µ and ν.

Definition 3.98. Let E ∈ m⊗ n. Then we denote Ex be x-section and Ey be y-section of E as below;

For x ∈ X,Ex := {y ∈ Y : (x, y) ∈ E} and For y ∈ X,Ey := {x ∈ X : (x, y) ∈ E}.

Also, given f : X × Y → S, for any set S, we define its x-section and y-sections by

For x ∈ X, fx(y) : X → S by fx(y) := f(x, y) and For y ∈ X, fy(x) : Y → S by fy(x) := f(x, y).

Theorem 3.99 (Proposition 2.34 in [1] p.65). (i) If E ∈ m⊗n, then ∀x ∈ X,Ex ∈ n and ∀y ∈ Y,Ey ∈ m

(ii) If (S,S) is any measurable space and if f : X × Y → S is (m ⊗ n,S)-measurable function, then
∀x ∈ X, fx is (n,S)-measurable and ∀y ∈ Y, fy is (m,S)-measurable.

Proof. Let
R = {E ⊆ X × Y : ∀x ∈ X,Ex ∈ n and ∀y ∈ Y,Ey ∈ m}.

Since ∀A ∈ m,B ∈ n,

(A×B)x =

{
B if x ∈ A
∅ if x 6∈ A

and (A×B)y =

{
A if y ∈ B
∅ if y 6∈ B

Thus, in any case, (A × B)x ∈ n, (A × B)y ∈ m. Thus, A × B ∈ R. Then, it suffices to show that R is
σ-algebra; if we show this, then m⊗ n ⊆ R since m× n ∈ R, thus the statement holds.

Let E ∈ R. Then,

(Ec)x = {y : (x, y) ∈ Ec} = {y : (x, y) 6∈ E} = {y : (x, y) ∈ E}c = (Ex)c ∈ n

(Ec)y = {x : (x, y) ∈ Ec} = {x : (x, y) 6∈ E} = {x : (x, y) ∈ E}c = (Ey)c ∈ m

Thus, Ec ∈ R. Also, let E1, E2, · · · ∈ R which is disjoint sequence. Then, we want to show E :=
⋃∞
n=1En ∈

R. Note that

Ex = {y : (x, y) ∈
∞⋃
n=1

En} =

∞⋃
n=1

{y : (x, y) ∈ En} =

∞⋃
n=1

(En)x ∈ n

Ey = {x : (x, y) ∈
∞⋃
n=1

En} =

∞⋃
n=1

{x : (x, y) ∈ En} =

∞⋃
n=1

(En)y ∈ m
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Thus R is a σ-algebra. Hence the statement holds as mentioned above.
For (ii), suppose f : X × Y → S is (m⊗ n,S)-measurable function. Let x ∈ X, G ∈ S. Then it suffices

to show that f−1
x (G) ∈ n and (fy)−1(G) ∈ m. Note that

f−1
x (G) = {y : fx(x, y) ∈ G} = {y : (x, y) ∈ f−1(G)} = (f−1(G))x

(fy)−1(G) = {x : fy(x, y) ∈ G} = {x : (x, y) ∈ f−1(G)} = (f−1(G))y

Since f is (m ⊗ n,S)-measurable, f−1(G) ∈ m ⊗ n and by part (i), (f−1(G))x ∈ n and (f−1(G))y ∈ m.
Thus, the conclusion holds.

Definition 3.100. A monotone class on X is a subset C of P(X) that is closed under taking

• countable increasing unions, i.e., if there exist E1, E2, · · · ∈ C with E1 ⊆ E2 ⊆ · · · then
⋃∞
n=1En ∈ C.

• countable decreasing intersections, i.e., if there exist E1, E2, · · · ∈ C with E1 ⊇ E2 ⊇ · · · then⋂∞
n=1En ∈ C.

Remark 3.101. (i) Every σ-algebra is a monotone class.

(ii) If Λ is a set and ∀λ ∈ Λ, Cλ ⊆ P(X) is a monotone class, then
⋂
λ∈Λ Cλ is a monotone class.

(iii) Given F ⊆ P(X),∃ the smallest monotone class on X containing F . This is called the monotone
class generated by F .

Proof. For (ii), note that if E1, · · · is countable increasing sequence (or decreasing sequence) in
⋂
λ∈Λ Cλ,

then they are an countable increasing sequence in each Cλ, thus their union (or intersection) is in each Cλ,
hence the union (or intersection) is in

⋂
λ∈Λ Cλ.

For (iii), just define A =
⋂
F∈C C. Then by part (ii), it is also a monotone class, and it is the smallest

one.

Lemma 3.102 (The monotone class lemma, theorem 2.35 in [1] p.66). If a is an algebra of subsets of X,
and C be a monotone class generated by a, then C = σ-alg (a) .

Proof. By definition of σ-algebra, C ⊆ σ-alg (a) is clear. To show reversed inclusion, it suffices to show that
C is a σ-algebra.

Given E ⊆ X, let
C(E) = {F ∈ C : F \ E ∈ C, E \ F ∈ C, E ∩ F ∈ C}.

Claim 3.103. C(E) is a monotone class.

Proof of the claim. If Fj ∈ C(E) with Fj ⊆ Fj+1 for all j ∈ N, then let F :=
⋃∞
j=1 Fj . We want to show

F ∈ C(E) to show that C(E) satisfies closed under countable increasing union. Note that

F \ E =

∞⋃
j=1

(Fj \ E) and E \ F =

∞⋂
j=1

(E \ Fj), and E ∩ F =

∞⋃
j=1

(E ∩ Fj).

Since Fj \ E and E ∩ Fj are countable increasing in C since Fj ∈ C(E) for all j ∈ N, its union is in C. Also,
since E \ Fj is countable decreasing in C since Fj ∈ C(E) for all j ∈ N, its intersection is in C. Thus,

F \ E =

∞⋃
j=1

Fj \ E ∈ C and E \ F =

∞⋂
j=1

E \ Fj ∈ C, and E ∩ F =

∞⋃
j=1

E ∩ Fj ∈ C.

Thus, C(E) satisfies countable increasing union condition.
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Similarly, let Fj ∈ C(E) with Fj ⊇ Fj+1 for all j ∈ N, then let F :=
⋂∞
j=1 Fj . We want to show F ∈ C(E)

to show that C(E) satisfies closed under countable decreasing intersection. Note that

F \ E =

∞⋂
j=1

(Fj \ E) and E \ F =

∞⋃
j=1

(E \ Fj), and E ∩ F =

∞⋂
j=1

(E ∩ Fj).

Since Fj \E and E ∩ Fj are countable decreasing in C since Fj ∈ C(E) for all j ∈ N, its intersection is in C.
Also, since E \ Fj is countable increasing in C since Fj ∈ C(E) for all j ∈ N, its union is in C. Thus,

F \ E =

∞⋂
j=1

(Fj \ E) ∈ C and E \ F =

∞⋃
j=1

(E \ Fj) ∈ C, and E ∩ F =

∞⋂
j=1

(E ∩ Fj) ∈ C.

Thus, C(E) also satisfies countable decreasing intersection condition. Hence it is a monotone class.

Claim 3.104. Let E,F ⊂ X, then F ∈ C(E) ⇐⇒ E ∈ C(F )

Proof of the claim.

F ∈ C(E) ⇐⇒ F \ E ∈ C, E \ F ∈ C, and E ∩ F ∈ C ⇐⇒ E ∈ C(F ).

Claim 3.105. If B ∈ a then C ⊆ C(B).

Proof of the claim. Since C(B) is a monotone class by claim 3.103, it suffices to show that a ⊆ C(B). Let
A ∈ a then since a is an algebra,

A \B,B \A,A ∩B ∈ a ⊆ C.

Thus, A ∈ C(B) by construction of C(B). Since A was arbitrarily chosen, C ⊆ C(B).

Claim 3.106. For all E ∈ C, C = C(E).

Proof of the claim. By construction of C(E), C ⊇ C(E). To show the other direction, it suffices to show that
a ⊆ C(E), then the monotone class generated by a, which is C is contained in C(E).

Let B ∈ a. By the claim 3.105,
E ∈ C ⊆ C(B).

Then by the claim 3.104,
E ∈ C(B) =⇒ B ∈ C(E).

Since B was arbitrarily chosen, a ⊆ C(E), as desired.

Claim 3.107. C is an algebra.

Proof of the claim. Let E,F ∈ C. Then, by the claim 3.106, E ∈ C = C(F ). Thus, E\F, F \E, and E∩F ∈ C.
Since X ∈ a ⊆ C, we have Ec ∈ C, by taking F = X. Thus, E ∪ F = (Ec ∩ F c) ∈ C for any E,F ∈ C, since
Ec ∈ C = C(F c) by the claim 3.106. Thus C closed under complements and finite union and intersection,
thus it is an algebra.

Claim 3.108. C is a σ-algebra.
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Proof of the claim. If E1, E2, · · · ∈ C, then ∀n ∈ N, let

Gn :=

n⋃
j=1

Ej ∈ C

since C is an algebra. Since C is also a monotone class, and Gn forms a countable increasing sequence,

∞⋃
j=1

Ej =

∞⋃
n=1

Gn ∈ C.

Theorem 3.109 (Theorem 2.36 in [1] p.66). Suppose (X,m, µ)and(Y, n, ν) are σ-finite. Let E ∈ m ⊗ n.
Then the functions x 7→ ν(Ex), y 7→ µ(Ey) are measurable and∫

ν(Ex)dµ(x) = µ× ν(E) =

∫
µ(Ey)dν(y).

Proof. Suppose µ(X) < +∞ and ν(Y ) < +∞. Let D be the set of all E ∈ m ⊗ n such that the conclusion
holds.

Claim 3.110. If A ∈ m and B ∈ n, then E = A×B ∈ D.

Proof of the claim. Note that

Ex := {y : (x, y) ∈ E} =

{
∅ if x 6∈ A
B if x ∈ A

and Ey := {x : (x, y) ∈ E} =

{
∅ if y 6∈ B
A if y ∈ B.

Thus,

ν(Ex) =

{
0 if x 6∈ A
ν(B) if x ∈ A

= ν(B)1A(x) and µ(Ey) =

{
0 if y 6∈ B
µ(A) if y ∈ B

= µ(A)1B(y).

Thus, x 7→ ν(Ex) = ν(B)1A(x) is clearly µ-measurable and y 7→ µ(Ey) = µ(A)1B(y) is ν-measurable. Hence,∫
ν(Ex)dµ(x) = ν(B)µ(A) = µ× ν(E) = ν(B)µ(A) =

∫
µ(Ey)dν(y).

Hence E ∈ D.

Claim 3.111. If E =
⋃n
i=1Ai ×Bi is a finite disjoint union where Ai ∈ m,Bi ∈ n, then E ∈ D.

Proof. Note that

Ex := {y : (x, y) ∈ E} =

{
∅ if x 6∈

⋃n
i=1Ai

Bi if x ∈ Ai
and Ey := {x : (x, y) ∈ E} =

{
∅ if y 6∈

⋃n
i=1Bi

Ai if y ∈ Bi.

Thus,

ν(Ex) =

{
0 if x 6∈

⋃n
i=1Ai

ν(Bi) if x ∈ Ai
=

n∑
i=1

ν(Bi)1Ai(x) and µ(Ey) =

{
0 if y 6∈

⋃n
i=1Bi

µ(Ai) if y ∈ Bi
=

n∑
i=1

µ(Ai)1Bi(y).
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Thus, x 7→ ν(Ex) =
∑n
i=1 ν(Bi)1Ai(x) is clearly µ-measurable since it is a simple fuction, and by the same

reason, y 7→ µ(Ey) =
∑n
i=1 µ(Ai)1Bi(y) is ν-measurable. Hence,∫

ν(Ex)dµ(x) =

n∑
i=1

ν(Bi)µ(Ai) = µ× ν(E) =

n∑
i=1

ν(Bi)µ(Ai) =

∫
µ(Ey)dν(y).

Hence E ∈ D.

Claim 3.112. D is a monotone class.

Proof. Suppose En ∈ D with En ⊆ En+1 for each n ∈ N, and let E :=
⋃∞
n=1En. Then,

Ex = {y : (x, y) ∈ E} =

∞⋃
n=1

{y : (x, y) ∈ En} =

∞⋃
n=1

(En)x.

Ey = {x : (x, y) ∈ E} =

∞⋃
n=1

{x : (x, y) ∈ En} =

∞⋃
n=1

(En)y.

By continuity from below, we know that

lim
n→∞

ν((En)x) = ν

( ∞⋃
n=1

(En)x

)
= ν(Ex) and lim

n→∞
µ((En)y) = µ

( ∞⋃
n=1

(En)y

)
= ν(Ey).

Thus x 7→ ν(Ex) and y 7→ µ(Ey) is the limit of measurable functions, therefore by the corollary 2.9, it is
measurable.

Also, let fn := ν((En)x) and gn := µ((Ej)
y). Then, fn ≤ fn+1, gn ≤ gn+1 for any n ∈ N, since

En ⊆ En+1. And as shown above,

lim
n→∞

fn = lim
n→∞

ν((En)x) = ν(Ex) and lim
n→∞

gn = lim
n→∞

µ((En)y) = µ(Ey).

Thus we can apply the Monotone Convergence Theorem on the sequence of fn and gn. Thus,∫
ν(Ex)dµ(x) =︸︷︷︸

MCT

lim
n→∞

∫
ν((En)x)dµ(x) =︸︷︷︸

En∈D,∀n∈N

lim
n→∞

µ× ν(En) =︸︷︷︸
continuity from below

µ× ν(E)

and ∫
µ(Ey)dν(y) =︸︷︷︸

MCT

lim
n→∞

∫
µ((En)ydν(y) =︸︷︷︸

En∈D,∀n∈N

lim
n→∞

µ× ν(En) =︸︷︷︸
continuity from below

µ× ν(E)

Thus, E ∈ D.
Conversely, suppose En ∈ D with En ⊇ En+1 for each n ∈ N, and let E :=

⋂∞
n=1En. Then,

Ex = {y : (x, y) ∈ E} =

∞⋂
n=1

{y : (x, y) ∈ En} =

∞⋂
n=1

(En)x.

Ey = {x : (x, y) ∈ E} =

∞⋂
n=1

{x : (x, y) ∈ En} =

∞⋂
n=1

(En)y.

By continuity from above, we know that

lim
n→∞

ν((En)x) = ν

( ∞⋂
n=1

(En)x

)
= ν(Ex) and lim

n→∞
µ((En)y) = µ

( ∞⋂
n=1

(En)y

)
= ν(Ey).
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Thus x 7→ ν(Ex) and y 7→ µ(Ey) is the limit of measurable functions, therefore by the corollary 2.9, it is
measurable.

Since µ, ν are finite measures, the function x 7→ ν((E1)x), y 7→ µ(Ey1 ) is integrable. Since ν((En)x) ≤
ν((E1)x), µ(Eyn) ≤ µ(Ey1 ) for any n ∈ N, we can apply the Dominated Convergence Theorem. Thus,∫

ν(Ex)dµ(x) =︸︷︷︸
DCT

lim
n→∞

∫
ν((En)x)dµ(x) =︸︷︷︸

En∈D,∀n∈N

lim
n→∞

µ× ν(En) =︸︷︷︸
continuity from above

µ× ν(E)

and ∫
µ(Ey)dν(y) =︸︷︷︸

DCT

lim
n→∞

∫
µ((En)ydν(y) =︸︷︷︸

En∈D,∀n∈N

lim
n→∞

µ× ν(En) =︸︷︷︸
continuity from above

µ× ν(E)

Thus, E ∈ D. Hence, D is a monotone class.

Let a be a set of finite disjoint unions of measurable rectangles. Then by the argument in [1] p.64 with
the Proposition 1.7 in [1]m a is an algebra. By claim 3.111, a ⊆ D. And since D is a monotone class by the
claim 3.112, by the monotone class lemma,

m⊗ n = σ-alg (a) ⊆ D.

Thus every statement holds for any set in m⊗ n.
Now suppose µ and ν are σ-finite measure. Take A1 ⊆ A2 ⊆ · · ·X, such that An ∈ m and

⋃∞
n=1An = X,

and µ(An) < +∞, ∀n ∈ N,. Similarly, take B1 ⊆ B2 ⊆ · · · ⊆ Y such that Bn ∈ n,
⋃∞
n=1Bn = Y and

ν(An) < +∞, ∀n ∈ N.
Now fix n ∈ N. Let µ̄, ν̄ are measures on (X,m) and (Y, n) such that

µ̄(C) := µ(C ∩An), ν̄(D) = ν(D ∩Bn),

for C ∈ m,D ∈ n. Then these ν̄, µ̄ are finite measures, thus the statement holds as shown above.

Claim 3.113. ∀F ∈ m⊗ n, µ̄× ν̄(F ) = µ× ν(F ∩ (An ×Bn)

Proof. Let A ∈ m,B ∈ n. Then, by construction,

µ̄× ν̄(A×B) = µ̄(A)ν̄(B) = µ(A ∩An)ν(B ∩Bn) = ν(A×B ∩An ×Bn).

Let F ∈ m⊗n. Then, since m⊗n is σ-algebra generated by measurable rectangles in m×n, F =
⋃∞
j=1 Cj×Dj

for some disjoint Cj ∈ m,Dj ∈ n for any j ∈ N. Then,

µ̄× ν̄(F ) = µ̄× ν̄

 ∞⋃
j=1

Cj ×Dj

 =︸︷︷︸
Ctbl additivity

∞∑
j=1

µ̄× ν̄(Cj ×Dj)

=

∞∑
j=1

µ× ν(Cj ×Dj ∩An ×Bn) =︸︷︷︸
Ctbl additivity

µ× ν

 n⋃
j=1

(Cj ×Dj ∩An ×Bn)


= µ× ν

 n⋃
j=1

Cj ×Dn

 ∩An ×Bn
 = µ× ν (F ∩An ×Bn)

as desired.

Claim 3.114. ∀f ∈ L+(X,m),
∫
f(x)dµ̄(x) =

∫
f(x)1An(x)dµ(x). Similarly, ∀f ∈ L+(Y, n),

∫
f(x)dν̄(x) =∫

f(x)1Bn(x)dν(x).
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Proof. It is just machinery argument; let f be a simple function, then f =
∑k
j=1 aj1Cj for some k ∈ N,

Cj ∈ m for all j ∈ [k], and Cj ’s are disjoint. Then,∫
f(x)dµ̄(x) =︸︷︷︸

Prop 2.13

k∑
j=1

aj

∫
1Cj =

k∑
j=1

aj µ̄(Cj) =

k∑
j=1

ajµ(Cj∩An) =

k∑
j=1

aj

∫
1Cj1An =︸︷︷︸

Prop 2.13

=

∫
f(x)1Andµ(x),

as desired. Now let f be any measurable function. Then, by Theorem 2.10 (a) in [1], there exists a sequence
of simple functions such that 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f and φj → f pointwisely as j → ∞. Then, since this
sequence is also in L+ we can apply the Monotonce Convergence Theorem to conclude that∫

f(x)dµ̄(x) =

∫
lim
j→∞

φjdµ̄(x) =︸︷︷︸
MCT

lim
j→∞

∫
φj(x)dµ̄(x) = lim

j→∞

∫
φj1An(x)dµ(x) =︸︷︷︸

MCT

∫
f1An(x)dµ(x),

since φj1An → f1An pointwisely and φj1An ≤ φj1An . Hence, the first statement holds for any f ∈ L+(X,m)
For the second statement, it is the same argument just when we change µ to ν and An to Bn. Hence I
omit.

Since each ν̄ and µ̄ are finite measure, by the case just proved, x 7→ ν̄(Ex) and y 7→
∫
µ̄(Ey) are

measurable, and ∫
µ̄(Ex)dµ̄(x) = µ̄× ν̄(E) =

∫
ν̄(Ey)dν̄ (10)

for any E ∈ m⊗ n. However, note that

ν̄(Ex) = ν(Ex∩Bn) = ν((E∩An×Bn)x) when x ∈ An and µ̄(Ey) = µ(Ey∩An) = µ((E∩An×Bn)y) when y ∈ Bn

since

(E ∩ (An ×Bn))x = {y : (x, y) ∈ E ∩ (An ×Bn)} =

{
∅ if x 6∈ An
{y : (x, y) ∈ E, y ∈ Bn} if x ∈ An

=

{
∅ if x 6∈ An
Ex ∩Bn if x ∈ An

(E ∩ (An ×Bn))y = {x : (x, y) ∈ E ∩ (An ×Bn)} =

{
∅ if y 6∈ Bn
{x : (x, y) ∈ E, x ∈ An} if y ∈ Bn

=

{
∅ if x 6∈ An
Ex ∩An if y ∈ Bn

Thus,

ν((E∩An×Bn)x) = 1An(x)ν(Ex∩Bn) = ν̄(Ex)1An(x) and µ((E∩An×Bn)y) = 1Bn(y)ν(Ey∩An) = µ̄(Ey)1Bn(y).

Thus, since x 7→ ν̄(Ex) and y 7→
∫
µ̄(Ey) are measurable, by the proposition 2.6, x 7→ ν̄(Ex)1An(x) and

y 7→ µ̄(Ey)1Bn(y) are measurable. Thus,∫
ν((E∩An×Bn)x)dµ(x) =

∫
ν̄(Ex)1Andµ(x) =︸︷︷︸

Claim 3.114

∫
ν̄(Ex)dµ̄(x) =︸︷︷︸

(10)

µ̄×ν̄(E) =︸︷︷︸
Claim 3.113

µ×ν(E∩An×Bn).

and∫
µ((E∩An×Bn)y)dν(x) =

∫
µ̄(Ey)1Bndν(y) =︸︷︷︸

Claim 3.114

∫
ν̄(Ey)dν̄(y) =︸︷︷︸

(10)

µ̄×ν̄(E) =︸︷︷︸
Claim 3.113

µ×ν(E∩An×Bn).

Now let n→∞. Then, E ∩An×Bn is increasing and E =
⋃∞
n=1E ∩ (An×Bn), thus by continuity from

below,
ν(E ∩ (An ×Bn)) ≤ ν(E ∩ (An+1 ×Bn+1)) (11)

and
µ× ν(E) = lim

n→∞
µ× ν(E ∩An ×Bn) (12)

64



Also note that (E ∩An ×Bn)x ⊆ (E ∩An+1 ×Bn+1)x and Ex =
⋃∞
n=1 (E ∩ (An+1 ×Bn+1))x. Thus, as

a function, ν ((E ∩An ×Bn)x)the condition of the Monotone convergence theorem. Thus, x 7→ ν(Ex)dµ(x)
is measurable by the Corollary 2.9. and

lim
n→∞

∫
ν ((E ∩An ×Bn)x) dµ(x) =︸︷︷︸

MCT

∫
ν(Ex)dµ(x). (13)

Similarly, note that (E ∩ An × Bn)y ⊆ (E ∩ An+1 × Bn+1)y and Ey =
⋃∞
n=1 (E ∩ (An+1 ×Bn+1))

y
. Thus,

as a function, µ ((E ∩An ×Bn)y) satisfies the condition of the Monotone convergence theorem. Thus,
y 7→ µ(Ey)dν(y) is measurable by the Corollary 2.9. and

lim
n→∞

∫
µ ((E ∩An ×Bn)y) dν(y) =︸︷︷︸

MCT

∫
µ(Ey)dν(y). (14)

From (11), (12), (13), and (14) we show that

µ(E ∩An ×Bn)↗ µ× ν(E)

and ∫
ν((E ∩An ×Bn)x)dµ(x)↗

∫
ν(Ex)dµ(x) and

∫
µ((E ∩An ×Bn)y)dν(y)↗

∫
µ(Ex)dν(y).

And since ∫
ν((E ∩An ×Bn)x)dµ(x) = µ(E ∩An ×Bn) =

∫
µ((E ∩An ×Bn)y)dν(y)

for each n ∈ N, we can conclude that∫
ν(Ex)dµ(x) = µ× ν(E) =

∫
µ(Ex)dν(y),

as desired.

Theorem 3.115 (Tonelli’s Theorem, Theorem 2.37(a) in [1] p.67). Let (X,m, µ) and (Y, n, ν) be σ-finite
measure spaces. Let f ∈ L+(X × Y,m⊗ n) and

g(x) :=

∫
fx(y)dν(y) ∈ [0,∞] and h(y) :=

∫
fy(x)dµ(x) ∈ [0,∞].

Then, g ∈ L+(X,m), h ∈ L+(Y, n), and∫
g(x)dµ(x) =

∫
h(y)dν(y) =

∫
f(x, y)d(µ× ν)(x, y) ∈ [0,∞]

Note that fx, f
y are measurable by theorem 2.34 in [1].

Proof. If E ∈ m⊗ n, let f = 1E Then

fx = 1Ex , g(x) = ν(Ex), fy = 1Ey , h(y) = µ(Ey).

By theorem 2.36 in [1], g and h are measurable and∫
g(x)dµ(x) = (µ× ν)(E) =

∫
fd(µ× ν) = (µ× ν)(E) =

∫
h(y)dµ(y).

By linearlity and using the proposition 2.13 in [1], the conclusion holds for every simple function with f ≥ 0.
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Now let f ∈ L+(m⊗ n). Then by theorem 2.10, there exists a sequence of simple functions φn such that

0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f s.t. φn → f pointwise.

Fix x ∈ X. Then, (φn)x (y) ≤ (φn+1)x (y) and (φn)x → fx pointwise. Thus, we can apply the Monotone
convergence theorem to conclude that

lim
n→∞

∫
(φn)x (y)dν(y) =︸︷︷︸

MCT

∫
fxdν = g(x).

Now let gn :=
∫

(φn)x (y)dν(y). Then since φn ≤ φn+1 for any n ∈ N, gn ≤ gn+1, and by the above equation,
gn → g pointwise. Thus,

lim
n→∞

∫
gn(x)dµ(x) =︸︷︷︸

MCT

∫
g(x)dµ(x).

Also, the lefthandside of above equation is

lim
n→∞

∫
gn(x)dµ(x) =︸︷︷︸

Def.

lim
n→∞

∫ (∫
(φn)x (y)dν(y)

)
dµ(x) = lim

n→∞

∫
φn(x, y)d(µ× ν)(x, y)

where the last equality comes from the fact we proved that Tonelli’s theorem holds for simple function. Thus,
we can conclude that

lim
n→∞

∫
φn(x, y)d(µ× ν)(x, y) =

∫
g(x)dµ(x)

And the lefthandside with the MCT gives the conclusion that∫
g(x)dµ(x) = lim

n→∞

∫
φn(x, y)d(µ× ν)(x, y) =︸︷︷︸

MCT

∫
fd(µ× ν). (15)

Similarly, fix y ∈ Y . Then, (φn)
y

(x) ≤ (φn+1)
y

(x) and (φn)y → fy pointwise. Thus, we can apply the
Monotone convergence theorem to conclude that

lim
n→∞

∫
(φn)

y
(x)dµ(x) =︸︷︷︸

MCT

∫
fydµ = h(x).

Now let hn :=
∫

(φn)
y

(x)dµ(x). Then since φn ≤ φn+1 for any n ∈ N, hn ≤ hn+1, and by the above
equation, hn → g pointwise. Thus,

lim
n→∞

∫
hn(y)dν(y) =︸︷︷︸

MCT

∫
g(y)dν(y).

Also, the lefthandside of above equation is

lim
n→∞

∫
gn(y)dν(y) =︸︷︷︸

Def.

lim
n→∞

∫ (∫
(φn)

y
(x)dµ(x)

)
dν(y) = lim

n→∞

∫
φn(x, y)d(µ× ν)(x, y)

where the last equality comes from the fact we proved that Tonelli’s theorem holds for simple function. Thus,
we can conclude that

lim
n→∞

∫
φn(x, y)d(µ× ν)(x, y) =

∫
h(y)dν(y)

And the lefthandside with the MCT gives the conclusion that∫
h(y)dν(y) = lim

n→∞

∫
φn(x, y)d(µ× ν)(x, y) =︸︷︷︸

MCT

∫
fd(µ× ν). (16)
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Hence, by (15) and (16), we can conclude that∫
g(x)dµ(x) =

∫
fd(µ× ν) =

∫
h(y)dν(y).

Theorem 3.116 (Fubini’s theorem, theorem 2.37(b) in [1] p.67). Let (X,m, µ) and (Y, n, ν) be σ-finite
measure spaces. Let f ∈ L1(X × Y,m⊗ n) Then fx ∈ L1(ν) for a.e. x ∈ X, and fy inL1(µ) for a.e. y ∈ Y .

Consider the almost everywhere defined functions

g(x) :=

∫
fx(y)dν(y) =

∫
f(x, y)dν(y) and h(y) :=

∫
fy(x)dµ(x) =

∫
f(x, y)dµ(x).

Then, g ∈ L1(µ), h ∈ L1(ν), and∫
g(x)dµ(x) =

∫
f(x, y)d(µ× ν)(x, y) =

∫
h(y)dν(y)

i.e., ∫ (∫
f(x, y)dν(y)

)
dµ(x) =

∫
f(x, y)d(µ× ν)(x, y) =

∫ (∫
f(x, y)dµ(x)

)
dν(y).

Proof. If f ≥ 0 then f ∈ L+, thus by Tonelli’s theorem, g and h are defined everywhere, taking values in
[0,+∞]. Also, since f ∈ L1, thus by tonelli’s theorem∫

gµ =

∫
hν =

∫
fd(µ× ν) <∞

holds. From this result, with the proposition 2.20, we can conclude that g(x) < ∞ a.e. and h < +∞ a.e.
Thus we proved Fubini’s theorem when f ∈ L1 ∩ L+.

Now assume f ∈ L1
R(µ× ν), means that range of f is R. Then,

f = f+ − f− for f+, f− ≥ 0 and |f | = f+ + f−.

Since f+, f− ∈ L1 ∩ L+, Fubini’s theorem holds for each f+ and f−.
Note that

fx = (f+)x − (f−)x and fy = (f+)y − (f−)y,

and by Fubini’s theorem in case of f+, f−, (f+)x, (f−)x ∈ L1(ν) for a.e.x and (f+)y, (f−)y ∈ L1(µ) for a.e.
y. Thus,

g(x) =

∫
fxdν =

∫
(f+)xdν −

∫
(f−)xdν

and

h(y) =

∫
fydµ =

∫
(f+)ydµ−

∫
(f−)ydµ

and by Fubini’s theorem in case of f+, f−,
∫

(f+)x,
∫

(f−)xdν ∈ L1(ν) and (f+)y, (f−)y ∈ L1(µ). Thus,
g ∈ L1(µ), h ∈ L1(ν). Also, by Fubini’s theorem in case of f+, f− we know∫

(f+)xdν −
∫

(f−)xdν =

∫
f+d(µ× ν)−

∫
f−d(µ× ν) =

∫
(f+)ydµ−

∫
(f−)ydµ.

Thus,∫
g(x)dµ(x) =

∫
(f+)xdν−

∫
(f−)xdν =

∫
f+d(µ×ν)−

∫
f−d(µ×ν) =

∫
(f+)ydµ−

∫
(f−)ydµ =

∫
h(y)dν(y).
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And by proposition 2.13 in [1],∫
f+d(µ× ν)−

∫
f−d(µ× ν) =

∫
(f+ − f−)d(µ× ν) =

∫
fd(µ× ν).

Thus, we have ∫
g(x)dµ(x) =

∫
fd(µ× ν) =

∫
h(y)dν(y),

as desired. Thus we can say that Fubini’s theorem holds for any function having codomain R.
Now let f ∈ L1. Then f = Ref + iImf , and each Ref, Imf ∈ L1

R(µ× ν). Thus, Fubini’s theorem holds
for Ref and Imf . Now note that

fx = (Ref)x + i(Imf)x and fx = (Ref)y + i(Imf)y.

Hence, (Ref)x, (Imf)x ∈ L1(ν) a.e. y and (Ref)y, (Imf)y ∈ L1(µ) a.e. x, thus for almost every x,∣∣∣∣∫ fxdν

∣∣∣∣ =

∣∣∣∣∫ (Ref)xdν + i

∫
(Imf)xdν

∣∣∣∣ ≤ ∣∣∣∣∫ (Ref)xdν

∣∣∣∣+

∣∣∣∣∫ (Imf)xdν

∣∣∣∣ <∞,
and for almost every y,∣∣∣∣∫ fydµ

∣∣∣∣ =

∣∣∣∣∫ (Ref)ydµ+ i

∫
(Imf)ydµ

∣∣∣∣ ≤ ∣∣∣∣∫ (Ref)ydµ

∣∣∣∣+

∣∣∣∣∫ (Imf)ydµ

∣∣∣∣ <∞,
Hence fx ∈ L1(ν) for a.e. y and fy ∈ L1(µ) for a.e. x.

Also,

g(x) =

∫
fxdν =

∫
(Ref)xdν + i

∫
(Imf)xdν and h(y) =

∫
fydµ =

∫
(Ref)ydµ+ i

∫
(Imf)ydµ

By Fubini’s theorem on real function,
∫

(Ref)xdν,
∫

(Imf)xdν ∈ L1(µ) and
∫

(Ref)ydµ,
∫

(Imf)ydµ ∈ L1(ν)
we can conclude that∣∣∣∣∫ gdµ

∣∣∣∣ =

∣∣∣∣∫ ∫ (Ref)xdνdµ+ i

∫ ∫
(Imf)xdνdµ

∣∣∣∣ ≤ ∣∣∣∣∫ ∫ (Ref)xdνdµ

∣∣∣∣+

∣∣∣∣∫ ∫ (Imf)xdνdµ

∣∣∣∣ <∞
and∣∣∣∣∫ hdν

∣∣∣∣ =

∣∣∣∣∫ ∫ (Ref)ydµdν + i

∫ ∫
(Imf)ydµdν

∣∣∣∣ ≤ ∣∣∣∣∫ ∫ (Ref)ydµdν

∣∣∣∣+

∣∣∣∣∫ ∫ (Imf)ydµdν

∣∣∣∣ <∞
Thus g ∈ L1(µ), h ∈ L1(ν).

And since Fubini’s theorem holds for Ref, Imf ,∫
gdµ =

∫ ∫
(Ref)xdνdµ+ i

∫ ∫
(Imf)xdνdµ =

∫
Refd(µ× ν) + i

∫
Imfd(µ× ν) =

∫
fd(µ× ν)

and∫
hdν =

∫ ∫
(Ref)ydµdν + i

∫ ∫
(Imf)ydµdν =

∫
Refd(µ× ν) + i

∫
Imfd(µ× ν) =

∫
fd(µ× ν).

Thus, ∫
gdµ =

∫
fd(µ× ν) =

∫
hdν,

as desired. Thus Fubini’s theorem holds for any function in L1(µ× ν).
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Corollary 3.117 (Typical Application; Change of order). Given f : X × Y → C, if |f | ∈ L1, then∫ (∫
f(x, y)dµ(x)

)
dν(y) =

∫ (∫
f(x, y)dν(y)

)
µ(x).

Proof. First we have to show∫ (∫
|f(x, y)|dµ(x)

)
dν(y) <∞ or

∫ (∫
|f(x, y)|dν(y)

)
µ(x) <∞.

Then, since |f | ∈ L+(X × Y,m⊗ n), by Tonelli’s theorem,∫ (∫
|f(x, y)|dµ(x)

)
dν(y) =

∫
|f |d(µ× ν) =

(∫
|f(x, y)|dν(y)

)
µ(x) <∞

thus f ∈ L1(µ× ν). Then by the Fubini’s theorem, we can conclude that∫ (∫
f(x, y)dµ(x)

)
dν(y) =

∫
f(x, y)d(µ× ν) =

∫ (∫
f(x, y)dν(y)

)
µ(x).

3.6 The n-Dimensional Lebesgue Integral

Fix n ≥ 2. Let mn denotes the completion of m×m× · · · ×m on BR ⊗ BR ⊗ · · · ⊗ BR, i.e., the completion
of L ⊗ L⊗ · · · ⊗ L. Note that the completion is not the same as L ⊗ L⊗ · · · ⊗ L.

Proposition 3.118. L ⊗ L⊗ · · · ⊗ L ( Ln

Proof. It suffices to show that there exists a set in Ln but not in L⊗L⊗ · · · ⊗ L. For n = 2, let E ∈ L⊗L,
A ⊆ R such that A 6∈ L and x ∈ R. Now, let

F := (E \ ({x} × R)) ∪ ({x} ×A) .

Then, m2(F∆E) = 0. By completeness of L, F∆E ∈ L2, which implies F \ E ∈ L2 since it is subset of
F∆E, thus F = F \ E ∪ E ∈ L2.

However, Fx = A by the Proposition 2.34. If F ∈ L ⊗ L then Fx = A ∈ L, contradiction. Thus,
F ∈ L2 \ L ⊗ L.

Theorem 3.119 (Theorem 2.40 in [1] p.70. Approximation of sets.). (a)

mn(E) = inf{mn(U) : U open in Rn, E ⊆ U} = sup{mn(K) : K ⊆ E,K compact }.

(b) E = A1 ∪N1 = A2 \N2 where A1 is Fσ set in Rn, and A2 is Gδ set in Rn, and N1, N2 are null sets.

(c) If m(E) <∞, for any ε > 0 there exists a finite collection (Rj)
N
j=1 of disjoint rectangles whose sides are

intervals such that m(E∆
⋃N
j=1Rj) < ε.

Proof. Let E ∈ Ln. Note that mn induces outer measure on Rn with respect to an algebra ×nL. Thus, by
definition of outer measure, we have disjoint sequence of measurable rectangles T1, T2, · · · ∈ L × L× · · · × L
such that

E ⊆
∞⋃
i=1

Ti and for some ε > 0,mn

( ∞⋃
i=1

Ti

)
≤ mn(E) + ε.

(Note that E = E′ ∪ F for some E′ in BRn and F ⊂ N,N ∈ BRn . Thus, we can choose such Ti using
E ⊆ E′ ∪ N ∈ BRn .) For each j, by applying theorem 1.18 for each side of the rectangle Tj with ε′ =
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( ε2

n222n
∏n
k=1m((Tj)xk ) ) we get a rectangle Uj having each side as union of disjoint open intervals such that

Uj ⊃ Tj and for each k ∈ [n],
m((Uj)xk) ≤ m((Tj)xk + ε′,

thus

mn(Uj) ≤
n∏
k=1

(m((Tj)k + ε′) = mn(Tj) +

n−1∑
k=0

(
n

k

) ∑
σ∈Sk

k∏
l=1

m((Tj)σ(l))(ε
′)n−k ≤ mn(Tj) +

n−1∑
k=0

(
n
k

)
2n

( ε
2n )n−k

n2

since
∏k
l=1m((Tj)σ(l)) <

∏n
l=1m((Tj)l). Hence,

mn(Uj) ≤ mn(Tj) +

n−1∑
k=0

(
n
k

)
2n

( ε
2n )n−k

n2
≤ mn(Tj) + ε2−n.

Now let U =
⋃∞
j=1 Uj then U is open and

mn(U) ≤
∞∑
n=1

mn(Uj) ≤
∞∑
n=1

mn(Tj) + ε ≤ mn(E) + 2ε.

Since ε was arbitrarily chosen, m(E) = inf{m(U) : U ⊃ E,U is open.} The second one and part (b) follows
from the exact same argument in Theorem 1.18 and 1.19 in [1][p.36-37].

For part (c), if mn(E) < ∞, then mn(Uj) < ∞. Note that each side of Uj consists of countable
open intervals, thus, numbering each disjoint intervals of each sides of Uj and let Vj,k be rectangle gen-
erated by subunion of intervals of Uj in each section from number 1 interval to number k interval. Then,
limk→∞mn(Vj,k) = mn(Uj) Thus, ∃Nj such that

∀k ≥ Nj ,mn(Vj,k) ≥ mn(Uj)− ε2−j .

Then let Vj = Vj,Nj . Then sincemn(
⋃∞
j=n Uj)→ 0 as n→∞, there existsN ∈ N such thatmn(

⋃∞
j=N+1 Uj) <

ε. Thus,

mn(E \
∞⋃
j=N

Vj) =

N⋃
j=1

Uj \ Vj +mn(

∞⋃
j=N+1

Uj) < 2ε.

and

mn(

 N⋃
j=1

Vj

 \ E) ≤ mn(

 ∞⋃
j=1

Ej

 \ E) ≤ ε,

which is derived from the construction of Uj . Thus V :=
⋃N
j=1 Vj gives

mn(E∆V ) = 2ε+ ε = 3ε,

as desired for (c).

Theorem 3.120 (Theorem 2.41 in citefo p. 71, Approximation in L1.). If f ∈ L1(mn) and ε > 0, then

(a) ∃ a simple function φ =
∑n
j=1 aj1Rj where each Rj is a product of bounded intervals, such that∫

|f − φ|dmn < ε.

(b) ∃ a continuous function g : Rn → C of bounded supports such that∫
|f − g|dmn < ε.

70



Proof. By the argument in Thoerem 2.26, approximate f by a simple function, and approximate each
preimage in the simple function using Theorem 2.40(c), and change those preimage to the approximated
rectangle. Now, by using the argument in 2.26(b), get a continuous function.

Theorem 3.121 (Theorem 2.42 in [1] p. 72, Translation invariant of mn.). If a ∈ Rn, letting τa(x) = x+a.
Then

(a) E ∈ Ln =⇒ τa(E) ∈ Ln, and m(τa(E)) = m(E).

(b) If f : Rn → C is Lebesgue measurable, then so is f ◦ τa.

(c) If f ∈ L+(mn) then
∫
f ◦ τadmn =

∫
fdmn

(d) If f ∈ L1(mn) then f ◦ τa ∈ L1(mn).

Proof. Since τa and τ−a are continuous, τa(E) ∈ BRn if E ∈ B + Rn. If E ∈ ×nBR, then

mn(τa(E)) =

n∏
i=1

m(τai(Exi)) =︸︷︷︸
Thm 1.21

n∏
i=1

m(Exi) = mn(E).

If E ∈ BRn , then E =
⋃∞
j=1Ej for some disjoint Ej ∈ ×nBR, hence

mn(τa(E)) = mn(

∞⋃
j=1

τa(Ej)) =

∞∑
j=1

m(τa(Ej)) =

∞∑
j=1

m(Ej) = m(E).

If E ∈ Ln, then E = E′ ∪ F where E′, N ∈ BRn and F ⊆ N and mn(N) = 0. Thus,

mn(τa(E)) = mn(τa(E′ ∪ F )) = mn(τa(E′) ∪ τa(F )) = mn(τa(E′)) +mn(τa(F )) = mn(E′) +mn(τa(F ))

and since τa(F ) ⊆ τa(N) and mn(τa(N)) = mn(N) = 0, mn(τa(F )) = 0. Thus,

mn(τa(E)) = mn(E′) +mn(τa(F )) = mn(E′) = mn(E).

Thus part (a) is proved.
For part (b), let E ∈ BC. Then, f−1(E) ∈ Ln, thus τ−1

a (f−1(E)) = τ−a(f−1(E)) ∈ Ln by part (a). Hence
(f ◦ τa)−1(E) ∈ Ln, thus f ◦ τa is also Lebesgue measurable.

For part (c), the statement holds when f = 1E , since then f ◦ τa = 1τa(E), hence∫
fdmn = m(E) = m(τa(E)) =

∫
1τa(E) =

∫
f ◦ τa]dm

n.

Thus, by linearlity the statement holds for any simple function. And by Theorem 2.41, any Lebesgue
measurable function can be approximated by the sequence of simple functions, thus using the Monotone
Convergence Theorem, we can conclude that the result holds for any measurable functions. Thus (d) also
follows from the result of (c).

Definition 3.122 (Cube, Jordan Content, etc.). Define cube in Rn is a Cartesian product of n closed
intervals whose side lengths are all equal. For k ∈ Z, let Qk be the collection of cubes whose side length is
2−k and whose vertices are in the lattice (2−kZ)n. Note that any two cubes in Qk have disjoint interiors,
and that the cube in Qk+1 are obtained from the cubes in Qk by bisecting the sides.

If E ⊂ Rn, we define the inner and outer approximations to E by the grid of cubes Qk to be

A(E, k) :=
⋃
{Q ∈ Qk : Q ⊂ E} A(E, k) :=

⋃
{Q ∈ Qk : Q ∩ E 6= ∅}
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Then since cubes are disjoint, and have measure 2−nk, so

m(A(E, k)) = |{Q ∈ Qk : Q ⊂ E}| · 2−nk m(A(E, k)) = |{Q ∈ Qk : Q ∩ E 6= ∅}| · 2−nk.

Also, A(E, k) increase with k while A(E, k) decrease when k increase, since each cube in Qk is a union of
cubes in Qk+1. And since they are boudned, so the limits

κ(E) := lim
k→∞

m(A(E, k)) κ(E) := lim
k→∞

m(A(E, k))

exists. They are called inner and outer content of E. if they are equal, then the common value κ(E) is
called the Jordan Content of E.

Note that Jordan content is meaningful only when E is bounded; otherwise κ(E) =∞.

Lemma 3.123 (Lemma 2.43 in [1] p.72). Let

A(E)

∞⋃
k=1

A(E, k) and A(E)

∞⋂
k=1

A(E, k).

Then, by definition of inner and outer approximation,

A(E) ⊂ E ⊂ A(E),

and A(E) and A are Borel sets, and

κ(E) = m(A(E)) and κ(E) = m(A(E)).

Thus, the jordan content of E exists if and only if m(A(E) \A(E)) = 0, which implies κ(E) = m(E).
Then, if U ⊆ Rn is open, then U = A(U). Moreover, U is a countable union of cubes with disjoint

interiors.

Proof. Since we know A(U) ⊂ U, it suffices to show that A(U) ⊃ U. Let x ∈ U , and δ = inf{|y−x| : y 6∈ U}.
Then, since U is open set, δ > 0. So, if there exists a cube Q ∈ Qk containing x, then ∀y ∈ Q, |y−x| ≤ 2−k

√
n,

thus Q ⊂ U iff 2−k
√
n < δ. Since 2−k

√
n→ 0 as k →∞, we can take a large enough k, such that k > log

√
n
δ ,

to get Q ⊂ U . Then, x ∈ A(U, k) ⊂ A(U). Since x was arbitrary, U ⊂ A(U), as desired.
For the second statement, we can rewrite A(U) as below;

A(U) = A(U, 0) ∪
∞⋃
k=1

(A(U, k) \A(U, k − 1)) .

Since closure of A(U, k) \ A(U, k − 1) is disjoint union of cubes in Qk and A(U, 0) is a countable union of
cubes, so does A(U) and by construction their interiors are pairwise disjoint.

Remark 3.124. The above lemma implies that Lebesgue measure of any open set is equal to its inner
content. Also, it implies that Lebesgue measure of any compact set is equal to its outer content.

Proof. First statement is just result of the lemma. For the second statement, let F ⊂ Rn be compact. Let
Q0 = {x : max |xj | ≤ 2M}, a rectangle centered at the origin, whose interior int(Q0) contains F . If Q ∈ Qk
such that Q ⊂ Q0, then either Q ∩ F 6= ∅ or Q ⊂ (Q0 \ F ), thus

m(A(F, k)) +m(A(Q0 \ F, k)) = m(Q0).

Letting k →∞, we get
κ(F ) + κ(Q0 \ F ) = m(Q0).

Note that Q0 \ F is the union of oepn set int(Q0) \ F and the boundary of Q0, which has the content zero.
Thus,

κ(Q0 \ F ) = κ(intQ0 \ F ) = m(Q0 \ F )

where the last equality comes from the lemma 2.43. Hence,we have desired result.
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Theorem 3.125 (Theorem 2.44 in [1] p.73). Let T ∈ GL(n,R)

(a) E ∈ Ln =⇒ T (E) ∈ Ln and m(T (E)) = |det(T )|m(E).

(b) f ∈ L+(Ln) =⇒ f ◦ T ∈ L+(Ln) and
∫
fdmn = |detT |

∫
f ◦ Tdmn

(c) f ∈ L1(Ln) =⇒ f ◦ T ∈ L1(mn)

To prove this result, we use the fact from the linear algebra that every T ∈ GL(n,R) can be written as
the product of finitely many transformations of three elementary types, such that

T1(x1, · · · , xj , · · · , xn) = (x1, · · · , cxj , · · · , xn) (c 6= 0),

T2(x1, · · · , xj , · · · , xn) = (x1, · · · , xj + cxk, · · · , xn) (k 6= j),

T3(x1, · · · , xj , · · · , xj , · · · , xn) = (x1, · · · , xk, · · · , xj , · · · , xn) (k 6= j).

Also note that every T ∈ GL(n,R) is continuous.

Proof. If f is Borel measurable, then f ◦ T is also Borel measurable since T is continuous.
Also, for T3, |detT3| = |−1| = 1, and part (a),(b) and (c) holds because T3 is just interchange of variables

and Tonelli theorem gives part (a) and (b) and Fubini theorem gives part (c). (Note that part (a) is a special
case of part (b) when f = 1E for some borel set E.) For T2, using Tonelli’s theorem (for (a),(b)) or Fubini’s
theorem (for (c)) we integrate first with respect to xj , and by theorem 1.21 in [1], we know that∫

f(t+ a)dt =

∫
f(t)dt

for one variable integration. Thus, this gives the same integration, i.e.,∫
fdmn =

∫
f ◦ Tdmn = |detT2|

∫
f ◦ Tdmn.

where the last equality holds since detT2 = 1. Thus (a),(b), and (c) holds for T2. For T1, using Tonelli’s
theorem (for (a),(b)) or Fubini’s theorem (for (c)) we integrate first with respect to xj , and by theorem 1.21
in [1], we know that ∫

f(ct)dt = |c|
∫
f(t)dt

for one variable integration. Thus, this gives∫
fdmn = |c|

∫
f ◦ Tdmn = |detT1|

∫
f ◦ Tdmn,

since |detT1| = |c|.
Now if T, S ∈ GL(n,R) are matrices which the theorem holds for, then∫

fdx = |detT |
∫
f ◦ Tdx = |detT || detS|

∫
(f ◦ T ) ◦ Sdx = |detT ◦ S|

∫
f ◦ (T ◦ S)dx,

this implies that this thoerem holds for T ◦S, too. Since every matrix in GL(n,R) is generated by composition
of T1, T2, and T3, the theorem holds for every matrix in GL(n,R).

For f is Lebesgue measurable, then for any Borel set E ∈ Rn, f−1(E) = F ∪ N where F is Borel
measurable and N is a null set with respect to Lebesgue measure. Since Lebesgue measure is completion of
Borel measure, thus there is a Borel measurable set N ′ such that N ∪N ′ and m(N) = 0. Hence,

m(T−1(N)) ≤ m(T−1(N ′)) =︸︷︷︸
(a)

|detT−1|m(N ′) = 0 =⇒ T−1(N) is Lebesgue measurable.

Thus, T−1(E) and T−1(N) are Lebesgue measurable, this implies (f ◦ T )−1 is Lebesgue measurable. Thus
the above argument can be applied for any Lebesgue measurable sets.
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Corollary 3.126 (Corollary 2.46 in [1] p.74). mn is invariant under rotation.

Proof. If T is a rotation, then TT ∗ = I, which implies (detT )2 = 1 =⇒ |detT | = 1. Note that T ∗ is the
transpose of T.

Let Ω ⊆ Rn be open. Let g : Ω→ Rn be C1. Then, g(x) := (g1(x), g2(x), · · · , gn(x)). Let’s denote

(Dxg =)Dg(x) :=

(
∂gi
∂xj

(x)

)
1≤i≤n,1≤j≤n

Definition 3.127 (Diffeomorphism). The above g is called Diffeomorphism if Dg(x) is invertible for all
x ∈ Ω and g is injective, i.e., 1-1.

If g is a diffeomorphism, then by the inverse function theorem, g−1 is in C1, and that Dx(g−1) =(
Dg−1(x)g

)−1
for all x ∈ g(Ω). Also, for any T ∈ GL(n,R), DxT ◦ g = TDxg; this can be obtained by using

the result of elementary matrices.

Theorem 3.128 (Theorem 2.47 in [1] p.74). Suppose Ω ⊂ Rn and g : Ω→ Rn is C1 diffeomorphism.

1. If f : g(Ω)→ Rn is mn-measurable and f ∈ L1, then f ◦ g is mn-measurable. If f ≥ 0 or f ∈ L1, then∫
g(Ω)

fdmn =

∫
Ω

f ◦ g(x)|det(Dg(x))|dmn.

2. If E ⊂ Ω and E ∈ Ln, then G(E) ∈ Ln and m(G(E)) =
∫
E
|detDxg|dx.

Before solving this, we need a notation for ∞ norm.

Definition 3.129 (∞-norm). For any x ∈ Rn or T = (Tij) ∈ GL(n,R), we set

‖x‖ = max
1≤j≤n

|xj | and ‖T‖ = max
1≤i≤n

n∑
j=1

|Tij |.

Then, ‖Tx‖ ≤ ‖T‖ ‖x‖ and {x : ‖x− a‖ ≤ h} is the cube of side length 2h centered at a.

Proof. It suffices to show that Borel measurable functions and Borel measurable sets. If this holds for Borel
measurable sets and functions, then we can extend this for the case of Lebesgue measurable function and
sets using E = B ∪N for E ∈ Ln, B ∈ Bn, N ∈ Ln with m(N) = 0.

Let Q ⊂ Ω be a cube say Q = {x : ‖x− a‖ ≤ h} for some a ∈ Ω and h > 0. By the mean value theorem,

gi(x)− gi(a) =
n∑
j=1

(xj − aj)
(
∂gi
∂xj

)
(y)

for some y in a line segment from x to a. Thus, for any x ∈ Q,

‖g(x)− g(a)‖ = max
1≤i≤n


∣∣∣∣∣∣
n∑
j=1

(xj − aj)
(
∂gi
∂xj

)
(yi)

∣∣∣∣∣∣
 ≤ h max

1≤i≤n


∣∣∣∣∣∣
n∑
j=1

(
∂gi
∂xj

)
(yi)

∣∣∣∣∣∣
 ≤ h max

1≤i≤n


n∑
j=1

∣∣∣∣( ∂gi∂xj

)
(yi)

∣∣∣∣


≤ h max
1≤i≤n

{Dyig} ≤ h sup
y∈Q
‖Dyg‖

since h ≥ (xj − aj) for any j ∈ [n] and each
∑n
j=1

∣∣∣( ∂gi∂xj

)
(yi)

∣∣∣ is less than Dyig by definition of norm.

Thus, g(Q) is contained in a rectangle with side length h supy∈Q ‖Dyg‖ . Therefore, g(Q) is contained in
supy∈Q ‖Dyg‖ · I(Q), where I is an identity matrix in GL(n,R). Hence,

m(g(Q)) ≤ m(sup
y∈Q
‖Dyg‖ · I(Q)) =︸︷︷︸

Thm 2.44(a)

(sup
h∈Q
‖Dyg‖)nm(Q).
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Since g was arbitrary, for any T ∈ GL(n,R), we can apply the same argument of T−1 ◦ g, thus we have

m(g(Q)) =︸︷︷︸
2.44(a)

|detT |m(T−1◦g(Q)) ≤ |detT |
(

sup
y∈Q

∥∥Dy(T−1 ◦ g)
∥∥)nm(Q) ≤ |detT |

(
sup
y∈Q

∥∥T−1Dyg
∥∥)nm(Q).

Since g is C1-Diffeomorphism, Dyg and (Dyg)−1 is continuous with respect to y. Thus for any ε > 0,∃δ > 0
so that if ‖y − z‖ ≤ δ, ∥∥(Dzg)−1Dyg

∥∥n ≤ 1 + ε

Thus, let Q1, · · ·QN be subdivided disjoint cubes of Q such that its side length is less than δ and whose
center is x1, · · ·xN respectively. Then,

m(g(Q)) ≤
N∑
j=1

m(g(Qj)) ≤
N∑
j=1

|detDxjg|

(
sup
y∈Qj

∥∥(Dxjg)−1Dyg
∥∥)nm(Qj) ≤ (1 + ε)

N∑
j=1

|detDxjg|m(Qj)

And the last sum (1 + ε)
∑N
j=1 |detDxjg|m(Q) is integral of (1 + ε)

∑N
j=1 |detDxjg|1Qj . Therefore, it tends

to go |detDxg| as δ → 0 (Why??? I don’t understand.). Thus, letting δ → 0 and ε→ 0, we find that

m(g(Q)) ≤
∫
Q

|detDxg|dx.

Now we claim that this estimate hold with Q is replaced by any Borel set in Ω. Let U ⊂ Ω is open. Then
by Lemma 2.43 U =

⋃∞
1 Qj where Qj are cubes with disjoint interiors. Since the boundary of the cubes

have Lebesgue measure 0, we hvae

m(g(U)) ≤
∞∑
j=1

m(g(Qj)) ≤
∞∑
j=1

∫
Qj

|detDxg|dx =

∫
U

|detDxg|dx.

Moreover, if E ⊂ Ω is any Borel set of finite measure, by theorem 2.40 there is a decreasing sequence of
Uj ⊂ Ω of finite measure such that E ⊂

⋂∞
j=1 Uj and m((

⋂∞
j=1 Uj) \ E) = 0. Thus, by the Dominated

Convergence Theorem,

m(g(E)) ≤ m

g
 ∞⋂
j=1

Uj

 = limm (g (Uj)) ≤ lim

∫
Uj

|detDxg|dx =︸︷︷︸
DCT

∫
E

|detDxg|dx.

Finally, since m is σ-finite, from the above equation we can draw the conclusion that

m(g(E)) ≤
∫
E

|detDxg|dx

for any borel set, using continuity from below and Monotone Convergence Theorem.
If f =

∑N
j=1 aj1Aj is a nonnegative simple function on g(Ω), we have∫
g(Ω)f(x)dx =

N∑
j=1

ajm(Aj) ≤
N∑
j=1

aj

∫
g−1(Aj)

|detDxg|dx =

∫
f ◦ g(x)|detDxg|dx.

Theorem 2.10 and the monotone convergence theorem implies that∫
g(Ω)

f(x)dx ≤
∫

Ω

f ◦ g(x)|detDxg|dx

for any nonnegative measurable f. But the same reasoning applies with g replaced by g−1, thus∫
Ω

f ◦ g(x)|detDxg|dx ≤
∫
g(Ω)

f ◦ g ◦ g−1(x)|detDg−1(x)g||detDxg
−1|dx =

∫
g(Ω)

f(x)dx.

Thus it establishes (a) for f ≥ 0 and the case f ∈ L1 follows immediately. And (b) is the case when
f = 1g(E), thus the proof is complete.
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3.7 Integration in Polar Coordinates

It is omitted in the class.

4 Signed Measures and Differentiation

4.1 Signed Measures

Definition 4.1 (Signed measure). A signed measure on (X,M) is γ :M→ [−∞,+∞] satisfying

(i) ν(∅) = 0

(ii) At most one of +∞,−∞ is in the range of γ.

(iii) If E1, E2, · · · ∈ M are disjoint, then ν
(⋃∞

j=1Ej

)
=
∑∞
j=1 ν(Ej).

Remark 4.2.
{measures} ⊆ { signed measures}.

Let us denote a measure as positive measure.

Example 4.3 (Example of signed measure). Firstly, µ1, µ2 are positive measures, at least one of which is
finite, then ν := µ1 − µ2 is a signed measure on (X,M).

Next, if f is extended µ-integrable, i.e., at least one of
∫
f+dµ or

∫
f−dµ is finite, and f : X →

[−∞,∞] is measurable with respect to a positive measure µ, then ν(E) :=
∫
E
fdµ is a signed measure. Note

that f+ = min(f, 0), f− = −max(0,−f).

Proposition 4.4 (Proposition 3.1. in [1] p.86).

1. If (En)∞n=1 is an increasing sequence in M, then ν(
⋃∞
n=1En) = limn→∞ ν(En).

2. If (En)∞n=1 is an decreasing sequence in M and if ν(E1) is finite, then ν(
⋂∞
n=1En) = limn→∞ ν(En).

Proof. For the first one, let Fn = En \
⋃n−1
j=1 Ej . Then, Fns are disjoint and

⋃n
j=1Ej = En =

⋃n
j=1 Fn for

any n ∈ N. Thus, by the property (iii) of a signed measure,

lim
n→∞

ν(En) =︸︷︷︸
(iii)

∞∑
j=1

ν(Fj) =︸︷︷︸
(iii)

ν

 ∞⋃
j=1

Fj

 = ν

 ∞⋃
j=1

Ej

 .

For the second one, if (En)∞n=1 is a decreasing sequence, then

∞⋂
n=1

En = E1 \

(
E1 \

∞⋂
n=1

En

)
,

and E1 \
⋂∞
n=1En and

⋂∞
n=1En are disjoint. Thus,

ν

( ∞⋂
n=1

En

)
= ν

(
E1 \

(
E1 \

∞⋂
n=1

En

))

= ν(E1)− ν

(
E1 \

∞⋂
n=1

En

)
from disjointness of E1 \

∞⋂
n=1

En and

∞⋂
n=1

En

= ν(E1)− ν

(
E ∩

( ∞⋃
n=1

Ecn

))
from De Morgan’s Law

= ν(E1)− ν

( ∞⋃
n=1

(E1 ∩ Ecn)

)
from Distribution law of ZF axiom
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And since (E1 \ En)∞n=1 is an increasing sequence, we can use the part (a). Thus,

ν

( ∞⋂
n=1

En

)
= ν(E1)− ν

( ∞⋃
n=1

(E1 ∩ Ecn)

)
=︸︷︷︸

part (a)

ν(E1)− lim
n→∞

ν(E1 \ En) = ν(E1)− ν(E1) + lim
n→∞

ν(En).

Thus, ν (
⋂∞
n=1En) = limn→∞ ν(En), as desired.

Definition 4.5 (Positive, negative and null set). Let ν be a signed measure on (X,M) and let E ∈M. We
say E is

• Positive if ∀F ∈M, F ⊆ E =⇒ ν(F ) ≥ 0.

• Negatvie if ∀F ∈M, F ⊆ E =⇒ ν(F ) ≤ 0.

• Null set if ∀F ∈M, F ⊆ E =⇒ ν(F ) = 0.

Lemma 4.6 (Lemma 3.2 in [1] p.86).

(a) Every measurable subset of a positive set is a positive set.

(b) Every countable union of positive sets is a positive set.

Proof. For (a), let E be a positive set and F be a subset of E. Since every subset of F is also a subset of E,
thus it has positive measure, therefore F is also a positive set.

For (b), suppose E1, · · · ∈ M are positive sets. Let E =
⋃∞
n=1En. It suffices to show that E is positive.

Replacing En by En \n−1
k=1 Ek if necessary, we may assume that E1, · · · are disjoint without loss of generality.

Then, let F ⊂ E. Then,

ν(F ) = ν

( ∞⋃
n=1

F ∩ En

)
=

∞∑
n=1

ν(F ∩ En) ≥ 0,

where first inequality comes from E =
⋃∞
n=1En and the second equality comes from disjointness of F ∩ En

inherited from Ens, jand the last inequality comes from the fact that F ∩Ens are positive sets since each of
them is a subset of En respectively. Thus, E is a positive set.

Theorem 4.7 (The Hanh Decomposition Theorem, Theorem 3.3 in [1] p.86). Let ν be a signed measure
on (X,M). Then ∃ a positive set P ∈ M such that N = X \ P is negative. We call X = P ∪N a Hanh
decomposition for ν. And this decomposition is unique up to symmetric difference of null set; if there
exists another P ′, N ′ ⊂ X such that P ′ ∪ N ′ = X and P ′ ∩ N ′ = ∅ and P ′ is positive and N ′ is negative,
then P∆P ′ = N∆N ′ is a null set.

Proof. Without loss of generality, let ν :M→ [−∞,+∞). Let r = sup{ν(P ) : P ∈M, P is positive}. Since
∅ ∈ {ν(P ) : P ∈ M, P is positive}, r is well-defined, thus we have a sequence of positive sets Pn such that
limn→∞ ν(Pn) = r. Let P =

⋃∞
n=1 Pn. Then by the lemma, P is a positive set, thus

r ≥ ν(P ) = ν(Pn) + ν(P \ Pn)

and since ν(P \ Pn) ≥ 0 since P \ Pn is a subset of a positive set P ,

r ≥ ν(P ) ≥ ν(Pn).

By letting n→∞, we have ν(P ) = r. Let N = X \ P .

Claim 4.8. If EinM, E ⊂ N , and E is positive, then E is a null set.
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Proof. Let E′ be a measurable subset of E. Then,

ν(P ∪ E′) = ν(P ) + ν(E′) = r + ν(E′)

and P ∪E is positive. However, by choice of r, ν(E′) ≤ 0. Since E′ is positive, ν(E′) ≥ 0. Thus, ν(E′) = 0.
Since E′ was arbitrarily chosen, E is a null set.

Claim 4.9. If A ∈M, A ⊆ N and ν(A) > 0, then ∃B ∈M, B ⊆ A such that ν(B) > ν(A).

Proof. We used r < +∞ since ν(P ) = r ∈ [0,+∞). Suppose A is not a null set. Then by claim 1, A is not
positive. Thus, ∃C ∈M, C ⊆ A such that ν(C) < 0. Let B = A\C. Then, ν(B) = ν(A)−ν(C) > ν(A).

Claim 4.10. N is negative.

Proof. Suppose for contradiction that N is not a negative set. Then ∃A0 := A ∈ M, A ⊆ N such that
ν(A) > 0. By claim 2, ∃A1 ∈M, A1 ⊆ A, such that ν(A) > ν(A). Let n1 ∈ N be the least number such that
∃A1 ⊂ A0 with ν(A1) > ν(A0) + 1

n1
. Likewise, let n2 ∈ N be the least number such that ∃A2 ∈M, A2 ⊆ A1

with ν(A2) > ν(A1) + 1
n2
. We can continue in this manner, thus we get

A0 ⊇ A1 ⊇ A2 ⊇ · · · and 0 < ν(A0) < ν(A1) < · · · ,

and integers n1, n2, · · · ∈ N such that ∀j ∈ N. Let E =
⋂∞
n=0An. Then, by the Proposition 3.1.(b) in [1],

ν(E) = lim
n→∞

ν(An) ∈ (0,+∞)

since ν(An) ∈ (0,+∞) for all n ∈ N, by assumption that the range of ν doesn’t contain +∞. However,

ν(Ak) ≥
k∑
j=1

1

nj
+ ν(A0).

By letting k →∞, the left hand side goes to ν(E), and the right hand side goes to
∑∞
j=1

1
nj

+ ν(A0). Thus,

∞∑
j=1

1

nj
< +∞ =⇒ nj →∞ as j →∞.

Note that E ⊂ N and ν(E) > 0. Thus, by claim 2, ∃B ⊂ E such that ν(B) > ν(E). Let m ∈ N such that
ν(B) > ν(E) + 1

m . Let j ∈ N such that nj > m. Since nj →∞ as j →∞, such j exists. Then,

B ⊆ E ⊆ Aj−1 and ν(B) ≥ ν(E) +
1

m
≥ ν(Aj−1) +

1

m
,

and this contradicts the minimality of nj , which is chosen by the least one. Thus N should be a negative
set.

To show uniqueness, let P,N , P ′, N ′ are given in the problem. Note that P \P ′ = N ′ \N is both positive
and negative, thus it is a null set. By the same argument, P ′ \ P = N \N ′ is null. Hence,

P∆P ′ = (P ′ \ P ) ∪ (P \ P ′) = (N \N ′) ∪ (N ′ \N) = N∆N ′

is a union of null sets, thus it is null.

Definition 4.11 (Mutually singular). Let µ and ν be signed measure on (X,M). We say that µ and ν are
mutually singular and write

µ ⊥ ν

, when X = E ∪ F,E ∩ F = ∅, E, F ∈M such that E is null for µ and F is null for ν.
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Theorem 4.12 (The Jordan Decomposition Theorem, Theorem 3.4 in [1] p. 87). Let ν be a signed measure
on (X,M). Then ∃! positive measures ν+ and ν− such that ν = ν+ − ν−, and ν+ ⊥ ν−.

Proof. Let X = P ∪ N be a Hanh decomposition for ν. Let ν+(A) = ν(A ∩ P ), ν−(A) = −ν(A ∩ N). So
ν+, ν− are also positive measure. Clearly, ν = ν+−ν− since ν(A) = ν(A∩P ) +ν(A∩N) = ν+(A)−ν−(A),
and ν−(P ) = ν(P ∩N) = 0, ν+(N) = ν(P ∩N) = 0. Thus, P is null for ν− and N is null for ν+.

To see uniqueness, suppose ν = µ+ − µ− for some positive measures µ+ and µ− with µ+ ⊥ µ−. There
exists E,F ∈ M such that E ∪ F = X,E ∩ F = ∅ and E is µ+-null set, and F is µ−-null set. Then, E is
ν-negative, and F is ν-positive, so X = F ∪ E is a Hanh decomposition for ν. By the Hanh decomposition
theorem, F∆P = E∆N is ν-nul, so ∀A ∈M,

A ∩ (F∆P ) = (A ∩ F )∆(A ∩ P )

is ν-null. Thus,

µ+(A) = µ+(A)− µ+(A ∩ E) = µ+(A ∩ F ) = µ+(A ∩ F )− µ−(A ∩ F ) = ν(A ∩ F ) = ν(A ∩ P ) = ν+(A).

So µ+ = ν+, thus µ− = ν−.

Definition 4.13 (Positive Variation, Total variation). We call ν+ the positive variations of ν and ν−

the negative variations of ν. The total variation of ν is a measure |ν| := ν+ + ν−.

Definition 4.14 (Finite, σ-finite signed measure). A signed measure ν is finite iff |ν| is a finite (positive)
measure. Also, a signed measure ν is σ-finite iff |ν| is a σ-finite (positive) measure.

Observation 4.15. The followings are equivalent.

(i) ν is finite

(ii) ν :M→ (−∞,+∞)

(iii) ν+ and ν− are finite.

Proof. Suppose (i). Then, |ν|(X) = ν+(P ) + ν−(N) <∞, thus

−∞ < ν−(N) ≤ ν+(E)− ν−(E) = ν(E) = ν+(E)− ν−(E) ≤ ν+(P ) <∞.

Hence, (ii) holds. Also, if (ii) holds, then ν+(X) = ν+(P ) < ∞ and ν−(X) = ν−(N) < ∞, thus they are
finite measure. If (iii) holds, then, |ν| = ν+ + ν− is finite positive measure, thus µ is finite.

Definition 4.16 (L1 of a signed measure). Let L1(ν) := L1(|ν|). Hence for any f ∈ L1(ν),
∫
fdν =∫

fdν+ −
∫
fdν− <∞.

Example 4.17.

Some examples, and Push forward m ⊥ (
∑
n λnδtn) where m is the Lebesgue measure, and δtn is a Dirac

measure at tn ∈ R, and λn ∈ R for any n ∈ N. Note that Dirac measure
gives 1 and 0 only.

Some exbmples, bnd Push forwbrd m2 be the Lebesgue measure on R2, and D = {(x, x) : x ∈ R}. Then,
m2(D) = 0. Let µ(A) := m({x : (x, x) ∈ A}). Then, µ ⊥ m2. Note that
this µ = i∗m is called push-forward of m where i : R→ D.

If f : X → Y is measurable and if σ is a measure on X, then f∗σ is a measure on Y given by f∗σ(E) =
σ(f(E)).
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Proof. To see that m2(D) = 0, start with Dk = {(x, x) : |x| ≤ k}. By rotating this D, m2(D) = m2({(x, 0) :
|x| ≤ k}). Now let An,k = {(x, y) : |x| ≤ k, |y| ≤ 1

n}. Then, An,ks are decreasing sequence with m2(An,k) =
2
n . And {(x, 0) : |x| ≤ k} ⊆ An,k for any n ∈ N. Thus,

0 ≤ m2(Dk) = m2({(x, 0) : |x| ≤ 1}) ≤ m2(An,k) =
2k

n

for all n ∈ N. Thus, by letting n→∞, m2(Dk) = 0. From the fact that Dks are increasing seqeunce, using
continuity from below

m2(D) = m2

( ∞⋃
k=1

Dk

)
= lim
n→∞

m2(Dn) = 0.

Hence, since i(A) ⊆ D, for any A ∈M,

µ(A) = m2(i(A)) ≤ m2(D) = 0

Since µ is zero mesure, we can conclude that µ ⊥ m2.

Definition 4.18 (Absolute continuity). Let ν be a signed measure and µ be a positive measure on (X,M).
We say ν is absolutely continuous with respect to µ or

ν � µ

if ∀E ∈M, µ(E) = 0 =⇒ ν(E) = 0, equivalently, if E is a µ-null set, then E is a ν-null set.

Observation 4.19 (Exercise 3.8, proved in the Homework). ν � µ ⇐⇒ ν+ � µ and ν− � µ

Example 4.20. Fix µ. Choose f+, f− ∈ L+(µ) with
∫
f+dµ < +∞ or

∫
f−dµ < +∞. Then, without loss

of generality, up to µ-null sets, either f+ : X → [0,+∞) or f− : X → [0,+∞). Let f := f+ − f− and let
ν(E) :=

∫
E
fdµ =

∫
E
f+dµ−

∫
E
f−dµ. Then, ν is a signed measure and ν � µ.

Proof. From countable additivity of integration, and by construction avoiding ∞, ν is a signed measure.
Also, for any µ-null set E, ν(E) =

∫
E
fdµ = 0, by approximating the integral using simple functions. Hence,

ν � µ.

Observation 4.21. If ν ⊥ µ and ν � µ, then ν = 0

Proof. From ν ⊥ µ, there exists E,F ∈ M such that E ∪ F = X,E ∩ F = ∅ and E is µ null set and F is ν
null set. Also, since ν � µ, for any subset B ⊂ E, ν(B) = 0 from the fact µ(B) = 0. Thus for any A ∈M,

ν(A) = ν(A ∩ E) + ν(A ∩ F ) = 0 + 0 = 0.

Theorem 4.22 (Theorem 3.5 in [1] p.89). Let µ be a positive measure and let ν be a finite signed measure
on (X,M). Then,

ν � µ ⇐⇒ (∀ε,∃δ > 0 such that E ∈M, µ(E) < δ =⇒ |ν|(E) < ε) · · · (∗)

Proof. Without loss of generality, let ν = |ν| be a positive measure. Then, if (∗) holds, let E ∈ M with
µ(E) = 0. Then by (∗), ν(E) < ε for all ε, thus ν(E) = 0. Hence ν � µ.

Conversely, to prove by contrapositive statement, assume (∗) fails. Then, ∃ε > 0 such that ∀δ > 0,
∃E ∈ M such that µ(E) < δ but ν(E) ≥ ε. Choose En ∈ M such that µ(En) < 2−n with ν(En) ≥ ε. Let
G := lim supn→∞En =

⋂∞
k=1

⋃∞
n=k En, and let Fk :=

⋃∞
n=k En. Then (Fn)∞n=1 is a decreasing sequence, thus

µ(G) ≤ µ(Fk) ≤
∞∑
n=k

µ(En) <

∞∑
k=1

2−n = 2−k+1.
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By letting k →∞, µ(G) = 0. However,
ν(Fk) ≥ ν(Ek) ≥ ε,

and ν is finite, this gives us to continuity from above, thus we have

ν(G) = lim
k→∞

ν(Fk) ≥ ε,

thus ν 6� µ.
For the case when ν is finite signed measure, this follows from the Exercise 8 that ν � µ ⇐⇒ |ν| � µ.

Corollary 4.23 (Corollary 3.6 in [1] p.89). If f ∈ L1(µ), for every ε > 0, there exists δ > 0 such that
|
∫
E
fdµ| < ε whenever µ(E) < δ.

Proof. Since f is extended µ-integrable real-valued function, ν(E) :=
∫
E
fdµ is a finite signed measure and

ν � µ. Thus, by the theorem, the statement holds. If f is complex valued function, apply the theorem on
Ref and Imf , and take such δs for Ref and Imf using ε

2 .

Lemma 4.24 (Lemma 3.7 in [1] p.89). If ν and µ are finite positive measure on (X,M), then either ν ⊥ µ
or ∃ε > 0,∃E ∈M such that ν ≥ εµ on E, i.e.,

∀A ∈M, A ⊂ E =⇒ ν(A) ≥ εµ(A).

Proof. Suppose ν and µ are positive measures. Then, given n ∈ N, consider the signed measure ν − 1
nµ

and let X = Pn ∪ Nn be Hanh decomposition for ν − 1
nµ. Let P =

⋃∞
n=1 Pn and N =

⋂∞
n=1Nn. Then,

P ∪N = X, P ∩N = ∅, and ∀n ∈ N, from the fact that N ⊂ Nn,

(ν − 1

n
µ)(N) ≤ 0 =⇒ 0 ≤ ν(N) ≤ 1

n
µ(N).

So letting n → ∞, ν(N) = 0 Hence N is null set for ν. If µ(P ) = 0, then µ ⊥ ν. If µ(P ) > 0, then since
µ(P ) ≤

∑∞
n=1 µ(Pn), there exists n ∈ N such that µ(Pn) > 0. Take E = Pn. Suppose A ∈M, A ⊂ E. Since

Pn is positive for ν − 1
nµ, we have

(ν − 1

n
µ)(A) ≥ 0 =⇒ ν(A) ≥ 1

n
µ(A).

Thus, ν ≥ 1
nµ on E.

Note that Folland says he proved the Lemma 3.7 in general case. However, this proof require that (at
least) ν should be finite positive measure. Thus I limited the condition for the lemma. This limited version
is enough for proving Radon-Nikodym theorem.

Theorem 4.25 (The Lebesgue-Radon-Nikodym Theorem, 3.8 in [1] p.90). Let µ be a σ-finite measure and
ν be a σ-finite signed measure on (X,M). Then, ∃! pair of σ-finite signed measure (λ, ρ) on (X,M) such
that

ν = λ+ ρ and λ ⊥ µ and ρ� µ.

Moreover, ∃ an extended µ-integrable function f : X → R such that dρ = fdµ

Definition 4.26 (Extended µ-integrable function, revisited). A µ-measurable function f : X → R or
f : X → [−∞,∞] is extended µ-integrable function if letting f+ = min(f, 0), f− = −max(0,−f). so
that f = f+ − f−, then either

∫
f+dµ or

∫
f−dµ is finite. and f : X → [−∞,∞] is measurable with respect

to a positive measure µ, then ν(E) :=
∫
E
fdµ is a signed measure.

Then, ν(E) :=
∫
E
dµ defines a signed measure ν � µ and we write dν = fdµ or f = dν

dµ .

Proof of the theorem. Without loss of generality, assume ν is a positive measure.
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(i) Case I : ν is a positive finite measure. Let

F := {f : X → [0,∞] : f is measurable and ∀E ∈M,

∫
E

fdµ ≤ ν(E)}

= {f : X → [0,∞] : ∃ a measure σ s.t. dλ = dν − fdµ is a positive measure.}

Thus if F is nonempty, then for any f ∈ F we can write dν = dλ + dµ for some positive measure λ.
(Note that 0 ∈ F , thus F is nonempty.

Claim 4.27. If f, g ∈ F then h := max(f, g) ∈ F

Proof. Let h = max(f, g), A := {x ∈ X : f(x) ≥ g(x)}. Then for any E ∈M,∫
E

hdµ =

∫
E∩A

hdµ+

∫
E\A

hdµ =

∫
E∩A

fdµ+

∫
E\A

gdµ ≤︸︷︷︸
f,g∈F

ν(E ∩A) + ν(E \A) = ν(E).

Let r = sup{
∫
fdµ : f ∈ F}. Then, r ≤ ν(X) < +∞, from finiteness of ν.

Claim 4.28. There exists f ∈ F such that
∫
fdµ = r.

Proof. Choose fn ∈ F such that r = limn→∞
∫
fndµ. Let gn = max(f1, · · · , fn). Then, by the previous

claim, gn ∈ F . And g1 ≤ g2 ≤ · · · . Also, ∫
gndµ ≥

∫
fndµ.

Thus,

r = lim
n→∞

fn ≤ lim
n→∞

∫
gndµ ≤ r =⇒ lim

n→∞

∫
gndµ = r.

Let f = limn→∞ gn pointwisely. Then, f : X → [0,+∞] Then, by the Monotone convergence theorem,∫
fdµ = lim

n→∞

∫
gndµ = r.

To see f ∈ F , note that for any E ∈M,∫
E

fdµ = lim
n→∞

∫
E

gndµ ≤ ν(E).

Thus f ∈ F , hence done.

The f obtained by above claim is f : X → [0,∞]. Since f ∈ L1(µ), this implies f−1({∞}) is µ-null set.
Thus, by redefining f on f−1({∞}), for example, ∀x ∈ f−1({∞}), f(x) := 0, we have f : X → [0,∞).
Similarly, we define the measure ρ by ρ(E) :=

∫
E
fdµ, thus dρ = fdµ, and let λ = ν − ρ. Note that λ

is a positive measure, since we just take f such that integration with f on any measurable set is less
than ν-measure of the set.

Claim 4.29. λ ⊥ µ.

Proof. Suppose not. Then by the lemma 3.7, ∃ε > 0,∃F ∈M such that

µ(F ) > 0 and λ ≥ εµ on F.

This implies
f + ε1F ∈ F
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since ∀E ∈M,∫
E

(f + ε1F )dµ =

∫
E

fdµ+ εµ(F ∩ E) = ρ(E) + εµ(F ∩ E) = ρ(E \ F ) + (ρ+ εµ)(E ∩ F )

≤ ρ(E \ F ) + (ρ+ λ)(E ∩ F ) = ρ(E \ F ) + ν(E ∩ F )

≤ ν(E \ F ) + ν(E ∩ F ) = ν(E).

where first inequality comes from ν ≥ εµ on F and the last inequality comes from ρ+λ = ν. However,∫
(f + ε1F )dµ =

∫
fdµ+ εµ(F ) = r + εµ(F ) > r,

contradicting to the maximality of r.

Thus ρ� µ, ν ⊥ µ, and ν = λ+ ρ, and dρ = fdµ is constructed.

(ii) Case II: General case. If µ is σ-finite measure and ν is σ-finite signed measure on (X,M), let
E1, E2, · · · ∈ M be disjoint such that

∞⋃
n=1

En = X and ∀n ∈ N, µ(En) < +∞, and |ν|(En) < +∞.

Perform the construction for each pair (µn, νn) when

µn(En) := µ(A ∩ En) and νn(A) := ν(A ∩ En).

Then, define

λ =

∞∑
n=1

λn, ρ =

∞∑
n=1

ρn, f =

∞∑
n=1

fn.

This works since Ens are disjoint.

To see uniqueness, if ν = λ+ ρ = λ′ + ρ′, λ ⊥ µ, λ′ ⊥ µ, and ρ� µ, ρ′ � µ, then λ− λ′ = ρ′ − ρ, and
λ− λ′ ⊥ µ, ρ′ − ρ� µ. Thus,

λ− λ′ = 0 = ρ′ − ρ,

as desired.

Definition 4.30 (Lebesgue Decomposition).

(1) For ν, µ in the theorem, such ν = λ + ρ, λ ⊥ µ, ρ � µ is called the Lebesgue decomposition of ν
with respect to µ.

(2) If ν � µ, then ρ = ν, thus ∃ extended µ-integrable function f such that dν = fdµ. This f is called the
Radon-Nikodym derivative of ν with respect to µ. And we write

f =
dν

dµ
so that dν =

(
dν

dµ

)
dµ.

Note that dν
dµ is unique up to redefinements of µ-null sets, as we constructed above.
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Observation 4.31. If on (X,M), ν1, ν2 are σ-finite signed measure and µ is σ-finite (positive) measure,
and

ν1 � µ, ν2 � µ

and if either ν1, ν2 :M→ (−∞,+∞], then ν1 + ν2 is a σ-finite signed measure, ν1 + ν2 � µ. And

(ν1 + ν2)(E) = ν1(E) + ν2(E) =

∫
E

(
dν1

dµ

)
dµ+

∫
E

(
dν2

dµ

)
=

∫
E

(
dν1

dµ
+
dν2

dµ

)
dµ

Thus, d(ν1+ν2)
dµ = dν1

dµ + dν2
dµ .

Proof. Since ν1, ν2 are σ-finite measure, |ν1|, |ν2| are σ-finite measure. Hence, there exists E1, · · · , and
F1, · · · such that

⋃∞
i=1Ei = X =

⋃∞
i=1 Fi and |ν1|(Ei) < ∞, |ν2|(Fi) < ∞. Let Gij = Ei ∩ Fj . Then, for a

bijection between N2 and N, we can regard (Gij) = (Gi), and

(ν1 + ν2)(Gi) ≤ ν1(Ek) + ν2(Fk′) <∞ for some k, k′ ∈ N,

also
⋃∞
i=1Gi = X. Hence (ν1 + ν2) is σ-finite. And if E ∈M with µ(E) = 0, then

(ν1 + ν2)(E) = ν1(E) + ν2(E) = 0 + 0 = 0.

Thus, ν1 + ν2 � µ. The rest is obvious from calculation.

Proposition 4.32 (Proposition 3.9 in [1] p.91). Suppose on (X,M) µ and λ are σ-finite measure, ν is a
σ-finite signed measure and ν � µ and µ� λ.

(a) If g ∈ L1(ν) then g dνdµ ∈ L
1(µ) and

∫
gdν =

∫
g
(
dν
dµ

)
dµ. Furthermore, if g ∈ L+(M) and ν is a positive

measure, then dν
dµ ≥ 0 and

∫
gdν =

∫
g
(
dν
dµ

)
dµ.

(b) (Chain rule) From given condition, ν � λ and

dν

dλ
=

(
dλ

dµ

)(
dµ

dλ

)
for λ-a.e.

Proof. Using the Jordan Decomposition, ν = ν+ − ν−. We may without loss of generality assume that ν is
a positive measure. Suppose g = 1E for some E ∈M. Then,∫

1Edν = ν(E) =

∫
E

dν

dµ
dµ =

∫
1E

(
dν

dµ

)
dµ.

So the given integration holds when g = 1E case. Since E was arbitrary and integration is linear functional,
the integration formula holds for any simple function. Now let g ∈ L+(M). Then by theorem 2.10, there
exists a sequence (φn)∞n=1 of simple functions,

φ1 ≤ φ2 ≤ · · · , φn → g.

Thus, by the Monotone Convergence theorem,∫
gdν =︸︷︷︸

MCT

lim
n→∞

∫
φndν = lim

n→∞

∫
φn

(
dν

dµ

)
dµ =︸︷︷︸

MCT

∫
g

(
dν

dµ

)
dµ.

If ν is positive, then After redefining µ-null set of dν
dµ ’s domain, it is positive.

If g ∈ L1(ν), then g = g+ − g− for g+, g− ∈ L+(M) ∩ L1(ν). Thus,∫
gdν =

∫
g+dν −

∫
g−dν =

∫
(g+ − g−)

dν

dµ
dµ =

∫
g
dν

dµ
dµ.
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For part (b) with positive measure ν, let E ∈M. Then,

ν(E) =

∫
E

dν

dλ
dλ

whereas ∫
E

(
dν

dµ

)(
dµ

dλ

)
dλ =

∫
1E ·

(
dν

dµ

)(
dµ

dλ

)
dλ =

∫
gdµ.

where the last equality comes from the fact that 1E

(
dν
dµ

)
≥ 0 and

∫
g
(
dµ
dλ

)
dλ =

∫
gdµ when we replace ν

with µ and µ with λ in the part (a). Also,∫
gdµ =

∫
1E

dλ

dµ
dµ =

∫
E

dν

dµ
dµ = ν(E),

where the last eqaulity comes from the definition of Radon-Nikodym derivative. Thus, by summing these
calculation, ∫

E

dν

dλ
dλ = ν(E) =

∫
E

(
dν

dµ

)(
dµ

dλ

)
dλ,

which implies dν
dλ =

(
dν
dµ

)(
dµ
dλ

)
λ-a.e.

Corollary 4.33 (Corollary 3.10 in citefo, p.91). If µ and λ are σ-finite measure and µ � λ, λ � µ, then(
dµ
dλ

)(
dλ
dµ

)
= 1 µ-a.e. and ν-a.e.

Example 4.34 (Nonexample: Dirac δ-function). Let µ be Lebesgue measure and ν the point of mass at 0
on (R,BR). Then, ν ⊥ µ. Thus there is no Radon-Nikodym Derivative, even if Dirac δ-function behave like
Radon-Nikodym derivative. (Actually, it is not the function.)

Proposition 4.35 (Proposition 3.11 in [1] p.91). If µ1, · · · , µn are positive measures on (X,M) there is a
measure µ such that µj � µ for all j, namely, µ =

∑n
j=1 µj.

Proof. Since each µi is positive, µ(E) = 0 =⇒ µi(E) = 0. for all i ∈ N.

4.2 Complex Measures

Definition 4.36 (Complex Measure). A complex measure on (X,M) is ν :M→ C such that

(i) ν(∅) = 0

(ii) If E1, E2, · · · ∈ M are disjoint, then ν(
⋃
j = 1)∞Ej =

∑∞
j=1 ν(Ej)

where the series converges absolutely.

Observation 4.37. If ν is a C-measure and νr(E) = Reν(E), νi(E) = Imν(E), then νr and νi are signed
measure, and each omits ±∞. So, νr, νi :M→ [−k, k] for some k ∈ N. Thus, sup{|ν(E)| : E ∈M} <∞.

Proof. This follows from that series converges absolutely. So a positive measure is a complex measure only
if it is finite. Or if µ is positive measure and f ∈ L1(µ), then fdµ is a positive measure.

Definition 4.38 (Mutual singularity, absolute continuity for complex measure). If ν is a complex measure
and µ is a signed measure, then ν ⊥ µ means νr ⊥ µ and νi ⊥ µ. If ν and µ are both complex measure then
ν ⊥ µ means ν ⊥ µr and ν ⊥ µi. If ν is a complex measure and λ is a positive measure, then ν � λ means
νr � λ and νi � λ.
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Theorem 4.39 (Complex version of the Lebesgue-Radon-Nikodym theorem, 3.12 in [1] p. 93). Let ν be a
complex measure, µ be a σ-finite positive measures on (X,M). Then, ∃! complex measure λ, ρ such that

ν = λ+ ρ, λ ⊥ µ, and ρ� µ.

Also, ∃f ∈ L1(µ) such that dρ = fdµ, where f is unique up to redefining of a µ-null set.

Proof. By applying the Lebesgue-Radon-Nikodym theorem on νr and νi, we have λi, λr and ρi, ρr and fr, fi
which satisfy the desired properties. Then let λ = λr + iλi, ρ = ρr + iρi, and f = fr + ifi. Then desired
property still holds. Also, uniqueness is derived from the each νi and νr.

Proposition 4.40 (Lemma for defining Total variation of a complex measure). Let ν be a complex measure
on (X,M). Then, ∃ a finite measure µ such that ν � µ and letting f = dν

dµ so that dν = fdµ. Thus, by the

complex version of Radon-Nikodym theorem(3.12) there exists f = dν
dµ so that dν = fdµ.

If also µ′ is a finite measure and dν = f ′dµ′ then |f |dµ = |f ′|dµ′.

Proof. Let µ = |νr| + |νi| Then, ν � µ. Let ρ = µ + µ′. Then, µ � ρ, µ′ � ρ. Thus, µ =
(
dµ
dρ

)
dρ, µ′ =(

dµ′

dρ

)
dρ. By the chain rule,

f ′
dµ′

dρ
dρ = f ′dµ′ = dν = fdµ = f

dµ

dρ
dρ.

Thus,

f ′
dµ′

dρ
dρ = νf

dµ

dρ
dρ.

Then, by the uniqueness of the Radon-Nikodym derivative, we have

f ′
dµ′

dρ
= f

dµ

dρ
for ρ-a.e.

Thus,

|f ′|dµ
′

dρ
= |f |dµ

dρ
for ρ-a.e. =⇒ |f |dµ = |f ′|dµ′.

Definition 4.41 (Total variation for complex measure). Given a complex measure ν, its total variation is
the finite positive measures |ν| defined by

d|ν| := |f |dµ,
as in the previous proposition.

Observation 4.42. If ν is a finite signed (real-valued) measure with Jordan decomposition ν = ν+ − ν−,
then we already defined

|ν|R := ν+ + ν−

Let’s check that our new definition agrees with original one, i.e., |ν| = ν+ + ν−. Note that ν+ + ν− is a
finite measure and ν � ν+ + ν− and letting X = P ∪N be a Hanh decomposition for ν. So, we know

ν+(E) = ν(E ∩ P ) and ν−(E) = −ν(E ∩N).

Thus,

ν(E) =

∫
E

(1P − 1N )d(ν+ + ν−) =⇒ dν = 1P − 1Nd|ν|R.

By definition,
d|ν| = |1P − 1N |d|ν|R = d|ν|R

since |1P − 1N | = 1X = 1. So |ν| = |ν|R, as desired.
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Definition 4.43 (L1, L+ for complex measure). For a complex measure ν, L1(ν) := L1(νr)∩L1(νi) and for
h ∈ L1(ν), ∫

hdν =

∫
hdνr + i

∫
hdνi.

Proposition 4.44 (Proposition 3.13 in [1] p. 94). Let ν be a complex measure on (X,M). Then,

(a) ∀E ∈M, |ν(E)| ≤ |ν|(E)

(b) ν � |ν| and dν
d|ν| has absolute value 1 ν-a.e.

(c) L1(ν) = L1(|ν|) and ∀f ∈ L1(ν),

|
∫
fdν| ≤

∫
|f |d|ν|.

Proof. Let dν = fdµ, d|ν| = |f |dµ be as in definition of |ν|. Then,

|ν(E)| =
∣∣∣∣∫
E

fdµ

∣∣∣∣ ≤ ∫ |f |dµ = |ν|(E).

This proves (a) and show that ν � |ν|. For part (b), note that

fdµ = dν =

(
dν

d|ν|

)
d|ν| = h|f |dµ

Thus, h|f | = f µ-a.e. However, {x : |f |(x) = 0} is |ν|-null set since |ν| = |f |dµ. Thus, |h| = 1, |ν|-a.e.
For the part (c), Suppose ν be a complex measure on (X,M). We want to show that L1(ν) = L1(|ν|),

and if f ∈ L1(ν), then |
∫
fdν| ≤

∫
|f |d|ν|. Before start the proof, we need a lemma.

Lemma 4.45. L1(ν) = L1(|ν|).

Proof of the Lemma. For any simple function f =
∑n
j=1 aj1Aj with Aj ∈M,∫

fd|ν| =
n∑
j=1

aj |ν|(Aj) =

n∑
j=1

ajν
+(Aj) +

n∑
j=1

ajν
−(Aj) =

∫
fdν+ +

∫
fdν−.

Thus for any f ∈ L1(ν) = L1(ν+) ∩ L1(ν−),∫
|f |d|ν| ≤

∫
|f |dν+ +

∫
|f |dν− <∞.

Since f was arbitrarily chosen, L1(ν) ⊆ L1(|ν|). Conversely, if f ∈ L1(|ν|), then∫
|f |d|ν| =

∫
|f |dν+ +

∫
fdν− <∞ =⇒

∫
|f |dν+ <∞ and

∫
fdν− <∞,

thus f ∈ L1(ν+) ∩ L1(ν−) = L1(ν). Hence L1(ν) = L1(|ν|)

From the definition of complex measure space and the lemma,

L1(ν) = L1(νr) ∩ L1(νi) = L1(|νr|) ∩ L1(|νi|).

Let µ := |νr| + |νi| Then, since each νr and νi are finite measure, so does µ. And also νr � µ and νi � µ
by construction. Thus, by the Lebesgue-Radon-Nikodym theorem (Theorem 3.8), we have a µ-integrable
function gr : X → R and gi : X → R such that

νr = grdµ and νi = gidµ.
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Thus, for any E ∈M,

ν(E) =

∫
E

dν =

∫
E

dνr + i

∫
E

dνi =

∫
E

gr + igidµ.

Let g := gr + igi. Then, by the uniqueness of Radon-Nikodym derivative from theorem 3.8, d|ν| =
|g|dµ, d|νr| = |gr|dµ, and d|νi| = |gi|dµ. Also, the triangle inequality gives |gr| ≤ |g| and |gi| ≤ |g|, thus

|νr|(E) =

∫
E

|νr| =
∫
E

|gr|dµ ≤
∫
E

|g|dµ = |ν|(E)

|νi|(E) =

∫
E

|νi| =
∫
E

|gi|dµ ≤
∫
E

|g|dµ = |ν|(E)

Thus, νr � |ν|, νi � |ν|, therefore by the Lebesgue-Radon-Nikodym theorem, there exists |ν|-integrable
function hr, hi such that νr = hr|ν|, νi = hi|ν|. Thus, for any E ∈M,

ν(E) =

∫
E

hr + ihid|ν| =
∫
E

(hr + ihi)|g|dµ,

Let h := hr + ihi. Since ν(E) =
∫
E
gdµ, this implies

g = h|g| for µ-a.e.

And since |ν| � µ, this implies g = h|g| |ν|-a.e. Now let E = g−1({0}). Since g is |ν| measurable, E is |ν|
measurable, therefore

|ν|(E) =

∫
E

|g|dµ =

∫
E

0dµ = 0.

Thus, g 6= 0 |ν|-a.e., this implies |h| = 1 |ν|-a.e. Also, triangle inequality implies |hr| ≤ |h| = 1 and
|hi| ≤ |h| = 1.

To show the inequality, let f ∈ L1(ν) =︸︷︷︸
by the Lemma

L1(|ν|). Then,

∫
|f |d|νr| =

∫
|f ||hr|d|ν| ≤︸︷︷︸

since |hr|≤1

∫
|f |d|ν| <∞

∫
|f |d|νi| =

∫
|f ||hi|d|ν| ≤︸︷︷︸

since |hi|≤1

∫
|f |d|ν| <∞

Thus, f ∈ L1(|νr|) ∩ L1(|νi|) = L1(νr) ∩ L1(νi). Conversely, if f ∈ L1(|νr|) ∩ L1(|νi|), then∫
|f |d|ν| =

∫
|f |1d|ν| =

∫
|f ||hr + ihi|d|ν| ≤

∫
|f ||hr|d|ν|+

∫
|f ||hi|d|ν| =

∫
|f |d|νr|+

∫
|f |d|νi| <∞

Thus, f ∈ L1(|ν|) = L1(ν).
Also, note that for f ∈ L1(ν) = L1(|ν|),∣∣∣∣∫ fdµ

∣∣∣∣ =

∣∣∣∣∫ fdνr + ifdνi

∣∣∣∣ =

∣∣∣∣∫ fhrd|ν|+ ifhid|ν|
∣∣∣∣ =

∣∣∣∣∫ f(hr + ihi)d|ν|
∣∣∣∣ ≤ ∫ |f | |hr + ihi| d|ν| =

∫
|f |d|ν|,

as desired.

Proposition 4.46 (Proposition 3.14 in [1] p.94). If ν1 and ν2 are complex measures on (X,M), then
|ν1 + ν2| ≤ |ν1|+ |ν2|

Proof. By the proposition 4.40, we can write νj = fjdµ for j = 1, 2 and some µ-integrable function fj . Then

d|ν1 + ν2| = |f1 + f2|dµ ≤ |f1|dµ+ |f2|dµ = d|ν1|+ d|ν2|.
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4.3 Differentiation on Euclidean Space

On R, take dν = fdm, where dm is the Lebesgue measure, with f ∈ L1(m). Let

F (t) :=


ν((0, t]) t > 0

0 t = 0

−ν([t, 0]) t < 0

.

Does this function F differentiable? If it is differentiable, we should show that

lim
r↘0

F (t0 + r)− F (t0 − r)
2r

= lim
r↘0

ν((t0 − r, t0 + r])

m((t0 − r, t0 + r]
= lim
r↘0

∫
[t0−r,t0+r]f(y)dm(y)

m([t0 − r, t0 + r]

?︷︸︸︷
= f(t0).

To show this, fix n ∈ N and let m denote the Lebesgue measure on Rn.

Definition 4.47 (Locally integrable). f : Rn → C is locally integrable if
∫
K
|f(x)|dm(x) < +∞ for all

bounded measureable set K ⊆ Rn. It is enough to take K = B(r, x) where

B(r, x) := {y ∈ Rn : |y − x| < r}.

Let L1
loc denote the set of locally integrable functions f on Rn.

Remark 4.48 (Notation). For f ∈ L1
loc(Rn), x ∈ Rn, r > 0, let

Arf(x) :=
1

m(B(r, x))

∫
B(r,x)

f(y)dy.

”A” means average.

(1) E ∈ Rn is measurable, then m(rE) = rnm(E) by the theorem 2.44 in [1][p.73].

(2) m(B(r, x)) = m(B(r, 0)) = rnπ
n
2

Γ(1+n
2 ) . where

Γ(1 + k) = k!,Γ(k +
1

2
) =

1 · 3 · 5 · · · (2k − 1)

2k
√
π.

Definition 4.49 (Jointly continuous). A function g(a, b) is jointly continuous iff g(a, b)→ g(x, y) when
a→ x and b→ y.

Lemma 4.50 (Lemma 3.16 in [1]p.96). If f ∈ L1
loc(Rn), then Arf(x) is jointly continuous in r > 0 and

x ∈ Rn

Proof. This is equivalent to showing (r, x) 7→
∫
B(r,x)

f(y)dm(y) is jointly continuous. Let rk → r > 0,

xk → x. Then, for some large enough k, |1B(rk,xk)f | ≤ |1B(rk,x)f |. Thus, by the DCT,

lim
k→∞

∫
1B(rk,xk)fdm =︸︷︷︸

DCT

∫
1B(r,x)fdm.

Definition 4.51 (Hardy Littlewood Maximal Function). If f ∈ L1
loc(Rn) then the Hardy-littlewood

maximal function of f is
(Hf)(x) = sup

r>0
Ar|f |(x).

Thus,

(Hf)−1((t,∞)) =
⋃
r>0

(Ar|f |)−1((t,∞)).

and this set is open by the lemma 3.16 since Ar(f) is continuous on any t ∈ Rn.
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Theorem 4.52 (The Hardy-Littlewood maximal theorem, 1930, 3.17 in [1] p.96). ∃C > 0 depnding on n
such that ∀f ∈ L1(m),∀α > 0,

m({x : Hf(x) > α}) ≤ C

α

∫
|f |dm.

Or since ‖f‖1 =
∫
|f |dm, we can restate it as

m({x : Hf(x) > α}) ≤ C

α
‖f‖1 .

To see this, we need a technical lemma, 3.15 in [1].

Lemma 4.53 (Lemma 3.15 in [1], p.96). Let C be a collection of open balls in Rn and let u =
⋃
B∈C B. If

t < m(U), there exists a disjoint sequence B1, · · ·Bk ∈ C such that
∑k
j=1m(Bj) > 3−nt.

Proof. By theorem 2.40 in [1], there exists a compact set K ⊂ U such that c < m(K). Since K is compact
and C is a cover of K it has a finite subcover, say L1 := {A1, · · · , Aq}. Let B1 ∈ L be a ball with maximal
radius. Let L2 := {A ∈ L1 : A ∩ B1 = ∅}. If L∈ is empty, then stop. Otherwise, take B2 ∈ L2 such that
B2 has the maximal radius in L2, and let L3 := {A ∈ L2 : A ∩ (B1 ∪ B2) = ∅}. Continue this process until
we stop. (Since L1 has finitely many balls, this process must stop at some point.) Say Lk+1 = ∅. Then,
{B1, · · ·Bk} are chosen ball which are pairwise disjoint. Then, ∀A ∈ L1 \ {B1, · · ·Bk}, A ∩ Bp for some
p ∈ [k]. Now let

p = min
p∈[k]
{A ∩Bl 6= ∅ : A ∈ L1 \ {B1, · · ·Bk}, Bl ∈ {B1, · · · , Bk}}.

Then, A ∩ (B1 ∪ · · · ∪Bp−1) = ∅. Thus, A ∈ Lp, thus A has a radius less than Bp, hence A ⊂ B∗p where B∗p
is a ball concentric with Bp whose radius is three times that of Bp. Since A was arbitrary, every element in
L1 \ {B1, · · ·Bk} is contained in one of B∗p and each Bp is contained in B∗p . Thus,

K ⊂
k⋃
j=1

Bj =⇒ t < m(K) < 3n
k∑
j=1

m(Bj) =⇒ t

3n
<

k∑
j=1

m(Bj).

Proof of the Maximal theorem. Let Eα = {x : Hf(x) > α}. If x ∈ Eα, let rx > 0 such that Arx |f |(x) > α.
Thus,

Eα ⊂
⋃
x∈Eα

B(rx, x).

Therefore, if c < m(Eα), then by the lemma 3.15 in [1], there exists x1, · · · , xk ∈ Eα such that Bj :=

B(rxj , xj)s are disjoint and
∑k
j=1m(Bj) > 3−nt. Since each xj ∈ Eα, this implies

1

m(Bj)

∫
Bj

|f |dm > α =⇒ 1

α

∫
Bj

|f |dm > m(Bj) for each j.

Thus,

t3−n ≤
k∑
j=1

m(Bj) <
1

α

k∑
j=1

∫
Bj

|f |dm =
1

α

∫
1⋃k

j=1 Bj
|f |dm ≤ 1

α

∫
Rn
|f |dm =

1

α

∫
|f |dm.

Thus,

t <
3n

α

∫
|f |dm

and by taking supremum on t, we can conclude that

m(Eα) ≤ 3n

α

∫
|f |dm.
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Actually, Stein and Stromberg (1983) gives that C = O(n log n) result. Now we will prove that limr↘0Arf(y) =
f(x) for ”most” x. But for particular x, limr↘0Arf(y) need not exists. For example, let f =

∑∞
n=1 1

[2−n2−1,2−n2
]
.

If r = 2−n
2

then Arf(0) > 1
4 . If r = 2−n

2−1 then

Arf(0) =
2−n

2 − 2−n
2−1

2 · 2−n2 +

∞∑
k=n+1

2−k
2 − 2−k

2−1

2 · 2−n2 ≥ 2−n
2 − 2−n

2−1

2 · 2−n2 =
2−n

2−1

4 · 2−n2−1
=

1

4
.

However, if r = 2−n
2−1 then

Arf(0) =
2−(n+1)2 − 2−(n+1)2−1

2−n2−1
+

∞∑
k=n+2

2−k
2 − 2−k

2−1

2 · 2−n2−1
≤ 2−(n+1)2

2−n2−1
= 2−2n → 0 as n→∞.

So lim supr↘0Arf(0) ≥ 1
4 but lim infr↘0Arf(0) = 0, therefore limit doesn’t exists.

Theorem 4.54 (Differntiation Theorem Version 1. 3.18 in [1] p.97). If f ∈ L1
loc(Rn) then limr→0+ Arf(x) =

f(x) for a.e. x ∈ Rn.

Proof. It will suffices to show that ∀N ∈ N, limr→0+ Arf(x) = f(x) for a.e. x ∈ B(N, 0), However, since we
are interested in local points near x with small radius r, thus when we set r < 1, then

Arf(x) = Ar(f1B(N,0)).

Thus we may assume that f ∈ L1

By the theorem 2.41, ∃g : Rn → C continuous and compactly supported function, such that ‖f − g‖1 < ε.

Claim 4.55. limr→0+ Arg(x) = g(x) for any x ∈ Rn

Proof of the claim. Since g is continuous, ∀x ∈ Rn and ∀δ > 0,∃r > 0 such that |g(y)− g(x)| < δ whenever
|y − x| < r. Thus,

|Arg(x)− g(x)| = 1

m(B(r, x))

∣∣∣∣∣
∫
B(r,x)

(g(y)− g(x))

∣∣∣∣∣ < δm(B(r, x))

m(B(r, x))
= δ.

Thus Arg(x)→ g(x) as r → 0.

Now, note that

lim
r→0+

Arf(x) = f(x) for a.e. x ∈ Rn ⇐⇒ lim sup
r→0+

|Arf(x)− f(x)| = 0 for a.e. x ∈ Rn

⇐⇒ inf
δ>0

sup
0<r<δ

|Arf(x)− f(x)| = 0 for a.e. x ∈ Rn

Thus,

inf
δ>0

sup
0<r<δ

|Arf(x)− f(x)| ≤︸︷︷︸
Triangle ineq.

lim sup
r→0+

|Arf(x)−Arg(x)|

+ lim sup
r→0+

|Arg(x)− g(x)|

+ lim sup
r→0+

|g(x)− f(x)|

For the first term,

lim sup
r→0+

|Arf(x)−Arg(x)| =

∣∣∣∣∣ 1

m(B(r, x))

∫
B(r,x)

(f(y)− g(y))dy

∣∣∣∣∣ ≤ 1

m(B(r, x))

∫
B(r,x)

|f(y)− g(y)|dy

= Ar|f − g|(x) ≤ H(f − g)(x).
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And lim supr→0+ |Arg(x)− g(x)| = 0 by the above claim. Thus,

lim sup
r→0+

|Arf(x)− f(x)| ≤ H(f − g)(x) + |f − g|(x).

To show this, let
α > 0, Eα := {x ∈ Rn : lim sup

r→0+

|Arf(x)− f(x)| ≥ α}

Then,
Eα ⊆ Fα

2
∪Gα

2

when
Fα := {x ∈ Rn : H(f − g)(x) > α}, Gα := {x ∈ Rn : |f − g| > α}.

However, by the Hardy Littlewood Maximal Theorem,

m(Fα
2

) ≤ C
α
2

‖f − g‖1 <
2Cε

α
and m(Gα

2
) ≤
‖f − g‖1

α
2

<
2ε

α
.

Thus,

m(Eα) ≤ 2C + 1

α
ε→ 0 as ε→ 0.

Therefore,

∀x ∈ Rn\,
∞⋃
j=1

E 1
j
, lim
r→0+

Arf(x) = f(x).

This implies that
lim
r→0+

Arf(x) = f(x) for a.e. x.

So, the theorem 3.18 implies that

lim
r→0+

1

m(B(r, x))

∫
B(r,x)

(f(y)− f(x))dm(y) = 0 for a.e.x.

However, even this is true when we change f(y)− f(x) to |f(y)− f(x)|.

Definition 4.56 (Lebesgue set of f). For f ∈ L1
loc(Rn), the Lebesgue set of f is

Lf := {x ∈ Rn : lim
r→0+

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)|dm(y) = 0}.

Theorem 4.57 (Theorem 3.20 in [1] p.98). If f ∈ L1
loc(Rm) Then m(Lf )c) = 0

Proof. For z ∈ C, let fz(x) = |f(x) − z| and apply the theorem 3.18 in [1]. Then, ∃Ez ⊆ Rn such that
m(Ez) = 0 and ∀x ∈ Ecz,

limr→0+

1

m(B(r, x))

∫
B(r,x)

|f(y)− z|dm(y) = |f(x)− z|.

Now let D be a countable dense subset of C, and let E =
⋃
z∈D Ez. Then, m(E) = 0, since it is countable

union of null sets. Let x ∈ Ec, ε > 0, and let z ∈ D such that |z − f(x)| < ε. This choice is possible since D
is countable dense. Then,

∀y ∈ Rn, |f(y)− f(x)| < ε+ |f(y)− z|.
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Since x ∈ Ecz,

lim sup
r→0+

1

m(B(r, x))

∫
B(r,x)

|f(y)− f(x)|dm(y) ≤ ε+ lim sup
r→0+

1

m(B(r, x))

∫
B(r,x)

|f(y)− z|dm(y)

= ε+ |f(x)− z| ≤ 2ε

where the equality comes from the fact that z ∈ Ecz, and the last inequality comes from our choice of z as
|z − f(x)| < ε. Thus by letting ε→ 0, x ∈ Lcf .

Definition 4.58 (Shrink Nicely ). A family (Er)r>0 of subsets of Rn shrink nicely to x ∈ Rn if

(i) ∀r > 0, Er ⊆ B(r, x).

(ii) ∃α > 0, s.t. ∀r > 0,m(Er) ≤ αm(B(r, x)).

Example 4.59 (Example of a family shrinking nicely). Let Er = x+B( r3 , (
r
2 , 0, · · · , 0)) on Rn. Then, since

the farthest point of Er from x is ( 5r
6 , 0, · · · , 0), Er ⊆ B(r, x) and

m(Er) = V (
r

3
) = Crn3−n > 4−n (Crn) = 4−nm(B(r, x)).

Thus (Er)r>0 shrinks nicely to x.

Proposition 4.60 (The Lebesgue Differentiation Theorem, 3.21 in [1], p.98). If f ∈ L1
loc(Rn), x ∈ Lf , and

if (Er)r>0 is a family shrinking nicely to x, then

lim
r→0+

∫
Er

|f(y)− f(x)|dm(y) = 0.

Proof. From shirinking nicely to x property

1

m(Er)

∫
Er

|f(y)− f(x)|dm(y) ≤ 1

αm(B(r, x))

∫
B(r,x)

|f(y)− f(x)|dm(y)

and 1
αm(B(r,x))

∫
B(r,x)

|f(y)− f(x)|dm(y)→ 0 as r → 0+ since x ∈ Lf .

Definition 4.61 (Regular Borel measure). A Borel measure ν on Rn is regular if

(i) ν(K) <∞ for all compact subset K ⊆ Rn

(ii) ∀E ∈ BRn , ν(E) = inf{ν(U) : U is open,U ⊆ Rn, E ⊆ U}.

If ν is signed or complex Borel measure, then ν is regular if |ν| is regular.

Proposition 4.62. If ν is regular, then ∀E ∈ B(Rn),

ν(E) = sup{ν(K) : K ⊆ Rn,K is compact,K ⊆ E}.

Proof. Without loss of generality, let E be bounded, such that E ⊆ B(N, 0). Let F = B(N, 0) \ E. Let
ε > 0. Then, by the regularity, ∃U ⊆ Rn open, such that F ⊆ U , such that

ν(U) < ν(F ) + ε.

Let K = B(N, 0) \ U ⊆ E. Then,

ν(E \K) ≤ ν(E)− ν(K) = ν(E)− (ν(B(N − ε, 0))− ν(U))

< ν(E)− ν(B(N − ε, 0)) + ν(F ) + ε

= ν(B(N, 0))− ν(B(N − ε, 0)) + ε

= εC(ε)

where C(ε) is just polynomial of ε. Thus, letting ε → 0, ν(E \ K) → 0. Hence the desired conclusion
holds.
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Theorem 4.63 (Theorem 2.40, Dr. Dykema’s proof). Lebesgue measure m on Rn is regular.

Proof. The case n = 1 is done by theorem 1.18. on [1][p.36]. For n > 1, condition (i) is clear. For (ii), let
E ∈ BRn . If m(E) = +∞, then it is okay, since Rn covers E. If m(E) < +∞, then from definition of product
measure, for any fixed ε > 0, ∃k ∈ N with B1, · · · , Bk ⊆ Rn such that

∀j ∈ [k], Bj := Aj,1 ×Aj,2 × · · · ×Aj,n, where Aj,i ∈ BR and E ⊆
k⋃
j=1

Bj and m(E) + ε ≥
k∑
j=1

m(Bj).

By the regularity of Lebesgue measure on R, for any δ > 0, ∃ open Vi,j ⊆ R such that

Aj,i ⊆ Vj,i and m(Vj,i)− δ ≤ m(Aj,i).

Let Vj :=
∏n
i=1 Vj,i. Then, Vj ⊇ Bj and Vj is open. By choosing δ smaller, we can have

m(Vj)−
ε

k
≤ m(Bj).

Then, let U =
⋃k
j=1 Uj . Then E ⊆ U, and m(U)− ε ≤

∑k
j=1m(Bj).

Proposition 4.64 (Lemma for theorem 3.22 in [1] p.99). Let f ∈ L+(Rn). Let dν = fdm. Then, ν is
regular iff f ∈ L1

loc(Rn).

Proof. If ν is regular, then ν(B(R, 0)) < +∞, so f1
B(R,0)

∈ L1(Rn). Thus, f ∈ L1
loc(Rn).

Conversely, if f ∈ L1
loc(Rn). Then, for ν and K ⊆ Rn where K is compact set, there exists N ∈ N such

that K ⊆ B(N, 0), thus ν(K) ≤ ν(B(N, 0)) =
∫
f1B(N,0)dm <∞, thus condition (i) of regularity holds.

To show condition (ii), suppose E ∈ BRn is bounded. (If it is not bounded, then take U = Rn.) Let ε > 0,
we want to find U ⊆ Rn which is open and E ⊆ U , and ν(E) + ε ≥ ν(U). Suppose E ⊆ B(R, 0). Note that
f1B(R,0) ∈ L1(Rn). Then by applying Corollary 3.6 in [1][p.89] to f1B(R,0); for any ε > 0 there exists δ > 0
such that ∀F ∈ BRn with m(F ) < δ, ∫

F

f1B(R,0)dm < ε.

By regularity of Lebesgue measure, ∃U ⊆ Rn which is open and E ⊆ U and m(U \ E) < ε. Thus,∫
U\E

f1B(R,0)dm < ε ⇐⇒
∫
U\E∩B(R,0)

fdm < ε ⇐⇒ ν(U ∩B(R, 0) \ E) < ε.

Since U ∩B(R, 0) is open set, we are done.

Lemma 4.65. Let λ, µ be positive Borel measure on Rn. Then, µ+ λ is regular if and only if µ and λ are
regular.

Proof. For condition (i), if µ + λ is regular, then any K ⊆ Rn with compactness, µ(K) ≤ (µ + λ)(K) < ∞
and λ(K) ≤ (µ+λ)(K) <∞, thus (i) holds for µ and λ. Conversely, if µ and λ is regular, then (µ+λ)(K) =
µ(K) + λ(K) < +∞.

For condition (ii), suppose µ+ λ is regular. Then, for any E ∈ BRn ∃U ⊆ Rn which is open, E ⊆ U and

(µ+ λ)(U) < (µ+ λ)(E) + ε =⇒ 0 ≤ µ(U)− µ(E) + λ(U)− λ(E) < ε

From U ⊃ E, we know 0 < µ(U)− µ(E) and 0 < λ(U)− λ(E). Thus,

0 ≤ µ(U)− µ(E) < ε and 0 ≤ λ(U)− λ(E) < ε

Since ε was arbitrary, we have desired result. Conversely, if µ and λ are regular, then for any ε > 0, ∃U1, U2

open sets containing E and
µ(U1) < µ(E) + ε and λ(U2) < λ(E) + ε.

94



Then, U = U1 ∩ U2 is also open, since it is finite intersection, and E ⊂ U . Thus,

µ(U) < µ(E)+ε and λ(U) < λ(E)+ε =⇒ 0 < µ(U)+λ(U)−µ(E)−λ(E) < ε =⇒ 0 < (µ+λ)(U)−(µ+λ)(E) < ε.

Thus, by letting ε→ 0, we have desired result.

Theorem 4.66 (Theorem 3.22 in [1], p.99). Let ν be a signed or complex Borel measure on Rn that is
regular. Let

dν = dλ+ fdm

(where dρ = fdm) be the Lebesgue-Radon-Nikodym decomposition. (So λ ⊥ m). Then for m-a.e. x ∈ Rn,

lim
r↘0

ν(Er)

m(Er)
= f(x)

for every family (Er)r>0 that shrink nicely to x.

Proof. Note that ν − λ = ρ = fdm is regular by the proposition 4.64, f ∈ L1
loc(Rn). By the Lebesgue

Differentiation theorem,

ρ(E)

m(E)
=

1

m(Er)

∫
Er

fdm→ 0 as r → 0 for a.e.x and (Er)r>0 shrinking nicely to x.

So it remains to show that for almost every x,

λ(Er)

m(Er)
→ 0 as r ↘ 0 for every (Er)r>0 shrinking nicely to x.

Since shrinking nicely to x implies that Er ⊆ B(r, x) and that ∃α > 0 such that ∀r,m(Er) > αm(B(r, x)),∣∣∣∣ λ(Er)

m(Er)

∣∣∣∣ ≤ |λ|(Er)m(Er)
≤ |λ|(B(r, x))

αm(B(r, x))

where first equality comes from |λ(Er)| ≤ |λ|(Er) and the last equality comes from Er ⊆ B(r, x) and
m(Er) > αm(B(r, x)). Thus, it suffices to show that for a.e. x,

lim
r→0

|λ|(B(r, x))

αm(B(r, x))
= 0. (17)

Note that |λ| ⊥ m. Thus, ∃A ∈ BRn such that |λ|(A) = 0 = m(Ac). Let

Fk := {x ∈ A : lim sup
r↘0

|λ|(B(r, x))

αm(B(r, x))
>

1

k
}.

It will suffices to show that m(Fk) = 0. Since then (17) will holds for all x ∈ A \
⋃∞
k=1 Fk and

m

((
A \

∞⋃
k=1

Fk

)c)
= m

(
Ac ∪

( ∞⋃
k=1

Fk

))
≤ m(Ac) = 0.

Let ε > 0. We have |λ|(Fk) ≤ |λ|(A) = 0 By the regularity of |λ| which is from definition of regularity of
signed measure, ∃U , open in Rn such that Fk ⊆ U and |λ|(U) < ε. Given x ∈ Fk,∃rx > 0 such that

|λ|(B(rx, x)

m(B(rx, x))
>

1

k
and B(rx, x) ⊂ U
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. Let V :=
⋃
x∈Fk B(rx, x). Then Fk ⊂ V ⊂ U . Then by the covering lemma 3.15 in [1][p.95], ∃x1, · · · , xn ∈

Fk such that B(rx1 , x1), · · · , B(rxn , xn) are disjoint and

n∑
j=1

m(B(rxj , xj)) ≥ 3−nm(V ).

Then,

3−nm(V ) ≤
n∑
j=1

m(B(rxj , xj)) ≤ k
n∑
j=1

|λ|(B(rx, xj)) ≤ k|λ|(V ) ≤ k|λ|(U) ≤ kε.

So,
m(Fk) ≤ m(V ) ≤ 3nkε.

By ε→ 0, we has m(Fk) = 0 as desired.

4.4 Functions of Bounded Variation

Suppose G : R→ R is increasing right continuous function. Then, the Lebesgue-Stieltjes measure µG is
determined by

µG([a, b]) = G(b)−G(a).

Then, µG is regular, as proved in theorem 1.18.

Theorem 4.67 (Theorem 3.23 in [1]p.101). Let F : R → R be increasing function. let G(x) = F (x+) :=
limt→x+ F (t) = inft>x F (t). Then,

(a) The set of points at which F is discontinuous is at most countable.

(b) F and G are differentiable almost everywhere, and F ′ = G′ m-a.e.

This may be related Qualifier exam... But not sure.

Proof. For (a), let
EN := {x ∈ (−N,N : F (x+) 6= F (x−)},

where F (x−) := limt→x− F (t) = supt<x F (t). Since∑
x∈EN

(F (x+)− F (x−)) ≤ F (N)− F (−N) <∞,

This implies EN must be countable set; otherwise the sum should be infinity, contradiction. Hence,⋃∞
N=1EN = {x ∈ R : F (x+) 6= F (x−)} is also countable.

For part (b), note that G is increasing and right continuous, and G(x) = F (x) except x ∈ E := {x ∈ R :
F (x+) 6= F (x−)}. Moreover,

G(x+ h)−G(x) =

{
µG((x, x+ h]) if h > 0

−µG((x+ h, x]) if h < 0
,

where µG is a Lebesgue Stieltjes measure with respect to G. By theorem 1.18, µG is regular. So, from
Radon-Nikodym decomposition dµG = dλ+ fdm, f ∈ L1

loc(R). Also note that ((x, x+ h])h>0 shrinks nicely
to x, since (x, x + h] ⊆ B(x, h) and m(x, x + h] = h > 2

3h = 2
3m(B(h, x)). Thus, by the theorem 3.22, for

m-a.e. x ∈ R,
G(x+ h)−G(x)

h
=
µG((x, x+ h])

m((x, x+ h])
→ f(x) as h↘ 0.
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Also, ((x − h, x])h>0 shrinks nicely to x, by the similar argument. Thus, by the theorem 3.22, for m-a.e.
x ∈ R,

G(x)−G(x− h)

h
=
µG((x− h, x])

m((x− h, x])
→ f(x) as h↘ 0.

Thus, for m-a.e. x ∈ R, G and F are differentiable. And from part (a), F (x) 6= G(x) is countable. Now it
suffices to show that if x ∈ R and F (x) = G(x) and G′(x) exists, then F ′(x) = G′(x).

For some fixedx ∈ R, suppose F (x) = G(x) and G′(x) exists, then F ′(x) = G′(x).Let 0 < α < 1. For
h > 0,

G(x+ αh) = F ((x+ αh)+) ≤ F (x+ h) ≤ F ((x+ h)+) = G(x+ h)

where the first inequality comes from F is an increasing function. Thus,

G(x+ αh) ≤ F (x+ h) ≤ G(x+ h).

Then, we can modify this inequality as below;

α · G(x+ αh)−G(x)

αh
=
G(x+ αh)−G(x)

h
≤ F (x+ h)− F (x)

h
≤ G(x+ h)−G(x)

h

By letting h→ 0, we have

αG′(x) ≤ lim inf
h↘0

F (x+ h)− F (x)

h
≤ lim sup

h↘0

F (x+ h)− F (x)

h
≤ G′(x).

By letting α→ 1, we can conclude that limh→0+
F (x+h)−F (x)

h exists and equal to G′(x), as desired.
Using the almost same argument, we have

G(x− αh) = F ((x− αh)+) ≥ F (x− h) ≥ F ((x− h)+) = G(x− h)

where the first inequality comes from F is an increasing function. Thus,

G(x− αh) ≥ F (x− h) ≥ G(x− h).

Then, we can modify this inequality as below;

α · G(x− αh)−G(x)

α− h
=
G(x− αh)−G(x)

−h
≤ F (x− h)− F (x)

−h
≤ G(x− h)−G(x)

−h
By letting h→ 0, we have

αG′(x) ≤ lim inf
h↘0

F (x− h)− F (x)

−h
≤ lim sup

h↘0

F (x− h)− F (x)

−h
≤ G′(x).

By letting α→ 1, we can conclude that limh→0+
F (x−h)−F (x)

−h exists and equal to G′(x), as desired. Thus we
can conclude that F ′(x) exists and F ′(x) = G′(x).

Remark 4.68 (Notation). Let ν be a σ-finite (positive, signed, or complex) Borel measure ν on Rn. Write
ν = λ+ ρ when ρ� m and λ ⊥ m using the Radon-Nikodym theorem. Write

νa.c. = ρ

for the absolutely continuous part of ν. An atom of ν is a singleton {x} such that ν({x}) 6= 0. The atomic
part of ν is

νatomic

∑
{x:{x} is an atom}

ν({x})δx.

Note that
|νatomic| ≤ |λ|, and νs.c. := λ− νatomic.

Then, νs.c. ⊥ m, and we call νs.c. the singular part of ν. Thus we have

ν = νa.c. + νs.c. + νatomic.
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Example 4.69 (Revisit Cantor set). Let C ∈ [0, 1] be the Cantor set. Then in the chapter 1 we know that

C := {x ∈ [0, 1] : ∃(ai)∞i=1 ∈ {0, 2}N such that x =

∞∑
j=1

aj
3j
}.

Also, we can represetn [0, 1] as

[0, 1] = {t ∈ [0, 1] : ∃(bi)∞i=1 ∈ {0, 1}N such that t =

∞∑
j=1

bj
2j
}.

Thus, the map

f : C → [0, 1] by

∞∑
j=1

aj
3j
7→

∞∑
j=1

aj/2

2j

is well-defined, increasing, and onto map. (But not injective since f( 7
9 ) = 3

4 = f( 8
9 ).) We can extend f to

G : [0, 1] → [0, 1] by letting G be constant on each of disjoint interval I appearing in [0, 1] \ C. Such G is
called Cantor-Lebesgue Function and G is increasing and onto. Thus, G is continuous, since increasing
onto function is continuous. Hence,

µG(Cc) = 0,

Since Cc are union of intervals where each interval is preimage of constant of G. So, µG ⊥ m. However,
since G is continuous, it doesn’t have any jump discontinuous; so there are no atoms. Thus, µG is singular
continuous.

Also note that G′(x) = 0 for m-a.e. i.e., except a points in C.

Definition 4.70 (Total Variation). Let F : R→ C. The total variation of F on [a, b] is

TVF ([a, b]) := sup{
n∑
j=1

|F (xj)− F (xj−1)| : a = x0 < x1 < x2 < · · · < xn = b} ∈ [0,+∞].

Also,

TF (b) := TVF ((−∞, b]) = sup{
n∑
j=1

|F (xj)− F (xj−1)|x0 < x1 < · · · < xn = b},

no lower bound on the partition. Clearly, TF is increasing function.

Observation 4.71. If a < b, then
TF (b) = TF (a) + TVF ([a, b])

So if TF (a) <∞, then TVF ([a, b]) = TF (b)− TF (a).

Proof. If TF (a) > ∞, then TF (b) ≥ TF (a), thus the equality holds. If TF (a) < ∞, then note that for any
partition P1 of (−∞, a] and P2 of [a, b], P1 ∪ P2 is a partition of (−∞, b]. Hence,

TF (b) ≥
n∑

xi∈P1∪P2,i=1

|F (xi)− F (xi−1)| =
n∑

xi∈P1,i=1

|F (xi)− F (xi−1)|+
n∑

xi∈P2,i=1

|F (xi)− F (xi−1)|.

Since P1, P2 are arbitrarily chosen, so

TF (b) ≥ TF (a) + TVF ([a, b]).
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Conversely, for any partition P of (−∞, b], a ∪ P gives partition P1 for (−∞, a] and P2 for [a, b]. Thus,

n∑
xi∈P,i=1

|F (xi)− F (xi−1)| ≤
n∑

xi∈a∪P,i=1

|F (xi)− F (xi−1)|

=

n∑
xi∈P1,i=1

|F (xi)− F (xi−1)|+
n∑

xi∈P2,i=1

|F (xi)− F (xi−1)|

≤ TF (a) + TVF ([a, b]).

Thus
TF (b) ≤ TF (a) + TVF ([a, b]).

Hence, TF (b) = TF (a) + TVF ([a, b]).

Example 4.72. F (x) : [0, 1]→ [0, 1] is as below. It is clearly bounded continuous function. However,

TVF ([0, 1]) ≥ |F (1)− F (
3

4
)|+ |F (

3

4
)− F (

1

2
)|+ · · · ≥

n∑
j=2

1

j
=∞.

y

x

y = x

11
2

1
3

1
4

· · ·

Definition 4.73 (Boudned variation). Let F : R → C be bounded variation on R if TF (+∞) :=
limx→+∞ TF (X) < +∞. Let

BV := {F : R→ C : F has bounded variation}.

Let F : [a, b]→ C has bounded variation on the interval [a, b] if TVF ([a, b]) <∞. Let

BV ([a, b]) := {F : R→ C : F has bounded variation on [a, b]}.

Observation 4.74.

(i) BV and BV ([a, b]) are vector spaces and BV ([a, b]) can be identified with

{F ∈ BV : F is constant function on (−∞, a] and [−b,+∞).}

Also, BV can be identified with {F |[a,b] ∈ BV } ⊆ BV ([a, b]). Thus, property holds for BV also holds
for BV ([a, b]).

(ii) F ∈ BV =⇒ F is bounded.
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(iii) If F is monotone and bounded, then F ∈ BV .

(iv) If F : [a, b] → C is continuous and f is differentiable on (a, b) and if F ′ is bounded, then by MVT, F
has bounded variation.

(v) If F ∈ BV then F (±) := limx→±∞ F (x) exists

(vi) TλF = |λ|TF and TF+G ≤ TF + TG

Proof. For part (a), BV is closed under addition and scalar multiplication comse from triangle inequality
and just pulling out scalar from the definition of the sum. Also, additive, multiplicative, and distributive
axioms hold.

For part (b), if F is not bounded at x, then we can take a partition P such that a = −M < x = b then∑
P |F (xi)− F (xi−1)| = F (x)− F (−M) =∞. Thus, TF (+∞) =∞, contradiction.
For part (c), if F is monotone and bounded, than without loss of generality, assume F is monotone

nondecreasing. Then, any partition P starting with a and ending with b gives∑
P

|F (xi)− F (xi−1)| =
∑
P

F (xi)− F (xi−1) = F (b)− F (a).

Thus, TF (∞) = limn→∞ F (n) − F (−n). Since F is bounded, limn→∞ F (n) < +∞, limn→∞F (−n) < +∞,
thus their subtraction is also bounded, as desired.

For part (d), let P : a = x0 < x1 < · · · < xn = b be arbitrary partition. Then, by Mean Value Theorem,

|F (xi)− F (xi−1)| = |(xi − xi−1)F ′(ci)| for some ci ∈ (xi−1, xi).

Thus, from the fact that F ′ < M for some M ∈ R,

n∑
j=1

|F (xi)− F (xi−1)| =
n∑
i=1

|(xi − xi−1)F ′ci | ≤M
n∑
i=1

(xi − xi−1) = M(b− a) < +∞.

Hence, F has bounded variation.
For part (e), if lim infx→+∞ F (x) < lim supx→+∞ F (x), then F should have infinite oscillations be-

tween these value, this may lead to get a partition giving TF (∞) = +∞, contradiction. Similarly, if
lim infx→−∞ F (x) < lim supx→−∞ F (x), it has also infinitely many oscillations, so F 6∈ BV .

For part (f), for any partition,

n∑
i=1

|λF (xi)− λF (xi−1)| = |λ|
n∑
i=1

|F (xi)− λF (xi−1)|

and

n∑
i=1

|G(Fxi) + F (xi)− λG(xi−1) + F (xi−1)| ≤
n∑
i=1

|F (xi)− λF (xi−1)|+
n∑
i=1

|G(xi)− λG(xi−1)|.

Lemma 4.75 (Lemma 3.26 in [1] p.102). If F ∈ BV is a real-valued function, then TF + F, TF − F are
increasing.

Proof. Let x < y, ε > 0. Choose x0 < x1 < · · · < xn such that

n∑
j=1

|F (xj)− F (xj−1)| ≥ TF (x)− ε.
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Then,

TF (x)− ε+ |F (y)− F (x)| ≤

 n∑
j=1

|F (xj)− F (xj−1)|

+ |F (y)− F (x)| ≤ TF (y).

So, |F (y)− F (x)| ≤ TF (y)− TF (x) + ε. By letting ε→ 0, we have for x < y,

F (y)− F (x) ≤ |F (y)− F (x)| ≤ TF (y)− TF (x) =⇒ (TF − F )(x) ≤ (TF − F )(y)

F (x)− F (y) ≤ |F (y)− F (x)| ≤ TF (y)− TF (x) =⇒ (TF + F )(x) ≤ (TF + F )(y),

as desired.

Theorem 4.76 (Theorem 3.27 part (1) in [1] p.103).

(a) F ∈ BV ⇐⇒ ReF, ImF ∈ BV

(b) Given F : R→ R, F ∈ BV ⇐⇒ ∃ bounded increasing function f, g : R→ R such that F = f − g.

Proof. For part (a), for any partition, note that

n∑
i=1

|F (xi)− F (xi−1)| =
n∑
i=1

|ReF (xi)−ReF (xi−1)|+
n∑
i=1

|ImF (xi)− ImF (xi−1)|.

Thus if ReF, ImF ∈ BV , then F ∈ BV . Conversely, from Rez ≤ |z| and Imz ≤ |z|, we know

n∑
i=1

|ReF (xi)−ReF (xi−1)| ≤
n∑
i=1

|F (xi)−F (xi−1)| and

n∑
i=1

|ImF (xi)−ImF (xi−1)| ≤
n∑
i=1

|F (xi)−F (xi−1)|.

This implies F ∈ BV =⇒ ReF, ImF ∈ BV .
For part (b), take f = 1

2 (TF + F ), g = 1
2 (TF − F ). Then by the lemma, F has two such increasing

function. Also, they are bounded since

F (y)− F (x) ≤ |F (y)− F (x)| ≤ TF (y)− TF (x) ≤ TF (∞)− TF (−∞) <∞
F (x)− F (y) ≤ |F (y)− F (x)| ≤ TF (y)− TF (x) ≤ TF (∞)− TF (−∞) <∞.

Definition 4.77 (Jordan Decomposition of F , positive and negative variation). If F : R→ R and F ∈ BV ,
the we call a representation F = 1

2 (TF + F )− 1
2 (TF − F ) be Jordan Decomposition of F . We denote

F± =
1

2
(TF ± F ),

as positive and negative variation of F . In this case, we know that

1

2
(TF ± F )(x) = sup{

n∑
j=1

(F (xj)− F (xj−1))± : x0 < · · · < xn = x} ± F (−∞)

where

x+ = max(x, 0) =
1

2
(|x|+ x) and x− = max(−x, 0) =

1

2
(|x| − x)

Theorem 4.78 (Theorem 3.27 part (2) in [1] p.103). Let F ∈ BV .

(c) ∀x ∈ R, F (x+) := limt→x+ F (t) and F (x−) := limt→x− F (t) exists. Also, F (±∞) = limt→±∞ F (t)
exists.
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(c) The set of points at which F is discontinuous is countable.

(c) Let G(x) = F (x+). Then, ∀ a.e. x ∈ R, G′(x), F ′(x) exists and G′(x) = F ′(x).

Proof. For part (c), by Observation 4.74 (v), F (±∞) exists. Also, we know that increasing bounded real-
valued function g has limxn→±x± g(xn), by taking g|(a,x) or g|(x,b) for some a < x < b and apply the
Monotone convergence theorem. Thus, for any real-valued bounded variation function, it has such limits.
For complex valued function, real part and imaginary part has the limit, thus the function itself also has a
limit.

For part (d) and (e) follows from the increasing function with theorem 3.23 in [1][p.101], so their sub-
traction also has the same property.

Lemma 4.79 (Lemma 3.28 in [1] p.104). Let F ∈ BV .

(a) TF (−∞) := limx→−∞ TF (x) = 0

(b) If F is right continuous, then so is TF .

Proof. For part (a), 0 ≤ TF (−∞) is clear by definition and

|TF | ≤ TReF + TImF ≤ T+
ReF + T−ReF + T+

ImF + T−ImF .

So it suffices to show that the RHS goes to zero as x → −∞. Without loss of generality, assume that F is
the monotone increasing bounded function. Then,

TF (x) = sup
x0<x

F (x)− F (x0) = F (x)− F (−∞).

So
lim

x→−∞
TF (x) = F (−∞)− F (−∞) = 0.

For part (b), Suppose F is right continuous. Let T = TF . Fix x ∈ R, let α = T (x+) − T (x). We want
to show α = 0 Let ε > 0, δ > 0 such that

0 < h < δ =⇒ |F (x+ h)− F (x)| < ε and T (x+ h)− T (x+) < ε.

which can be derived from the right continuity of F and definition of T (X+) and the property that T is
increasing function (thus by Monotone convergence theorem). Let x = x0 < x1 < · · ·xn = x+ h such that

n∑
j=1

|F (xj)− F (xj−1)| ≥ 1

2
(T (x+ h)− T (x)) ≥ 1

2
α,

using the definition of T as a supremum of such sequences. Then, |F (x1)− F (x0)| < ε since x1 < h, thus

n∑
j=2

|F (xj)− F (xj−1)| ≥ 1

2
α− ε.

Hence,

1

2
α− ε ≥

n∑
j=2

|F (xj)− F (xj−1)| ≤ T (x+ h)− T (x1) ≤ T (x+ h)− T (x+) < ε

where first inequality comes from the above inequality, the second inequality comes from the definition of T ,
and the third inequality comes from the property that T is increasing, and the last inequality comes from
our choice of h. Hence,

1

2
α < 2ε =⇒ α < 4ε.

By letting ε→ 0, α = 0.
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Definition 4.80 (Normal Bounded variation). Define Normal bounded variation as a set

NBV = {F ∈ BV : F is right continuous and F (−∞) = 0}.

Observation 4.81.

(1) If F ∈ BV , let G(x) = F (x+) − F (−∞). Then G ∈ NBV and G(X) = F (x) − F (−∞) except some
countably many values of x.

(2) G ∈ NBV then (ReG)±, (ImG)± ∈ NBV .

Theorem 4.82 (Theorem 3.29 in [1] p.104). Let µ be a complex Borel measure on R and let

F (x) := µ((−∞, X]). (18)

Then, F ∈ NBV . Conversely, if F ∈ NBV , then ∃! complex Borel measure µF on R such that

F (x) = µF ((−∞, X]) for all x ∈ R. (19)

Moreover,
|µF | = µTF . (20)

Proof. We can rewrite µ = (µ1 − µ2) + i(µ3 − µ4) where µis are finite positive measure using Hanh

Decomposition. Thus, Fj(x) := µj((−∞, x]) =


µj((0, x]) + µ((−∞, 0]) if x > 0

0 + µ((−∞, 0]) if x = 0

−µj((x, 0]) + µ((−∞, 0]) if x < 0

is increasing and

right continuous by theorem 1.16., and Fj(−∞) = 0. And Fj(+∞) = µj(R) < ∞. Therefore, by
the theorem 3.27 (b) in [1][p. 103] F1 − F2, F3 − F4 ∈ BV and by 3.27 (a), F ∈ BV . And from
F (−∞) = (F1 − F2)(−∞) + i(F3 − F4)(−∞) = 0, F ∈ NBV .

Conversely, if F ∈ NBV , then ReF±, ImF± ∈ NBV by theorem 3.27 (a). And each of them is yields
bounded, increasing and right continuous by the theorem 3.27 (b) and observations 4.81. Thus, by theorem
1.16, they gives finite Lebesgue Stieljes measures, µReF± , µImF± . So,

µF = µReF+ − µReF− + i(µImF+ − µReF−)

Thus, (19) holds.
To see |µF | = µTF , we need several claim, as outlined in the Exercise 28. Let G(x) = |µF |((−∞, x]).

Claim 4.83. TF (x) ≤ G(x).

Proof. For any x ∈ R,

TF (x) = sup{
n∑
k=1

|F (xk)− F (xk−1)| : n ∈ N, x0 < x1 < · · · < xn = x} =

= sup{
n∑
k=1

|µ((−∞, xk])− µ((−∞, xk−1])| : n ∈ N, x0 < x1 < · · · < xn = x}

= sup{
n∑
k=1

|µ((xk−1, xk])− µ((−∞, xk−1])| : n ∈ N, x0 < x1 < · · · < xn = x}

≤ sup{
n∑
k=1

|µ(Ek)− µ((−∞, xk−1])| : n ∈ N, (Ek)s are disjoint sequence such that

n⋃
k=1

= (−∞, x]}

= |µF |((−∞, x]) = G(x).

where the last equality comes from the exercise 21, µ1 = |µ| case.
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Claim 4.84. |µF (E)| ≤ µTF (E) for all E ∈ BR.

Proof. For any interval (a, b] ⊆ R,

TF (b)−TF (a) = sup{
n∑
k=1

|F (xk)−F (xk−1)| : n ∈ N, a = x0 < x1 < · · · < xn = b} =⇒ |F (b)−F (a)| ≤ TF (b)−TF (a).

Thus,

|µF ((a, b])| = |µF ((−∞, b])− µF ((−∞, a])| = |F (b)− F (a)| ≤ TF (b)− TF (a) = µTF ((a, b]).

Also, clearly,
|µF (∅)| = 0 = µTF (∅).

And,
|µF ((−∞, x])| = lim

a→−∞
µF ((a, x]) ≤ lim

a→−∞
µTF ((a, x]) = µTF ((−∞, x]).

Also,
|µF ((x,∞))| = lim

b→∞
µF ((x, b]) ≤ lim

b→∞
µTF ((x, b]) = µ((x,∞)).

Now let A be an algebra generated by all half (left) open intervals. Then by the above inequalities,

A ⊆ C := {E ∈ BR : |µF (E)| ≤ µTF (E)}.

Also, for any increasing sequence (Ek)∞k=1 ⊆ C,

|µF (

∞⋃
k=1

Ek)| = | lim
k→∞

µF (Ek)| = lim
k→∞

|µF (Ek)| ≤ lim
k→∞

µTF (Ek) = µTF (

∞⋃
k=1

Ek).

Thus,
⋃∞
k=1Ek) ∈ C. Moreover, for any decreasing sequence (Ek)∞k=1 ⊆ C,

|µF (

∞⋂
k=1

Ek)| = | lim
k→∞

µF (Ek)| = lim
k→∞

|µF (Ek)| ≤ lim
k→∞

µTF (Ek) = µTF (

∞⋂
k=1

Ek).

Thus,
⋂∞
k=1Ek) ∈ C. Hence, C is closed under countable increasing union and countable decreasing inter-

section. Thus, C contains monotone class generated by A, which is BR, by the monotone class lemma.

Claim 4.85. If E ∈ BR, |µF (E)| ≤ µTF (E). Hence G ≤ TF .

Proof. By the Exercise 21,

|µF (E)| = sup{
∞∑
k=1

|µF (Ek)| : (Ek)∞k=1 is a sequence of disjoint Borel sets such that E =

∞⋃
k=1

Ek}

≤ sup{
∞∑
k=1

|µTF (Ek)| : (Ek)∞k=1 is a sequence of disjoint Borel sets such that E =

∞⋃
k=1

Ek} = µTF (E).

where the inequality comes from above claims. Thus, for any x ∈ R,

G(x) = |µF |((−∞, x]) ≤ µTF ((−∞, x]) = TF (x) ≤ G(x) =⇒ G(x) = TF (x).

Let M := {E ∈ BR : |µF |(E) = µTF (E)}. Then, (−∞, x] ∈ M for any x ∈ R. Thus, M contains BR, since
((−∞, x])x∈R generates BR.
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Proposition 4.86 (Proposition 3.30 in [1] p. 105). Let F ∈ NBV. Thus, F ′(x) exists for m-a.e. x by the
theorem 3.27 (e). Then, F ′ ∈ L1(m). Let G(x) =

∫
(−∞,x]

F ′dm. Then µF = µG + λ, where λ is complex

Borel measure such that λ ⊥ m and µG � m.
Consequently, µF ⊥ m iff F ′ = 0 m-a.e. and µF � m iff F (x) =

∫
(−∞,x]

F ′(x)dm for all x ∈ R.

Proof. From theorem 3.29 in [1], µF exists. And by the theorem 1.18, µF is regular. And Lebesgue-Radon-
Nikodym theorem and Theorem 3.22 in [1][Lebesgue Differentiation Theorem] says that µF = ρ + λ where
ρ� m, λ ⊥ m and dρ = fdm for some f ∈ L1(m) and for m-a.e. x ∈ R,

f(x) = lim
r→0+

µF (Er)

m(Er)
for any (Er)r>0 shrinking nicely to x.

Let Er = (x, x+ r] or Er = (x− r, x]. Then,

f(x) = lim
r→0+

µF ((x, x+ r])

r
= lim
r→0+

F (x+ r)− F (x)

r

and

f(x) = lim
r→0−

µF ((x− r, x])

r
= lim
r→0−

F (x)− F (x− r)
r

So, f = F ′ a.e. Hence,

µG((a, b]) = G(b)−G(a) =

∫
(a,b]

F ′dm =

∫
(a,b]

fdm =

∫
(a,b]

dρ = ρ((a, b]).

The consequent facts are followed from the above equation.

Definition 4.87 (Absolute continuity for the function). F : R → C is absolutely continuous if ∀ε >
0,∃δ > 0 such that whenever n ∈ N, and a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and

∑n
j=1(bj − aj) < δ, then∑n

j=1 |F (bj) − F (aj)| < ε. If F : [a.b] → C, then we say F is absolutely continuous in [a, b] when the
same condition holds whenever a1, · · · , an, b1, · · · , bn ∈ [a, b] as well. Then, define as below;

AC := {f : R→ C : f is absolutely continuous.} and AC[a, b] := {f : [a, b]→ C : f is absolutely continuous on [a, b]}.

Lemma 4.88 (Lemma 3.34 in [1] p. 106). AC[a, b] ⊆ BV [a, b].

Proof. Let F ∈ AC[a, b], ε = 1. Choose δ as in definition of AC. Let m ∈ N such that b−a
m < δ. To show

F ∈ BV [a, b], we must show a uniform bound on
∑n
j=1 |F (xj)− F (xj−1)| over all partitions a = x0 < x1 <

· · · < xn = b. For any given partition P , we may take a refinements of our partition so that it contains all
a + b−a

m · k for k ∈ [m − 1]. Then, there exists an integer 0 = p(0) < p(1) < · · · < p(m) <= n such that

xp(k) = a+ b−a
m · k. Then,

n∑
j=1

|F (xj)− F (xj−1)| =
n∑
k=1

p(k)∑
j=p(k−1)+1

|F (xj)− F (xj−1)|

and for each k,

p(k)∑
j=p(k−1)+1

|F (xj)− F (xj−1)| < ε since

p(k)∑
j=p(k−1)+1

|xj − xj−1| =
b− a
m

< δ and absolute continuity of f.

Thus,
n∑
j=1

|F (xj)− F (xj−1)| =
n∑
k=1

p(k)∑
j=p(k−1)+1

|F (xj)− F (xj−1)| ≤ mε = m < +∞.
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Since the given partition was arbitrary, we can conclude that

TVF ([a, b]) ≤ m < +∞,

as desired.

Observation 4.89.

1. AC 6⊆ BV in general, when we think F (x) = x. Then F ∈ AC is clear but it is not in BV since
TF (+∞) = +∞.

2. AC is a vector space, since it is closed under addition and scalar multiplication, and AC is a subspace
of a function space.

3. If F is absolutely continuous then it is uniformly continuous, by taking N = 1.

4. If F is everywhere differentiable and F ′ is bounded then |F (bj) − f(aj)| ≤ (max |F ′|)(bj − aj | by the
Mean Value theorem, thus it is absolutely continuous by taking δ < ε

max |F ′| .

Proposition 4.90. Let F ∈ BV ∩AC. Then, TF ∈ AC.

Proof. Note that TF (b) − TF (a) = TVF ([a, b]). To show TF is absolutely continuous, for any given ε, we
must show ∃δ > 0 such that whenever a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and

∑n
j=1(bj − aj) < δ we have∑n

j=1 TVF ([aj , bj ]) < ε.
Since F ∈ AC, ∃δ > 0 such that

n∑
j=1

(bj − aj) < δ =⇒
n∑
j=1

|F (bj)− F (aj)| <
ε

2
.

For each j, choose a partition

aj = x
(j)
0 < xj1 < · · ·xk(j) = bj

such that

TVF ((aj , bj ])−
ε

2n
≤

k(j)∑
i=1

|F (x
(j)
i )− F (x

(j)
i−1)|.

Thus,
n∑
j=1

TVF ((aj , bj ]) ≤
ε

2
+

n∑
j=1

k(j)∑
i=1

|F (x
(j)
i )− F (x

(j)
i−1)|.

Since
∑n
j=1

∑k(j)
i=1 (xji − x

j
i−1) =

∑n
j=1(bj − aj) < δ by choice of δ,

ε

2

n∑
j=1

k(j)∑
i=1

|F (x
(j)
i )− F (x

(j)
i−1)| ≤ ε

2
,

by absolute continuity of F . Thus,

n∑
j=1

TVF ((aj , bj ]) ≤
ε

2

n∑
j=1

k(j)∑
i=1

|F (x
(j)
i )− F (x

(j)
i−1)| ≤ ε

2
+
ε

2
= ε

as desired.

Corollary 4.91. If F ∈ BV , then F ∈ AC ⇐⇒ (ReF )±, (ImF )± ∈ AC.
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Proof. From left to right is clear. If F ∈ AC ∩ BV , then by the triangle inequality, we can make suitable
ε.

Proposition 4.92 (Proposition 3.32 in [1] p.105). Let F ∈ NBV. Then, F ∈ AC iff µF � m.

Proof. Suppose µF � m. Then, |µF | � m by the Exercise 8. By theorem 3.5, ∀ε > 0, ∃δ > 0 such that
E ∈ BR,m(E) < δ =⇒ |µF |(E) < ε. If a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and if

∑n
j=1(bj − aj) < δ, then

m

 n⋃
j=1

(aj , bj ]

 < δ,

so

ε > |µF |

 n⋃
j=1

(aj , bj ]

 =

n∑
j=1

|µF |((aj , bj ]) ≥
n∑
j=1

|µF |((aj , bj ]) =

n∑
j=1

|F (bj)− F (aj)|.

So F ∈ AC.
Conversely, suppose F ∈ AC, Since |µF | = µTF by the theorem 3.29 in [1][p.104], TF ∈ AC. Thus,

instead of using F , we replace F with TF , using its increasing property. In other words, without loss of
generality, we can assume that F is increasing function.

Suppose E ∈ BR such that m(E) = 0. We want to show that µF (E) = 0. Let ε > 0. Since F ∈ AC, ∃δ > 0
such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and if

∑n
j=1(bj − aj) < δ =⇒

∑n
j=1 F (bj) − F (aj) < ε.

Now there exists an open U ⊆ R such that E ⊆ U and m(U) < δ, from the regularity of m. We can write
U =

⋃∞
j=1(aj , bj) for disjoint open intervals. Then,

µF (E) ≤ µF (U) = lim
N→∞

N∑
j=1

µF ((aj , bj)) ≤ lim
N→∞

N∑
j=1

µF ((aj , bj ]) = lim
N→∞

N∑
j=1

F (bj − F (aj) < ε

since
∑N
j=1(bj − aj) < δ. So, µF (E) = 0. If we use TF instead of F , this implies |µF |(E) = 0 =⇒ µF (E) =

0.

Corollary 4.93 (Corollary 3.33 in [1]p.105). F ∈ NBV ∩ AC ⇐⇒ ∃f ∈ L1(m) such that F (x) =∫
(−∞,x]

fdm and that F ′ = f m-a.e.

Proof. If F ∈ NBV ∩AC, then by the proposition 3.32, µF � m, thus by the proposition 3.30, ∃f ∈ L1(m)
such that F (x) =

∫
(−∞,x]

fdm and that F ′ = f m-a.e.

Conversely, if ∃f ∈ L1(m) such that F (x) =
∫

(−∞,x]
fdm and that F ′ = f m-a.e., then F ∈ NBV since

F (+∞) <∞, and µF � m. Thus by the proposition 3.32, F ∈ AC.

Theorem 4.94 (The Fundamental Theorem of Calculus, Theorem 3.35 in [1]p.105). Let a, b ∈ R, a < b. Let
F : [a, b]→ C. Then, the followings are equivalent.

(i) F ∈ AC[a, b].

(ii) ∃f ∈ L1([a, b]) such that ∀x ∈ (a, b]), F (x) = F (a) +
∫

(a,x]
fdm.

(iii) F is differentiable m-a.e. on [a, b], F ′ ∈ L1([a, b]), and ∀x ∈ [a, b], F (x) = F (a) +
∫

(a,x]
Fdm.

Proof. Suppose (i). Then by the lemma 3.34 in [1][p.106], F ∈ BV ([a, b]). Now extend F to F̂ : R→ C such
that

F̂ (x) =


F (a)− F (a) if x ≤ a
F (x)− F (a) if x ∈ [a, b]

F (b)− F (a) if x ≥ b.

Then, F̂ ∈ NBV ∩AC. Then, (iii) follows from the Corollary 3.33. And (iii) implies (ii).
To show that (ii) implies (i), set f(t) = 0 for t 6∈ [a, b] and applying corollary 3.33.

107



Definition 4.95 (Notation for Lebesgue-Stieltjes integrals). If F ∈ NBV , we denote
∫
gdµF as

∫
gdF or∫

g(x)dF (x). Such integrals are called Lebesgue-Stieltjes integrals. Note that∫
A

GdF =

∫
A

GdµF =

∫
A

GF ′dm.

If G =
∑n
k=1G( kn )1( k−1

n , kn ] with A = [0, 1], then

∫
[0,1]

GdF =

∞∑
k=1

G(
k

n
)(F (

k

n
)− F (

k − 1

n
)).

If µF � m, then ∃f ∈ L1, dµF = fdm. Thus,∫
(a,b]

dµF = F (b)− F (a) =

∫
(a,b]

fdm.

By the Fundamental Theorem of Calculus, F ′ = f . So,∫
(a,b]

FdG+

∫
(a,b]

GdF =

∫
FG′dm+

∫
GF ′dm.

Theorem 4.96 (Integration by parts, Theorem 3.36 in [1]p.107). Suppose F,G ∈ NBV and G is continuous.
Then,

∫
(a,b]

FdG+
∫

(a,b]
GdF = F (b)G(b)− F (a)G(a).

Proof. Without loss of generality, F,G is increasing. (Otherwise use the decomposition (ReF )±, (ImF )±, (ReG)±, (ImG)±.
Then, µF , µG are positive measure. Consider a set A := {(x, y) : a < x ≤ y ≤ b} ⊆ (a, b]2. Then

µF × µG(A) =︸︷︷︸
Fubini’s Thm

∫ ∫
1A(x, y)dµF (x)dµG(y)

=

∫
(a,b]

∫
(a,y]

dµF (x)dµG(y) =

∫
(a,b]

(F (y)− F (a))dµG(y) =

∫
(a,b]

FdG− F (b)(G(b)−G(a)).

On the other hand,

µF × µG(A) =︸︷︷︸
Fubini’s Thm

∫ ∫
1A(x, y)dµG(y)dµF (x) =

∫
(a,b]

∫
(x,b]

dµG(y)dµF (x)

Note that
lim
t→x−

µG((t, b]) = G(b)−G(x−) = G(b)−G(x)

since G is continuous. Thus,

µF × µG(A) =

∫
(a,b]

∫
(x,b]

dµG(y)dµF (x) =

∫
(a,b]

G(b)−G(x)dµF (x) = G(b)(F (b)− F (a))−
∫

(a,b]

GdF.

Hence, ∫
(a,b]

FdG+

∫
(a,b]

GdF = G(b)(F (b)− F (a)) + F (a)(G(b)−G(a)) = G(b)F (b)− F (a)F (b).
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5 You should explain standard result part and missing part of the
note.+Cardinal Arithmeitc Theorem + Thm 2.28 (b) =Exercise
2.23
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