Real Variable I - Lecture Note

Lectures by professor Ken Dykema
Notes by Byeongsu Yu

August 31, 2018

Abstract

This note is based on the lecture of Real Variable I given by professor Ken Dykema on Spring 2017 at Texas A\&M University. Much part of this note was $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-ed after class. Every blemish on this note is Byeongsu's own.

Contents

1 Selected review 2
1.1 Notation and ordering 2
1.2 Cardinality 3
2 Measure theory 5
2.1 Introduction and σ-algebra 5
2.2 Measures 9
2.3 Outer measure 12
2.4 Borel measure on the real line 17
2.5 Regularity Properties 21
2.6 Revisit Cardinal Numbers. 23
3 Integration 28
3.1 Measurable function 28
3.2 Integration of Nonnegative Functions 33
3.3 Integration of complex functions 40
3.4 Modes of Convergence 49
3.5 Product Measures 56
3.6 The n-Dimensional Lebesgue Integral 69
3.7 Integration in Polar Coordinates 76
4 Signed Measures and Differentiation 76
4.1 Signed Measures 76
4.2 Complex Measures 85
4.3 Differentiation on Euclidean Space 89
4.4 Functions of Bounded Variation 96
5 You should explain standard result part and missing part of the note. + Cardinal Arith-meitc Theorem + Thm 2.28 (b) =Exercise 2.23, Also, Statements $3.122 \sim 3.126$109

1 Selected review

1.1 Notation and ordering

$$
\begin{aligned}
\mathbb{N}:=\{1,2, \cdots\}, \mathbb{Z}:=\{\cdots,-1,0,1, \cdots\}, \mathbb{Q} & =\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}, \\
\mathbb{R}:=\text { set of real number, } \mathbb{C} & =\mathbb{R}+i \mathbb{R}
\end{aligned}
$$

Definition 1.1 (Relation). A relation on a set X is a subset $R \subset X \times X .(x, y) \in R$ can be written as $x R y$.
Definition 1.2 (Partial order, total order). A partial order on X is a relation R on X such that
(i) $x R x$,
(ii) $x R y$ and $y R x \Longrightarrow x=y$
(iii) $x R y$ and $y R z \Longrightarrow x R z$

A partial order R is linear or total ordering if $\forall x, y \in X$, either $x R y$ or $y R x$.
Example 1.3. (i) \leq on \mathbb{R} is total
(ii) \subseteq on $\mathcal{P}(X)=\{S: S \subseteq X\}$. This is partial order but not total order if $|X| \geq 2$.
(iii) Lexical ordering of words is a total ordering.

Definition 1.4 (Poset). A partially ordered set or poset is (X, \leq) where X is a set and \leq is a partial order on X.

Definition 1.5 (Maximal element). If X is a poset, there is a maximal element $z \in X$, such that $\forall y \in X$ and $z \leq y$, then $y=z$.

Now we have four basic propositions related to each other.
Lemma 1.6 (Zorn's Lemma). Let (X, \leq) be a poset and suppose that every totally ordered subset L of X has an upper bound. (i.e., $\forall L \subseteq X$, endowed with the partial ordering inherited from X is totally ordered; namely, $\forall u \in X$ such that $\forall t \in L, t \subseteq u$.)

Then, X has a maximal element.
Axiom 1.7 (Axiom of choice). Let X be a set and let $\left\{X_{\alpha}\right\}_{\alpha \in \Lambda}$ be a collection of nonempty subset of X. Then, $\exists f: \Lambda \rightarrow X$ such that $\forall \alpha \in \Lambda, f(\alpha) \in X_{\alpha}$.
Definition 1.8 (Well-ordering). A well-ordering on a set X is a total ordering such that every subset of X has a smallest element.

Example 1.9. \mathbb{N} with usual ordering is well-ordering. However, \mathbb{Z} with usual ordering is not an wellordering. Nor is the usual ordering on \mathbb{R}.

Principle 1.10 (The well-ordering principle). Every set can be endowed with a well-ordering.
Principle 1.11 (The Hausdorff Maximal Principle). Every poset has a maximal totally ordered subset E, i.e., if $\exists E^{\prime} \subseteq X$ such that $E \subseteq E^{\prime} \subseteq X$, then E^{\prime} is linearly ordered.

Theorem 1.12. Zorn's lemma, Axiom of choice, the well-ordering principle, and the Hausdorff maximal principle are equivalent and independent with ZF axioms of set theory.

Proof. 1. (Haus) \Longrightarrow (Zorn) Take a maximal linearly ordered subset E of X given by the Hausdorff maximal principle. Then it has an upper bound z by the condition of Zorn's lemma. Then, $z \in E$, otherwise E is not a maximal linearly ordered subset. Then, z is a maximal element, since if $\exists z^{\prime} \in X$ such that $z \leq z^{\prime}$, then $e \leq z^{\prime}, \forall e \in E$, thus $z^{\prime} \in E$, contradicting the maximality of E.
2. $($ Zorn $) \Longrightarrow$ (Haus) Let $(\mathcal{P}(X), \subseteq)$ be a collection of linearly ordered subsets of X and inclusion. This is a poset. Also, every totally ordered subset L of $\mathcal{P}(X)$ has an upper bound $\cup_{l \in L} l$. Thus, by the Zorn's lemma, it has a maximal element E. Note that E is linearly ordered by construction. Also, it is maximal linearly ordered, since if there exists E^{\prime} such that $E \subset E^{\prime} \subseteq X$ and E^{\prime} is linearly ordered, then $E^{\prime} \in \mathcal{P}(X)$, thus E is not a maximal element, contradiction.
3. $($ Zorn $) \Longrightarrow($ Well $)$ Let $W=\left\{\left(\leq_{i} . E_{i}\right): \leq_{i}\right.$ is a partial ordering on $\left.E_{i}\right\}$. Then, give a partial ordering on W as inclusion; i.e., $\left(\leq_{i} . E_{i}\right) \leq\left(\leq_{j} . E_{j}\right)$ if $E_{i} \subset E_{j}, \leq_{i}$ and \leq_{j} agrees on E_{i}, and $\forall x \in E_{j} \backslash E_{i}$ and $\forall y \in E_{j}, y \leq_{j} x$. Then, if $W^{\prime} \subseteq W$ be a totally ordered subset of W, then it has an upper bound, by $\left(\leq_{\infty}, \cup_{E \in W^{\prime}} E\right)$. Hence, by Zorn's lemma, it has a maximal element (\leq, E). And $E=X$, otherwise, $\exists x \in X \backslash E$, thus, we can have well ordering on $E \cup\{x\}$ by extending \leq as $y \leq x$ for all $y \in E$, contradicting to maximality.
4. $(\mathrm{Well}) \Longrightarrow(A C)$ Let $\left\{X_{\alpha}\right\}_{\alpha \in A}$ is a nonempty collection of nonempty sets, given the condition of AC. Then let $X=\cup_{\alpha \in A} X_{\alpha}$. By the well ordering principle, there exists an well ordering on X. Thus, subset X_{α} has a minimal element by the well ordering principle. Let $f: A \rightarrow \cup_{\alpha \in A} X_{\alpha}$ by $f(\alpha)=$ the minimal element of well ordering on X_{α}. Hence, $f(\alpha) \in X_{\alpha}$ by definition.
5. $(A C) \Longrightarrow$ (Haus) It uses transfinite induction, but I don't understand.

1.2 Cardinality

Cardinal is the "size" of a set.
Definition 1.13. Let X, Y be sets. Then, $\operatorname{card}(X) \leq \operatorname{card}(Y)$ means

$$
\exists f: X \xrightarrow{\text { one-to-one }} Y .
$$

$\operatorname{card}(X)=\operatorname{card}(Y)$ means

$$
\exists f: X \xrightarrow{\text { bijection }} Y
$$

$\operatorname{card}(X) \geq \operatorname{card}(Y)$ means

$$
\exists f: X \xrightarrow{\text { surjection }} Y
$$

Theorem 1.14 (Schroder-Bernstein Theorem, Theorem 0.8 in [1] p. 7).

$$
\operatorname{card}(X) \geq \operatorname{card}(Y) \text { and } \operatorname{card}(X) \leq \operatorname{card}(Y) \Longrightarrow \operatorname{card}(X)=\operatorname{card}(Y)
$$

Also,

$$
\operatorname{card}(X) \leq \operatorname{card}(Y) \Longleftrightarrow \operatorname{card}(Y) \leq \operatorname{card}(X)
$$

Proof. Suppose $\operatorname{card}(X) \leq \operatorname{card}(Y)$. Then, $\exists f: X \rightarrow Y$ which is injective. Let $x_{0} \in X$ and define $g: Y \rightarrow X$ by

$$
g(y)=\left\{\begin{array}{l}
f^{-1}(y) \text { if } y \in f(X) \\
x_{0} \text { otherwise }
\end{array}\right.
$$

Then g is surjective.
Conversely, if $\operatorname{card}(Y) \geq \operatorname{card}(X)$, there exists $g: Y \rightarrow X$ which is surjective. Thus, $g^{-1}(\{x\})$ is a nonempty by surjectivity, and disjoint with other pull back of singleton because g is a function. Thus, $\exists f \in \prod_{x \in X} g^{-1}(\{x\})$, and it is an injection from X to Y.

Proposition 1.15 (Proposition 0.7 in [1] p.7). For any X, Y sets, either $\operatorname{card}(X) \leq \operatorname{card}(Y)$ or $\operatorname{card}(Y) \leq$ $\operatorname{card}(X)$.

Proof. Let J be a set of all injections from subsets of X to Y. Then, $\forall f \in J, f \subseteq X \times Y$. Thus J have a poset by inclusion. Thus, every totally ordered subset of J has an upper bound derived by unioning all members of the subset. Hence, by Zorn's lemma, it has a maximal element $f: A \subseteq X \rightarrow B \subseteq Y$. If both $x \in X \backslash A$ and $y \in Y \backslash B$ exists, we can extend $f: A \cup\{x\} \rightarrow B \cup\{y\}$ as $f(x)=y$, contradicting maximality. Thus, either $A=X$ or $B=Y$, this implies either $\operatorname{card}(X) \leq \operatorname{card}(Y)$ or $\operatorname{card}(Y) \leq \operatorname{card}(X)$.

Definition 1.16 (Countable Set). A set X is called countable if it is either finite or $\operatorname{card}(X)=\operatorname{card}(\mathbb{N})$. Otherwise, it is called uncountable.

Proposition 1.17. If X_{α} is countable for any $\alpha \in A$ and A is also countable, then $\cup_{\alpha \in A} X_{\alpha}$ is countable.
Proof. Since X_{α} is countable, $\exists f_{\alpha}: \mathbb{N} \rightarrow X_{\alpha}$ which is surjective. Thus, let $f: \mathbb{N} \times A \rightarrow \cup_{\alpha \in A} X_{\alpha}$ by $f(n, \alpha)=f_{\alpha}(n)$ is also surjective. And since we also have a surjective map $\mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times A$, done.

Theorem 1.18. \mathbb{R} is uncountable, and $\operatorname{card}(\mathbb{R})=\operatorname{card}(\mathcal{P}(\mathbb{N}))$
We need a lemma for showing \mathbb{R} is uncountable.
Lemma 1.19. For any set $X, \operatorname{card}(X)<\operatorname{card}(\mathcal{P}(X))$
proof of the lemma. $f: X \rightarrow \mathcal{P}(X)$ by $x \mapsto\{x\}$ is an injection. Thus, $\operatorname{card}(X) \leq \operatorname{card}(\mathcal{P}(X))$. Also, if $g: X \rightarrow \mathcal{P}(X)$, then let $Y=\{x \in X: x \notin g(x)\}$. Then, $Y \notin g(X)$, otherwise $\exists x^{\prime} \in X$ such that $g\left(x^{\prime}\right)=Y$, thus absurdity comes; if $x^{\prime} \in Y$, then $x^{\prime} \notin Y$ by definition of Y, otherwise if $x^{\prime} \notin Y=g\left(x^{\prime}\right)$, then $x \in Y$ by defintion of Y. Thus, g is not a surjective.
proof of the theorem. Let

$$
f: \mathcal{P}(\mathbb{N}) \rightarrow \mathbb{R} \text { by } f(A)=\left\{\begin{array}{l}
\sum_{n \in A} 2^{-n} \text { if }|A|=\infty \\
1+\sum_{n \in A} 2^{-n} \text { otherwise }
\end{array}\right.
$$

Thus, f is injective. Conversely, let

$$
g: \mathcal{P}(\mathbb{Z}) \rightarrow \mathbb{R} \text { by } g(A)=\left\{\begin{array}{l}
\log \left(\sum_{n \in A} 2^{-n}\right) \text { if } A \text { is bounded } \\
0 \text { otherwise }
\end{array}\right.
$$

Then g is surjective since every positive real number has a base- 2 decimal expansion.
$\operatorname{card}(\mathbb{R})=\operatorname{card}(\mathcal{P}(\mathbb{N}))>\operatorname{card}(\mathbb{N})$, so \mathbb{R} is uncountable.
Definition 1.20 (Equivalence Relation). A relation \sim on X is an equivalence relation if
(i) $\forall x \in X, x \sim x$
(ii) $\forall x, y \in X, x \sim y \Longrightarrow y \sim x$
(iii) $\forall x, y, z \in X, x \sim y, y \sim z \Longrightarrow x \sim z$

If \sim is an equivalence relation on X, we write $[x]=\{y \in X: x \sim y\}$ for the equivalence relation of $x \in X$, and $\{[x]: x \in X\}$ forms a partition of X, i.e., disjoint subsets of X.

Proof. If $x \neq \sim y$ but $[x] \cap[y] \neq \emptyset, \exists z \in[x] \cap[y], x \sim z \sim y \Longrightarrow x \sim y$, contradiction.

2 Measure theory

2.1 Introduction and σ-algebra

Naturally, $\mu([a, b])=b-a$, which is weight of $[a, b]$. However, this usual concept has defect when we integrate by Riemann sum; not all function is integrable.

Definition 2.1. A measure on a set X assigns values $\mu(E) \in[0,+\infty]$ to subset $E \subseteq X$.
Remark 2.2. Desired properties for a volume measure on \mathbb{R}^{n}
(1) If E_{1}, E_{2}, \cdots is a sequence of (pairwise) disjoint subsets of X, then

$$
\mu\left(\cup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \mu\left(E_{j}\right)
$$

(2) If E and $F \subseteq \mathbb{R}^{n}$ are congruent by translation, then $\mu(E)=\mu(F)$.
(3) $\mu\left([0,1]^{n}\right)=1$

However,
Theorem 2.3. \nexists such a volume measure defined on the set $\mathcal{P}\left(\mathbb{R}^{n}\right)$ of all subsets of \mathbb{R}^{n}.
Proof. It suffices to prove the case when $n=1$. Define an equivalence relation \sim on \mathbb{R} by $x \sim y$ iff $x \sim y \in \mathbb{Q}$. It is well defined since $x-x=0 \Longrightarrow x \sim x, x-y \in \mathbb{Q} \Longrightarrow y-x \in \mathbb{Q}$ and $x-y, y-z \in \mathbb{Q} \Longrightarrow x-z=$ $(x-y)+(y-z) \in \mathbb{Q}$.

Let $D \subseteq[0,1)$ be a subset containing exactly one element from each equivalence class of \sim. Clearly, it depends upon the Axiom of Choice.

Given $r \in \mathbb{Q} \cap[0,1)$, let
$D_{r}=((D+r) \cap[0,1)) \cup((D+r-1) \cap[0,1))=\{x+r: x \in D \cap[0,1-r)\} \cup\{x+r-1: x \in D \cap[1-r, 1)\}$.
If $y \in(D+r) \cap(D+r-1)$, then $y=x+r=z+r-1$ for some $x, z \in D$, hence, $y-r=x \in D, y-r+1=$ $z \in D$. However, since $x=z-1, x \sim z \Longleftrightarrow y-r \sim y-r+1$.

Claim 2.4. If $r, s \in \mathbb{Q} \cap[0,1]$, and $r \neq s$, then $D_{r} \cap D_{s}=\emptyset$.
Proof. If $y \in D_{r} \cap D_{s}$, then either $y-r, y-s \in D$ or $y-r+1, y-s \in D$. For the first case, $y-r-(y-s)=$ $s-r \in \mathbb{Q}$, thus $y-r \sim y-s$. Also note that $y-r \neq y-s$ since $r \neq s$. However, D has only one element from each equivalence set, contradiction. For the second case, $y-r+1-(y-s)=s-r+1 \in \mathbb{Q}$, thus $y-r+1 \sim y-s$. The only possible situation is $y-r+1=y-s$, then $r-s=1$, contradiction since $r, s \in[0,1)$.

Claim 2.5. $\sum_{r \in \mathbb{Q} \cap[0,1)} D_{r}=[0,1)$.
Proof. Let $a \in[0,1)$ then a belongs to some equivalence class of \sim. So, $\exists q \in \mathbb{Q}$ such that $a-q \in D$. Thus $0 \leq a-q<1$, since $D \subset[0,1)$. Since $0 \leq a<1$,

$$
-1<-a \leq-q<1-a<1 \Longrightarrow-1<q<1
$$

If $0 \leq q<1$, then $a \in D_{q}$, otherwise, $a \in D_{q+1}$. In any case, $a \in \sum_{r \in \mathbb{Q} \cap[0,1)} D_{r}=[0,1)$. Since other direction of inclusion is obvious, done.

Now we can go back to the main argument. Suppose for contradiction, a countable additive volume measure μ on $\mathcal{P}(\mathbb{R})$ exists. Then,

$$
\mu\left(D_{r}\right)=\mu(r+D \cap[0,1-r))+\mu((r-1)+D \cap[1-r, 1))=\mu(D \cap[0,1-r))+\mu(D \cap[1-r, 1))=\mu(D)
$$

So,

$$
1=\mu([0,1))=\mu\left(\cup_{r \in \mathbb{Q} \cap[0,1)} D_{r}=\sum_{r \in \mathbb{Q} \cap[0,1)} \mu\left(D_{r}\right)=\sum_{\mathbb{N}} \mu(D)\right.
$$

since $\mathbb{Q} \cap[0,1)$ is countable. Hence, if $\mu(D)=0,1=0$, contradiction. If $\mu(D) \neq 0,1=\infty$, contradiction.
Theorem 2.6 (Banach Tarski Paradox). Let $n \geq 3$ and $U, V \subseteq \mathbb{R}^{n}$ be bounded set. Then, $\exists k \in \mathbb{N}, E_{1}, \cdots, E_{k}, F_{1}, \cdots, F_{k}$, and $\left\{E_{j}\right\}$ and $\left\{F_{j}\right\}$ are pairwise disjoint, such that $U=\sum_{j=1}^{k} E_{j}, V=\sum_{j=1}^{k} F_{j}$ but E_{j} and F_{j} are congruent to each other for all j. A and B are congruent to each other means that we can get one from the other by a composition of translation, rotation, and reflection.

Proof. See https://people.math.umass.edu/~weston/oldpapers/banach.pdf
Corollary 2.7. For $n \geq 3$, $\nexists \mu: \mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ satisfying
(1) μ is finitely additive, i.e., if $k \in \mathbb{N}, E_{1}, \cdots E_{k} \subseteq \mathbb{R}^{n}$ are disjoint then $\mu\left(\cup_{j=1}^{k} E_{j}\right)=\sum_{j=1}^{k} \mu\left(E_{j}\right)$.
(2) E, F are congruent, then $\mu(E)=\mu(F)$.
(3) $\mu\left([0,1)^{n}\right)=1$.

Definition 2.8. Let X be sets, $\mathfrak{a} \subseteq \mathcal{P}(X)$, and $\mathfrak{a} \neq \emptyset$. We say \mathfrak{a} is an algebra of subsets of X if
(i) $n \in \mathbb{N}, E_{1}, \cdots, E_{n} \in \mathfrak{a} \Longrightarrow \cup_{j=1}^{n} E_{j} \in \mathfrak{a}$.
(ii) $E \in \mathfrak{a} \Longrightarrow E^{c}=X \backslash E \in \mathfrak{a}$.

We say \mathfrak{a} is a σ-algebra if also belows are hold;
(i') $E_{1}, E_{2}, \cdots \in \mathfrak{a} \Longrightarrow \cup_{j=1}^{\infty} E_{j} \in \mathfrak{a}$
Observation 2.9. If \mathfrak{a} is an algebra of subsets of X, then
(1) $X=E \cup E^{c} \in \mathfrak{a}$ and $\emptyset=X^{c} \in \mathfrak{a}$
(2) If $E_{1}, E_{2}, \cdots E_{n} \in \mathfrak{a}$, then $\cap_{j=1}^{n} E_{j}=\left(\cup_{j=1}^{n} E_{j}^{c}\right)^{c} \in \mathfrak{a}$ (De Morgan)
(3) If \mathfrak{a} is a σ-algebra, then $\cap_{j=1}^{\infty} E_{j}=\left(\cup_{j=1}^{\infty} E_{j}^{c}\right)^{c} \in \mathfrak{a}$ (De Morgan)

Example 2.10. (1) $\mathfrak{a}=\mathcal{P}(X)$.
(2) $\mathfrak{a}=\{\emptyset, X\}$.
(3) $\mathfrak{a}=\left\{E \subseteq X:\right.$ either E or E^{c} is countable $\}$
(4) $\xi \subseteq \mathcal{P}(X)$ then we denote the σ-algebra generated by ξ as

e.g., if $\xi=\{B\}$ for some $B \subseteq X$ then σ-alg $(\xi)=\left\{\emptyset, X, B, B^{c}\right\}$.

Lemma 2.11. If $\xi \subseteq \mathcal{F} \leq \mathcal{P}(X)$, then $\sigma-\operatorname{alg}(\xi) \leq \sigma-\operatorname{alg}(\mathcal{F})$.

Proof. σ-alg (\mathcal{F}) contains ξ, thus it contains σ-alg (ξ)
(5) Let X be a topological space, e.g., X is a metric space such as \mathbb{R}^{n}. Let \mathcal{T}_{X} be the set of all open subsets of X. Then, Borel σ-algebra of X is $\mathcal{B}_{X}:=\sigma-\operatorname{alg}\left(\mathcal{T}_{X}\right)$ And its member is called Borel sets.

Definition $2.12\left(G_{\delta}\right.$-set and F_{σ}-set). Denote $G_{\delta^{-}}$-set be a countable intersection of open sets. Also, denote F_{σ}-set be a countable union of closed sets. Similarly, let $G_{\delta \sigma}$-set be a countable union of G_{δ}-set, and $F_{\sigma \delta}$-set be countable intersection of F_{σ}-set.

Proposition 2.13 (Proposition 1.2 in [1]). $\mathcal{B}_{\mathbb{R}}$ is generated by any of the following:
(a) the open intervals; $\xi_{1}=\{(a, b): a, b \in \mathbb{R}, a<b\}$
(b) the closed intervals; $\xi_{2}=\{[a, b]: a, b \in \mathbb{R}, a<b\}$
(c) the half-open intervals; $\xi_{3}=\{(a, b]: a, b \in \mathbb{R}, a<b\}$ or $\xi_{4}=\{[a, b): a, b \in \mathbb{R}, a<b\}$
(d) the open rays; $\xi_{5}=\{(a, \infty): a \in \mathbb{R}\}$ or $\xi_{6}=\{(-\infty, a): a \in \mathbb{R}\}$
(e) the closed rays; $\xi_{7}=\{[a, \infty): a \in \mathbb{R}\}$ or $\xi_{8}=\{(-\infty, a]: a \in \mathbb{R}\}$

Proof. First of all, $\xi_{2} \subseteq \mathcal{B}_{\mathbb{R}}$ since the complement of closed set is open, and $\xi_{5}, \xi_{6}, \xi_{7}, \xi_{8} \subseteq \mathcal{B}_{\mathbb{R}}$ since they are either open or closed sets. Also, ξ_{3}, ξ_{4} are G_{δ}-set, which is in $\mathcal{B}_{\mathbb{R}}$ since it is closed under countable intersections. Thus, σ-alg $\left(\xi_{i}\right) \subseteq \mathcal{B}_{\mathbb{R}}$ for all $i=1,2, \cdots, 8$

For (a), since $\xi_{1} \subset \mathcal{T}_{\mathbb{R}}, \sigma$-alg $\left(\xi_{1}\right) \subseteq \mathcal{B}_{\mathbb{R}}$. To show the other direction of inclusion, it suffices to show that $\mathcal{T}_{\mathbb{R}} \subseteq \sigma-\operatorname{alg}\left(\xi_{1}\right)$. Note that

$$
(-\infty, b)=\bigcup_{m=1}^{\infty}(b-n, b) \in \sigma-\operatorname{alg}\left(\xi_{1}\right),(a, \infty)=\bigcup_{n=1}^{\infty}(a, a+n) \in \sigma-\operatorname{alg}\left(\xi_{1}\right)
$$

Note that every open subsets of \mathbb{R} is a countable union of disjoint open intervals, so $\mathcal{T}_{\mathbb{R}} \subseteq \sigma$-alg $\left(\xi_{1}\right) \Longrightarrow$ $\mathcal{B}_{\mathbb{R}} \subseteq \sigma-\operatorname{alg}\left(\xi_{1}\right)$.

For (b), note that $(a, b)=\bigcup_{n=1}^{\infty}\left[a+n^{-1}, b-n^{-1}\right] \in \sigma$-alg $\left(\xi_{2}\right)$, thus $\xi_{1} \subseteq \sigma$-alg $\left(\xi_{2}\right)$. Therefore, $\mathcal{B}_{\mathbb{R}}=$ σ-alg $\left(\xi_{1}\right) \subseteq \sigma$-alg $\left(\xi_{2}\right) \subseteq \mathcal{B}_{\mathbb{R}}$, done.

For (c), note that $(a, b)=\bigcup_{n=1}^{\infty}\left(a, b-n^{-1}\right] \in \sigma$-alg $\left(\xi_{3}\right)$ or $(a, b)=\bigcup_{n=1}^{\infty}\left[a+n^{-1}, b\right) \in \sigma$-alg $\left(\xi_{4}\right)$, thus $\xi_{1} \subseteq \sigma-\operatorname{alg}\left(\xi_{3}\right) \cap \sigma-\operatorname{alg}\left(\xi_{4}\right)$. Therefore, $\mathcal{B}_{\mathbb{R}}=\sigma-\operatorname{alg}\left(\xi_{1}\right) \subseteq \sigma-\operatorname{alg}\left(\xi_{3}\right) \subseteq \mathcal{B}_{\mathbb{R}}$ and $\mathcal{B}_{\mathbb{R}}=\sigma-\operatorname{alg}\left(\xi_{1}\right) \subseteq \sigma-\operatorname{alg}\left(\xi_{4}\right) \subseteq$ $\mathcal{B}_{\mathbb{R}}$, done.

For (d), note that $(a, b]=(a, \infty) \cap(b, \infty)^{c} \in \sigma-\operatorname{alg}\left(\xi_{5}\right)$, thus $\xi_{3} \subseteq \sigma-\operatorname{alg}\left(\xi_{5}\right)$, therefore $\mathcal{B}_{\mathbb{R}}=\sigma-\operatorname{alg}\left(\xi_{3}\right) \subseteq$ $\sigma-\operatorname{alg}\left(\xi_{5}\right) \subseteq \mathcal{B}_{\mathbb{R}}$. Also, $[a, b)=(-\infty, a)^{c} \cap(b, \infty) \in \sigma-\operatorname{alg}\left(\xi_{6}\right)$, thus $\xi_{4} \subseteq \sigma-\operatorname{alg}\left(\xi_{6}\right)$, therefore $\mathcal{B}_{\mathbb{R}}=\sigma-\operatorname{alg}\left(\xi_{4}\right) \subseteq$ σ - $\operatorname{alg}\left(\xi_{6}\right) \subseteq \mathcal{B}_{\mathbb{R}}$. done.

For (e), note that $[a, b)=[a, \infty) \cap[b, \infty)^{c} \in \sigma$-alg $\left(\xi_{7}\right)$, thus $\xi_{6} \subseteq \sigma$-alg $\left(\xi_{7}\right)$, therefore $\mathcal{B}_{\mathbb{R}}=\sigma$-alg $\left(\xi_{6}\right) \subseteq$ $\sigma-\operatorname{alg}\left(\xi_{7}\right) \subseteq \mathcal{B}_{\mathbb{R}}$. Also, $(a, b]=(-\infty, a]^{c} \cap(-\infty, b] \in \sigma$-alg $\left(\xi_{8}\right)$, thus $\xi_{3} \subseteq \sigma$-alg $\left(\xi_{8}\right)$, therefore $\mathcal{B}_{\mathbb{R}}=$ σ-alg $\left(\xi_{3}\right) \subseteq \sigma-\operatorname{alg}\left(\xi_{8}\right) \subseteq \mathcal{B}_{\mathbb{R}}$. done.

Let A be a set and $\forall \alpha \in A$, let X_{α} be a nonempty set, and let m_{α} be a σ-algebra of subsets of X_{α}. Let

$$
X=\prod_{\alpha \in A} X_{\alpha}:=\left\{\left(x_{\alpha}\right)_{\alpha \in A}: x_{\alpha} \in X_{\alpha}\right\}=\left\{f: A \rightarrow \bigcup_{\alpha \in A} X_{\alpha} \text { s.t. } \forall \alpha \in A, f(\alpha) \in X_{\alpha}\right\}
$$

(Note that it uses the Axiom of Choice when A is infinite.) For example, if $A=\{1,2, \cdots, n\}$,

$$
\prod_{\alpha \in A} X_{\alpha}=\prod_{j=1}^{n} X_{j}=X_{1} \times X_{2} \times \cdots \times X_{n}
$$

For $\beta \in A$, we let $\pi_{\beta}: \prod_{\alpha \in A} X_{\alpha} \rightarrow X_{\beta}$ is the coordinate projection given by $\pi_{\beta}\left(\left(X_{\alpha}\right)_{\alpha \in A}\right)=X_{\beta}$.

Definition 2.14. Let m_{α} be a σ-algebra on X. The product σ-algebra $m=\bigotimes_{\alpha \in A} m_{\alpha}$ is the σ-algebra of subsets of X generated by $\left\{\pi_{\alpha}^{-1}(E): \alpha \in A, E \in m_{\alpha}\right\}$.

Proposition 2.15 (Proposition 1.3 in [1]). If A is countable, then $m=\otimes_{\alpha \in A} m_{\alpha}$ is the σ-algebra generated by $\xi=\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in m_{\alpha}\right\}$.

Proof. Clearly, $m \subseteq \sigma$-alg (ξ) since for any $F \in m_{\beta}$,

$$
\pi_{\beta}^{-1}(F)=\prod_{\alpha \in A} E_{\alpha}
$$

where $E_{\alpha}=\left\{\begin{array}{l}F \text { if } \alpha=\beta \\ X_{\alpha} \text { otherwise. }\end{array}\right.$
But in general, $\prod_{\alpha \in A} E_{\alpha}=\cap_{\alpha \in A} \pi_{\alpha}^{-1}\left(E_{\alpha}\right) \in m$ if A is countable. Thus, σ-alg $(\xi) \subseteq m$, done.
Proposition 2.16 (Proposition 1.4 in [1]). Suppose $m_{\alpha}=\sigma$-alg $\left(\xi_{\alpha}\right)$ for some $\xi_{\alpha} \subseteq \mathcal{P}\left(X_{\alpha}\right)$. Let $m=$ $\otimes_{\alpha \in A} m_{\alpha}$. Then,

1) $m=\sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right)$ where $\mathcal{T}_{1}=\left\{\pi_{\alpha}^{-1}(E): \alpha \in A, E \in \xi_{\alpha}\right\}$.
2) If A is countable, then $m=\sigma-\operatorname{alg}\left(\mathcal{T}_{2}\right)$ where $\mathcal{T}_{2}=\left\{\prod_{\alpha \in A} E_{\alpha}: E_{\alpha} \in \xi_{\alpha}\right\}$.

Proof. For (1), note that $m=\sigma$-alg $\left(\left\{\pi_{\alpha}^{-1}(E): \alpha \in A, E \in m_{\alpha}\right\}\right)$ by definition. Since $\mathcal{T}_{1} \subseteq \xi_{\alpha}, \sigma$-alg $\left(\mathcal{T}_{1}\right) \subseteq$ $\sigma-\operatorname{alg}\left(\xi_{\alpha}\right)=m_{\alpha}$, thus, $\sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right) \subseteq m$.

To show $m \subseteq \sigma$-alg $\left(\mathcal{T}_{1}\right)$, we must show that $\forall F \in m_{\alpha}, \pi_{\alpha}^{-1}(F) \in \sigma$-alg $\left(\mathcal{T}_{1}\right)$. Fix $\alpha \in A$. Let

$$
n=\left\{G \subseteq X_{\alpha}: \pi_{\alpha}^{-1}(G) \in \sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right)\right\}
$$

Claim 2.17. n is a σ-algebra on X_{α}.
proof of the claim. If $G_{i} \in n$ for $i \in \mathbb{N}$,

$$
\pi_{\alpha}^{-1}\left(\bigcup_{n=1}^{\infty} G_{n}\right)=\bigcup_{n=1}^{\infty} \pi_{\alpha}^{-1}\left(G_{n}\right) \in \sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right) \Longrightarrow \bigcup_{n=1}^{\infty} G_{n} \in n
$$

Also, $\forall G \in n, \pi_{\alpha}^{-1}\left(X_{\alpha} \backslash G\right)=X \backslash \pi_{\alpha}^{-1}(G) \in \sigma-\operatorname{alg}\left(\mathcal{P}_{1}\right)$. So $X \backslash G \in n$. Thus, n is closed under countable union and complementary.

Now it suffices to show that $m_{\alpha} \subseteq n$, since if it is true, then for any $E \in m_{\alpha}, \pi_{\alpha}^{-1}(E) \in \sigma$-alg $\left(\mathcal{T}_{1}\right)$, thus $m \subseteq \sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right)$. Note that

$$
\forall E \in \xi_{\alpha}, \pi_{\alpha}^{-1} \in \mathcal{T}_{1} \subseteq \sigma-\operatorname{alg}\left(\mathcal{T}_{1}\right) \Longrightarrow E \in n \Longrightarrow \xi_{\alpha} \subseteq n
$$

by definition of \mathcal{T}_{1}, n. Thus,

$$
m_{\alpha}=\sigma-\operatorname{alg}\left(\xi_{\alpha}\right) \subseteq \sigma-\operatorname{alg}(n)=n
$$

For (2), $m \subseteq \sigma$-alg $\left(\mathcal{T}_{2}\right)$ since for any $F \in m_{\beta}$,

$$
\pi_{\beta}^{-1}(F)=\prod_{\alpha \in A} E_{\alpha}
$$

where $E_{\alpha}=\left\{\begin{array}{l}F \text { if } \alpha=\beta \\ X_{\alpha} \text { otherwise. }\end{array}\right.$
But in general, $\prod_{\alpha \in A} E_{\alpha}=\cap_{\alpha \in A} \pi_{\alpha}^{-1}\left(E_{\alpha}\right) \in m$ if A is countable. Thus, $\sigma-\operatorname{alg}(\xi) \subseteq m$, done.

2.2 Measures

Definition 2.18 (Measurable space and measure). A measurable space (X, m) is a pair of nonempty set X and σ-algebra m of subsets of X. A measure on (X, m) is $\mu: m \rightarrow[0, \infty]$ satisfying
(i) $\mu(\emptyset)=0$
(ii) μ is countably additive, namely, if E_{1}, E_{2}, \cdots are disjoint, then $\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$.

Then, we say (X, m, μ) is a measure space.
Note that countably additive implies finite additive.
Definition 2.19 (Properties of a measure space). A measure space (X, m, μ) is

- A probability space if $\mu(X)=1$.
- finite if $\mu(X)<+\infty$
- σ-finite if $\exists E_{1}, E_{2}, \cdots$ such that $X=\bigcup_{j=1}^{\infty} E_{j}, \mu\left(E_{j}\right)<\infty, \forall j \in \mathbb{N}$.
- semi-finite if $\forall E \in m$ s.t. $\mu(E)=\infty, \exists F \in m$ s.t. $F \subset E$ and $0<\mu(F)<\infty$.

Note that σ-finite implies semifinite.
Our principal goal is to construct a nice measure space.
Example 2.20 (Examples). .

1. Counting measure. $(X, \mathcal{P}(X), \mu), \mu(E)=\left\{\begin{array}{l}|E| \text { if } E \text { is finite } \\ \infty \text { otherwise. }\end{array}\right.$
2. Dirac mass $\left(X, \mathcal{P}(X), \delta_{x}\right)$ for some $x \in X$, s.t. $\delta_{x}(E)= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { otherwise. }\end{cases}$
3. $(X, m, \mu), \mu(E)=\left\{\begin{array}{l}1 \text { if } x \in E \\ 0 \text { otherwise. }\end{array}\right.$
4. Let X be any uncountable set. $m=\left\{E \subseteq X:\right.$ either E or E^{c} is countable $\} . \mu(E)=\left\{\begin{array}{l}0 \text { if } E \text { is countable } \\ \infty \text { otherwise. }\end{array}\right.$

Remark 2.21 (Counter-example). Let X be any uncountable set. $m=\left\{E \subseteq X\right.$: either E or E^{c} is countable $\} . \mu(E)=\left\{\begin{array}{l}0 \text { if } E \text { is finite } \\ \infty \text { otherwise. }\end{array}\right.$ Then, it is not countably additive. However, μ is finitely additive, i.e., if $E_{1}, \cdots, E_{n} \in m$ are disjoint, then $\mu\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} \mu\left(E_{i}\right)$. So it is called μ is finite additive measure.

Theorem 2.22 (Theorem 1.8 in [1]). Let (X, m, μ) be a measure space
(a) Monotonicity. If $E, F \in m$ and $E \subseteq F$, then $\mu(E) \leq \mu(F)$.
(b) Subaddiditivity. If $E_{1}, E_{2}, \cdots \in m, \mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(E_{j}\right)$
(c) Continuity from below. If $E_{1} \subseteq E_{2} \subseteq \cdots$, then $\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\lim _{k \rightarrow \infty} \mu\left(E_{k}\right)$.
(d) Continuity from above (limited). If $E_{1} \supseteq E_{2} \supseteq \cdots$, and $\mu\left(E_{j}\right)<\infty$ for some $j \in \mathbb{N}$, then $\mu\left(\cap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$.

Proof. For (a), note that $F=E \cup(F \backslash E)$, thus

$$
\mu(F)=\mu(E)+\mu(F \backslash E) \geq \mu(E)
$$

For (b), let $F_{1}=E_{1}, F_{n}=E_{n} \backslash\left(\bigcup_{i=1}^{n-1} E_{i}\right)$. Then, F_{i} are disjoint, and $\cup_{k=1}^{n} E_{k}=\cup_{k=1}^{n} F_{k}$. Thus,

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\mu\left(\bigcup_{k=1}^{\infty} F_{k}\right)=\sum_{k=1}^{\infty} \mu\left(F_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{k}\right)
$$

by monotonicity.
For (c), let $F_{1}=E_{1}, F_{n}=E_{n} \backslash E_{n-1}$. Then, $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} F_{k}$, and F_{k} are disjoint. Thus,

$$
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mu\left(F_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu\left(F_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(\bigcup_{k=1}^{n} F_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)
$$

For (d), we need a lemma;
Lemma 2.23. If $E \subseteq F, E, F \in m$, and $\mu(F)<\infty$, then $\mu(F \backslash E)=\mu(F)-\mu(E)$.
proof of the lemma. By $(\mathrm{a}), \mu(E) \leq \mu(F)$, and $\mu(F)=\mu(E)+\mu(F \backslash E)$. Thus, $\mu(F)-\mu(E)=\mu(F \backslash E)$.
Without loss of generality, assume $\mu\left(E_{1}\right)<\infty$. Then,
$\mu\left(E_{1}\right)-\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{1} \backslash E_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}\left(E_{1} \backslash E_{n}\right)\right)=\mu\left(E_{1} \backslash\left(\bigcap_{n=1}^{\infty} E_{n}\right)\right)=\mu\left(E_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)$
where first and last equality comes from the lemma, and second equality comes from (c), and the other's are comes from set theoretic operation. Thus, $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)$

Example 2.24. Suppose $(\mathbb{R}, \mathcal{P}(\mathbb{R})$, counting measure $)$. Then, $\mu((0,1))=\infty . \mu\left(\cap_{k=1}^{n}\left(0, \frac{1}{k}\right)\right)=\mu(\emptyset)=0$. This shows that $\mu\left(E_{j}\right)<\infty$ for some j is needed for making (d) true.

Definition 2.25 (Null set). Let (X, m, μ) be a measure space. A null set $i s E \in m$ such that $\mu(E)=0$. A statement is said to hold almost everywhere, μ-almost everywhere, a.e., or μ-a.e. if it holds for all x in the complement of a null set.

Example 2.26. For example, $f: X \rightarrow \mathbb{R}$ vanishes almost everywhere means \exists a null set E s.t. $f(x)=0$ for all $x \in E^{c}$.

Definition 2.27. A measure space (X, m, μ) is said to be complete if $E \in m, \mu(E)=0$ and $F \subseteq E \Longrightarrow$ $F \in m, \mu(F)=0$.

Theorem 2.28 (Theorem 1.9 in [1]). Let (X, m, μ) be a measure space and let $\mathcal{N}=\{N \in m: \mu(N)=0\}$. Let $\bar{m}=\{E \cup F: E \in m, \exists N \in \mathcal{N}$ s.t. $F \subseteq N\}$ Then, \bar{m} is a σ-algebra and \exists ! extension $\bar{\mu}: \bar{m} \rightarrow[0, \infty]$ of μ s.t. $\bar{\mu}$ is a measure on (X, \bar{m}).

Definition 2.29. $(X, \bar{m}, \bar{\mu})$ is the completion of $(X, m \mu)$.
Proof. Show \bar{m} is a σ-algebra. Let $G_{1}, G_{2}, \cdots \in \bar{m}$. We have $G_{j}=E_{j} \cup F_{j}$ for some $E_{j} \in m$ and $F_{j} \subseteq N_{j} \in \mathcal{N}$. Then,

$$
G:=\bigcup_{j=1}^{\infty} G_{j}=\left(\bigcup_{j=1}^{\infty} E_{j}\right) \cup\left(\bigcup_{j=1}^{\infty} F_{j}\right)
$$

Note that $\bigcup_{j=1}^{\infty} E_{j} \in m$ by countable additivity of m and

$$
\left(\bigcup_{j=1}^{\infty} F_{j}\right) \subseteq \bigcup_{j=1}^{\infty} N_{j} \in \mathcal{N}
$$

thus $\left(\bigcup_{j=1}^{\infty} F_{j}\right) \in \mathcal{N}$. This implies $G \in \bar{m}$.
Let $G=E \cup F \in \bar{m}$, where $E \in m, F \subseteq N \in \mathcal{N}$. Since $F \subseteq N, F^{c}=N^{c} \cup(N \backslash F)$. Thus,

$$
G^{c}=E^{c} \cap F^{c}=E^{c} \cap\left(N^{c} \cup(N \backslash F)\right)=\left(E^{c} \cap N^{c}\right) \cup\left(E^{c} \cap(N \backslash F)\right)
$$

Since $E^{c} \cap N^{c} \in m$ since it is σ-algebra and $E^{c} \cap(N \backslash F)=E^{c} \cap N \cap F^{c} \subseteq N$. Hence $G^{c} \in \bar{m}$. Therefore, \bar{m} is a σ-algebra.

Let's define $\bar{\mu}: \bar{m} \rightarrow[0, \infty]$ extending μ by $\bar{\mu}(E \cup F)=\mu(E)$.
Claim 2.30. μ is well-defined.
Proof. If $E_{1}, E_{2} \in m, F_{1} \subseteq N_{1}, F_{2} \subseteq N_{2}$, with $N_{1}, N_{2} \in \mathcal{N}$ and $E_{1} \cup F_{1}=E_{2} \cup F_{2}$. It suffices to show that $\mu\left(E_{1}\right)=\mu\left(E_{2}\right)$. Note that

$$
E_{1} \subseteq E_{2} \cup F_{2} \subseteq E_{2} \cup N_{2} \Longrightarrow \mu\left(E_{1}\right) \leq \mu\left(E_{2}\right)+\mu\left(N_{2}\right)=\mu\left(E_{2}\right)
$$

Similarly,

$$
E_{2} \subseteq E_{1} \cup F_{1} \subseteq E_{1} \cup N_{1} \Longrightarrow \mu\left(E_{2}\right) \leq \mu\left(E_{1}\right)+\mu\left(N_{1}\right)=\mu\left(E_{1}\right)
$$

This implies $\mu\left(E_{1}\right)=\mu\left(E_{2}\right)$.
Thus, $\bar{\mu}$ extends μ. Thus, $\bar{\mu}(\emptyset)=\mu(\emptyset)=0$. And,
Claim 2.31. $\bar{\mu}$ is countably additive. Let $G_{1}, G_{2}, \cdots \in \bar{m}$ be disjoint. Write each $G_{i}=E_{i} \cup F_{j}$ for some $E_{j} \in m, F_{j} \subseteq N_{j} \in \mathcal{N}$. Note that E_{i} 's are disjoint. Let $G=\cup_{j=1}^{\infty} G_{j}$. Then

$$
G=\left(\bigcup_{j=1}^{\infty} E_{j}\right) \cup\left(\bigcup_{j=1}^{\infty} F_{j}\right)
$$

Since $\left(\bigcup_{j=1}^{\infty} E_{j}\right) \subseteq\left(\bigcup_{j=1}^{\infty} N_{j}\right) \in \mathcal{N}, G \in \bar{m}$. Thus,

$$
\bar{\mu}(G)=\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \mu\left(E_{j}\right)=\sum_{j=1}^{\infty} \bar{\mu}\left(G_{j}\right) .
$$

For uniqueness, suppose $\mu^{\prime}: \bar{m} \rightarrow[0, \infty]$ is a measure that extends μ. It suffices to show $\mu^{\prime}=\bar{\mu}$. Let $G \in \bar{m}$. Then, $G=E \cup F$ for $E \in m, F \subseteq N \in \mathcal{N}$. Then,

$$
\mu(E)=\mu^{\prime}(E) \leq \mu^{\prime}(G) \leq \mu^{\prime}(E \cup N)=\mu(E \cup N)=\mu(E)+\mu(N)=\mu(E)
$$

Thus, $\mu^{\prime}(G)=\mu(E)=\bar{\mu}(G) \Longrightarrow \mu^{\prime}=\mu$.

2.3 Outer measure

Definition 2.32 (Outer measure). An outer measure on a nonempty set X is a function $\mu^{*}: \mathcal{P}(X) \rightarrow$ $[0, \infty]$ s.t.
(i) $\mu^{*}(\emptyset)=0$
(ii) Monotonicity. $A \subseteq B \Longrightarrow \mu^{*}(A) \leq \mu^{*}(B)$.
(iii) Subadditivity. $\mu^{*}\left(\cup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)$.

Proposition 2.33 (Proposition 1.10 in [1]). Let $\xi \subseteq \mathcal{P}(X)$ s.t. $\emptyset \in \xi, X \in \xi$. Let $\rho: \xi \rightarrow[0, \infty]$ be a function s.t. and $\rho(\emptyset)=0$. Let $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ be given by

$$
\mu^{*}(A)=\inf \left\{\sum_{j=1}^{\infty} \rho\left(E_{j}\right): E_{1}, E_{2}, \cdots \in \xi, A \subseteq \bigcup_{j=1}^{\infty} E_{j}\right\}
$$

Then μ^{*} is an outer measure.
Proof. (i) $\mu^{*}(\emptyset)=0$, because $\emptyset \subseteq \bigcup_{j=1}^{\infty} \emptyset \Longrightarrow 0 \leq \mu^{*}(\emptyset) \leq \sum_{j=1}^{\infty} \rho(\emptyset)=0$.
(ii) Monotonicity If $A, B \in \mathcal{P}(X), A \subseteq B$, then whenever $E_{j} \in \xi$ and $B \subseteq \bigcup_{j=1}^{\infty} E_{j}$, then

$$
A \subseteq B \subseteq \bigcup_{j=1}^{\infty} E_{j} \Longrightarrow \mu^{*}(A) \leq \sum_{j=1}^{\infty} \rho\left(E_{j}\right) \Longrightarrow \mu^{*}(A) \leq \mu^{*}(B)
$$

by taking infimum. So, $\mu^{*}(A) \leq \mu^{*}(B)$, by taking the infimum.
(iii) Subadditivity Suppose $A_{1}, A_{2}, \cdots \in \mathcal{P}(X)$. We want to show $\mu^{*}\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)$. Let $\epsilon>0$. Choose $E_{k, 1}, E_{k, 2}, \cdots \in \xi$ such that

$$
A_{k} \subseteq \bigcup_{j=1}^{\infty} E_{k, j} \text { and } \mu^{*}\left(A_{k}\right) \leq \sum_{j=1}^{\infty} \rho\left(E_{k, j}\right) \leq \mu^{*}\left(A_{k}\right)+\frac{\epsilon}{2^{k}}
$$

Existence of such sets is assured by the definition of infimum. Then,

$$
A:=\bigcup_{k=1}^{\infty} A_{k} \subseteq \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} E_{k, j} \Longrightarrow \mu^{*}(A) \leq \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \rho\left(E_{k, j}\right)=\sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)+\frac{\epsilon}{2^{k}}=\sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)+\epsilon
$$

Since ϵ was arbitrary, $\mu^{*}(A) \leq \sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)$.

Definition 2.34 (μ^{*}-measurable). Let μ^{*} be an outer measure on X, and let $A \subseteq X$. We say A is μ^{*} measurable if

$$
\forall E \subseteq X, \mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Note that $\mu^{*}(E) \leq \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)$ is true by subadditivity.
Theorem 2.35 (Caratheodory extension theorem). Let μ^{*} be an outer measure on X. Let \mathcal{M} be the collection of all μ^{*}-measurable subsets of X. Then, \mathcal{M} is a σ-algebra and the restriction of μ^{*} to \mathcal{M} is a complete measure.

Proof. Step by step approach.
Step I: Show $\emptyset \in \mathcal{M}$. Let $E \subseteq X$. Then, $\mu^{*}(E \cap \emptyset)+\mu^{*}(E \cup \emptyset)=0+\mu^{*}(E)=\mu^{*}(E)$.

Step II: Show $A \in \mathcal{M} \Longrightarrow A^{c} \in \mathcal{M}$. If $A \in \mathcal{M}, E \subseteq X$, then

$$
\mu^{*}\left(E \cap A^{c}\right)+\mu^{*}\left(E \cap\left(A^{c}\right)^{c}=\mu^{*}\left(E \cap A^{c}\right)+\mu^{*}(E \cap A)=\mu^{*}(E)\right.
$$

from the μ^{*} measurability of A.
Step III: Show \mathcal{M} is an algebra of subsets of X and $\mu^{*} \mid \mathcal{M}$ is finitely additive. Let $A, B \in \mathcal{M}$.
(i) Show $A \cup B \in \mathcal{M}$. Let $E \subseteq X$. Then,

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)=\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B^{c}\right)+\mu^{*}\left(E \cap A^{c} \cap B\right)
$$

since $A \cup B=(A \cap B) \cup\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)$, by subadditivity,
$\mu^{*}(E \cap(A \cup B)) \leq \mu^{*}(E \cap(A \cap B))+\mu^{*}\left(E \cap\left(A \cap B^{c}\right)\right)+\mu^{*}\left(E \cap\left(A^{c} \cap B\right)\right)=\mu^{*}(E)-\mu^{*}\left(E \cap A^{c} \cap B^{c}\right)$.
Thus,

$$
\mu^{*}(E) \geq \mu^{*}(E \cap(A \cup B))+\mu^{*}\left(E \cap(A \cup B)^{c}\right) \geq \mu^{*}(E)
$$

where the last inequality also comes from the subadditivity. Thus, $A \cup B \in \mathcal{M}$.
(ii) Show if $A \cap B=\emptyset$ then $\mu^{*}(A \cup B)=\mu^{*}(A)+\mu^{*}(B)$. Assume $A \cap B=\emptyset$. Let $E=A \cup B$. From the μ^{*}-measurability of A,

$$
\mu^{*}(A \cup B)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)=\mu^{*}(A)+\mu^{*}(B)
$$

Step IV: Show \mathcal{M} is a σ-algebra, and $\left.\mu^{*}\right|_{\mathcal{M}}$ is countable additive.

(i) Show \mathcal{M} is a σ-algebra. Let $D_{j} \in \mathcal{M}, D:=\bigcup_{j=1}^{\infty} D_{j}$. We want to show $D \in \mathcal{M}$. Let $A_{k}=D_{k} \backslash \bigcup_{j=1}^{k-1} D_{j}$. Then, A_{1}, A_{2}, \cdots are disjoint. Let $B_{k}:=\bigcup_{j=1}^{k} A_{j}=\bigcup_{j=1}^{k} D_{j}$. Then, $B_{1} \subseteq B_{2} \subseteq \cdots$ and $D:=\bigcup_{k=1}^{\infty} B_{k}$. Then, $\forall k \in \mathbb{N}, A_{k}, B_{k} \in \mathcal{M}$.
We will show by induction on k, that $\forall E \subseteq X$,

$$
\begin{equation*}
\mu^{*}\left(E \cap B_{k}\right)=\sum_{j=1}^{k} \mu^{*}\left(E \cap A_{j}\right) \tag{1}
\end{equation*}
$$

If $k=1$, then $B_{1}=A_{1}$, thus the equation (1) hold. If $K \geq 2$, since $A_{k} \in \mathcal{M}$,

$$
\mu^{*}\left(E \cap B_{k}\right)=\mu^{*}\left(E \cap B_{k} \cap A_{k}\right)+\mu^{*}\left(E \cap B_{k} \cap A_{k}^{c}\right)
$$

Since $B_{k} \cap A_{k}=A_{k}, B_{k} \backslash A_{k}=\bigcup_{j=1}^{k-1} A_{j}=B_{k-1}$, since A_{i} 's are disjoint. Thus,

$$
\mu^{*}\left(E \cap B_{k}\right)=\mu^{*}\left(E \cap A_{k}\right)+\mu^{*}\left(E \cap B_{k-1}\right)=\sum_{j=1}^{k} \mu^{*}\left(E \cap A_{j}\right)
$$

where the last equality comes from the inductive hypothesis.
Thus, for any $k \in \mathbb{N}$.
$\mu^{*}(E)=\mu^{*}\left(E \cap B_{k}^{c}\right)+\mu^{*}\left(E \cap B_{k}\right)=\mu^{*}\left(E \cap B_{k}^{c}\right)+\sum_{j=1}^{k} \mu^{*}\left(E \cap A_{j}\right) \geq \mu^{*}\left(E \cap D^{c}\right)+\sum_{j=1}^{k} \mu^{*}\left(E \cap A_{j}\right)$,
since $B_{k} \subseteq D \Longrightarrow B_{k}^{c} \supseteq D^{c}$. Therefore, by taking limit,

$$
\mu^{*}(E) \geq \mu^{*}\left(E \cap D^{c}\right)+\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)
$$

Also, since $D=\bigcup_{j=1}^{\infty} A_{j}$, thus by countable subadditivity,

$$
\mu^{*}(E \cap D) \leq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)
$$

So,

$$
\mu^{*}(E) \geq \mu^{*}\left(E \cap D^{c}\right)+\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right) \geq \mu^{*}\left(E \cap D^{c}\right)+\mu^{*}(E \cap D) \geq \mu^{*}(E)
$$

So we have equality and $D \in \mathcal{M}$.
(ii) Show $\left.\mu^{*}\right|_{\mathcal{M}}$ is countable additive. We will use the setting in (i). Suppose D_{1}, D_{2}, \cdots are disjoint set in (i). Then, $\forall j \in \mathbb{N}, A_{j}=D_{j}$. Take $E=D$ above. Then,

$$
\mu^{*}(D)=\mu^{*}\left(E \cap D^{c}\right)+\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)=\mu^{*}(\emptyset)+\sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)=\sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)
$$

Step V: Show $\left.\mu^{*}\right|_{\mathcal{M}}$ is complete, i.e., suppose $N \in \mathcal{M}, \mu^{*}(N)=0$, and $F \subseteq N \Longrightarrow F \in \mathcal{M}$. Let $E \subseteq X$. We want to show that $\mu^{*}(E)=\mu^{*}(E \cap F)+\mu^{*}\left(E \cap F^{c}\right)$. Since $E \cap F \subseteq N$,

$$
\mu^{*}(E \cap F) \leq \mu^{*}(N)=0
$$

by monotonicity. So, $\mu^{*}(E \cap F)=0$. Then,

$$
\mu^{*}(E) \leq \mu^{*}(E \cap F)+\mu^{*}\left(E \cap F^{c}\right)=\mu^{*}\left(E \cap F^{c}\right) \leq \mu^{*}(E)
$$

Thus $\mu^{*}(E)=\mu^{*}(E \cap F)+\mu^{*}\left(E \cap F^{c}\right) \Longrightarrow F \in \mathcal{M}$.

Caratheodory extension can be used for extending algebra with premeasure to σ-algebra and measure.
Definition 2.36 (Premeasure). A premeasure on a set X is $\mu_{0}: \mathfrak{a} \rightarrow[0,+\infty]$, where \mathfrak{a} is an algebra of subsets of X, and

1. $\mu_{0}(\emptyset)=0$
2. if $A_{1}, A_{2}, \cdots \in \mathfrak{a}$, disjoint and if $A:=\bigcup_{j=1}^{\infty} A_{j} \in \mathfrak{a}$,

$$
\mu_{0}(A)=\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)
$$

The motivating example is following; Let

$$
\mathfrak{a}:=\{\emptyset\} \cup\left\{\bigcup_{j=1}^{n}\left(a_{j}, b_{j}\right]: n \in \mathbb{N},-\infty \leq a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{n}<b_{n} \leq \infty\right\}
$$

with

$$
\mu_{0}\left(\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right]\right)=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)
$$

Since it is countably additive and monotone, μ_{0} is a premeasure.

Theorem 2.37 (Theorem 1.13 and 1.14 in [1] p. 31). Let \mathfrak{a} be an algebra of subsets of X and let μ_{0} : $\mathfrak{a} \rightarrow[0,+\infty]$ be a premeasure. Let $\mu^{*}: \mathcal{P}(X) \rightarrow[0,+\infty]$ be the outer measure constructed from μ_{0} as a proposition 1.10., i.e.,

$$
\mu^{*}(E)=\inf \left\{\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right): A_{j} \in \mathfrak{a}, E \subseteq \bigcup_{j=1}^{\infty} A_{j}\right\}
$$

Then,
(i) $\left.\mu^{*}\right|_{\mathfrak{a}}=\mu_{0}$
(ii) If $A \in \mathfrak{a}, A$ is μ^{*}-measurable.

Thus, by the Caratheodory extension theorem, $\left(\sigma-\operatorname{alg}(\mathfrak{a}),\left.\mu^{*}\right|_{\sigma-\operatorname{alg}(\mathfrak{a})}\right)$ is a measure on σ-alg (\mathfrak{a}). Also,
(iii) If $\nu: \sigma-\operatorname{alg}(\mathfrak{a}) \rightarrow[0,+\infty]$ is any measure such that $\left.\nu\right|_{\mathfrak{a}}=\mu_{0}$, then $\forall E \in \sigma-\operatorname{alg}(\mathfrak{a}), \nu(E) \leq \mu^{*}(E)$ with equality if $\mu^{*}(E)<\infty$.
(iv) If μ_{0} is σ-finite, then $\left.\mu^{*}\right|_{\sigma-\operatorname{alg}(\mathfrak{a})}$ is the unique measure on σ-alg (\mathfrak{a}) extending μ_{0}.

Proof. 1. Show $\left.\mu^{*}\right|_{\mathfrak{a}}=\mu_{0}$. Let $E \mathfrak{a}$. For all $i \in \mathbb{N},\left\{\begin{array}{l}A_{i}=E_{1} \text { if } i=1 \\ A_{i}=\emptyset \text { otherwise. }\end{array}\right.$ Then, $\mu^{*}(E) \leq \mu_{0}(E)$ by subadditivity. To show $\mu^{*}(E) \geq \mu_{0}(E)$, let $A_{j} \in \mathfrak{a}$ such that $E \leq \bigcup_{j=1}^{\infty} A_{j}$. Let

$$
B_{n}:=E \cap\left(A_{n} \backslash \bigcup_{j=1}^{n-1} A_{j}\right)
$$

Then, $B_{n} \in \mathfrak{a}, B_{i}$'s are disjoint. Also,

$$
\bigcup_{n=1}^{\infty} B_{n}=E \cap\left(\bigcup_{j=1}^{\infty} A_{j}\right)=E
$$

Since μ_{0} is a premeasure,

$$
\mu_{0}(E)=\sum_{n=1}^{\infty} \mu_{0}\left(B_{n}\right) \leq \sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)
$$

By taking the infimum on $\left\{A_{n}\right\}_{n=1}^{\infty}$,

$$
\mu_{0}(E) \leq \mu^{*}(E)
$$

2. If $A \in \mathfrak{a}, A$ is μ^{*}-measurable. Let $E \subseteq X$. We must show that $\mu^{*}(E) \geq \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)$. Let $\epsilon>0$, choose $B_{1}, B_{2}, \cdots \in \mathfrak{a}$ such that $E \subseteq \bigcup_{j=1}^{\infty} B_{j}$, and

$$
\mu^{*}(E)+\epsilon \geq \sum_{j=1}^{\infty} \mu_{0}\left(B_{j}\right)
$$

By definition of μ^{*}, such $B_{j} \mathrm{~s}$ exist. Then,

$$
\begin{aligned}
\mu^{*}(E)+\epsilon & \geq \sum_{j=1}^{\infty} \mu_{0}\left(B_{j}\right) \\
& =\sum_{j=1}^{\infty}\left(\mu_{0}\left(B_{j} \cap A\right)+\mu_{0}\left(B_{j} \cap A^{c}\right)\right), \text { since } B_{j} \cap A \text { and } B_{j} \cap A \in \mathfrak{a} . \\
& =\sum_{j=1}^{\infty} \mu_{0}\left(B_{j} \cap A\right)+\sum_{j=1}^{\infty} \mu_{0}\left(B_{j} \cap A^{c}\right) \\
& \geq \mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right), \text { since } E \cap A \subseteq \bigcup_{j=1}^{\infty} B_{j} \cap A .
\end{aligned}
$$

By taking $\lim _{\epsilon \rightarrow 0}$ on both sides, we get desired inequality.
3. If $\nu: \sigma-\operatorname{alg}(\mathfrak{a}) \rightarrow[0,+\infty]$ is any measure such that $\left.\nu\right|_{\mathfrak{a}}=\mu_{0}$, then $\forall E \in \sigma-\operatorname{alg}(\mathfrak{a}), \nu(E) \leq \mu^{*}(E)$ with equality if $\mu^{*}(E)<\infty$. Note that μ is a measure derived by caratheodory extension theorem and μ^{*}. Let $A_{n} \in \mathfrak{a}$ such that $E \subseteq \bigcup_{n=1}^{\infty} A_{n}$. We want to show that $\nu(E) \leq \sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)$.
By subadditivity of ν,

$$
\begin{equation*}
\nu(E) \leq \nu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \nu\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right) \Longrightarrow \nu(E) \leq \mu(E) \tag{2}
\end{equation*}
$$

Let $\epsilon>0$. Choose $A_{n} \in \mathfrak{a}$ such that $E \subseteq \bigcup_{n=1}^{\infty} A_{n}$ and $\mu(E)+\epsilon \geq \sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)$. Let $A:=\bigcup_{n=1}^{\infty} A_{n}$. Then, if $\mu(E)<\infty$,

$$
\mu(A)=\mu(A \backslash E)+\mu(E) \Longrightarrow \mu(A \backslash E)=\mu(A)-\mu(E) \leq\left(\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)\right)-\mu(E) \leq \epsilon
$$

Also, for any $n \in \mathbb{N}, \nu\left(\bigcup_{j=1}^{n} A_{j}\right)=\mu_{0}\left(\bigcup_{j=1}^{n} A_{j}\right)$ since $\bigcup_{j=1}^{n} A_{j} \in \mathfrak{a}$, thus by letting $B_{n}:=\bigcup_{j=1}^{n} A_{j}$,

$$
\nu(A)=\nu\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(B_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu(A) .
$$

Therefore,

$$
\mu(E) \leq \mu(A)=\nu(A)=\nu(E)+\nu(A \backslash E) \leq \nu(E)+\mu(A \backslash E) \leq \nu(E)+\epsilon
$$

where second equality comes from continuity from below w.r.t. ν, and third equality comes from the inequality (2), the last equality comes from the continuity from below w.r.t. μ. Therefore, by lettign $\epsilon \rightarrow 0$, we have $\nu(E)=\mu(E)$ if $\mu(E)<\infty$.
4. If μ_{0} is σ-finite, then $\left.\mu^{*}\right|_{\sigma-a l g(\mathfrak{a})}$ is the unique measure on σ-alg (\mathfrak{a}) extending μ_{0}. By hypothesis, $\exists A_{1}, A_{2}, \cdots \in \mathfrak{a}$ such that $X=\bigcup_{i=1}^{\infty} A_{i}$ with $\mu\left(A_{i}\right)<\infty, \forall i \in \mathbb{N}$. Replcae A_{n} by $A_{n} \backslash \bigcup_{j=1}^{n-1} A_{j}$ if necessary, we may assume that A_{n} s are disjoint, without loss of generality. Then, $\forall E \in \sigma$-alg (\mathfrak{a}),

$$
\nu(E)=\nu\left(\bigcup_{n=1}^{\infty} E \cap A_{n}\right)=\sum_{n=1}^{\infty} \nu\left(E \cap A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(E \cap A_{n}\right)=\nu(E)
$$

where second equality comes from the countable additivity of ν, third equality comes from $\nu=\mu$ for any measurable set having finite measure, and the last equality comes from the countable additivity of μ.

2.4 Borel measure on the real line

Proposition 2.38 (Special case of proposition 1.7). Let $\xi \subseteq \mathcal{P}(\mathbb{R})$ be the collection of all half open intervals, closed at the right, i.e.,

$$
\xi=\{(a, b]: a, b \in \mathbb{R}, a<b\} \cup\{(-\infty, b]: b \in \mathbb{R}\} \cup\{(a,+\infty): a \in \mathbb{R}\} \cup\{\mathbb{R}, \emptyset\}
$$

Let \mathfrak{a} be the set of all finite union of elements of ξ. Then \mathfrak{a} is an algebra of subsets of \mathbb{R}.
If $I_{1}, I_{2} \in \xi$ and $I_{1} \cap I_{2} \neq \emptyset$ or if $\operatorname{dist}\left(I_{1}, I_{2}\right):=\inf \left\{|x-y|: x \in I_{1}, y \in I_{2}\right\}=0$, then $I_{1} \cup I_{2} \in \xi$. Thus, each elements of \mathfrak{a} can be written uniquely as a finite union of separated elements of ξ, where I_{1} and I_{2} are separated if $\operatorname{dist}\left(I_{1}, I_{2}\right)>0$.

Proof. We must show followings;
(i) $\emptyset \in \mathfrak{a}$; it holds by definition of \mathfrak{a}.
(ii) If $A_{1}, \cdots, A_{n} \in \mathfrak{a} \Longrightarrow \cup_{j=1}^{n} A_{j} \in \mathfrak{a}$. ; it holds by definition of \mathfrak{a}.
(iii) If $A \in \mathfrak{a} \Longrightarrow A^{c} \in \mathfrak{a}$. Suppose $A=\bigcup_{j=1}^{n} I_{j}$ with $I_{1}, I_{2}, \cdots I_{n} \in \xi$, where they are separated. Suppose each I_{j} is bounded. Thus, $I_{j}=\left(a_{j}, b_{j}\right]$ for some $a_{j}, b_{j} \in \mathbb{R}$ for $1 \leq j \leq n$. By renumbering if necessary, we may assume that $a_{1}<b_{1}<a_{2}<b_{2}<\cdots<a_{n}<b_{n}$. Then,

$$
A^{c}=\left(-\infty, a_{1}\right] \cup\left(b_{1}, a_{2}\right] \cup \cdots \cup\left(b_{n-1}, a_{n}\right] \cup\left(b_{n}, \infty\right) \in \mathfrak{a} .
$$

Thus, \mathfrak{a} is an algebra.
Notation 2.39 (Construction of Lebesgue-Stieltjes measures). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing (i.e. nondecreasing) functions that is right continuous, (i.e., $\forall a \in \mathbb{R}, \lim _{x \rightarrow a+} F(x)=F(a)$.) Set

$$
F(-\infty):=\lim _{x \rightarrow-\infty} F(x) \in \mathbb{R} \cup\{-\infty\}, F(\infty):=\lim _{x \rightarrow \infty} F(x) \in \mathbb{R} \cup\{+\infty\}
$$

Let $\mu_{0}: \xi \rightarrow[0, \infty]$ be

$$
\begin{aligned}
\mu_{0}((a, b]) & =F(b)-F(a) \\
\mu_{0}((a,+\infty)) & =F(+\infty)-F(a) \\
\mu_{0}((-\infty, b]) & =F(b)-F(-\infty) \\
\mu_{0}(\mathbb{R}) & =F(+\infty)-F(-\infty) \\
\mu_{0}(\emptyset) & =0
\end{aligned}
$$

Then, we extend μ_{0} to \mathfrak{a} as follow; If $A \in \mathfrak{a}$, then A has unique representation as $A=\bigcup_{j=1}^{n} I_{j}$ for some separated $I_{1}, \cdots, I_{n} \in \xi$, by the previous proposition. Let $\mu_{0}(A):=\sum_{j=1}^{n} \mu_{0}\left(I_{j}\right)$
Proposition 2.40 (Proposition 1.15 in [1] p.33). μ_{0} is a premeasure on \mathfrak{a}.
Proof. Note that $\mu_{0}(\emptyset)=0$. We must show that if $A_{1}, A_{2}, \cdots \in \mathfrak{a}$ are disjoint and if $\bigcup_{j=1}^{\infty} A_{j} \in \mathfrak{a}$, then

$$
\mu_{0}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)
$$

Without loss of generality, assume $\forall j \in \mathbb{N}, A_{j} \in \xi$. Since $\bigcup_{j=1}^{\infty} A_{j} \in \mathfrak{a}$, we may write

$$
\bigcup_{j=1}^{\infty} A_{j}=\bigcup_{k=1}^{n} I_{k}
$$

for some separated $I_{1}, I_{2}, \cdots, I_{n} \in \xi$, by the previous proposition. Let $F_{k}=\left\{j \in \mathbb{N}: A_{j} \subseteq I_{k}\right\}$. It will suffice to show that

$$
\mu_{0}\left(I_{k}\right)=\sum_{j \in F_{k}} \mu_{0}\left(A_{j}\right)
$$

since $\mu_{0}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{k=1}^{n} \mu_{0}\left(I_{k}\right)$. Thus we may assume that

$$
\bigcup_{j=1}^{\infty} A_{j}=I=(a, b] \in \xi
$$

and we want to show

$$
\mu_{0}(I)=\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)
$$

Suppose $I=(a, b]$. We may write $A_{j}=\left(a_{j}, b_{j}\right]$. To show $\mu_{0}(I) \geq \sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)$, it suffices to show

$$
\sum_{j=1}^{n} \mu_{0}\left(A_{j}\right) \leq \mu_{0}(I)
$$

for all $n \in \mathbb{N}$. After renumbering, we may assume that

$$
a \leq a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n} \leq b
$$

Thus,

$$
\begin{aligned}
\mu_{0}(I) & =F(b)-F(a) \geq F\left(b_{n}\right)-F\left(a_{1}\right) \\
& \geq F\left(b_{n}\right)-\left(F\left(b_{n-1}\right)-F\left(a_{n}\right)\right)-\left(F\left(b_{n-2}\right)-F\left(a_{n-1}\right)\right)-\cdots-\left(F\left(b_{1}\right)-F\left(a_{2}\right)\right)-F\left(a_{1}\right) \\
& =\sum_{j=1}^{n} \mu_{0}\left(A_{j}\right)
\end{aligned}
$$

By letting $n \rightarrow \infty$, we have $\mu_{0}(I) \geq \sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)$.
To show reverse direction, i.e., $\mu_{0}(I) \leq \sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)$., we need compactness argument. Let $\epsilon>0$. From the right continuity of F, we can get $\delta>0$ such that

$$
F(a+\delta)-F(a)<\epsilon<\epsilon
$$

and $\delta_{j}>0$ such that

$$
F\left(b_{j}+\delta_{j}\right)-F\left(b_{j}\right) \leq \frac{\epsilon}{2^{j}},
$$

for each a and b_{j} which we setup in the previous paragraph. Then,

$$
[a+\delta, b] \subseteq I \subseteq \bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}+\delta_{j}\right)
$$

where second subset equation is derived from the assumption $\bigcup_{j=1}^{\infty} A_{j}=I$. Since $[a+\delta, b]$ is closed bounded set, thus it is compact. Therefore, $\left(\left(a_{j}, b_{j}+\delta_{j}\right)\right)_{j=1}^{\infty}$ has a finite subcover. So by renumbering if necessary, we can assume that $[a+\delta, b] \subseteq \bigcup_{j=1}^{p}\left(a_{j}, b_{j}+\delta_{j}\right)$. Also, we can assume that $\left\{\left(a_{j}, b_{j}+\delta_{j}\right\}_{j=1}^{p}\right.$ is a minimal subcover.

After renumbering again, we can assume

$$
\begin{aligned}
a_{1} & <a+\delta<b_{1}+\delta \\
a+\delta & \leq a_{2}<b_{1}+\delta<b_{2}+\delta_{2} \\
a_{3} & <b_{2}+\delta_{2}<b_{3}+\delta_{3} \\
& \ldots \\
a_{l+1} & <b_{l}+\delta_{l}<b_{l+1}+\delta_{l+1} \\
& \cdots \\
a_{p} & <b_{p-1}+\delta_{p-1} \leq b<b_{p}+\delta_{p} .
\end{aligned}
$$

We can draw above inequalities in a line segment.

Thus,

$$
\begin{aligned}
\mu(I) & =F(b)-F(a) \\
& <F(b)-F(a+\delta)+\epsilon \\
& \leq F\left(b_{p}+\delta_{p}-F(a+\delta)+\epsilon\right. \\
& \leq F\left(b_{p}+\delta_{p}\right)-F\left(a_{1}\right)+\epsilon \\
& \leq F\left(b_{p}+\delta_{p}\right)+\sum_{l=1}^{p-1}\left(F\left(b_{l}+\delta_{l}\right)-F\left(a_{l+1}\right)-F\left(a_{1}\right)+\epsilon\right. \\
& =\sum_{l=1}^{p}\left(F\left(b_{j}+\delta_{j}\right)-F\left(a_{j}\right)\right)+\epsilon
\end{aligned}
$$

Since $F\left(b_{j}+\delta_{j}\right)<\frac{\epsilon}{2^{j}}+F\left(b_{j}\right)$,

$$
\begin{aligned}
\mu(I) & \leq \sum_{l=1}^{p}\left(F\left(b_{j}+\delta_{j}\right)-F\left(a_{j}\right)\right)+\epsilon \\
& \leq \sum_{l=1}^{p}\left(F\left(b_{j}\right)-F\left(a_{j}\right)+\frac{\epsilon}{2^{\sigma(j)}}\right)+\epsilon \\
& \leq \sum_{l=1}^{p}\left(F\left(b_{j}\right)-F\left(a_{j}\right)\right)+2 \epsilon \\
& \leq \sum_{l=1}^{p} \mu_{0}\left(A_{j}\right)+2 \epsilon \\
& <\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)+2 \epsilon
\end{aligned}
$$

where σ is a permutation of \mathbb{N} accounting for the reordering. Thus,

$$
\mu_{0}(I)<\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)+2 \epsilon
$$

and by letting $\epsilon \rightarrow 0$,

$$
\mu_{0}(I) \leq \sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)+2 \epsilon
$$

Thus we are done if a, b are finite.
If $a=-\infty$, then, using the cover $[-M, b]$, we get an inequality

$$
F(b)-F(-M) \leq \sum_{j=1}^{\infty} \mu_{0}\left(I_{j}\right)+2 \epsilon
$$

Also, if $b=\infty$, then we get inequality $F(M)-F(a) \leq \leq \sum_{j=1}^{\infty} \mu_{0}\left(I_{j}\right)+2 \epsilon$. In any case, by letting $M \rightarrow \infty$ and $\epsilon \rightarrow 0$, we get desired inequality.

Note that compactness is used to use such interlacing argument. Without compactness, it is too complicated.

Theorem 2.41 (Theorem 1.16 in [1] p.36). (a) If $F: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing and right continuous function, there exists unique measure $\mu_{F}: \beta_{\mathbb{R}} \rightarrow[0, \infty]$ such that $\mu_{F}((a, b])=F(b)-F(a)$ for all $a, b \in$ $\mathbb{R}, a<b$.
(b) If $G: \mathbb{R} \rightarrow \mathbb{R}$ is also right increasing right continuous function, then $\mu_{G}=\mu_{F}$ if and only if $G-F=c$ for some constant c.
(c) If $\mu: \beta_{R} \rightarrow[0,+\infty]$ is a measure such that $\mu((a, b])<+\infty$ for every $a, b \in \mathbb{R}$ with $a<b$, then letting

$$
F(x)= \begin{cases}\mu((0, x]) & x>0 \\ 0 & x=0 \\ -\mu((x, 0]) & x<0\end{cases}
$$

Then $\mu=\mu_{F}$.
(d) $\left(\mathbf{c}^{*}\right)$ If $\mu: \mathcal{B}_{\mathbb{R}} \rightarrow[0, k]$ for some $k>0$ is a finite measure, then $\mu=\mu_{G}$ where $G(x)=\mu((-\infty, x])$.

For example, $\mu_{F}((a, b])=F(b)-F(a)=\mu((0, b])+\mu((a, 0])$ if $a<0, b>0$.
Proof. Take the premeasure μ_{0} constructed in the proposition 1.15 on \mathcal{A} which is an algebra generated by the half open interval (h-interval). Use the general construction of an outer measure from the proposition 1.10. Use the Caratheodory's extension theorem (1.11) and proposition 1.13 and theorem 1.14 to conclude that $\left.\mu^{*}\right|_{\sigma-\operatorname{alg}(\mathcal{A})}$ is a measure extending μ_{0}.

For (b), if $G-F=c$, then trivially holds since $\mu_{G}((a, b])=G(b)-G(a)=F(b)-F(a)=\mu_{F}((a, b])$. Conversely, if $\mu_{G}=\mu_{F}$, then $G(b)-F(b)=G(a)-F(a)$ for any a, b, thus, $G-F=c$ for some constant.

For (c), and $\left(c^{*}\right)$, it is derived from the uniqueness of μ as a extension of μ_{0}, since both has the same premeasure and both are finite measure.

We call μ_{F} in (a) the Lebesgue Stieltjes measure associated to F. Recall that the Caratheodory's extension theorem actually gives us a complete measure on the σ-algebra of all μ^{*}-measurable sets. We let \mathcal{M}_{F} denote this σ-algebra (possibly larger than $\mathcal{B}_{\mathbb{R}}$) and we denote also by $\mu_{F}: \mathcal{M}_{F} \rightarrow[0, \infty]$ the measure constructed on \mathcal{M}_{F}. (And call also this the Lebesgue Stieltjes measure associated to F.

Example 2.42 (Special Cases).

1. $F(x)=x$. Then $\mu_{F}((a, b])=b-a$. Then μ_{F} is called the Lebesgue measure. We write $\mathcal{L}=\mathcal{M}_{F}$ called the set of Lebesgue measurable sets. We may write $m=\mu_{F}$.
2. Fix $x \in \mathbb{R}$. Let $F(t)=\left\{\begin{array}{ll}0 & \text { if } t<x \\ 1 & \text { if } t \geq x .\end{array}\right.$ Then $\mu((a, b])=\left\{\begin{array}{ll}1 & \text { if } x \in(a, b] \\ 0 & \text { o.w. }\end{array}\right.$ and $\mathcal{M}_{F}=\mathcal{P}(\mathbb{R})$ and $\mu_{F}(E)=\left\{\begin{array}{ll}1 & \text { if } x \in E \\ 0 & \text { o.w. }\end{array}\right.$ This $\mu_{F}=\delta_{x}$ is called Dirac Mass.
Remark 2.43. For any Lebesgue Stieltjes measure,

$$
\mu_{F}(\{x\})=\lim _{\delta \rightarrow 0} \mu_{F}((x-\delta, x])=F(x)-\lim _{\delta \rightarrow 0} F(x-\delta) \underbrace{=}_{\text {right cts }} F(x)-F(x-)
$$

2.5 Regularity Properties

Now fix increasing right continuous function F, let $\mathcal{M}=\mathcal{M}_{F}, \mu=\mu_{F}$.
Lemma 2.44 (Lemma 1.17 in [1], p.35). For any $E \in \mathcal{M}$,

$$
\mu_{E}=\inf \left\{\sum_{j=1}^{\infty} \mu\left(\left(a_{j}, b_{j}\right)\right): a_{j}, b_{j} \in \mathbb{R}, a_{j}<b_{j}, E \subseteq \bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)\right\}
$$

Proof. We know that $L H S \leq R H S$ since

$$
\mu(E) \underbrace{\leq}_{\text {monotonicity }} \mu\left(\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)\right) \underbrace{\leq}_{\text {subadditivity }} \sum_{j=1}^{\infty} \mu\left(a_{j}, b_{j}\right) .
$$

For LHS $\geq R H S$, if $\mu(E)=+\infty$, then there is nothing to show. Thus, assume that $\mu(E)<+\infty$. Let $\epsilon>0$. By construction, $\exists A_{j} \in \mathcal{A}$ such that $E \subseteq \bigcup_{j=1}^{\infty} A_{j}$ and $\mu(E)+\epsilon \geq \sum_{j=1}^{\infty} \mu\left(A_{j}\right)$, from subadditivity on RHS. Without loss of generality, we can assume that $A_{j}=\left(c_{j}, d_{j}\right]$ for $c_{j}, d_{j} \in \mathbb{R}, c_{j}<d_{j}$. Choose $b_{j}>d_{j}$ such that

$$
F\left(b_{j}\right)<F\left(d_{j}\right)+\frac{\epsilon}{2^{j}}
$$

Then,

$$
\mu\left(\left(c_{j}, d_{j}\right]\right) \leq \mu\left(\left(c_{j}, b_{j}\right]\right)=F\left(b_{j}\right)-F\left(c_{j}\right) \leq F\left(d_{j}\right)-F\left(c_{j}\right)+\frac{\epsilon}{2^{j}}=\mu\left(\left(c_{j}, d_{j}\right]\right)+\frac{\epsilon}{2^{j}}=\mu\left(A_{j}\right)+\frac{\epsilon}{2^{j}} .
$$

Thus,

$$
\mu(E)+\epsilon \geq \sum_{j=1}^{\infty} \mu\left(A_{j}\right) \geq \sum_{j=1}^{\infty}\left(\mu\left(\left(c_{j}, b_{j}\right)-\frac{\epsilon}{2^{j}}\right)\right.
$$

Hence,

$$
\mu(E)+2 \epsilon>\sum_{j=1}^{\infty}\left(\mu\left(\left(c_{j}, b_{j}\right)\right) .\right.
$$

Since $E \subseteq \bigcup_{j=1}^{\infty}\left(c_{j}, b_{j}\right)$, we can take infimum on both sides to conclude that

$$
\mu(E)+2 \epsilon>\inf \left\{\sum_{j=1}^{\infty} \mu\left(\left(a_{j}, b_{j}\right)\right): a_{j}, b_{j} \in \mathbb{R}, a_{j}<b_{j}, E \subseteq \bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)\right\}
$$

By letting $\epsilon \rightarrow 0$, we get desired inequality.
Theorem 2.45 (Theorem 1.18 in [1] p.36). If $E \in \mathcal{M}$, then

$$
\begin{align*}
& \mu(E)=\inf \{\mu(U): U \text { is open in } \mathbb{R}, E \subseteq U\} \tag{3}\\
& \mu(E)=\sup \{\mu(K): K \text { is compact in } \mathbb{R}, K \subseteq E\} \tag{4}
\end{align*}
$$

Proof. For (3), \leq is clear by the monotonicity of μ. For \geq, if $\mu(E)=+\infty$, there is nothing to show. Assume $\mu(E)<+\infty$. By the Lemma 1.17, given $\epsilon>0, \exists a_{j}<b_{j}$ such that $E \subseteq \bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$ and

$$
\mu(E)+\epsilon>\sum_{j=1}^{\infty} \mu\left(\left(a_{j}, b_{j}\right)\right) \underbrace{\geq}_{\text {subadditivity }} \mu\left(\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)\right)
$$

Since $\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$ is open set containing E, we can take infimum on both sides, to get

$$
\mu(E)+\epsilon>\inf \{\mu(U): U \text { is open in } \mathbb{R}, E \subseteq U\}
$$

By letting $\epsilon \rightarrow 0$, we have the desired inequality.
For (4), also \geq is clear by the monotonicity. To show \leq, assume first that E is bounded, say $E \subseteq$ $[-r, r] . r>0$. So, $\mu(E) \leq \mu([-r, r])<+\infty$. Then \bar{E} is closed and bounded thus \bar{E} is compact and $\mu(\bar{E})<$ $+\infty$. Thus,

$$
\mu(\bar{E} \backslash E)=\mu(\bar{E})-\mu(E)<+\infty
$$

By (3), $\exists U$ which is open in \mathbb{R} such that $\bar{E} \backslash E \subseteq U$ and $\mu(U)<\mu(\bar{E} \backslash E)+\epsilon$. Let

$$
K=\bar{E} \backslash U \subseteq \bar{E} \subseteq[-r, r]
$$

Then K is also closed and bounded, thus K is compact. Also, $K \subseteq \bar{E} \backslash(\bar{E} \backslash E)=E$ and
$\mu(K)=\mu(\bar{E} \backslash U)=\mu(\bar{E} \backslash(\bar{E} \cap U))=\mu(\bar{E})-\mu(\bar{E} \cap U) \geq \mu(\bar{E})-\mu(U)>\mu(\bar{E})-(\mu(\bar{E} \backslash E)+\epsilon)=\mu(E)-\epsilon$.
Hence,

$$
\mu(K) \geq \mu(E)-\epsilon
$$

By taking supremum on both sides,

$$
\mu(E)-\epsilon<\sup \{\mu(K): K \text { is compact and } K \subseteq E\}
$$

Letting $\epsilon \rightarrow 0$, we get \leq inequality of (4).
Corollary 2.46. Take general $E \in \mathcal{M}$. Then,

$$
\begin{aligned}
\mu(E) & =\sup \{\mu(E \cap[-n, n]): n \in \mathbb{N}\} \\
& =\sup _{n \in \mathbb{N}}\left\{\sup \left\{\mu_{K}: K \text { is compact and } K \subseteq E \cap[-n, n]\right\}\right\} \\
& =\sup \{\mu(K): K \text { is compact and } K \subseteq E\} .
\end{aligned}
$$

Proof. When E is bounded, everything is clear. If E is not bounded, then first two equality is clear. And the last equality is also clear since K in the left side is contained in the rightside, and vice versa, from the Heine-Borel theorem that any compact set in \mathbb{R} is bounded.

Lemma 2.47. If $E \in \mathcal{M}$, then $\forall \epsilon>0, \exists V$ an open subset of \mathbb{R} such that $E \subset V, \mu(V \backslash E)<\epsilon$.
Proof. If $\mu(E)<+\infty$, then $\mu(V \backslash E)=\mu(V)-\mu(E)$ and we find V using theorem 1.18. If $\mu(E)=+\infty$, then we can write $E=\bigcup_{n \in \mathbb{Z}}(E \cap(n, n+1])$. For each $n \in \mathbb{Z}$, we find V_{n} is open in \mathbb{R} such that $E \cap[n, n+1] \subset V_{n}$, and $\mu\left(V_{n} \backslash(E \cap(n, n+1])\right)<\frac{\epsilon}{2^{|n|}}$.

Let $V=\bigcup_{n \in \mathbb{Z}} V_{n}$ then V is open in \mathbb{R}, thus
$\mu(V \backslash E)=\mu\left(\left(\bigcup_{n \in \mathbb{Z}}\right) \backslash E\right)=\mu\left(\bigcup_{n \in \mathbb{Z}}\left(V_{n} \backslash E\right)\right) \leq \sum_{n \in \mathbb{Z}} \mu\left(V_{n} \backslash E\right) \leq \sum_{n \in \mathbb{Z}} \mu\left(V_{n} \backslash(E \cap(n, n+1]) \leq \sum_{n \in \mathbb{Z}} \frac{\epsilon}{2^{|n|}}=3 \epsilon\right.$.

Theorem 2.48 (Theorem 1.19 in [1]p. 36). Let $E \subseteq \mathbb{R}$. Then, the following are equivalent.

1. $E \in \mathcal{M}$.
2. $E=V \backslash N$ for some G_{δ} set V and $N \in \mathcal{M}$ such that $\mu(N)=0$.
3. $E=H \backslash N$ for some F_{σ} set H and $N \in \mathcal{M}$ such that $\mu(N)=0$.

Note that G_{δ} set is a set of countable intersection of open sets and F_{σ} set is a set of countable union of closed sets.

Proof. $(i i) \Longrightarrow(i)$ and $(i i i) \Longrightarrow(i)$ are clear. To show $(i) \Longrightarrow(i i)$, by the previous lemma, $\forall n \in \mathbb{N}, \exists V_{n}$, which is open in \mathbb{R} such that $E \subseteq V_{n}$ and $\mu\left(V_{n} \backslash E\right)<\frac{1}{n}$. Replacing V_{n} by $\cap_{k=1}^{n} V_{n}$ if necessary, we may without loss of generality assume $V_{1} \supseteq V_{2} \supseteq \cdots \supseteq E$. Let $V=\bigcap_{n=1}^{\infty} V_{n}$. Then, $V \in G_{\delta}$ and $V \supseteq E$. Let $N=V \backslash E$. Then, $E=V \backslash N$ and

$$
\mu(N) \leq \mu\left(V_{n} \backslash E\right) \leq \frac{1}{n}, \forall n \in \mathbb{N}
$$

Hence $\mu(N)=0$.
To see $(i) \Longrightarrow(i i i)$, let $E \in \mathcal{M}$. By (ii), $E^{c}=V \backslash N$, where $V \in G_{\delta}, N \in \mathcal{M}$ such that $\mu(N)=0$. Thus,

$$
E=\left(V \cap N^{c}\right)^{c}=V^{c} \cup N
$$

and $V^{c} \in F_{\sigma}$, since the complement of G_{δ} set is F_{σ} set.
Corollary 2.49. If $L \in \mathcal{M}$ such that $\mu(L)=0$. Then, \exists a G_{δ}-set $V \in \mathcal{B}_{\mathbb{R}}$ such that $L \subseteq E$ and $\mu(V)=0$. Thus, the Lebesgue Stieltjes measure is the completion of $\mathcal{B}_{\mathbb{R}}$. (Every union of borel set with a null set is Lebesgue Stieltjes measurable and every null set in Lebesgue Stieltjes measurable set is contained in a set of null sets in $\mathcal{B}_{\mathbb{R}}$.) Thus μ is the completion of $\left.\mu\right|_{\mathcal{B}_{\mathbb{R}}}$.

Proof. It is just direct application of the theorem.
From this fact we can use the notation

$$
\mathcal{L}:=\mathcal{M}_{F} \text { where } F(x)=x, m:=\mu_{F} .
$$

Theorem 2.50 (Theorem 1.21 in [1] p.37). If $E \in \mathcal{L}$, and $s, r \in \mathbb{R}$, then $s+E, r E \in \mathcal{L}$ and $m(s+E)=m(E)$, $m(r E)=|r| m(E)$.

Proof. Since \mathcal{A} is invariant under translation and dilations, so does $\mathcal{B}_{\mathbb{R}}$. Since $m(E)=m(E+s)$ and $m(r E)=|r| m(E)$ for any finite unions of intervals E, which implies $\left.m\right|_{\mathcal{A}}$ has a translation invariant and dilation invariant as a premeasure. Thus, by the theorem 1.14 , these property holds for $\mathcal{B}_{\mathbb{R}}$. Now for any $E \in \mathcal{L}$ with $m(E)=0, \exists F \in \mathcal{B}_{\mathbb{R}}$ such that $m(F)=0$ with $E \subseteq F$, then

$$
m(E+s) \leq m(F+s)=m(F)=0 \text { and } m(r E)=|r| m(E) \leq|r| m(F)=0 \Longrightarrow m(E+s)=0=m(r E)
$$

Since every measurable set in \mathcal{L} can be represented as union of F_{σ} set and a null set, and measures of these two sets are invariant under dilation and translation, we can conclude that every measure of measurable set is invariant under dilation and translation.

2.6 Revisit Cardinal Numbers.

Definition 2.51 (Cardinal Numbers). Two sets A and B have the same size if $\exists f: A \rightarrow B$ that is one-to-one and onto B. There is a class of sets, i.e., a collection that is too big to be a set, called cardinal numbers. The Cardinality of a set A is the unique cardinal number that has the same size as A.

Remark 2.52. For example, $0=\emptyset, 1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}, \cdots, \mathbb{N}_{0}=\aleph_{0}$, called aleph zero.

Definition 2.53. If κ and λ are cardinal numbers, we write $\kappa \leq \lambda$ if for sets A and B having cardinalities κ and λ respectively, \exists a one-to-one function $f: A \rightarrow B$.

Theorem 2.54 (Schroder-Bernstein Theorem). If $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa=\lambda$
Proof. Already proved above.
Proposition 2.55 (Proposition 0.7 in [1] p.7). For any X, Y sets, either $\operatorname{card}(X) \leq \operatorname{card}(Y)$ or $\operatorname{card}(Y) \leq$ $\operatorname{card}(X)$.

Proof. Already proved above.
Definition 2.56 (Cardinal Arithmetic). Suppose $\operatorname{card}(A)=\kappa, \operatorname{card}(B)=\lambda$. Then,

$$
\kappa+\lambda:=\operatorname{card}(A \cup B), \kappa \cdot \lambda=\operatorname{card}(A \times B), \kappa^{\lambda}=\operatorname{card}\left(A^{B}\right)
$$

where \bullet implies the disjoint union of two sets, and $A^{B}:=\{f: B \rightarrow A\}$.
Thus, $\operatorname{card}\left(2^{A}\right)=\operatorname{card}(\mathcal{P}(A))=2^{\kappa}$.
Theorem 2.57. If κ, λ are infinite cardinals, then

$$
\kappa+\lambda=\max (\kappa, \lambda)=\kappa \cdot \lambda
$$

Also, for any cardinals κ, λ, μ,

$$
\left(\kappa^{\lambda}\right)^{\mu}=\left(\kappa^{\lambda \cdot \mu}\right)
$$

Proof. Incomplete.
Theorem 2.58 (Cantor). If κ is any cardinal then $\kappa \leq 2^{\kappa}$ but $\kappa \neq 2^{\kappa}$.
Proof. Let A be a set with $\operatorname{card}(A)=\kappa$. Then there exists a one-to-one function

$$
f: A \rightarrow 2^{A} \text { by } a \mapsto f_{a}(x)=\left\{\begin{array}{cc}
1 & \text { if } x=a \\
0 & \text { otherwise }
\end{array}\right.
$$

Thus, $\kappa \leq 2^{\kappa}$. Suppose for $\kappa=2^{\kappa}$. Then, there exists a bijection $g: A \rightarrow 2^{A}=\{0,1\}^{A}$. Let

$$
F: A \times A \rightarrow\{0,1\} \text { with } F\left(a_{1}, a_{2}\right)=\left(g\left(a_{1}\right)\right)\left(a_{2}\right)
$$

Let $\phi: A \rightarrow\{0,1\}$ be defined by

$$
\phi(a) \neq F(a, a) \text { for all } a \in A
$$

Then, $\phi \in\{0,1\}^{A}=g(A)$, thus $\exists a \in A$ such that $g(a)=\phi$. Then, $\phi(a)=g(a)(a)=F(a, a)$, contradiction.

Theorem 2.59. $\operatorname{card}(\mathbb{R})=2^{\aleph_{0}}=\operatorname{card}(\mathcal{P}(\mathbb{N}))$, and this give $[0,1]$ to its decimal expansions.
Proof. It is already proved in theorem 1.18.
Theorem 2.60 (Theorem 1.21 in [1] p. 37, revisited). If $E \in \mathcal{L}=\mathcal{M}_{F}, F(x)=x, m=\mu_{F}$ then $\forall r, s \in \mathbb{R}$, $s+E \in \mathcal{L}$ and $r E \in \mathcal{L}$, and $m(s+E)=m(E)$ and $m(r E)=|r| m(E)$.

Proof. Let $\mathcal{B}^{\prime}=\left\{E \in \mathcal{B}_{\mathbb{R}}: s+E \in \mathcal{B}_{\mathbb{R}}\right\}$. Then \mathcal{B}^{\prime} is a sub σ-algebra of $\mathcal{B}_{\mathbb{R}}$ with $(a, b) \in \mathcal{B}^{\prime}$ for all $a, b \in \mathbb{R}$, with $a<b$. Thus, $\mathcal{B}^{\prime}=\mathcal{B}_{\mathbb{R}}$. Let $\mathcal{B}^{\prime \prime}=\left\{E \in \mathcal{B}_{\mathbb{R}}: m(s+E)=m(E)\right\}$. Then $\mathcal{B}^{\prime \prime}$ is a sub σ-algebra of $\mathcal{B}_{\mathbb{R}}$ since

$$
\mathcal{B}^{\prime \prime} \supset\{(a, b): a, b \in \mathbb{R}, a<b\}
$$

hence for all $E \in \mathcal{B}_{\mathbb{R}}, m(E)=\inf \{m(U): U$ open in $\mathbb{R}, E \subseteq U\}$ implies

$$
m(s+E)=\inf \{m(s+U): E \subseteq U, U \text { is open in } \mathbb{R}\}=\inf \{m(U): E \subseteq U, U \text { is open in } \mathbb{R}\}=m(E)
$$

Now let $E \in \mathcal{L}$. Then, $\exists F \in \mathcal{B}_{\mathbb{R}}, N^{\prime} \in \mathcal{B}_{\mathbb{R}}$ such that $m\left(B^{\prime}\right)=0$ and $E=F \cup N$ for some $N \subseteq N^{\prime}$. Therefore,

$$
m(s+E)=m(s+F \cup s+N)=m(s+F)+m(s+N) \leq m(F)+m\left(N^{\prime}\right)=m(F)=m(E)
$$

So $s+E \in \mathcal{L}$ and $m(s+E)=m(E)$. By the similar argument, $m(r E)=|r| m(E)$.
Remark 2.61. A totally ordered set (Ω, \leq) is $\underset{\tilde{\Omega}}{ } \mathbf{w}$ ell-ordered if every nonempty subset of Ω has a minimal element. Let $\tilde{\Omega}$ be an well-ordered set. For $x \in \tilde{\Omega}$, let

$$
P_{x}:=\{y \in \tilde{\Omega}: y \leq x \text { and } y \neq x\}
$$

Let

$$
U=\left\{x \in \tilde{\Omega}: P_{x} \text { is uncountable }\right\} .
$$

If $U=\emptyset$, let $\Omega=\tilde{\Omega}$. Otherwise, let $z=\min (U)$, which exists by the well-ordering property of $\tilde{\Omega}$. Then, let

$$
\Omega:=\{x \in \tilde{\Omega}: x<z\}=P_{z}
$$

Then, Ω is uncountable since $z \in U$ and $\Omega=P_{z}$. Moreover, $\forall x \in \Omega, P_{x}$ is countable since z is the least element in U. Also, by restricting \leq to Ω gives an well-ordering on Ω.

Proposition 2.62. Every countable subset of Ω has an upper bound.
Proof. Suppose $E \subseteq \Omega$ is countable. Suppose for contradiction, E has no upper bound. Then, $\forall y \in \Omega, \exists e \in E$ such that $e \not \leq y$, i.e., $y<e$, from the total ordering. Thus, $y \in P_{e}, \Omega=\bigcup_{e \in E} P_{e}$. However, P_{e} is countable, and countable union of countable sets is also countable. Thus, Ω is countable, contradiction.

Proposition 2.63. If Ω^{\prime} is any uncountable set endowed with a well-ordering \leq^{\prime} having the property that $\forall x \in \Omega^{\prime},\left\{y \in \Omega^{\prime}: y \leq^{\prime} x, x \neq y\right\}$ is countable, then $\left(\Omega^{\prime}, \leq^{\prime}\right)$ is order isomorphic to (Ω, \leq), i.e., there exsits a bijection function preserving order.

Proof. It is standard Zorn's lemma argument. Let $A=\left\{P_{y}: \exists\right.$ sub-order isomophism $\left.P_{y} \rightarrow \Omega\right\}$. Then, every chain of A has maximal element by the total-ordering. Hence, A has the maximal element, by the Zorn's lemma. Since for all $y \in \Omega^{\prime}, P_{y}$ has sub-order isomorphism with Ω using bijection of \mathbb{N}. Thus, its maximal element must contain every P_{y}, which is Ω^{\prime} itself.

Definition 2.64 (Hereditary). Given $H \subseteq \Omega$, we say H is hereditary if $x \in H, y \in \Omega, y \leq x \Longrightarrow y \in H$. Let
$(H):=\left\{\phi: H \rightarrow H^{\prime}: H\right.$ is a hereditary subset of Ω, H^{\prime} is a hereditary subset of Ω^{\prime}, ϕ is an order-isomorphism $\}$.
We order (H) by defining $\phi_{1} \leq \phi_{2}$ if ϕ_{2} extends ϕ_{1}. This is a partial ordering, so Zorn's lemma says that if (H1) is not empty and every totally ordered subset of (H) has an upper bound, then (H) has a maximal element.
Proof. Note that \mathbb{H} is not empty since the $\operatorname{map}\{\min (\Omega)\} \mapsto\left\{\min \left(\Omega^{\prime}\right)\right\} \in \mathbb{H}$. Also, if $\left\{\phi_{\lambda}: \lambda \in \Lambda\right\}$ is a totally ordered subset of (H), we can construct an upper bound of the subset as

$$
\phi: \bigcup_{\lambda \in \Lambda} \operatorname{dom}\left(\phi_{\lambda}\right) \rightarrow \bigcup_{\lambda \in \Lambda} \operatorname{range}\left(\phi_{\lambda}\right) \text { by } \phi(x)=\phi_{\lambda}(x) \text { since for some } \lambda, x \in \operatorname{dom}\left(\phi_{\lambda}\right) .
$$

Then, ϕ is order-isomorphism and $\bigcup_{\lambda \in \Lambda} \operatorname{dom}\left(\phi_{\lambda}\right), \bigcup_{\lambda \in \Lambda} \operatorname{range}\left(\phi_{\lambda}\right)$ are hereditary in Ω, Ω^{\prime} respectively. Thus, ϕ is in (H1) and it is an upper bound of $\left\{\phi_{\lambda}: \lambda \in \Lambda\right\}$.

Hence, by the Zorn's Lemma, there exists a maximal element of \mathbb{H}, say ψ.

Proposition 2.65. ψ is a surjective order-isomorphism, i.e., $\operatorname{dom}(\psi)=\Omega$, $\operatorname{range}(\psi)=\Omega^{\prime}$.
Proof. Suppose for contradiction, let $\operatorname{dom}(\psi) \neq \Omega$. Then, $\operatorname{dom}(\psi) \leq P_{x}$ for some x since $\operatorname{dom}(\psi)$ is hereditary. Without loss of generality, such x is minimal; i.e., there is no y such that $y \leq x, y \neq x$ but $\operatorname{dom}(\psi) \subseteq P_{y}$. This is possible since Ω is totally ordered set. Then, P_{x} is countable by the construction of Ω. So range (ψ) is countable, which implies $\operatorname{range}(\psi) \subsetneq \Omega^{\prime}$.

Let $y=\min \left(\Omega^{\prime} \backslash \operatorname{range}(\psi)\right)$. Then, $\operatorname{dom}(\psi) \cup\{x\}$ is also hereditary by choice of x, as is $\operatorname{range}(\psi) \cup\{y\}$. Let $\tilde{\psi}: \operatorname{dom}(\psi) \cup\{x\} \rightarrow \operatorname{range}(\psi) \cup\{y\}$ be

$$
\tilde{\psi}(a)= \begin{cases}\psi(a) & \text { if } a \neq x \\ y & \text { if } a=x\end{cases}
$$

Then, $\tilde{\psi} \in \mathbb{H}, \psi \leq \tilde{\psi}, \psi \neq \tilde{\psi}$, thus ψ is not a maximal element, contradiction.
Definition 2.66 (Ordinal). Let (Ω, \leq) constructed in the above is the first uncountable ordinal. Then, $0:=\min (\Omega), 1:=\min (\Omega \backslash\{0\}), 2=\min (\Omega \backslash\{0,1\}), \cdots, w=\min \left(\Omega \backslash \mathbb{N}_{0}\right), w+1=\min \left(\Omega \backslash\left(\mathbb{N}_{0} \cup\{w\}\right)\right), \cdots$. Thus, countable ordinals are

$$
0,1,2, \cdots, w, w+1, w+2, \cdots, 2 w, 2 w+1, \cdots, 3 w, 3 w+1, \cdots, w^{2}, w^{2}+1, \cdots,
$$

The first uncountable cardinal is card (Ω), denoted $\operatorname{card}(\Omega)=\aleph_{1}$.
Remark 2.67 (Continuum Hypothesis). $\alpha_{1}=c=2^{\aleph_{0}}$.
Example 2.68 (Transfinite recursion). Let's construct σ-alg (ξ) for some $\xi \subseteq \mathcal{P}(X)$. We will construct \mathcal{R}_{a} for every $a \in \Omega$ to show that $\bigcup_{a \in \Omega} \mathcal{R}_{a}=\sigma-\operatorname{alg}(\xi)$. Let $R_{0}=\xi \cup\{\emptyset\}$. If $a \in \Omega$ has an immediate predecessor b, i.e., if a is a successor ordinal, i.e., if $b=\max \left(\{x \in \Omega: x<a\}\right.$ exists, then we let \mathcal{R}_{a} be a set of all countable union and complements of such union of elements from \mathcal{R}_{b}. If a is not a successor ordinal, then we let $\mathcal{R}_{a}=\bigcup_{x \in \Omega: x<a} \mathcal{R}_{x}$.

Claim 2.69. $\bigcup_{a \in \Omega} R_{a}=\sigma-\operatorname{alg}(\xi)$.
Proof. \leq is clear from the construction. More correctly, it follows by the transfinite induction on W that $\mathcal{R}_{a} \subseteq \sigma$-alg $(\xi), \forall a \in \Omega$. Indeed, $\mathcal{R}_{0} \subseteq \sigma$-alg (ξ). If $a \in \Omega$ and if $\mathcal{R}_{x} \in \sigma$-alg (ξ) for all $x<a$, then we must shown that $\mathcal{R}_{a} \subseteq \sigma-\operatorname{alg}(\xi)$. If $a=b+1$, then $\mathcal{R}_{a} \subseteq \sigma-\operatorname{alg}\left(\mathcal{R}_{b}\right) \subseteq \sigma-\operatorname{alg}(\xi)$ by the inductive hypothesis. If a is not a successor ordinal, then $\mathcal{R}_{a}=\bigcup_{x<a} \mathcal{R}_{x} \subseteq \sigma$-alg (ξ), by the inductive hypothesis that for each $x<a$, $\mathcal{R}_{x} \subseteq \sigma-\operatorname{alg}(\xi)$.

For \geq, we must show that $\mathcal{R}:=\bigcup_{a \in \Omega} \mathcal{R}_{a}$ is σ-algebra. If $E \in \mathcal{R}_{a}$ for some $a \in \Omega$, then $E^{c} \in \mathcal{R}_{a}$ by the construction of \mathcal{R}_{a}. Suppose $E_{1}, E_{2}, \cdots \in \mathcal{R}$. Let $a(j) \in \Omega$ such that $E_{j} \in \mathcal{R}_{a(j)}$ for all $j \in \mathbb{N}$. By the proposition, $\{a(j)\}_{j \in \mathbb{N}}$ has an upper bound $b \in \Omega$. Thus, $\forall k \in \mathbb{N}, E_{k} \subseteq \bigcup_{j=1}^{\infty} \mathcal{R}_{a(j)} \subseteq \mathcal{R}_{b}$. And by construction, $\bigcup_{k=1}^{\infty} E_{k} \in \mathcal{R}_{b+1} \Longrightarrow \bigcup_{k=1}^{\infty} E_{k} \in \mathcal{R}$.

Thus, \mathcal{R} is σ-algebra.
Proposition 2.70. Suppose $\xi \subseteq \mathcal{P}(X)$ is countably infinite. Then, $\operatorname{card}(\sigma-\operatorname{alg}(\xi))=c$.
Proof. We have σ - $\operatorname{alg}(() \xi)=\bigcup_{\alpha \in \Omega} \mathcal{R}_{\alpha}$, where Ω is the first uncountable ordinal. Then, by our construction, $\operatorname{card}\left(R_{0}\right)=\operatorname{card}(\xi \cup\{\emptyset\})=\aleph_{0}$.

Claim 2.71. $\forall \alpha>0, \operatorname{card}\left(\mathcal{R}_{\alpha}\right)=c$.
Proof. By the transfinite induction, we assume that the assertion holds for all $\alpha \in \Omega, \alpha<\beta \in \Omega$. And show it holds for β. Note that

$$
\operatorname{card}\left(\mathcal{R}_{1}\right) \leq \operatorname{card}(\mathcal{P}(\xi))=2^{\aleph_{0}}=c
$$

1. Case 1: $\beta \in \Omega$ is $\beta=\beta_{0}+1$. Then, \mathcal{R}_{β} consists of all countable union of sets from $\mathcal{R}_{\beta_{0}}$, and their complement B, so

$$
c=2^{\alpha_{0}} \leq \operatorname{card}\left(R_{\beta}\right) \leq \operatorname{card}\left(\mathcal{R}_{\beta_{0}}^{\mathbb{N}}\right)=c^{\alpha_{0}}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}=c .
$$

2. Case 2: $\beta \in \Omega$ is not a successor ordinal. Then,

$$
\mathcal{R}_{\beta}=\bigcup_{\substack{\alpha<\beta \\ \alpha \in \Omega}} \mathcal{R}_{\alpha} \text { and } \operatorname{card}\left(\mathcal{R}_{\beta}\right) \leq \aleph_{0} \cdot c=c
$$

Note that $\{\alpha \in \Omega: \alpha<\beta\}$ is countable, by construction of Ω.

By the claim,

$$
\operatorname{card}(\sigma-\operatorname{alg}(\xi))=\operatorname{card}\left(\bigcup_{a \in \Omega} R_{a}\right) \leq \operatorname{card} \Omega \cdot c=\aleph_{1} \cdot c \leq c \dot{c}=c
$$

Corollary 2.72. $\operatorname{card}\left(\mathcal{B}_{\mathbb{R}}\right)=c$
Proof. $\{(a, b): a, b \in \mathbb{Q}\}$ generates $\mathcal{B}_{\mathbb{R}}$ as a σ-algebra.
Definition 2.73 (The Cantor Set). Let $C_{0}=[0,1] . C_{1}=C_{0} \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$, and $C_{2}=C_{1} \backslash$ $\left(\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right)\right)$, and so on. Now let $C=\bigcap_{n=1}^{\infty} C_{n}$. Then C is totally disconnected, i.e., no two points are connected by the line segment. However, it is still uncountable.

Elements of $[0,1]$ have base 3 expansions $x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}}$ for $a_{j} \in\{0,1,2\}$, and these expansions are unique except when $x=\frac{n}{3^{p}}, n \in \mathbb{N}_{0}$ when x will has two such expansions

$$
a_{j}=0 \forall j>p \text { or } a_{j}=2 \forall j<p
$$

And we choose the expansion tha avoids having any $a_{j}=1$ if possible. Actually,

$$
C=\left\{x \in[0,1]: x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}} \text { for some } a_{j} \in\{0,2\}\right\}
$$

Then we have a bijection $\theta: C \rightarrow\{0,2\}^{\mathbb{N}}$. Thus, $\operatorname{card}(C)=c$
Lemma 2.74. $m(C)=0$.
Proof.

$$
m(C)=\lim _{n \rightarrow \infty} m\left(C_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n}=0
$$

by the continuity from above.
Proposition 2.75. $\operatorname{card}(\mathcal{L})=2^{c}$.
Proof. Note that $\mathcal{P}(C) \subseteq \mathcal{L} \subseteq \mathcal{P}(\mathbb{R})$ and $\operatorname{card}(\mathcal{P}(C))=2^{c}=\operatorname{card}(\mathcal{P}(\mathbb{R}))$ gives the desired result.

3 Integration

3.1 Measurable function

Definition 3.1 (Measurable function). Let (X, m) and (Y, n) are measurable spaces and let $f: X \rightarrow Y . f$ is measurable or (m, n)-measurable if $\forall E \in m, f^{-1}(E) \in m$.
Observation 3.2. If also (Z, \mathfrak{a}) is a measurable space and if $g: Y \rightarrow Z$ is (n, \mathfrak{a})-measurable, then $g \circ f:$ $X \rightarrow Z$ is (m, α)-measurable.

This is because every inverse image of α-measurable set is n-measurable, and its inverse image of f is also m-measurable.

Proposition 3.3 (Proposition 2.1 in [1] p.43). If $n=\sigma-\operatorname{alg}(\xi)$, then $f: X \rightarrow Y$ is (m, n)-measurable iff $\forall E \in \xi, f^{-1}(E) \in m$.

Proof. If f is (m, n)-measurable, then trivially $f^{-1}(E) \in m$ for all $E \in \xi \subseteq \sigma$-alg (ξ).
If $\forall E \in \xi, f^{-1}(E) \in m$, let $A=\left\{E \subseteq Y: f^{-1}(E) \in m\right\}$. Then, $\xi \subseteq A$. It suffices to show that σ-alg $(\xi) \subseteq A$. Note that A is closed under complement since $f^{-1}\left(E^{c}\right)=X-f^{-1}(E)=f^{-1}(E)^{c}$ for any $E \in A$. Also, $\emptyset \in A$ since $f^{-1}(\emptyset)=\emptyset \in m$. Finally, A is closed under countable union since

$$
f^{-1}\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\bigcup_{j=1}^{\infty} f^{-1}\left(E_{j}\right) \in m .
$$

Hence, A is a σ-algebra, containing ξ. Thus, σ-alg $(\xi) \subseteq A$, hence f is (m, n)-measurable.
Corollary 3.4 (Corollary 2.2 in [1] p.44). If X and Y are topological spaces and if $f: X \rightarrow Y$ is continuous function, then f is $\left(\mathcal{B}_{X}, \mathcal{B}_{Y}\right)$-measurable.

Proof. Note that

$$
\mathcal{B}_{Y}=\sigma \text {-alg }(\{V \subset Y: V \text { is open }\}), \mathcal{B}_{X}=\sigma \text {-alg }(\{U \subset X: U \text { is open }\}),
$$

and V is open in Y implies $f^{-1}(V)$ is open. Thus, by the above proposition, f is $\left(\mathcal{B}_{X}, \mathcal{B}_{Y}\right)$-measurable.
Remark 3.5 (Convention). If (X, m) is a measurable space and if $f: X \rightarrow \mathbb{R}$ (or $f: X \rightarrow \mathbb{C}$), then we will say f is measurable or m-measurable if it is ($m, \mathcal{B}_{\mathbb{R}}$)-measurable (or (m, \mathcal{B}_{Y})-measurable).

Observation 3.6. If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are both \mathcal{L}-measurable, i.e., Lebesgue measurable, then by the convention, f is $\left(\mathcal{L}, \mathcal{B}_{\mathbb{R}}\right)$-measurable, thus $g \circ f$ need not be \mathcal{L}-measurable.

Proposition 3.7 (Proposition 2.3 in [1] p. 44). Given (X, m) and $f: X \rightarrow \mathbb{R}$, the followings are equivalent.
(i) f is m-measurable
(ii) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a)) \in m$.
(iii) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in m$.
(iv) $\forall b \in \mathbb{R}, f^{-1}((b, \infty)) \in m$.
(v) $\forall b \in \mathbb{R}, f^{-1}([b, \infty)) \in m$.

Proof. Note that $(i) \Longrightarrow(i i),(i i i),(i v),(v)$, since the given sets are all Borel set. Conversely, from the proposition 1.2, we know that the given sets can generates the Borel σ-algebra, therefore from the proposition 2.1, we can concluded that f is m-measurable.

Definition 3.8 (σ-algebra generated by $\left\{f_{\alpha}\right\}_{\alpha \in A}$). Let X be a set. Fix a set A and $\forall \alpha \in A$, fix $\left(Y_{\alpha}, m_{\alpha}\right)$ a measurable space. Suppose $f_{\alpha}: X \rightarrow Y_{\alpha}$ is a function. Then, σ-algebra generated by $\left\{f_{\alpha}\right\}_{\alpha \in A}$ is σ-alg $\left(\left\{f_{\alpha}^{-1}(E): \alpha \in A, E \in m_{\alpha}\right\}\right)$. This is the smallest σ-algebra of subsets of X making all the functions f_{α} measurable.

For example, let $Y=\prod_{\alpha \in A} Y_{\alpha}$ and let $\pi_{\alpha}: Y \rightarrow Y_{\alpha}$. Denote the α-th coordinate projection, then the product σ-algebra is $\otimes_{\alpha \in A} n_{\alpha}$, which is the σ-algebra generated by $\left(\pi_{\alpha}\right)_{\alpha \in A}$. (See definition 2.14 of this note.)
Lemma 3.9. Let A be a set and $\forall \alpha \in A$, let $\left(Y_{\alpha}, n_{\alpha}\right)$ be a measurable space. Let Z be a set, and let $f_{\alpha}: Z \rightarrow Y_{\alpha}$ be a function for each $\alpha \in A$. Let $n \subseteq \mathcal{P}(Z)$ be the σ-algebra generated by $\left(f_{\alpha}\right)_{\alpha \in A}$. Let (X, m) be a measurable space. Let $g: X \rightarrow Z$ be a function.

Then, g is (m, n)-measurable iff $\forall \alpha \in A, f_{\alpha} \circ g$ is $\left(m, n_{\alpha}\right)$-measurable.
Proof. To show if part, note that n is generated by $\left\{f_{\alpha}^{-1}(E): \alpha \in A, E \in n_{\alpha}\right\}$. Thus, for g to be (m, n) measurable, it suffices to show that $\forall \alpha \in A, \forall E \in n_{\alpha}, g^{-1}\left(f_{\alpha}^{-1}(E)\right) \in m$. And it is true, since for any $E \in n_{\alpha}$, $f_{\alpha}^{-1}(E) \in n$ by definition, and $g^{-1}(F) \in m$ for any $F \in n$. Let $F=f_{\alpha}^{-1}(E)$ and we're done.

To see only if part, suppose g is (m, n)-measurable. Then, by definition of n, f_{α} is $\left(n, n_{\alpha}\right)$ measurable for each $\alpha \in A$. Thus, $f_{\alpha} \circ g$ is $\left(m, n_{\alpha}\right)$-measurable; done.

Proposition 3.10 (Proposition 2.4 in [1] p.44). Let (X, m) and $\forall \alpha \in A$, $\left(Y_{\alpha}, n_{\alpha}\right)$ be measurable spaces. Let $Y=\prod_{\alpha \in A} Y_{\alpha}$ and $n=\otimes_{\alpha \in A} n_{\alpha}$. Let $g: X \rightarrow Y$. Then, g is (m, n) measurable if and only if $\forall \alpha \in A, \pi_{\alpha} \circ g:$ $X \rightarrow Y_{\alpha}$ is $\left(m, n_{\alpha}\right)$-measurable.

Proof. Just special case of the above lemma.
Remark 3.11 (Recall a product of metric space). A metric space is (X, d) where d is a metric on X. And $U \subseteq X$ is called open if $\forall x \in U, \exists \epsilon>0$ such that $B_{\epsilon}(X):=\{y \in X: d(x, y)<\epsilon\} \subseteq U$.

If $\left(X_{1}, d_{1}\right), \cdots,\left(X_{n}, d_{n}\right)$ are metric spaces, then we equip $X=\prod_{j=1}^{n} X_{j}$ with the product metric e.g.,

$$
d^{(\infty)}\left(\left(x_{j}\right)_{j=1}^{n},\left(y_{j}\right)_{j=1}^{n}\right)=\max _{1 \leq j \leq n} d_{j}\left(x_{j}, y_{j}\right)
$$

which is equivalent to any of

$$
d^{(p)}\left(\left(x_{j}\right)_{j=1}^{n},\left(y_{j}\right)_{j=1}^{n}\right)=\left(\sum_{j=1}^{n} d_{j}\left(x_{j}, y_{j}\right)^{p}\right)^{\frac{1}{p}}
$$

Definition 3.12 (Separability). A metric space (X, d) is separable if there exists a countable subset $D \subseteq X$ that is dense in X.

Proposition 3.13 (Proposition 1.5 in [1] p.23). Let $\left(X_{j}, d_{j}\right), 1 \leq j \leq n$ be metric space and let $X=$ $\prod_{j=1}^{n} X_{j}$ be equipped with $d^{(\infty)}$. Then $\otimes_{j=1}^{n} \mathcal{B}_{X_{j}} \subseteq \mathcal{B}_{X}$. If $\left(X_{1}, d_{1}\right), \cdots\left(X_{n}, d_{n}\right)$ are all separable, then we get $\otimes_{j=1}^{n} \mathcal{B}_{X_{j}}=\mathcal{B}_{X}$.

Proof. By definition of product σ-algebra, $\otimes_{j=1}^{n} \mathcal{B}_{X_{j}}=\sigma$-alg $\left(\left\{\pi_{j}^{-1}(U): 1 \leq j \leq n, U\right.\right.$ is open in $\left.\left.X_{j}\right\}\right)$. since each π_{j} is continuous from X to X_{j}, each $\pi_{j}^{-1}(U)$ is open, so $\pi^{-1}(U) \in \mathcal{B}_{X}$. Suppose $\forall j \in[n]$, X_{j} has a countable dense set D_{j}. Then, $D=\prod_{j=1}^{n} D_{j}$ is dense in X, and D is countable. Hence X has countable dense subset D. And we note the standard result;

Remark 3.14 (Standard result). For D, which is countable dense in X, every open set in X is the union of a subfamily of $\left\{B_{\frac{1}{l}}(x): x \in D, l \in \mathbb{N}\right\}$, where $B_{\frac{1}{l}}:=\left\{y \in X: d(x, y)<\frac{1}{l}\right\}$.

Proof. See the topology stuff and prove it.

Now we want to prove $\otimes_{j=1}^{n} \mathcal{B}_{X_{j}} \supseteq \mathcal{B}_{X}$. Let $U \subseteq \in X$ be open. It suffices to show that $U \in \otimes_{j=1}^{n} \mathcal{B}_{X_{j}}$. Since U is countable union of sets of $B_{\frac{1}{l}}(x), x \in D$, it suffices to show that each $B_{\frac{1}{l}}(x) \in \otimes_{j=1}^{n} \mathcal{B}_{X_{j}}$. We choose $d=d^{(\infty)}$, defined above. Then, $B_{\frac{1}{l}}(x)=\prod_{j=1}^{n} B_{\frac{1}{l}}\left(x_{j}\right) \in \otimes_{j=1}^{n} \mathcal{B}_{X_{j}}$.

Corollary 3.15 (Corollary 1.6 in [1] p. 23 and more.). $\mathcal{B}_{\mathbb{C}} \cong \mathcal{B}_{\mathbb{R}^{2}} \cong \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$. $\mathcal{B}_{\mathbb{R}^{n}}=\otimes_{j=1}^{n} \mathcal{B}_{\mathbb{R}}$.
Corollary 3.16 (Corollary of proposition 2.4 in [1]). If (X, m) is a measurable space and $f: X \rightarrow \mathbb{C}$, then f is $\left(m, \mathcal{B}_{\mathbb{C}}\right)$-measurable iff Ref, Imf are $\left(m, \mathcal{B}_{\mathbb{R}}\right)$-measurable.

Proof. From the above corollary, $\mathcal{B}_{\mathbb{C}} \cong \mathcal{B}_{\mathbb{R}^{2}} \cong \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$.
Proposition 3.17 (Proposition 2.6 in [1] p.45). If $f, g: X \rightarrow \mathbb{C}$ are m-measurable, then $f+g$, fg are also m-measurable.

Proof. Let $H: X \rightarrow \mathbb{C} \times \mathbb{C}$ be $H(x)=(f(x), g(x))$. Then, H is (by proposition 2.4 of the [1]) $\left(m, \mathcal{B}_{\mathbb{C}} \otimes \mathcal{B}_{\mathbb{C}}\right)$ measurable. Let $\phi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ be $\phi(z, w)=z+w$ and $\varphi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ be $\varphi(z, w)=z w$. Then, ϕ, φ are continuous, thus, they are $\left(\mathcal{B}_{\mathbb{C}^{2}}, \mathcal{B}_{\mathbb{C}}\right)$-measurable. Thus, $\phi \circ H=f+g$ and $\varphi \circ H=f g$ are $\left(m, \mathcal{B}_{\mathbb{C}}\right)$ measurable.

Remark 3.18. Consider $\overline{\mathbb{R}}=[-\infty, \infty]$. We topologize it by making an order preserving bijection $[-\infty, \infty] \rightarrow$ $[-1,1]$ into a homeomorphism. If (X, m) is a measurable space and $f: X \rightarrow[-\infty,+\infty]$ we say f is m mesaurable if it is $\left(m, \mathcal{B}_{\overline{\mathbb{R}}}\right)$-measurable.

Lemma 3.19. Let $f: X \rightarrow[-\infty, \infty]$ is m-measurable iff $\forall a \in \mathbb{R}, f^{-1}((a,+\infty]) \in m$.
Proof. We proved it in the proposition 2.3 in [1].
Proposition 3.20 (Proposition 2.7 in [1] p. 45). Suppose $f_{j}: X \rightarrow[-\infty, \infty], j \in \mathbb{N}$ is m-measurable. Then,

$$
g_{1}=\sup _{j \in \mathbb{N}} f_{j}, g_{2}=\inf _{j \in \mathbb{N}} f_{j}, g_{3}=\lim \sup _{j \rightarrow \infty} f_{j} g_{4}=\lim \sup _{j \rightarrow \infty} f_{j}
$$

are measurable.
Proof.

$$
g_{1}^{-1}((a,+\infty])=\bigcup_{j=1}^{\infty} f_{j}^{-1}((a,+\infty]) \in m
$$

since

$$
\sup _{j \in \mathbb{N}} f_{j}(x)>a \Longleftrightarrow \exists j \in \mathbb{N} \text { such that } f_{j}(x)>a
$$

So g_{1} is m-measurable. Since $g_{2}=-\sup _{j \in \mathbb{N}}\left(-f_{j}(x)\right)$, so g_{2} is also m-measurable. And note that

$$
g_{3}=\inf _{n \in \mathbb{N}} \sup _{j \geq n} f_{j}(x)=\inf _{n \in \mathbb{N}} h_{n}(x),
$$

where $h_{n}(x)=\sup _{j \geq n} f_{j}$. Note that $h_{n}(x)$ is also m-measurable, since it is also supremum of countably many functions up to renumbering. Hence, g_{3} is m-measurable. Similarly,

$$
g_{4}=\sup _{n \in \mathbb{N}} \inf _{k \geq n} f_{j}(x)
$$

is also m-measurable.
Corollary 3.21 (Corollary 2.8 in [1] p.46). If $f, g: X \rightarrow[-\infty, \infty]$ are m-measurable, then $\max (f, g)(x):=$ $\max (f(x), g(x))$ and $\min (f, g)(x):=\min (f(x), g(x))$ are m-measurable.

Proof. Let $f_{1}=f, f_{n}=g$ for any $n \geq 2$, then $\max (f, g)(x)=\sup _{n \in \mathbb{N}} f_{n}, \min (f, g)(x)=\inf _{n \in \mathbb{N}} f_{n}$, thus they are m-measurable.

Corollary 3.22 (Corollary 2.9 in [1] p.46). If $f_{j}: X \rightarrow[-\infty, \infty]$ is m-measurable, and if $f(x):=$ $\lim _{j \rightarrow \infty} f_{j}(x)$ exists for all x, then $f(x)$ is m-measurable. If we replace $[-\infty, \infty]$ to \mathbb{C}, the statement still holds.

Proof. If $f(x):=\lim _{j \rightarrow \infty} f_{j}(x)$ exists for all x, then $f(x)=\limsup _{j \rightarrow \infty} f_{j}(x)=\liminf _{j \rightarrow \infty} f_{j}(x)$, thus it is m-measurable by the proposition 2.7. Also, in case of \mathbb{C}, we know that $f(x):=\lim _{j \rightarrow \infty} f_{j}(x)$ exists iff $\operatorname{Re} f(x):=\lim _{j \rightarrow \infty} \operatorname{Re} f_{j}(x)$ exists and $\operatorname{Imf}(x):=\lim _{j \rightarrow \infty} \operatorname{Im} f_{j}(x)$ exists, from the corollary 2.5 in [1]. Thus, we know Ref and Imf are m-measurable by the statement for the case $[-\infty, \infty]$, which we just proved. Thus, $f=\operatorname{Re} f+i \operatorname{Im} f$ is also m-measurable, from proposition 2.6.

Definition 3.23 (Characteristic function and Simple function). Let X be a set and $E \subseteq X$, then the characteristic function of E is $1_{E}(x):=\left\{\begin{array}{ll}1 & \text { if } x \in E \\ 0 & \text { otherwise. }\end{array}\right.$ A simple function on X is a function of the form $f=\sum_{j=1}^{n} a_{j} 1_{E_{j}}$ for some $n \in \mathbb{N}$ and some $a_{j} \in \mathbb{C}$ and $E_{j} \subseteq X$.
Observation 3.24. Let $f: X \rightarrow \mathbb{C}$ is a simple function iff $\operatorname{im}(f)$ is a finite set. Suppose $\left\{z_{1}, \cdots, z_{n}\right\}=$ $i m(f)$. Then,

$$
f=\sum_{j=1}^{n} z_{j} 1_{E_{j}}
$$

where $E_{j}=f^{-1}\left(\left\{z_{j}\right\}\right)$. We call the above representation as the standard form of the simple function f.
Definition 3.25 (Positive and negative part, polar decomposition). If $f: X \rightarrow \overline{\mathbb{R}}$, we define the positive and negative parts of f to be

$$
f^{+}(x)=\max (f(x), 0), \quad f^{-}(x)=\max (-f(x), 0)
$$

Then $f=f^{+}-f^{-}$, and $|f|=f^{+}+f^{-}$. Thus, if f is measurable, then f^{+}, f^{-}are measurable by the corollary 2.8, thus $|f|$ is measurable by the proposition 2.6. Conversely, if f^{+}and f^{-}are measurable, then by proposition 2.6, f is measurable. Also, if $f: X \rightarrow \mathbb{C}$, we have a polar decomposition:

$$
f=(\operatorname{sgnf})|f|, \text { where } \operatorname{sgn}(z)= \begin{cases}\frac{z}{|z|} & \text { if } z \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Again, if f is measurable, then so are $|f|$ by the proposition 2.6. And note that if $U \subseteq \mathbb{C}$ is open, then $\operatorname{sgn}^{-1}(U)$ is open or a form $V \cup\{0\}$, where V is also open, thus $V \cup\{0\}$ is a Borel measurable set. Thus, $\operatorname{sgn}(z)$ is Borel measurable by proposition 2.1. Thus, $\operatorname{sgn}(f)$ is measurable.

Remark 3.26. If f, g are simple, then so are $f+g$ and $f g$, since their image is also finitely many, therefore we can represent it as the standard form.

Observation 3.27. If (X, m) is measurable space and if $f=\sum_{j=1}^{n} z_{j} 1_{E_{j}}$ is a simple function in standard form, then f is m-measurable iff $\forall j, E_{j} \in m$.

Proof. Note every inverse image is the union of some E_{j} 's, therefore, f is measurable iff E_{j} 's are in m.
Theorem 3.28 (Theorem 2.10 in [1] p.47). Let (X, m) be a measurable space.
(a) Let $f: X \rightarrow[0, \infty]$ be m-measurable. Then, \exists a sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ of m-measurable simple functions such that $\phi_{1} \leq \phi_{2} \leq \cdots \leq f$ and $\phi_{n} \rightarrow f$ pointwise with uniform convergence on subsets of X where f is bounded.
(b) If $f: X \rightarrow \overline{\mathbb{R}}$ or $f: X \rightarrow \mathbb{C}$ is m-measurable, then \exists a sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ of m-measurable simple functions such that $\left|\phi_{1}\right| \leq\left|\phi_{2}\right| \leq \cdots \leq|f|, \phi_{n} \rightarrow f$ pointwise with uniform convergence on subsets of X where f is bounded.

Proof of (a). Let $E_{k}^{(n)}=f^{-1}\left(\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]\right)$ for all $k \in\left[2^{n}\right]$. Let $F^{(n)}=f^{-1}\left(\left[2^{n},+\infty\right]\right)$. Let

$$
\phi_{n}=\left(\sum_{k=1}^{2^{2 n}} \frac{k-1}{2^{n}} 1_{E_{k}^{(n)}}\right)+2^{n} 1_{F^{(n)}}
$$

See below picture for understanding the ϕ_{n}.

Thus, $\phi_{n} \leq \phi_{n+1}$ since the latter is cut more finer than the former one, and the value of function is always greater then or equal to that of the former. Also, $\phi_{n} \leq f$ since it is defined to have a minimum value of each inverse image of intervals, which f has a value.

If $Y \subseteq X$ and $f(Y) \subseteq\left[0,2^{p}\right]$, then $\forall x \in Y, \forall n \geq p$,

$$
\left|f(x)-\phi_{n}(x)\right| \leq \frac{1}{2^{n}}
$$

Thus, f_{n} uniformly converge to f on any subset Y of X, which f is bounded.
Proof of (b). Suppose $f: X \rightarrow \bar{R}$. Let $\left(\psi_{n}^{(+)}\right)_{n=1}^{\infty}$ and $\left(\psi_{n}^{(-)}\right)_{n=1}^{\infty}$ be approximating sequences for f_{+}and f_{-} obtained from part (a). Then, $\forall n \in \mathbb{N}, \psi_{n}^{(+)} \psi_{n}^{(-)}=0$. Thus, we know $|f|=f_{+}+f_{-}$and $f_{+} f_{-}=0$. Hence,

$$
\left|\psi_{n}\right|:=\psi_{n}^{(+)}+\psi_{n}^{(-)}
$$

has the desired properties.
If $f: X \rightarrow \mathbb{C}$, then letting $\left(\psi_{n}\right)_{n=1}^{\infty}$ and $\left(\rho_{n}\right)_{n=1}^{\infty}$ be the approximating sequence of Ref and Imf. Then, $\phi_{n}:=\psi_{n}+i \rho_{n}$ have the desired properties.

Definition 3.29 (Almost everywhere). If $P(x)$ is a property that depends on $x \in X$, and if (X, M, μ) is a measure space, we say P holds μ-almost everywhere or μ-a.e. if it holds for all $x \in E$ for some $E \in m$ such that $\mu\left(E^{c}\right)=0$.

Lemma 3.30. Suppose (X, m, μ) is a complete measure space, $E \in m, B \subseteq X$ such that $B \Delta E \in m$, where Δ is symmetric difference. Suppose $\mu(B \Delta E)=0$. Then, $B \in m$.

Proof. By the completeness of $\mu, E \backslash B$ and $B \backslash E \in m$ since they are subset of $B \Delta E$. Thus,

$$
B=(B \cap E) \cup(B \backslash E)=(E \backslash(E \backslash B)) \cup(B \backslash E) \in m
$$

Proposition 3.31 (Proposition 2.11 in [1] p.47). Let (X, m, μ) be a complete measure space and suppose (Y, n) is a measurable space.
(a) If $f, g: X \rightarrow Y, f$ is measurable, and $f=g \mu$-a.e., then g is measurable.
(b) Suppose $f_{j}: X \rightarrow \mathbb{C}$ (or $\overline{\mathbb{R}}$) and $f: X \rightarrow \mathbb{C}$ (or $\overline{\mathbb{R}}$) such that $f_{j} \rightarrow f \mu$-a.e. and $\forall j \in \mathbb{N}$, f_{j} is measurable, then f is measurable.

Note that a.e. implies there exists $E \in m$ such that $\mu\left(E^{c}\right)=0$ and $\forall x \in E$, (a) $f(x)=g(x)$ or (b) $\lim _{j \rightarrow \infty} f_{j}(x)=f(x)$.

Proof. For (a), Let E be as described. Let $A \in n$. It suffices to show that $g^{-1}(A) \in m$. But $g^{-1}(A) \Delta f^{-1}(A) \subseteq$ E^{c}, and we know $\mu\left(E^{c}\right)=0$. Thus, $g^{-1}(A) \Delta f^{-1}(A) \in m$ from the completeness of μ, and $\mu\left(g^{-1}(A) \Delta f^{-1}(A)\right)=$ 0 . However, $f^{-1}(A) \in m$. By the above lemma, $g^{-1}(A) \in m$.

For (b), let $\tilde{f}_{j}=f_{j} 1_{E}$ and $\tilde{f}=f 1_{E}$ where E is described above. Then, $\tilde{f}_{j}=f_{j}$ a.e. and $\tilde{f}=f$ a.e. and $\lim _{j \rightarrow \infty} \tilde{f}_{j}=\tilde{f}$. By part (a), $\forall j \in \mathbb{N}, \tilde{f}_{j}$ is measurable. By proposition 2.7, \tilde{f} is measurable. By part (a) f is measurable.

Proposition 3.32 (Proposition 2.12 in [1] p.48). Let (X, m, μ) and let $(X, \bar{m}, \bar{\mu})$ be its completion. If $f: X \rightarrow \mathbb{C}($ or $\overline{\mathbb{R}})$ is \bar{m}-measurable, then there exists $g: X \rightarrow \mathbb{C}$ (or $\overline{\mathbb{R}}$) such that g is m-measurable and $f=g \bar{\mu}$-a.e.

Proof. Using the theorem 2.10, there exists a sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ of simple \bar{m}-measurable functions, $\phi_{n}: X \rightarrow$ \mathbb{C} (or $\overline{\mathbb{R}}$) such that $\phi_{n} \rightarrow f$ pointwisely. Writing

$$
\phi_{n}=\sum_{j=1}^{k(n)} z_{j}^{(n)} 1_{E_{j}^{(n)}}
$$

in standard form, where $z_{j}^{(n)} \in \mathbb{C}, E_{j}^{(n)} \in \bar{m}$. Since \bar{m} is the completion of m, we have $E_{j}^{(n)}=F_{j}^{(n)} \cup A_{j}^{(n)}$ for some $F_{j}^{(n)} \in m$ and $A_{j}^{(n)} \subseteq N_{j}^{(n)}$ where $\mu\left(N_{j}^{(n)}\right)=0, N_{j}^{(n)} \in m$. Let $N=\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{k(n)} N_{j}^{(n)} \in m$. Then $\mu(N)=0$. Let

$$
\psi_{n}:=\phi_{n} 1_{N^{c}}=\left(\sum_{j=1}^{k(n)} z_{j}^{(n)} 1_{E_{j}^{(n)}}\right) 1_{N^{c}}
$$

ψ_{n} is an m-measurable simple functions and $\psi_{n} \rightarrow f \cdot 1_{N^{c}}$ pointwise. By proposition $2.7, g:=f \cdot 1_{N^{c}}$ is m-measurable and $g=f m$-a.e. Since N is still null set with respect to $\bar{\mu}, g=f \bar{\mu}$-a.e.

3.2 Integration of Nonnegative Functions

Definition 3.33 (Integration). Fix a measure space (X, m, μ). Let $\phi: X \rightarrow[0,+\infty)$ be a measurable simple function. In standard form

$$
\phi=\sum_{j=1}^{n} c_{j} 1_{E_{j}}
$$

where $E_{1}, \cdots, E_{n} \in m$ are disjoint, and $c_{j} \geq 0$.
We define the integral of ϕ with respect to μ to be

$$
\int \phi d \mu:=\sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right) \in[0,+\infty]
$$

If $A \in m$, we define

$$
\int_{A} \phi d \mu\left(=\int \phi \cdot 1_{A} d \mu\right):=\sum_{j=1}^{n} c_{j} \mu_{j}\left(E_{j} \cup A\right)
$$

Other notation for integral is as below;

$$
\int \phi d \mu=\int \phi \int \phi(x) d \mu(x)=\int \phi(x) \mu(d x)
$$

such notations depends on the context.
Proposition 3.34 (Proposition 2.13 in [1] p.49). Let $\phi, \psi: X \rightarrow[0,+\infty]$ be measurable simple functions.
(a) If $c \geq 0$, then $\int c \phi=c \int \phi$.
(b) $\int \phi+\psi=\int \phi+\int \psi$
(c) If $\phi \leq \psi$, then $\int \phi \leq \int \psi$.
(d) The map $m \ni A \mapsto \int_{A} \phi d \mu$ is a measure.

Proof. For (a), if $\phi=\sum_{j=1}^{n} c_{j} 1_{E_{j}}$ as a standard form, then

$$
\int c \phi=\sum_{j=1}^{n} c c_{j} \mu\left(E_{j}\right)=c \sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right)=c \int \phi
$$

For $(b),(c)$, write $\phi=\sum_{j=1}^{n} a_{j} 1_{E_{j}}, \psi=\sum_{j=1}^{m} b_{j} 1_{F_{j}}$ as a standard form. Then, use

$$
\phi=\sum_{i, j}^{n, m} a_{j} 1_{E_{j} \cap F_{j}}, \psi=\sum_{i, j}^{n, m} b_{j} 1_{E_{i} \cap F_{j}}
$$

Then,

$$
\int \phi+\psi=\sum_{i, j}^{n, m}\left(a_{i}+b_{j}\right) \mu\left(E_{i} \cap F_{j}\right)=\sum_{i, j}^{n, m} a_{i} \mu\left(E_{i} \cap F_{j}\right)+\sum_{i, j}^{n, m} b_{j} \mu\left(E_{i} \cap F_{j}\right)=\int \phi+\int \psi
$$

And, if $\phi \leq \psi$, then for each $(i, j) \in[n] \times[m], a_{i} \leq b_{j}$, thus

$$
\int \phi=\sum_{i, j}^{n, m} a_{i} \mu\left(E_{i} \cap F_{j}\right) \leq \sum_{i, j}^{n, m} b_{j} \mu\left(E_{i} \cap F_{j}\right)=\int \psi
$$

For (d), let

$$
\nu(A):=\int_{A} \phi d \mu=\int \phi 1_{A} d \mu=\sum_{i=1}^{n} a_{i} \mu\left(E_{i} \cap A\right)
$$

Clearly, $\nu()=0$. Let $A_{1}, A_{2}, \cdots \in m$ be disjoint sets, and let $A=\bigcup_{i=1}^{\infty} A_{i}$. It suffices to show that $\nu(A)=$ $\sum_{j=1}^{\infty} \nu\left(A_{j}\right)$. We have

$$
\begin{aligned}
\nu(A) & =\sum_{i=1}^{n} a_{i} \mu\left(E_{i} \cap A\right) \\
& =\sum_{i=1}^{n} a_{i}\left(\sum_{j=1}^{\infty} \mu\left(E_{i} \cap A_{j}\right)\right) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{n} a_{i} \mu\left(E_{i} \cap A_{j}\right) \\
& =\sum_{j=1}^{\infty} \int_{A_{j}} \phi d \mu \\
& =\sum_{j=1}^{\infty} \nu\left(A_{j}\right)
\end{aligned}
$$

as desired.
Remark 3.35 (Remark in class). If $\psi=\sum_{j=1}^{m} c_{j} 1_{R_{j}}$ for $c_{j} \geq 0, R_{j} \in m$ is not necessarily disjoint, then by the linearlity properties,

$$
\int \phi d \mu=\sum_{j=1}^{m} c_{j} \mu\left(R_{j}\right)
$$

Remark 3.36 (Remark by Byeongsu Yu). Acutally, in this case, since we deal with $[0,+\infty]$, we don't have to worry about the condition of interchanging two sums. However, for future reference, I leave some proposition which may be useful.

Proposition 3.37 (Condition of finite and infinite sum). Let I be non-empty and finite, and suppose that for each $x \in I$ the series $\sum_{y=0}^{\infty} f_{x, y}$ converges. Then the series $\sum_{y=0}^{\infty} \sum_{x \in I} f_{x, y}$ also converges, and we have

$$
\sum_{x \in I} \sum_{y=0}^{\infty} f_{x, y}=\sum_{y=0}^{\infty} \sum_{x \in I} f_{x, y}
$$

Proof. We have

$$
\begin{array}{rlr}
\sum_{x \in I} \sum_{y=0}^{\infty} f_{x, y} & =\sum_{x \in I}\left(\lim _{n \rightarrow \infty} \sum_{y=0}^{n} f_{x, y}\right) \tag{bydefinition}\\
& =\lim _{n \rightarrow \infty}\left(\sum_{x \in I} \sum_{y=0}^{n} f_{x, y}\right) \quad \text { (by definition) } \\
& =\lim _{n \rightarrow \infty}\left(\sum_{y=0}^{n} \sum_{x \in I} f_{x, y}\right) & \quad \text { (since addition is continuous) } \\
& =\sum_{n=0}^{\infty} \sum_{x \in I} f_{x, y}
\end{array}
$$

The proof shows that the result holds in any abelian [topological group][1] (or even semigroup), the minimum structure needed to talk about infinite series. (For instance, this means that you can use it in topological vector spaces without having to resort to vector-valued integration.)

We cannot omit the assumption that for each $x \in I$ the series $\sum_{y=0}^{\infty} f_{x, y}$ converges, as illustrated by the following example.

Example 3.38. Let $I:=\{-1,1\}$. For all $x \in I$ and $y \in \mathbb{N}$ we define $f_{x, y}:=x \cdot y$. Now we have

$$
\sum_{y=0}^{\infty} \sum_{x \in I} f_{x, y}=\sum_{y=0}^{\infty}(-y+y)=\sum_{y=0}^{\infty} 0=0
$$

whereas

$$
\sum_{x \in I} \sum_{y=0}^{\infty} f_{x, y}=\left(\sum_{y=0}^{\infty}-y\right)+\left(\sum_{y=0}^{\infty} y\right)=-\infty+\infty
$$

which is undefined.
Definition 3.39 (L^{+}and integration on measurable function). Let

$$
L^{+}:=\{f: X \rightarrow[0,+\infty]: f \text { is m-measurable }\}
$$

For $f \in L^{+}$, we define

$$
\int f d \mu:=\sup \left\{\int \phi d \mu: \phi: X \rightarrow[0,+\infty], \phi \leq f\right\}
$$

Observation 3.40. (1) If $\phi: X \rightarrow[0,+\infty)$ is a simple measurable function, then $\phi \in L^{+}$, and

$$
\underbrace{\int \phi d \mu}_{\text {new definition }}=\underbrace{\int \phi d \mu}_{\text {old definition }}
$$

(2) If $f, g \in L^{+}, f \leq g \Longrightarrow \int f \leq \int g$, since we are taking supremum of a subset.
(3) If $f \in L^{+}, c \geq 0$, then $c f \in L^{+}$and $\int c f=c \int f$.

Remark 3.41 (Remark for MCT). Note that if $f_{1} \leq f_{2} \leq \cdots$, then $\lim \inf f_{n}=\limsup f_{n}$ pointwisely, since monotonic sequence converges in the extended real line. (If it is bounded, then the Monotone Convergence Theorem of the Real number assures such convergence. If it is not bounded, then $\lim \inf f_{n}=\infty$, otherwise it is bounded, contradiction. Since f_{i} can be a constant function, this can be applied to the increasing sequence of the real number. Therefore, limits in the condition of Theorem 2.14 are well-defined.

Theorem 3.42 (Theorem 2.14 in [1] p.50, Monotone Convergence Theorem (MCT)). Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in L^{+}, with $f_{1} \leq f_{2} \leq \cdots$. Let

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n \in \mathbb{N}} f_{n}(x) \in[0,+\infty] .
$$

Then,

$$
f \in L^{+}
$$

and

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu=\sup _{n \in \mathbb{N}} \int f_{n} d \mu
$$

Proof. By the Corollary 2.9, f is measurable, thus $f \in L^{+}$. Since $f_{n} \leq f, \forall n \in \mathbb{N}$,

$$
\int f_{n} \leq \int f, \forall n \in \mathbb{N} \Longrightarrow \int f \geq \lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Let $\phi: X \rightarrow[0,+\infty]$ be a simple measurable function such that $\phi \leq f$. Let $0<\alpha<1$, and define

$$
E_{n}:=\left\{x \in X: f_{n}(x) \geq \alpha \phi(x)\right\} .
$$

Since $f_{n} \nearrow f, E_{n} \nearrow$, i.e.,

$$
E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq \cdots
$$

since $f_{n} \leq f_{n+1}$ for any $n \in \mathbb{N}$. Since

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

for all $x \in X$, we have

$$
\bigcup_{n=1}^{\infty} E_{n}=\lim _{n \rightarrow \infty} E_{n}=X
$$

Since $A \mapsto \int_{A} \phi d \mu$ is a measure by the theorem 2.13 (d), we have

$$
\int \phi d \mu=\lim _{n \rightarrow \infty} \int_{E_{n}} \phi d \mu
$$

by continuity from below. However,

$$
\alpha \int_{E_{n}} \phi d \mu=\int_{E_{n}} \alpha \phi d \mu \leq \int_{E_{n}} f_{n} d \mu \leq \int f_{n} d \mu .
$$

Thus,

$$
\alpha \int \phi d \mu=\lim _{n \rightarrow \infty} \alpha \int_{E_{n}} \phi d \mu \leq \lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Let $\alpha \rightarrow 1$, thus

$$
\int \phi d \mu \leq \lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Take the supremum of all ϕ, we get

$$
\int f d \mu \leq \lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu=\int \lim _{n \rightarrow \infty} f_{n} d \mu
$$

Remark 3.43 (Consequence of MCT). Given $f \in L^{+}$, from the theorem 2.10, $\exists\left(\phi_{n}\right)_{n=1}^{\infty}$, a sequence of measurable simple functions such that $0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f$ such that $\lim _{n \rightarrow \infty} \phi_{n}=f$ pointwise. By the $M C T, \int f d \mu=\lim _{n \rightarrow \infty} \int \phi_{n} d \mu$.

Example 3.44 (MCT needs ' M ' for monotonic). Let $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m\right)$. Define $\phi_{n}:=n \cdot 1_{\left(0, \frac{1}{n}\right)}$. Then, $\phi_{n} \rightarrow 0$ pointwise. However,

$$
\int \phi_{n} d \mu=1 \nrightarrow \int 0 d \mu=0
$$

since $\phi_{n} \rightarrow 0$ is not monotonic convergent.
Theorem 3.45 (Theorem 2.15 in [1] p.51). Let $f_{n} \in L^{+}$, for all $n \in \mathbb{N}$. Let $f=\sum_{n=1}^{\infty} f_{n}$. Then, $f \in L^{+}$ since each partial sum is measurable, and limit of measurable function is also measurable, by the Corollary 2.9 in [1].

Also, $\int f d \mu=\sum_{i=1}^{\infty} \int f_{n} d \mu$.
Proof. Step 1: Show $\int f_{1}+f_{2} d \mu=\int f_{1} d \mu+\int f_{2} d \mu$. Let

$$
\begin{aligned}
& \phi_{1} \leq \phi_{2} \leq \cdots \leq f_{1} \\
& \psi_{1} \leq \psi_{2} \leq \cdots \leq f_{2}
\end{aligned}
$$

be simple measurable functions with $\phi_{n} \rightarrow f_{1}, \psi_{n} \rightarrow f_{2}$. Then, $\left(\phi_{n}+\psi_{n}\right)_{n=1}^{\infty}$ is an increasing sequence of measurable simple functions converging to $f_{1}+f_{2}$. So,

$$
\int\left(f_{1}+f_{2}\right) d \mu \underbrace{=}_{(\mathrm{MCT})} \lim _{n \rightarrow \infty} \int\left(\phi_{n}+\psi_{n}\right) d \mu \underbrace{=}_{\substack{\text { Theorem } \\ 2.13(\mathrm{~b})}} \lim _{n \rightarrow \infty}\left(\int \phi_{n}+\int \psi_{n}\right) \underbrace{=}_{(\mathrm{MCT})} \int f_{1} d \mu+\int f_{2} d \mu
$$

Step 2: Use induction on \mathbb{N}. If it holds for $N-1$ and 2 , such that $N-1 \geq 2$, then

$$
\int \sum_{n=1}^{N} f_{n}=\int\left(\left(\sum_{n=1}^{N-1} f_{n}\right)+f_{N}\right) \underbrace{=}_{\substack{\text { inductive } \\ \text { hypothesis } \\ \text { for 2 }}} \int\left(\sum_{n=1}^{N-1} f_{n}\right)+\int f_{N} \underbrace{=}_{\substack{\text { inductive } \\ \text { hypothesis } \\ \text { for } N-1}} \sum_{n=1}^{N} \int f_{n} d \mu
$$

Step 3: Note that

$$
\int \sum_{i=1}^{\infty} f_{i}=\int \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f_{i} \underbrace{=}_{(\mathrm{MCT})} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \int f_{n} d \mu
$$

Proposition 3.46 (Proposition 2.16 in [1] p.51). Let $f \in L^{+}$, then

$$
\int f=0 \Longleftrightarrow f=0 \text { a.e. }
$$

Proof. Suppose $f=0$ a.e.. If $\phi: X \rightarrow[0,+\infty)$ is simple and $\phi=0$ a.e., then in standard form,

$$
\phi=\sum_{j=1}^{n} c_{j} 1_{E_{j}}
$$

and $c_{j} \neq 0$, thus $\mu\left(E_{j}\right)=0$ for each $j \in[n]$. Thus,

$$
\int \phi=\sum_{j=1}^{n} c_{j} \mu\left(E_{j}\right)=0
$$

Then now take the simple function $\psi: X \rightarrow[0,+\infty)$ such that $\psi \leq f$. Then, $\psi=0$ a.e., since $f=0$ is a.e. and $\psi \leq f$. So, $\int \psi=0$ as shown above. Thus

$$
\int f:=\sup \left\{\int \psi: \psi: X \rightarrow[0,+\infty), \psi \text { is simple, } \psi \leq f\right\}=0
$$

To show the converse, let $E_{n}=f^{-1}\left(\left[\frac{1}{n},+\infty\right]\right)$. Then,

$$
0 \leq \frac{1}{n} 1_{E_{n}} \leq f \Longrightarrow 0 \int \frac{1}{n} 1_{E_{n}} \leq \int f=0
$$

for all $n \in \mathbb{N}$. Thus,

$$
\frac{1}{n} \mu\left(E_{n}\right)=0 \Longrightarrow \mu\left(E_{n}\right)=0
$$

for all n. However, let $E:=\bigcup_{n=1}^{\infty} E_{n}=f^{-1}((0,+\infty])$. Then,

$$
\mu(E) \underbrace{\leq}_{\text {subadditivity of } \mu} \sum_{n=1}^{\infty} \mu\left(E_{n}\right)=0
$$

Therefore, $f=0$ a.e.
Corollary 3.47 (Corollary 2.17 in [1] p.51, The almost everywhere MCT). Suppose $f_{n} \in L^{+}$for all $n \in \mathbb{N}$, and $f \in L^{+}$. Suppose that for almost every $x \in X$,

$$
\begin{equation*}
f_{1}(x) \leq f_{2}(x) \leq \cdots \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f_{n}(x)=f(x) \tag{6}
\end{equation*}
$$

Then,

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int f
$$

Proof. By hypothesis, $\exists E \in m$ s.t. $\mu(E)=0$ and $\forall x \in E^{c}$, the equation (3) and (4) holds. Then, $f_{n} 1_{E^{c}} \nearrow f 1_{E^{c}}$ pointwisely. Thus, by the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int f_{n} 1_{E^{c}}=\int f 1_{E^{c}}
$$

However,

$$
\begin{equation*}
\int f_{n}=\int\left(f_{n} 1_{E^{c}}+f_{n} 1_{E}\right) \underbrace{=}_{\text {Theorem } 2.15} \int f_{n} 1_{E^{c}}+\underbrace{\int f_{n} 1_{E}}_{=0 \text { by Proposition 2.16 }}=\int f_{n} 1_{E^{c}} \tag{7}
\end{equation*}
$$

And similarly,

$$
\begin{equation*}
\int f=\int\left(f 1_{E^{c}}+f 1_{E}\right) \underbrace{=}_{\text {Theorem } 2.15} \int f 1_{E^{c}}+\underbrace{\int f 1_{E}}_{=0 \text { by Proposition 2.16 }}=\int f 1_{E^{c}} \tag{8}
\end{equation*}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \int f_{n}=\lim _{n \rightarrow \infty} \int f_{n} 1_{E^{c}}=\int f 1_{E^{c}}=\int f
$$

as desired.
Proposition 3.48 (Proposition 2.18 in [1] p.52, Fatou's Lemma). Let $\left(f_{n}\right)_{n=1}^{\infty}$ be any sequence in L^{+}. Then,

$$
\int \lim \inf _{n \rightarrow \infty} f_{n} \leq \lim \inf _{n \rightarrow \infty} \int f_{n}
$$

Before proving this, note the natural example;
Example 3.49 (Natural Example). Let $f_{n}=n \cdot 1_{\left(0, \frac{1}{n}\right)}, \forall n \in \mathbb{N}$, and let $\mu=m$, the Lebesgue measure. Then, $\liminf _{n \rightarrow \infty} f_{n}=0$. However, $\int f_{n}=1$ for any $n \in \mathbb{N}$. Thus,

$$
\int \lim \inf _{n \rightarrow \infty} f_{n}=0 \leq 1=\lim \inf _{n \rightarrow \infty} \int f_{n}
$$

Proof of the Fatou's Lemma. Let $g_{k}=\inf _{n \geq k} f_{n}$. Then,

$$
g_{1} \leq g_{2} \leq \cdots
$$

and define

$$
f:=\lim _{k \rightarrow \infty} g_{k}=\lim _{k \rightarrow \infty} \inf _{n \geq k} f_{n}=\sup _{k \rightarrow \infty} \inf _{n \geq k} f_{n}=\lim \inf _{n \rightarrow \infty} f_{n}
$$

By the Monotone convergence theorem,

$$
\int f=\lim _{k \rightarrow \infty} \int g_{k}
$$

However, $\forall n \geq k$,

$$
g_{k} \leq f_{n} \Longrightarrow \int g_{k} \leq \inf _{n \geq k} \int f_{n}
$$

Thus

$$
\int f \underbrace{=}_{(\mathrm{MCT})} \sup _{k \geq 1} \int g_{k} \leq \sup _{k \geq 1} \inf _{n \geq k} \int f_{n} \underbrace{=}_{\text {definition }} \lim _{n \rightarrow \infty} \inf _{n \rightarrow \infty} \int f_{n}
$$

Corollary 3.50 (Corollary 2.19 in [1] p.52). If $f_{n} \in L^{+}$for $(n \geq 1)$ and $f \in L^{+}$and if $f_{n} \rightarrow f$ a.e., then

$$
\int f \leq \lim \inf _{n \rightarrow \infty} \int f_{n}
$$

Proof. If $f_{n} \rightarrow f$ everywhere, then apply the Fatou's lemma. In general, use the same method as a proof of the almost everywhere MCT. Let $E \in m$ such that $\mu(E)=0$, and $\forall x \in E^{c}, f_{n}(x) \rightarrow f(x)$ pointwisely. Then, $f_{n} 1_{E^{c}} \rightarrow f 1_{E^{c}}$ pointwisely. Thus, by the Fatou's lemma,

$$
\int f 1_{E^{c}} \leq \lim \inf _{n \rightarrow \infty} \int f_{n} 1_{E^{c}}
$$

Also, we already know that $\int f_{n}=\int f_{n} 1_{E^{c}}$ for any $n \in \mathbb{N}$ by the equation (5) and $\int f=\int f 1_{E^{c}}$ by the equation (6). Thus,

$$
\int f=\int f 1_{E^{c}} \leq \lim \inf _{n \rightarrow \infty} \int f_{n} 1_{E^{c}}=\lim \inf _{n \rightarrow \infty} \int f_{n}
$$

as desired.

Observation 3.51 (Proposition 2.20 in [1] p.52). If $f \in L^{+}, \int f<+\infty$, then $\mu(\{x: f(x)=+\infty\})=0$, and $\{x: f(x)>0\}$ is σ-finite.
Proof. Suppose $\mu(\{x: f(x)=+\infty\})>0$. Then,

$$
+\infty>\int f \geq \int_{\{x: f(x)=+\infty\}} f=\infty \times \mu(\{x: f(x)=+\infty\})=\infty,
$$

contradiction. Also, note that

$$
\int_{\left\{x: n>f(x)>\frac{1}{n}\right\}} f \leq \int f<\infty
$$

. Thus, $\mu\left(\left\{x: n>f(x)>\frac{1}{n}\right\}\right)<\infty$. Let $E_{n}=\left\{x: n>f(x)>\frac{1}{n}\right\}$ and $F_{n}=E_{n} \backslash\left(\cup_{i=1}^{n-1} E_{i}\right)$. for any $n \in \mathbb{N}$, and let $F_{0}=\{x: f(x)=+\infty\}$. Then, F_{n} 's are disjoint and $\bigcup_{n=1}^{N} F_{n}=E_{N}$ for any $N \in \mathbb{N}$, thus $\bigcup_{n=0}^{\infty}=\{x: f(x)>0\}$. Thus,

$$
\{x: f(x)>0\} \cap F_{n} \leq F_{n} \Longrightarrow \mu\left(\{x: f(x)>0\} \cap F_{n}\right) \leq \mu\left(F_{n}\right)<\infty .
$$

Thus, $\{x: f(x)>0\}$ is σ-finite.

3.3 Integration of complex functions

Definition 3.52 (Integrability of extended real-valued function). Let $f: X \rightarrow \overline{\mathbb{R}}$ be in L^{+}. We have $f_{+}=\max (f, 0)$ and $f_{-}=\max (-f, 0)$. Thus, by the Corollary 2.8 in [1], f_{+}, f_{-}are in L^{+}. And note that $f=f_{+}-f_{-}$, and $|f|=f_{+}+f_{-}$. We say f is integrable if $\int|f|<+\infty$, and then we can define

$$
\int f:=\int f_{+}-\int f_{-}
$$

Proposition 3.53 (Proposition 2.21 in [1] p.53). The set of integrable (thus measurable) real-valued function on X is a real vector space, on which integration $\left(f \mapsto \int f\right)$ is a linear functional.

Proof. For the first assertion, let $f, g: X \rightarrow \mathbb{R}$ be integrable. Let $a \in \mathbb{R}$. Note that + defined for function already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with field multiplication and distibutivity. Also, $1 \in \mathbb{R}$ satisfies $1 \cdot f=f$. Therefore, it suffices to show that $f+g$ and $a f$ are integrable, and $\int a f=a \int f, \int f+g=\int f+\int g$.

Note that

$$
|a f|=|a||f| \Longrightarrow \int|a f|=\int|a||f|=|a| \int|f|<\infty
$$

thus $a f$ is integrable. Also,

$$
\int|f+g| \underbrace{\leq}_{\text {triangle ineq. }} \int|f|+|g|=\int|f|+\int|g|<+\infty
$$

thus $f+g$ is also integrable.
If $a>0$, then $(a f)_{+}=a f_{+}$and $(a f)_{-}=a f_{-}$, thus

$$
\int a f=\int a f_{+}-\int a f_{-} \underbrace{=}_{\text {Theorem } 2.15} a\left(\int f_{+}-\int f_{-}\right)=a \int f .
$$

If $a<0$, then $(a f)_{+}=-a f_{-},(a f)_{-}=-a f_{+}$, so

$$
\int a f=\int\left(-a f_{-}\right)-\int\left(-a f_{+}\right)=a \int f_{+}-a \int f_{-}=a\left(\int f_{+}-\int f_{-}\right)=a \int f .
$$

Let $h=f+g$. Then, $h_{+}-h_{-}=f_{+}-f_{-}+g_{+} g_{-}$, thus

$$
h_{+}+f_{-}+g_{-}=h_{-}+f_{+}+g_{+} \Longrightarrow \int h_{+}+f_{-}+g_{-}=\int h_{-}+f_{+}+g_{+}
$$

Thus, by the theorem 2.15,
$\int h_{+}+\int f_{-}+\int g_{-}=\int h_{-}+\int f_{+}+\int g_{+} \Longrightarrow \int h_{+}-\int h_{-}=\int f_{+}-\int f_{-}+\int g_{+}-\int g_{-}=\int f+\int g$.

Definition 3.54 (Integrable in complex valued function). Let $f: X \rightarrow \mathbb{C}$ be a measurable function. We say f is integrable if $\int|f|<\infty$. Note that

$$
|f| \leq|R e f|+|I m f| \leq 2|f|
$$

So f is integrable iff Ref and Imf are integrable. We define

$$
\int f:=\int \operatorname{Re} f+i \int \operatorname{Im} f
$$

Proposition 3.55. The set of complex valued integrable function is a complex vector space and integration (i.e. $f \mapsto \int f$) is a linear functional.

Proof. For the first assertion, let $f, g: X \rightarrow \mathbb{R}$ be integrable. Let $a \in \mathbb{C}$. Note that + defined for function already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with field multiplication and distibutivity. Also, $1 \in \mathbb{C}$ satisfies $1 \cdot f=f$. Therefore, it suffices to show that $f+g$ and $a f$ are integrable, and $\int a f=a \int f, \int f+g=\int f+\int g$.

Note that

$$
|a f|=|a||f| \Longrightarrow \int|a f|=\int|a||f|=|a| \int|f|<\infty
$$

thus $a f$ is integrable. Also,

$$
\int|f+g| \underbrace{\leq}_{\text {triangle ineq. }} \int|f|+|g|=\int|f|+\int|g|<+\infty
$$

thus $f+g$ is also integrable.
If $a=b+i c$, then $a f=b \operatorname{Re} f-c \operatorname{Im} f+i(b \operatorname{Im} f+c R e f)$ Then,

$$
\begin{aligned}
\int a f \quad \underbrace{=}_{\text {Def. }} & \int(b \operatorname{Ref}-c \operatorname{Im} f)+i \int(b \operatorname{Im} f+c R e f) \\
\underbrace{=}_{\text {Thm 2.21 in }[1]} & b \int \operatorname{Re} f-c \int \operatorname{Im} f+i\left(b \int \operatorname{Im} f+c \int \operatorname{Ref}\right) \\
& =\quad b\left(\int \operatorname{Re} f+i \int \operatorname{Im} f\right)+c i\left(\int \operatorname{Ref}+i \int \operatorname{Im} f\right)=a \int f
\end{aligned}
$$

Also,
$\int f+g \underbrace{=}_{\text {Def. }} \int(\operatorname{Ref}+i \operatorname{Im} f+\operatorname{Reg}+i \operatorname{Img}) \underbrace{=}_{\text {Thm 2.21 in }[1]} \int \operatorname{Ref}+i \int \operatorname{Im} f+\int \operatorname{Reg}+i \int \operatorname{Img}=\int f+\int g$
Thus, integration is also a linear functional.

Notation 3.56 (L^{1} space). L^{1} or $L^{1}(\mu)$ denotes

$$
L^{1}=L^{1}(\mu):=\{f: X \rightarrow \mathbb{C}: f \text { is measurable and integrable }\}
$$

Also,

$$
L_{\mathbb{R}}^{1}(\mu):=\{f: X \rightarrow \mathbb{R}: f \text { is measurable and integrable }\}
$$

Proposition 3.57 (Proposition 2.22 in [1] p.53). If $f \in L^{1}$, then $\left|\int f\right| \leq \int|f|$.
Proof. Case 1: when $\operatorname{Im} f=0$ everywhere. Then,

$$
\left|\int f\right|=\left|\int f_{+}-\int f_{-}\right| \leq \int\left|f_{+}\right|+\left|\int f_{-}\right|=\int f_{+}+\int f_{-}=\int f_{+}+f_{-}=\int|f|
$$

Case 2: when $\int \operatorname{Imf}=0$. Then,

$$
\left|\int f\right|=\left|\int R e f\right| \underbrace{\leq}_{\text {by case } 1} \int|R e f| \leq \int|f|
$$

Case 3: General Cases. Note that $\int f=e^{i \theta}\left|\int f\right|$ for some θ, since it is just complex number. Thus, let $g=e^{-i \theta} f$. Then,

$$
\int g=e^{-i \theta} \int f=\left|\int f\right| \geq 0
$$

However, we know that

$$
\int g=\int R e g+i \int I m g .
$$

By case 2,

$$
\left|\int f\right|=\left|\int g\right| \leq \int|g|=\int|f| .
$$

Definition 3.58. If we have $f \in L^{1}$ and if $E \in m$, then define $\int_{E} f:=\int f 1_{E}$.
Recall the proposition 2.16 in [1] that if $h \in L^{+}$, then $\int h=0 \Longleftrightarrow h=0$ a.e.
Proposition 3.59 (Proposition 2.23 in [1] p.54). Let $f, g \in L^{1}$. Then, TFAE.

1. $\int_{E} f=\int_{E} g$ for all $E \in m$.
2. $\int|f-g|=0$.
3. $f=g$ a.e.

Proof. (ii) $\Longleftrightarrow($ iii $)$: Since $|f-g| \in L^{+}$, by the proposition 2.16 in $[1], \int|f-g|=0$ if and only if $|f-g|=0$ a.e. Also, $|f-g|=0$ a.e. if and only if $f=g$ a.e.
$($ iii $) \Longrightarrow(i)$: Note that

$$
\left|\int_{E} f-\int_{E} g\right|=\left|\int(f-g) 1_{E}\right| \underbrace{\leq}_{\text {Thm } 2.22} \int|f-g|=0
$$

$(i) \Longrightarrow$ (iii): Assume it was not true that $f=g$ a.e. Then it suffices to find $E \in m$ such that $\int_{E} f \neq \int_{E} g$. Let $h=f-g$. Then,

$$
\int_{E} f-\int_{E} g=\int_{E} h
$$

By hypothesis, it is not true that $h=0$ a.e., and we seek E such that $\int_{E} h \neq 0$. Without loss of generality, h is real valued. Also, without loss of generality, it is not true that $h_{+}=0$ a.e. Let $E=h^{-1}((0,+\infty))$. Then, $\mu(E)>0$. So,

$$
\int_{E} h=\int_{E} h^{+}=\int h^{+}>0
$$

by the converse statement of proposition 2.16. If h is general complex valued function, then $h=\operatorname{Reh}_{+}-$ $R e h_{-}+i I m h_{+}-i I m h_{-}$, and at least one of terms of h is nonzero a.e. by the assumption. Say $R e h_{+}$is nonzero a.e. Then, let $E=\operatorname{Re}_{+}((0, \infty))$. So,

$$
\int_{E} h=\int_{E} h^{+}=\int h^{+}>0
$$

by the converse statement of proposition 2.16.
Definition 3.60 (Pseudometric on L^{1}). Let $\rho: L^{1} \times L^{1}(\mu) \rightarrow[0,+\infty)$ by $\rho(f, g)=\int|f-g|$. Then, by the proposition 2.23 in [1], $\rho(f, g)=0 \Longleftrightarrow f=g$ a.e. Also, $\rho(g, f)=\rho(f, g)$ and $\rho(f, h) \leq \rho(f, g)+\rho(g, h)$. Thus, ρ is pseudo-metric on L^{1}. We introduce the equivalence relation

$$
f \sim g \Longleftrightarrow f=g \text { a.e. }
$$

Using this, we can redefine

$$
L^{1}:=L^{1}(\mu):=\left\{f: X \rightarrow \mathbb{C}: f \text { is measurable and } \int|f|<+\infty\right\} / \sim
$$

Then ρ becomes a metric on $L^{1}(\mu)$, the L^{1}-metric.
Remark 3.61 (Abuse of notation). By (standard) abuse of notation, we continue to write $f \in L^{1}$ rather than $[f] \in L^{1}$.

Notation 3.62. If $\bar{\mu}$ is the completion of μ, then we have the natural identification of $L^{1}(\mu) \cong L^{1}(\bar{\mu})$, since by the proposition 2.12, if $f: X \rightarrow \mathbb{C}$ is $\bar{\mu}$-measurable, then there exists $g: X \rightarrow \mathbb{C}$ a μ-measurable function such that $f=g$ a.e.

Theorem 3.63 (Theorem 2.24 in [1] p.54, Dominated Convergence Theorem). Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in L^{1}. Suppose 1) $f_{n} \rightarrow f$ a.e., 2) $\exists g \in L^{+}$such that $\int g<+\infty$ and 3) $\forall n \in \mathbb{N},\left|f_{n}\right| \leq g$ a.e.

Then $f \in L^{1}$ and $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.
Proof. By redefining on a null set using the proposition 2.12, we may, without loss of generality, assure that $f_{n} \rightarrow f$ pointwise. And, $\forall n \in \mathbb{N},\left|f_{n}\right| \leq g$ holds everywhere. Thus, f is measurable by the theorem 2.11 (b). Moreover, $|f| \leq g$, and since g is integrable,

$$
\int|f|<+\infty \Longrightarrow f \in L^{1}
$$

By considering the real and imaginary parts, we may without loss of generality assume that each f_{n} is real-valued. We have

$$
-g \leq f_{n} \leq g
$$

Thus,

$$
g+f_{n} \in L^{+}
$$

So,

$$
\int g+\int f=\int(g+f)=\int \lim _{n \rightarrow \infty}\left(g+f_{n}\right) \underbrace{\leq}_{\text {Fatou's Lemma }} \lim \inf _{n \rightarrow \infty} \int\left(g+f_{n}\right)=\int g+\lim \inf _{n \rightarrow \infty} \int f_{n}
$$

Thus, $\int f \leq \liminf _{n \rightarrow \infty} \int f_{n}$. Replacing f_{n} by $-f_{n}$, we get

$$
-\inf f=\int-f \underbrace{\leq}_{\text {Fatou's Lemma }} \lim \inf \left(-\int f_{n}\right)=-\lim \sup _{n \rightarrow \infty} \int f_{n} .
$$

Thus, $\lim \sup _{n \rightarrow \infty} \int f_{n} \leq \int f$. Thus, limit exists and

$$
\lim _{n \rightarrow \infty} \int f_{n}=\int f
$$

Theorem 3.64 (Theorem 2.27 in [1] p.56). Fix a measure space (X, m, μ). Suppose $f: X \times(c, d) \rightarrow \mathbb{C}$ satisfies $\forall t \in(c, d), x \mapsto f(x, t)$ is integrable, i.e., $x \mapsto f(x, t) \in L^{1}(\mu)$. Let $F(t):=\int f(x, t) d \mu(x)$.
(a) If $\exists g \in L^{1}$ such that

$$
\text { 1) } \forall x, \forall t,|f(x, t)| \leq g(x)
$$

and

$$
\text { 2) for fixed } t_{0} \in(c, d), \forall x, \lim _{t \rightarrow \infty} f(x, t)=f\left(x, t_{0}\right) \text { (continuity w.r.t } t \text {) }
$$

then $\lim _{t} \rightarrow t_{0} F(t)=F\left(t_{0}\right)$.
(b) If $\exists g \in L^{1}$ and if

$$
\text { 1) } \forall x, \forall t, \frac{\partial f}{\partial t}(x, t) \text { exists, }
$$

and

$$
\text { 2) }\left|\frac{\partial f}{\partial t}(x, t)\right| \leq g(x) \text {, }
$$

then

$$
\text { 1) } F^{\prime}\left(t_{0}\right) \text { exists and 2) } F^{\prime}\left(t_{0}\right)=\int \frac{\partial f}{\partial t}(x, t) d \mu(x) \text {. }
$$

Proof. Note that the conditions of (a) satisfies the DCT's condition. Let $\left\{t_{n}\right\}$ be a sequence in (c, d) converging to t_{0}. Then,

$$
\lim _{n \rightarrow \infty} F\left(t_{n}\right)=\lim _{n \rightarrow \infty} \int f\left(x, t_{n}\right) d \mu(x) \underbrace{=}_{\text {(DCT) }} \int \lim _{n \rightarrow \infty} f\left(x, t_{n}\right) d \mu(x)=\int f\left(x, t_{0}\right) d \mu(x)=F\left(t_{0}\right) .
$$

For the part (b), let t_{n} be a sequence in $(c, d) \backslash\left\{t_{0}\right\}$ such that $t_{n} \rightarrow t_{0}$. Then,

$$
\lim _{n \rightarrow \infty} \frac{F\left(t_{n}\right)-F\left(t_{0}\right)}{t_{n}-t_{0}}=\lim _{n \rightarrow \infty} \int \frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{\left(t_{n}-t_{0}\right)} d \mu(x) .
$$

By the Mean Value Theorem, $\forall x, \forall n, \exists t^{*} \in(c, d)$ such that $\frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}}=\frac{\partial f}{\partial t}\left(x, t^{*}\right)$. Thus,

$$
\left|\frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}}\right| \leq\left|\frac{\partial f}{\partial t}\left(x, t^{*}\right)\right| \leq g(x) .
$$

Therefore, for all x and for each $n \in \mathbb{N}, \frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}}$ satisfies each condition of DCT. Thus,
$\lim _{n \rightarrow \infty} \frac{F\left(t_{n}\right)-F\left(t_{0}\right)}{t_{n}-t_{0}}=\lim _{n \rightarrow \infty} \int \frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{\left(t_{n}-t_{0}\right)} d \mu(x) \underbrace{=}_{(\text {DCT })} \int \lim _{n \rightarrow \infty} \frac{f\left(x, t_{n}\right)-f\left(x, t_{0}\right)}{t_{n}-t_{0}} d \mu(x)=\int \frac{\partial f}{\partial t}\left(x, t_{0}\right) d \mu(x)$.
Thus, since t_{n} was arbitrary,

$$
F^{\prime}\left(t_{0}\right)=\lim _{n \rightarrow \infty} \frac{F\left(t_{n}\right)-F\left(t_{0}\right)}{t_{n}-t_{0}}=\int \frac{\partial f}{\partial t}(x, t) d \mu(x)
$$

as desired.

Remark 3.65 (Recall of Riemann Integral). Let $[a, b]$ be a compact interval. By a partition of $[a, b]$ we shall mean a finite sequence $P=\left\{t_{j}\right\}_{0}^{n}$ such that

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b .
$$

Let f be an arbitrary bounded real-valued function on $[a, b]$. For each partition P we define

$$
S_{P} f=\sum_{j=1}^{n} M_{j}\left(t_{j}-t_{j-1}\right), s_{P} f=\sum_{j=1}^{n} m_{j}\left(t_{j}-t_{j-1}\right)
$$

where M_{j}, m_{j} are supremum and infimum of f on $\left[t_{j-1}, t_{j}\right]$. Then define

$$
\bar{I}_{a}^{b}=\inf _{P} S_{P} f, \underline{I}_{a}^{b} \sup _{P} s_{P} f
$$

where the infimum and supremum are taken over all partitions P. If $\bar{I}_{a}^{b}=\underline{I}_{a}^{b}$, there common value is Riemann inegral $\int_{a}^{b} f(x) d x$ and f is called Riemann integrable.

Theorem 3.66 (Theorem 2.28 in [1] p.57). (a) If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable then $f \in L^{1}(m)$, where m is Lebesgue measure, and $\int_{a}^{b} f(t) d t=\int_{[a, b]} f d m$.
(b) f is Riemann integrable if and only if $\{x \in[a, b]: f$ is discontinuous at $x\}$ has Lebesgue measure zero.

Proof. Suppose that f is Riemann integrable. For each partition P, let

$$
G_{P}=\sum_{j=1}^{n} M_{j} 1_{\left(t_{j-1}, t_{j}\right]}, g_{P}=\sum_{j=1}^{n} m_{j} 1_{\left(t_{j-1}, t_{j}\right]}
$$

Thus, $S_{P} f=\int G_{P} d m$ and $s_{P} f=\int g_{P} d m$. Then, since f is Riemann integrable, there exists $\left\{P_{k}\right\}_{k=1}^{\infty}$, a sequence of partitions such that $P_{k} \subseteq P_{k+1}$ and $S_{P_{k}} f \rightarrow \int_{a}^{b} f$ and $s_{P} f \rightarrow \int_{a}^{b} f$ as $k \rightarrow \infty$. Now note that

$$
G_{P_{k}} \geq G_{P_{k+1}} \geq f \text { and } g_{P_{k}} \leq g_{P_{k+1}} \leq f
$$

Thus, it is monotonic and bounded, thus converge by the Monotone Convergence theorem. Hence, we can define

$$
G:=\lim _{k \rightarrow \infty} G_{P_{k}}, g:=\lim _{k \rightarrow \infty} g_{P_{k}} .
$$

Then, by definition,

$$
g \leq f \leq G
$$

Thus, since $G_{P_{k}}$ is bounded by $G_{P_{1}}$, and $g_{P_{k}}$ is bounded by f, we can apply the Dominated Convergence theorem to conclude that

$$
G, g \text { are integrable }
$$

and

$$
\begin{gathered}
\int G \underbrace{=}_{(D C T)} \lim _{k \rightarrow \infty} \int G_{P_{k}} \underbrace{=}_{\text {Def. }} \lim _{k \rightarrow \infty} S_{P_{k}} f \underbrace{=}_{\substack{\text { Riemann. } \\
\text { integrable }}} \int_{a}^{b} f \\
\int g \underbrace{=}_{(D C T)} \lim _{k \rightarrow \infty} \int g_{P_{k}} \underbrace{=}_{\text {Def. }} \lim _{k \rightarrow \infty} s_{P_{k}} f \underbrace{=}_{\substack{\text { Riemann. } \\
\text { integrable }}} \int_{a}^{b} f .
\end{gathered}
$$

Thus,

$$
\int(G-g) d m=0 \underbrace{\Longrightarrow}_{\text {Prop } 2.16} G=g \text { a.e. } \Longrightarrow G=f \text { a.e. }
$$

Note that G is the limit of a sequence of simple function, by Proposition 2.11 (b), G is measurable. Also, since m is complete measure, thus by Proposition 2.11 (a), f is measurable. Thus,

$$
\int_{[a, b]} f \underbrace{=}_{\text {from } f=g \text { a.e. }} \int G d m=\int_{a}^{b} f
$$

Hence (a) is proved.
Remark 3.67 (Remarks in book). 1. the imporper Riemann integral can be also viewed as Lebesgue integral, using DCT.
2. Lebesgue integral gives more powerful convergence theorem.
3. Lebesgue integral is applied wider class of functions; this gives a complete metric for some important function spaces. For example, $L^{1}(\mu)$ is complete, and it can be seen when we deal with Thm 2.25 which is disguised form of theorem 5.1.

Now, fix (X, m, μ)
Theorem 3.68 (Theorem 2.25 in [1] p.55). If $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence in L^{1} and $\sum_{n=1}^{\infty} \int\left|f_{n}\right|<+\infty$, then $\sum_{n=1}^{\infty} f_{n}$ converges a.e. to a function $f \in L^{1}$, and $\int f=\sum_{n=1}^{\infty} \int f_{n}$.
Proof. Note that $\sum_{n=1}^{\infty}\left|f_{n}\right|: X \rightarrow[0,+\infty]$ is measurable and

$$
\int \sum_{n=1}^{\infty}\left|f_{n}\right|=\sum_{n=1}^{\infty} \int\left|f_{n}\right| \underbrace{<}_{\text {Given condition }} \infty
$$

by theorem 2.15. Thus, $\sum_{n=1}^{\infty}\left|f_{n}\right| \in L^{1}$, thus it is finite on a set of full measure. Since

$$
\sum_{n=1}^{\infty} f_{n} \leq \sum_{n=1}^{\infty}\left|f_{n}\right|
$$

$\sum_{n=1}^{\infty} f_{n}$ converges almost everywhere. Therefore, we can define

$$
f=\sum_{n=1}^{\infty} f_{n}
$$

Note that f is measurable since it is limit of sequence of measurable function. Since $\forall N \in \mathbb{N}$,

$$
\left|\sum_{n=1}^{N} f_{n}\right| \leq \sum_{n=1}^{N}\left|f_{n}\right| \leq \sum_{n=1}^{\infty}\left|f_{n}\right| \in L^{1}
$$

we can apply the Dominated Convergence Theorem to conclude that $f \in L^{1}$ and

$$
\int f=\int \lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n} \underbrace{=}_{(\mathrm{DCT})} \lim _{N \rightarrow \infty} \int \sum_{n=1}^{N} f_{n} \underbrace{=}_{\mathrm{Thm} 2.13} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int f_{n}=\sum_{n=1}^{\infty} \int f_{n}
$$

Theorem 3.69 (Completeness of $\left.L^{1}\right) . L^{1}(\mu)$ is complete with respect to $\rho(f, g)=\int|f-g| d \mu$.

Proof. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a Cauchy sequence in L^{1}. Let $\left(f_{n_{k}}\right)_{k=1}^{\infty}$ be a subseqeunce such that

$$
\forall k \in \mathbb{N}, \rho\left(f_{n_{k}}, f_{n_{k+1}}\right) \leq 2^{-k}
$$

Now we want to define

$$
f:=f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)
$$

We have

$$
\int\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty} \int\left|f_{n_{k+1}}-f_{n_{k}}\right|<\int\left|f_{n_{1}}\right|+\sum_{k=1}^{\infty} 2^{-k}<\infty
$$

Thus, by the theorem 2.5, $f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)$ converges a.e. to a function in L^{1}. Say that function f. Then,

$$
f \underbrace{=}_{\text {a.e. }} \lim _{p \rightarrow \infty}\left(f_{n_{1}}+\sum_{k=1}^{p}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right)=\lim _{p \rightarrow \infty} f_{n_{p+1}}
$$

Hence,

$$
\begin{aligned}
& \rho\left(f, f_{n_{p+1}}\right)=\int\left|f-f_{n_{p+1}}\right| d \mu \\
&=\int\left|f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{p+1}}\right)-\left(f_{n_{1}}+\sum_{k=1}^{p}\left(f_{n_{k+1}}-f_{n_{p+1}}\right)\right)\right| d \mu \\
&=\int\left|\sum_{k=p+1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right| \\
& \leq \sum_{k=p+1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| \\
& \underbrace{}_{\text {Thm 2.25 }}=\sum_{k=p+1}^{\infty} \int f_{n_{k+1}}-f_{n_{k}} \mid \\
&=\sum_{k=p+1}^{\infty} \rho\left(f_{n_{k+1}}, f_{n_{k}}\right) \\
&<\sum_{k=p+1}^{\infty} 2^{-k}=2^{-p} \rightarrow 0 \text { as } p \rightarrow \infty
\end{aligned}
$$

Thus, $f_{n_{k}} \rightarrow f \in L^{1}$ in a metric ρ.
Corollary 3.70 (Corollary of the proof). If $f_{n} \rightarrow f$ in L^{1}-metric, ρ, then \exists a subseqeunce $\left(f_{n_{k}}\right)_{k=1}^{\infty}$ such that $f_{n_{k}} \rightarrow f$ a.e. as $k \rightarrow \infty$.

Proposition 3.71 (Proposition 1.20 in [1] p. 37, Exercise 1.26). Let μ be a Lebesgue-Stieltjes measure, i.e., $\mu((a, b])=G(b)-G(a)$ for some $G: \mathbb{R} \rightarrow \mathbb{R}$, nondecreasing right continuous function, and let $E \in m_{\mu}$, a Borel σ-algebra with respect to μ, such that $\mu(E)<+\infty, \epsilon>0$. Then, $\exists F \subseteq \mathbb{R}$ such that F is a finite union of bounded open intervals such that $\mu(E \Delta F)<\epsilon$.

Proof. We proved theorem 1.18, i.e., $\exists U \subseteq \mathbb{R}$ such that U is open and $E \subseteq U$ and $\mu(U)<\mu(E)+\frac{\epsilon}{2}$. We have $U=\bigcup_{j=1}^{\infty} I_{j}$ for disjoint open intervals (or empty sets) I_{j}. Thus,

$$
\mu(U)=\sum_{j=1}^{\infty} \mu\left(I_{j}\right)
$$

Let $N \in \mathbb{N}$ such that

$$
\sum_{j=1}^{N} \mu\left(I_{j}\right)>\mu(U)-\frac{\epsilon}{2}
$$

If I_{j} is unbounded, then \exists a bounded open interval $I_{j}^{\prime} \subseteq I_{j}$ such that

$$
\mu\left(I_{j}^{\prime}\right)>\mu\left(I_{j}\right)-\frac{\epsilon}{8}
$$

If I_{j} is bounded, take $I_{j}^{\prime}=I_{j}$. Let $F=\bigcup_{j=1}^{N} I_{j}^{\prime}$. Then, $F \subseteq U$, and

$$
\mu(F)>\mu(U)-\frac{\epsilon}{4}-\frac{\epsilon}{8}-\frac{\epsilon}{8}=\mu(U)-\frac{\epsilon}{2}
$$

Note that since μ is arbitrary measure and $\mu(U)<\infty$, this measure gives finite value for unbounded interval conatined in U. Thus the above inequality is derived.

Thus,

$$
E \Delta F=(E \backslash F) \cup(F \backslash E) \subseteq(U \backslash F) \cup(U \backslash E)
$$

therefore,

$$
\mu(E \Delta F) \leq \mu(U \backslash F)+\mu(U \backslash E) \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Theorem 3.72 (Theorem 2.26 in [1] p.55, Approximation of $\left.f \in L^{1}\right)$. Let (X, m, μ) be a measure space and let $f \in L^{1}(\mu), \epsilon>0$. Then, \exists a simple function $\phi \in L^{1}(\mu)$ such that

$$
\int|f-\phi| d \mu<\epsilon
$$

If μ is a Lebesgue Stieltjes measure, then ϕ can be taken of the form $\phi=\sum_{j=1}^{n} \alpha_{j} 1_{E_{j}}$ where E_{1}, \cdots, E_{n} are bounded open intervals in \mathbb{R}. Moreover, \exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ with bounded supports, such that $\int|f-g| d \mu<\epsilon$.
Proof. Suppose μ is any measure. By theorem 2.10, \exists a sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ of simple functions such that $\phi_{n} \rightarrow f$ pointwise and

$$
\left|\phi_{1}\right| \leq\left|\phi_{2}\right| \leq \cdots \leq|f| .
$$

Thus, $\left|\phi_{n}-f\right| \rightarrow 0$ pointwisely and $\left|\phi_{n}-f\right| \leq 2|f|$. Therefore, by the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int\left|\phi_{n}-f\right| d \mu \underbrace{=}_{\mathrm{DCT}} \int \lim _{n \rightarrow \infty}\left|f_{n}-f\right| d \mu=\int 0 d \mu=0
$$

Now suppose μ is Lebesgue Stieltjes measure. Note that we can represent

$$
\phi_{n}=\sum_{j=1}^{N_{n}} \alpha_{j} 1_{E_{j}}
$$

for some disjoint intervals $E_{j} \in m$ and $\alpha_{j} \neq 0$ for any $j \in \mathbb{N}$. Also, we know that $\mu(E \Delta F)=\int\left|1_{E} \backslash 1_{F}\right|$ for any $E, F \in m$. Thus for ϕ_{n}, each $1_{E_{j}}$ can be approximated by $1_{F_{j}}$ with $\mu\left(E_{j} \Delta F_{j}\right)<\frac{1}{\alpha_{j^{2 j}}} \epsilon$, where F_{j} is finite union of bounded open intervals. Define $\phi_{n}^{\prime}:=\sum_{j=1}^{N_{n}} \alpha_{j} 1_{E_{j}}$. Then,

$$
\begin{aligned}
\int\left|\phi_{n}-\phi_{n}^{\prime}\right| & =\int\left|\sum_{j=1}^{N_{n}} \alpha_{j}\left(1_{E_{j}}-1_{F_{j}}\right)\right| \underbrace{\leq}_{\text {Trianlge Ineq. }} \int \sum_{j=1}^{N_{n}}\left|\alpha_{j}\right|\left|1_{E_{j}}-1_{F_{j}}\right| \underbrace{=}_{\text {Thm 2.13 }} \sum_{j=1}^{N_{n}} \alpha_{j} \int\left|1_{E_{j}}-1_{F_{j}}\right| \\
& =\sum_{j=1}^{N_{n}} \alpha_{j} \mu\left(E_{j} \Delta F_{j}\right) \underbrace{=}_{\text {Def. of } \mu\left(E_{j} \Delta F_{j}\right)} \sum_{j=1}^{N_{n}} \frac{\epsilon}{2^{j}}<\epsilon .
\end{aligned}
$$

Thus, we can approximate f by $\phi^{\prime}(n)$, since $\int\left|f-\phi_{n}^{\prime}\right| \leq \int|f-\phi|+\int\left|\phi-\phi^{\prime}\right| \leq 2 \epsilon$ for suitable n.
To find a continuous function, it suffices to approximate simple functions ϕ_{n}, which means that it will suffices to approximate $1_{(a, b)}$ for some $a, b \in \mathbb{R}$ since by the argument every simple function is consists of $1_{(a, b)}$ for some $a, b \in \mathbb{R}$. Thus, construct a continuous function g_{δ} as follow for some $\delta>0$;

$$
g_{\delta}:= \begin{cases}\frac{x-a+\delta}{2 \delta} & \text { if } x \in(a-\delta, a+\delta] \\ 1 & \text { if } x \in(a+\delta, b-\delta] \\ -\frac{x-b-\delta}{2 \delta} & \text { if } x \in(b-\delta, b+\delta) \\ 0 & \text { otherwise } .\end{cases}
$$

It looks like below picture;

Thus,

$$
\int\left|1_{(a, b)}-g_{\delta}\right| d \mu \leq \mu(a-\delta, a+\delta)+\mu(b-\delta, b+\delta) \rightarrow 0 \text { as } \delta \rightarrow 0
$$

Thus, use this approximation to approximate the simple functions.

3.4 Modes of Convergence

Definition 3.73 (Modes of Convergence). Fix (X, m, μ) and let $f_{n}: X \rightarrow \mathbb{C}$ for $n \in \mathbb{N}$, and $f: X \rightarrow \mathbb{C}$ be measurable function. We say that f_{n} converges to $f($ asn $\rightarrow \infty)$

- uniformly;

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall x \in X, \forall n \geq N,\left|f(x)-f_{n}(x)\right|<\epsilon
$$

- pointwise;

$$
\forall \epsilon>0, \forall x \in X, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N,\left|f(x)-f_{n}(x)\right|<\epsilon
$$

- almost everywhere; $\exists E \in m$ such that $\mu(E)=0$ and

$$
\forall \epsilon>0, \forall x \in E^{c}, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N,\left|f(x)-f_{n}(x)\right|<\epsilon
$$

- in measure;

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N,\left|\mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)\right| \leq \epsilon
$$

which is equivalent to say that

$$
\forall \epsilon>0, \lim _{n \rightarrow \infty} \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0
$$

- in L^{1};

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall n \geq N, \int\left|f_{n}-f\right| d \mu \leq \epsilon
$$

which is equivalent to say that

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0
$$

- almost uniformly;

$$
\forall \delta>0, \exists E \in m \text { with } \mu(E)<\delta, \text { s.t. } \forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall x \in X, \forall n \geq N,\left|1_{E^{c}} f(x)-1_{E^{c}} f_{n}(x)\right|<\epsilon
$$

which is equivalent to say that $\forall \delta>0, \exists E \in m$ such that $\mu(E)<\delta$ and $1_{E^{c}} f_{n}$ converges uniformly to $1_{E^{c}} f$.

Also, we say a sequence of measurable function $\left(f_{n}\right)_{n=1}^{\infty}$ is Cauchy in measure if

$$
\forall \epsilon>0, \mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \geq \epsilon\right\}\right) \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

i.e., $\exists M \in \mathbb{N}$ such that $\forall n, m \geq M, \mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \geq \epsilon\right\}\right)<\epsilon$. Clearly, if $\left(f_{n}\right)$ converges in measure, then it is Cauchy in measure.

We can describe the relationship between modes of convergence as below.

Figure 1: Modes of Convergence; Red represents counterexample. Green represents with some condition. Blue represents implying.

Now we can deal with the counter examples in the above complete digraph. For all example, we assume that $(\mathbb{R}, \mathcal{L}, m)$, Lebesgue measure space.

Figure 2: Modes of Convergence without counter example. Green represents with some condition. Blue represents implying. Non-edge implies there exists counter example.

Example 3.74 (CE1). Let

$$
f_{n}=\frac{1}{n} 1_{(0, n)} .
$$

Then, $f_{n} \rightarrow 0$ uniformly (therefore almost uniformly), but $f_{n} \nrightarrow 0$ in L^{1}, since $\forall n \in \mathbb{N}, \int\left|f_{n}\right|=1$.
Example 3.75 (CE2). Let

$$
f_{n}=\frac{1}{n} 1_{(n, n+1)}
$$

Then, $f_{n} \rightarrow 0$ pointwisely, but $f_{n} \nrightarrow 0$ in L^{1}, since $\forall n \in \mathbb{N}, \int\left|f_{n}\right|=1$. Also, $\mu\left(\left\{x: \left\lvert\, f_{n(x)-0 \left\lvert\, \geq \frac{1}{2}\right.}\right.\right\}\right)=1$ for all $n \in \mathbb{N}$. Hence, $f_{n} \nrightarrow 0$ in measure. Also, $f_{n} \nrightarrow 0$ almost uniformly since for $\delta=\epsilon<1$, every E with $\mu(E)<\delta, E^{c} \cap[n, n+1] \neq \emptyset$, thus it gives

$$
\left|f_{n} 1_{E^{c}}(x)\right|=1>\epsilon \text { at } x \in[n, n+1] \cap E^{c} .
$$

Example 3.76 (CE3). Let

$$
f_{n}=n 1_{\left[0, \frac{1}{n}\right]}
$$

Then, $f_{n} \rightarrow 0$ almost uniformly and a.e. (except $\{0\}$), but $f_{n} \nrightarrow 0$ in L^{1}, since $\forall n \in \mathbb{N}, \int\left|f_{n}\right|=1$. Also, $f_{n} \nrightarrow 0$ pointwisely since $f_{n}(0)=1$ for any $n \in \mathbb{N}$.

Also note that $f_{n} \nrightarrow 0$ uniformly or pointwisely since $f_{n}(0)=1$ for any $n \in \mathbb{N}$.
Example 3.77 (CE4). Let

$$
f_{1}=1_{[0,1]}, f_{2}=1_{\left[0, \frac{1}{2}\right]}, f_{3}=1_{\left[\frac{1}{2}, 1\right]}, f_{4}=1_{\left[0, \frac{1}{4}\right]}, f_{5}=1_{\left[\frac{1}{4}, \frac{1}{2}\right]}, f_{6}=1_{\left[\frac{1}{2}, \frac{3}{4}\right]}, f_{7}=1_{\left[\frac{3}{4}, 1\right]}
$$

and in general,

$$
f_{n}=1_{\left[\frac{j}{2^{k}}, \frac{j+1}{\left.2^{k}\right]}\right.} \text { where } n=2^{k}+j \text { with } 0 \leq j<2^{k} .
$$

Then, $f_{n} \rightarrow 0$ in L^{1}. Also, for any $\epsilon>0$, we set $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$, therefore,

$$
\mu\left(\left\{x \in \mathbb{R}:\left|f_{n}(x)-0\right| \geq \epsilon\right\}\right) \leq \frac{1}{N}<\epsilon
$$

Hence $f_{n} \rightarrow 0$ in measure. However, $\forall x \in[0,1],\left(f_{n}(x)\right)_{n=1}^{\infty}$ diverges. Hence, $f_{n} \nrightarrow 0$ a.e., thus not pointwisely. (thus not uniformly.)

Example 3.78 (CE5). Let

$$
f_{n}=\frac{x^{2}+n x}{n}
$$

Then, for any fixed $x \in \mathbb{R}$, and $\epsilon>0$,

$$
\left|f_{n}(x)-x\right|=\left|\frac{x^{2}}{n}\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus, $f_{n} \rightarrow x$ pointwisely (hence a.e.). However, if x is not fixed, then for any $n \in \mathbb{N}$, there exists $x \in \mathbb{R}$ such that $x>n$, hence

$$
\left|f_{n}(x)-x\right|=\left|\frac{x^{2}}{n}\right| \geq\left|\frac{n^{2}}{n}\right|=|n|>\epsilon .
$$

Thus it does not uniformly converge.
Example 3.79 (CE6). Let

$$
f_{n}=n 1_{\left[0, \frac{1}{n^{2}}\right]}
$$

Then, $f_{n} \rightarrow 0$ in L^{1}, but $f_{n} \nrightarrow 0$ not almost uniformly, since for any δ, we have $E=\left[0, \frac{1}{N^{2}}\right]$ with $\frac{1}{N^{2}}<\delta$, such that for any $n \geq N$,

$$
\left|1_{E^{c}} f_{n}-0\right|=n \text { for } x \in E^{c} \cap[0, \delta] .
$$

Hence it is not uniformly convergent or almost uniformly convergent.
Now we can deal with blue lines and green lines.
Proposition 3.80 (Proposition 2.29 in [1] p.61). If $f_{n} \rightarrow f$ in L^{1} then $f_{n} \rightarrow f$ in measure.
Proof. Let $E_{n, \epsilon}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}$. We must show that $\forall \epsilon>0, \mu\left(E_{n, \epsilon}\right) \rightarrow 0$. However,

$$
\int\left|f_{n}-f\right| d \mu \geq \epsilon \mu\left(E_{n, \epsilon}\right)
$$

Thus, by the sandwich lemma with L^{1} convergence, we can conclude that $\mu\left(E_{n, \epsilon}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Theorem 3.81 (Revised Theorem 2.30 in [1] p.61). Suppose $\left(f_{n}\right)_{n=1}^{\infty}$ is Cauchy in measure. Then, $\exists a$ subsequence $\left(f_{n_{k}}\right)_{k=1}^{\infty}$ that converges almost uniformly to some measurable function $f: X \rightarrow \mathbb{C}$. Moreover, $f_{n} \rightarrow f$ in measure and if $h: X \rightarrow \mathbb{C}$ is measurable and $f_{n} \rightarrow h$ in measure, then $h=f$ a.e.

Note that the above theorem is more powerful than that in Folland, since almost uniform convergence implies a.e. convergence.

Proof. Given $j \geq 1$, let N_{j} be s.t. for any $n, m \geq N_{j}$,

$$
\mu\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right| \geq 2^{-j}\right\}\right)<2^{-j}
$$

Let $n_{1}<n_{2}<\cdots$ be a sequence in \mathbb{N} such that $\forall j \in \mathbb{N}, n_{j} \geq N_{j}$. Write $g_{j}=f_{n_{j}}$. Let

$$
E_{j}:=\left\{x:\left|g_{j}(x)-g_{j+1}(x)\right| \geq 2^{-j}\right\}
$$

Then, $\mu\left(E_{j}\right)<2^{-j}$ Now let $F_{k}=\bigcup_{j=k}^{\infty} E_{j}$. Then,

$$
\mu\left(F_{k}\right) \leq \sum_{j=k}^{\infty} \mu\left(E_{j}\right)<2^{1-k}
$$

Thus, if $x \in F_{k}^{c}$, then for any $l_{1}>l_{2} \geq k$,

$$
\begin{equation*}
\left|g_{l_{1}}(x)-g_{l_{2}}(x)\right| \underbrace{\leq}_{\text {Triangle ineq. }} \sum_{j=l_{1}+1}^{l_{2}-1}\left|g_{j}(x)-g_{j+1}(x)\right|<\sum_{j=l_{1}}^{l_{2}-1} 2^{-j}<2^{1-l_{1}} \tag{9}
\end{equation*}
$$

This implies $\left(g_{j}\right)_{j=1}^{\infty}$ is Cauchy for all $x \in F_{k}^{c}$.
Now let $F=\bigcap_{k=1}^{\infty} F_{k}$. Then, $\mu(F)=0$ and $\forall x \in F^{c},\left(g_{j}(x)\right)_{j=1}^{\infty}$ is Cauchy as a sequence of \mathbb{C}. Thus, we can well define $f(x)$ such that

$$
f(x)= \begin{cases}\lim _{j \rightarrow \infty} g_{j}(x) & \text { if } x \in F^{c} \\ 0 & \text { otherwise }\end{cases}
$$

Claim 3.82. $g_{j} \rightarrow f$ almost uniformly.
Proof of the claim. From the equation (9), we can get $\forall x \in F_{k}^{c}, \forall l \geq k$,

$$
\left|f(x)-g_{l}(x)\right| \leq 2^{1-l}
$$

by taking $l_{2} \rightarrow \infty$ in the equation (9). Thus, $g_{l} 1_{F_{k}^{c}} \rightarrow f 1_{F_{k}^{c}}$ uniformly, and from the fact that $\mu\left(F_{k}\right)<2^{1-k}$ for any $k \in \mathbb{N}$, we can conclude that $g_{l} \rightarrow f$ almost uniformly.

Claim 3.83. $f_{n} \rightarrow f$ in measure.
Proof of the claim. Define
$G(n):=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}, G_{1}(n, j):=\left\{x:\left|f_{n}(x)-g_{j}(x)\right| \geq \frac{\epsilon}{2}\right\}$, and $G_{2}(j):=\left\{x:\left|g_{j}(x)-f(x)\right| \geq \frac{\epsilon}{2}\right\}$.
Then, from the trianlge inequality, $\forall j \in \mathbb{N}$,

$$
G(n) \subseteq G_{1}(n, j) \cup G_{2}(j) . \Longrightarrow \mu(G(n)) \leq \mu\left(G_{1}(n, j)\right)+\mu\left(G_{2}(j)\right)
$$

Now it suffices to show that $\lim _{n \rightarrow \infty} \mu(G(n))=0$. Let $\delta>0$. Since f_{n} is Cauchy in measure, for some $\frac{\epsilon}{2}<\delta, \exists N \in \mathbb{N}$ such that $\forall n \geq N$, which implies $n_{j} \geq N$, therefore

$$
\mu\left(G_{1}(n, j)\right)=\mu\left(\left\{x:\left|f_{n}(x)-g_{j}(x)\right| \geq \frac{\epsilon}{2}\right\}\right) \leq \frac{\epsilon}{2}<\delta
$$

Since g_{j} converges in measure to f, for some $\frac{\epsilon}{2}<\delta, \exists J \in \mathbb{N}$ such that $\forall j \geq J$,

$$
\mu\left(G_{2}(j)\right)=\mu\left(\left\{x:\left|g_{j}(x)-f(x)\right| \geq \frac{\epsilon}{2}\right\}\right) \leq \frac{\epsilon}{2}<\delta
$$

Thus, take j such that $n(j) \geq N$ and $j \geq J$, and take n such that $n \geq N$. Then, $\mu(G(n))<2 \delta$, as desired.

Claim 3.84. if $h: X \rightarrow \mathbb{C}$ is measurable and $f_{n} \rightarrow h$ in measure, then $h=f$ a.e.
Proof of the claim. If $f_{n} \rightarrow h$ in measure, then define

$$
H:=\{x:|f(x)-g(x)| \geq \epsilon\}, H_{1}(n):=\left\{x:\left|f(x)-f_{n}(x)\right| \geq \frac{\epsilon}{2}\right\}, \text { and } H_{2}(n):=\left\{x:\left|f_{n}(x)-h(x)\right| \geq \frac{\epsilon}{2}\right\}
$$

Then, for all $n \in \mathbb{N}$,

$$
H \subseteq H_{1}(n) \cup H_{2}(n) \Longrightarrow \mu(H) \leq \mu\left(H_{1}(n)\right)+\mu\left(H_{2}(n)\right)
$$

Since $f_{n} \rightarrow f$ in measure and $f_{n} \rightarrow h$ in measure, $\mu\left(H_{1}(n)\right)+\mu\left(H_{2}(n)\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, by the sandwich lemma, $\mu(H) \rightarrow 0$ as $n \rightarrow \infty$. This implies $f(x)=g(x)$ when $x \in H^{c}$, thus $f=g$ a.e.

Corollary 3.85 (Corollary 2.32 in [1] p.62). If $f_{n} \rightarrow f$ in L^{1}, then there exists a subseqeunce $\left(f_{n_{j}}\right)_{j=1}^{\infty}$ such that $f_{n_{j}} \rightarrow f$ a.e.

Proof. By theorem 2.29, $f_{n} \rightarrow f$ in measure, and by theorem 2.30, there exists a subseqeunce $\left(f_{n_{j}}\right)_{j=1}^{\infty}$ such that $f_{n_{j}} \rightarrow f$ almost uniformly, which implies $f_{n_{j}} \rightarrow f$ a.e.

Also note that [1] doesn't have 2.31 Statement. Weird.
Theorem 3.86 (Egoroff's theorem, Theorem 2.33 in [1] p.62). Suppose $\mu(X)<+\infty$ and $\left(f_{n}: X \rightarrow \mathbb{C}\right)_{n=1}^{\infty}$ be a sequence of measurable functions such that $f_{n} \rightarrow f$ a.e. Then, $f_{n} \rightarrow f$ almost uniformly, i.e., $\forall \delta>0$, $\exists E \in m$ such that $\mu(E)<\delta$ and $f_{n} 1_{E^{c}} \rightarrow f 1_{E^{c}}$ uniformly.

Proof. Let $A \in m$ satisfy $\mu(A)=0$ and $\forall x \in A^{c}, f_{n}(x) \rightarrow f(x)$ pointwisely. Let

$$
E_{n}(k)=\left\{x \in X: \exists p \geq n \text { with }\left|f_{p}(x)-f(x)\right| \geq \frac{1}{k}\right\}
$$

Then,

$$
E_{n}(k) \supseteq E_{n+1}(k) \supseteq \cdots
$$

and

$$
\bigcap_{n=1}^{\infty} E_{n}(k)=\left\{x \in X: \text { for infinitely many } p \in \mathbb{N},\left|f_{p}(x)-f(x)\right| \geq \frac{1}{k}\right\} \subseteq A
$$

Thus, $\mu\left(\bigcap_{n=1}^{\infty} E_{n}(k)\right)=0$. Since X is finite measure space, by continuity from above of μ,

$$
\lim _{n \rightarrow \infty} \mu\left(E_{n}(k)\right)=0
$$

Thus, given $\delta>0, \forall k \in \mathbb{N}, \exists n_{k}$ such that

$$
\mu\left(E_{n_{k}}(k)\right)<\delta 2^{-k}
$$

Let $E_{\delta}=\bigcup_{k=1}^{\infty} E_{n_{k}}(k)$. Then,

$$
\mu\left(E_{\delta}\right) \leq \sum_{k=1}^{\infty} \mu\left(E_{n_{k}}(k)\right)<\delta \sum_{k=1}^{\infty} 2^{-k}=\delta
$$

Claim 3.87. $f_{n} 1_{E_{\delta}^{c}} \rightarrow f 1_{E_{\delta}^{c}}$ uniformly.
Proof of the claim. If $x \in E_{\delta}^{c}$ then $x \in E_{n_{k}}(k)^{c}$ for any $k \in \mathbb{N}$, thus $\forall p \geq n_{k}$,

$$
\left|f_{p}(x)-f(x)\right|<\frac{1}{k}
$$

as desired.

Homework 3.88 (Exercise 34 in [1] p.63). Suppose $\left|f_{n}\right| \leq g \in L^{1}$ and $f_{n} \rightarrow f$ in measure. Then,
(a) $\int f=\lim _{n \rightarrow \infty} \int f_{n}$
(b) $f_{n} \rightarrow f$ in L^{1}.

Proof. 1. $\int f=\lim _{n \rightarrow \infty} \int f_{n}$
Proof. Suppose that f_{n} is real valued function first. Then, by the exercise 33 's argument, there exists a subsequence of f_{n}, say $f_{n_{j_{k}}}$ which converges to f pointwisely almost everywhere. Since $f_{n_{j_{k}}} \in L^{1}$ for any $k \in \mathbb{N}$, and dominated by g, thus by the Dominated Convergence Theorem, $f \in L^{1}$.
Now note that $g-f_{n} \geq 0$ and $g+f_{n} \geq 0$ from the given condition that $\left|f_{n}\right| \leq g$. Also, $g-f_{n} \rightarrow g-f$ in measure, since for any ϵ,

$$
\left\{x \in X:\left|g-f_{n}-(g-f)\right| \geq \epsilon\right\}=\left\{x \in X:\left|f_{n}-f\right| \geq \epsilon\right\}=\left\{x \in X:\left|g+f_{n}-(g+f)\right| \geq \epsilon\right\}
$$

Thus, by the exercise 33, we have two inequalities such that

$$
\begin{aligned}
& \int g+f \leq \liminf _{n \rightarrow \infty} \int g+f_{n}=\int g+\lim \inf _{n \rightarrow \infty} \int f_{n} \\
& \int g-f \leq \liminf _{n \rightarrow \infty} \int g-f_{n}=\int g-\lim \sup _{n \rightarrow \infty} \int f_{n}
\end{aligned}
$$

Thus,

$$
\lim \sup _{n \rightarrow \infty} \int f_{n} \leq \int f \leq \lim \inf _{n \rightarrow \infty} \int f_{n}
$$

implies $\lim _{n \rightarrow \infty} f_{n}$ exists and $\lim _{n \rightarrow \infty} f_{n}=\int f$. It is actually the same argument of proving Dominated Convergence Theorem, when sequence coverges in measure.
For the case of f is complex function, then $f_{n}=\operatorname{Re} f_{n}+i \operatorname{Im} f_{n}$, thus $\int \operatorname{Re} f=\lim _{n \rightarrow \infty} \int \operatorname{Re} f_{n}$ and $\int I m f=\lim _{n \rightarrow \infty} \int I m f_{n}$. Therefore,

$$
\int f=\int R e f+i \int I m f=\lim _{n \rightarrow \infty} \int\left(\operatorname{Re} f_{n}+i \operatorname{Im} f_{n}\right)=\lim _{n \rightarrow \infty} \int f_{n}
$$

as desired.
2. $f_{n} \rightarrow f$ in L^{1}.

Proof. First of all, $\left|f_{n}-f\right| \rightarrow 0$ in measure, since

$$
\left\{x \in X:\left|\left|f_{n}(x)-f(x)\right|-0\right| \geq \epsilon\right\}=\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}
$$

for any ϵ. Also, since $f_{n_{j_{k}}} \rightarrow f$ pointwisely a.e. and $\left|f_{n_{j_{k}}}\right| \leq g$ for any $k \in \mathbb{N}$, thus $|f| \leq g$. Hence, $\left|f_{n}-f\right| \leq\left|f_{n}\right|+|f| \leq 2 g \in L^{1}$. Thus, by the part (a),

$$
0=\int 0=\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|
$$

Thus, by the definition of L^{1} convergence, $f_{n} \rightarrow f$ in L^{1}.

Homework 3.89 (Exercise 39 in [1] p.63). If $f_{n} \rightarrow f$ almost uniformly, then $f_{n} \rightarrow f$ in a.e. and in measure.

Proof. $f_{n} \rightarrow f$ almost uniformly implies that $\forall \delta>0, \exists E \in m$ such that $\mu(E)<\delta$ and $1_{E^{c}} f_{n}$ converges uniformly to $1_{E^{c}} f$. Thus, let $\delta=\frac{1}{n}$ and E_{n} is corresponding set satisfying the condition of almost uniformly convergence. Then, let $E=\bigcap_{n=1}^{\infty} E_{n}$. Then,

$$
\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)<\frac{1}{n}, \forall n \in \mathbb{N}
$$

therefore $\mu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=0$ but $1_{E^{c}} f_{n}$ converges uniformly to $1_{E^{c}} f$. Since uniform convergence implies pointwise convergence, we can conclude that $f_{n} \rightarrow f$ a.e. except E, which is null set.

Also, for any $\epsilon>0$, we know that there exists $N \in \mathbb{N}$ such that $\forall n \geq N$,

$$
E_{n} \supseteq\left\{x \in E_{n}^{c}:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}=\emptyset
$$

Thus,

$$
\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\} \subseteq E_{n} \Longrightarrow \mu\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq \mu\left(E_{n}\right) \leq \frac{1}{n}
$$

for any $n \geq N$. Thus take n such that $\epsilon>\frac{1}{n}$, then we can conclude that for any $m>n$,

$$
\mu\left(\left\{x \in X:\left|f_{m}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq \mu\left(E_{m}\right) \leq \frac{1}{m}<\frac{1}{n}<\epsilon
$$

Thus, $f_{n} \rightarrow f$ in measure.

3.5 Product Measures

Let (X, m, μ) and (Y, n, ν) be measure spaces. Recall that
Definition 3.90. $m \otimes n$ is the σ-algebra of subsets of $X \times Y$ generated by $\{A \times Y: A \in m\} \cup\{X \times B: B \in n\}$.
Definition 3.91 (Rectangle). A (measurable) rectangle in $X \times Y$ is $A \times B$ for $A \in m, B \in n$. Let \mathfrak{a} be the algebra of sets consisting of finite disjoint unions of measurable rectangles.

Check that \mathfrak{a} is an algebra. Recall that \mathfrak{a} is an algebra of subsets of X if
(i) $n \in \mathbb{N}, E_{1}, \cdots, E_{n} \in \mathfrak{a} \Longrightarrow \cup_{j=1}^{n} E_{j} \in \mathfrak{a}$.
(ii) $E \in \mathfrak{a} \Longrightarrow E^{c}=X \backslash E \in \mathfrak{a}$.

Note that

$$
(A \times B) \cap(E \times F)=(A \cap E) \times(B \cap F)
$$

So, for disjoint union of $\left(A_{i} \times B_{i}\right)_{i=1}^{n}$ and $\left(E_{j} \times F_{j}\right)_{j=1}^{m}$,

$$
\left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right) \cap\left(\bigcup_{j=1}^{m} E_{i} \times E_{j}\right)=\bigcup_{i=1}^{n} \bigcup_{j=1}^{m}\left(A_{i} \cap E_{j}\right) \times\left(B_{i} \cap F_{j}\right)
$$

and $\left(A_{i} \cap E_{j}\right) \times\left(B_{i} \cap F_{j}\right)$ s are disjoint. So \mathfrak{a} is closed under taking intersection. From the fact that

$$
(A \times B)^{c}=\left(A^{c} \times B^{c}\right) \cup\left(A \times B^{c}\right) \cup\left(A^{c} \times B\right)
$$

we know that

$$
\left(\bigcup_{i=1}^{n}\left(A_{i} \times B_{i}\right)\right)^{c}=\bigcap_{i=1}^{n}\left(A_{i} \times B_{i}\right)^{c} \in \mathfrak{a}
$$

thus \mathfrak{a} is closed under complement.

For (i), let $n \in \mathbb{N}, E_{1}, \cdots, E_{n} \in \mathfrak{a}$. Then, define $F_{k}=E_{k} \backslash \bigcap_{j=1}^{k-1} E_{j} \in \mathfrak{a}$. Then, each F_{k} are disjoint, hence

$$
\bigcup_{k=1}^{n} E_{k}=\bigcup_{k=1}^{n} F_{k} \in \mathfrak{a}
$$

as desired.
Our goal is to find a measure on $m \otimes n$ such that

$$
A \times B \mapsto \mu(A) \mu(B)
$$

We would like to define $\pi: \mathfrak{a} \rightarrow[0,+\infty]$ such that $\pi\left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right) \mu\left(B_{i}\right)$ for (finite) disjoint family of rectangles $A_{i} \times B_{i}$.
Claim 3.92. Let $\pi: \mathfrak{a} \rightarrow[0,+\infty]$ by $\pi\left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right) \mu\left(B_{i}\right)$ for (finite) disjoint family of rectangles $A_{i} \times B_{i}$. Then, π is well-defined.
Proof. Let $R \in \mathfrak{a}$. Then $R=\bigcup_{i=1}^{n} A_{i} \times B_{i}$ for some finite disjoint family rectangles, by construction of \mathfrak{a}. Then,

$$
1_{R(x, y)}=\sum_{i=1}^{\infty} 1_{A_{i}(x)} \cdot 1_{B_{i}(x)}
$$

Thus,
$\sum_{i=1}^{n} \mu\left(A_{i}\right) \nu\left(B_{i}\right)=\sum_{i=1}^{n} \int 1_{A_{i}(x)} d \mu(x) \int 1_{B_{i}(y)} d \nu(y) \underbrace{=}_{\mathrm{Thm} \mathrm{2.13}} \iint 1_{A_{i}(x)} 1_{B_{i}(y)} d \mu(x) d \nu(y)=\iint 1_{R(x, y)} d \mu(x) d \nu(y)$.
It means that any finite family of disjoint rectangles representing R, π gives the same value. Thus, we can conclude that π doesn't depends on a rectangle, which means π is well-defined function from $\mathfrak{a} \rightarrow[0,+\infty]$.

Claim 3.93. π is a premeasure.
Proof. Suppose $R \in \mathfrak{a}$ such that $R=\bigcup_{p=1}^{\infty} S_{p}$ for some $S_{p} \in \mathfrak{a}$. We want to show that

$$
\pi(R)=\sum_{p=1}^{\infty} \pi\left(S_{p}\right)
$$

Note that

$$
1_{R}(x, y)=\sum_{p=1}^{\infty} 1_{S_{p}}(x, y)
$$

Thus, let $f_{n}=\sum_{p=1}^{n} 1_{S_{p}}(x, y)$. Then, $\lim _{n \rightarrow \infty} f_{n}=1_{R}(x, y)$ and $f_{n} \leq f_{n+1}$ for any $n \in \mathbb{N}$. Thus, we can apply the Monotone Convergence Theorem. Hence,

$$
\pi(R)=\int\left(\int 1_{R}(x, y) d \mu(x)\right) d \nu(y)=\int\left(\int \sum_{p=1}^{\infty} 1_{S_{p}}(x, y) d \mu(x)\right) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \int \sum_{p=1}^{\infty}\left(\int 1_{S_{p}}(x, y) d \mu(x)\right) d \nu(y)
$$

And we need a lemma that each $\left(\int 1_{S_{p}}(x, y) d \mu(x)\right)$ is measurable by $d \nu(y)$.
Lemma 3.94. If $S \in \mathfrak{a}$, then $y \mapsto\left(\int 1_{S}(x, y) d \mu(x)\right)$ is ν-measurable function.
Proof of the Lemma. If $S=A \times B$, then

$$
\int 1_{S}(x, y) d \mu(x)= \begin{cases}\mu(A) & \text { if } y \in B \\ 0 & \text { if } y \notin B\end{cases}
$$

In general, if $S \in \mathfrak{a}$, by the proposition 2.6 stating that sum of measurable function is also measurable, the given function is measurable.

Thus, let $g_{n}(y):=\sum_{p=1}^{\infty}\left(\int 1_{S_{p}}(x, y) d \mu(x)\right)$. Then by the Lemma, g_{n} is ν-measurable, and $\lim _{n \rightarrow \infty} g_{n}=$ $\sum_{p=1}^{\infty}\left(\int 1_{S_{p}}(x, y) d \mu(x)\right)$ and $g_{n}(y) \leq g_{n+1}(y)$ for any $n \in \mathbb{N}$. Thus, we can apply the Monotone Convergence Theorem, hence,

$$
\pi(R) \underbrace{=}_{\mathrm{MCT}} \int \sum_{p=1}^{\infty}\left(\int 1_{S_{p}}(x, y) d \mu(x)\right) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \sum_{p=1}^{\infty} \int\left(\int 1_{S_{p}}(x, y) d \mu(x)\right) d \nu(y)=\sum_{p=1}^{\infty} \pi\left(S_{p}\right)
$$

as required. Since $\pi(\emptyset)=0$ clearly, thus π is a premeasure on \mathfrak{a}.
Claim 3.95. $m \otimes n=\sigma-\operatorname{alg}(\mathfrak{a})$
Proof. Apply the Proposition 1.3 in [1][p.23].
Claim 3.96. There exists a measure $\mu \times \nu$ on $m \otimes n$ that extends π. If μ and ν are σ-finite, then π is also σ-finite, thus $\mu \times \nu$ is the unique measure on $m \otimes n$ satisfying $A \times B \mapsto \mu(A) \cdot \mu(B)$ for any $A \in m, B \in n$.

Proof. Apply the theorem 1.14 in [1][p.31].
Thus, $\mu \times \nu(A \times B)=\mu(A) \times \nu(B)$ for any $A \in m, B \in n$.
Definition 3.97. We call $\mu \times \nu$ obtained by the above claim is the product measure of μ and ν.
Definition 3.98. Let $E \in m \otimes n$. Then we denote E_{x} be x-section and E^{y} be y-section of E as below;

$$
\text { For } x \in X, E_{x}:=\{y \in Y:(x, y) \in E\} \text { and For } y \in X, E^{y}:=\{x \in X:(x, y) \in E\}
$$

Also, given $f: X \times Y \rightarrow S$, for any set S, we define its x-section and y-sections by
For $x \in X, f_{x}(y): X \rightarrow S$ by $f_{x}(y):=f(x, y)$ and For $y \in X, f^{y}(x): Y \rightarrow S$ by $f^{y}(x):=f(x, y)$.
Theorem 3.99 (Proposition 2.34 in [1] p.65). (i) If $E \in m \otimes n$, then $\forall x \in X, E_{x} \in n$ and $\forall y \in Y, E^{y} \in m$
(ii) If (S, \mathcal{S}) is any measurable space and if $f: X \times Y \rightarrow S$ is $(m \otimes n, \mathcal{S})$-measurable function, then $\forall x \in X, f_{x}$ is (n, \mathcal{S})-measurable and $\forall y \in Y, f^{y}$ is (m, \mathcal{S})-measurable.

Proof. Let

$$
R=\left\{E \subseteq X \times Y: \forall x \in X, E_{x} \in n \text { and } \forall y \in Y, E^{y} \in m\right\}
$$

Since $\forall A \in m, B \in n$,

$$
(A \times B)_{x}=\left\{\begin{array}{ll}
B & \text { if } x \in A \\
\emptyset & \text { if } x \notin A
\end{array} \text { and }(A \times B)^{y}= \begin{cases}A & \text { if } y \in B \\
\emptyset & \text { if } y \notin B\end{cases}\right.
$$

Thus, in any case, $(A \times B)_{x} \in n,(A \times B)^{y} \in m$. Thus, $A \times B \in R$. Then, it suffices to show that R is σ-algebra; if we show this, then $m \otimes n \subseteq R$ since $m \times n \in R$, thus the statement holds.

Let $E \in R$. Then,

$$
\begin{aligned}
& \left(E^{c}\right)_{x}=\left\{y:(x, y) \in E^{c}\right\}=\{y:(x, y) \notin E\}=\{y:(x, y) \in E\}^{c}=\left(E_{x}\right)^{c} \in n \\
& \left(E^{c}\right)^{y}=\left\{x:(x, y) \in E^{c}\right\}=\{x:(x, y) \notin E\}=\{x:(x, y) \in E\}^{c}=\left(E^{y}\right)^{c} \in m
\end{aligned}
$$

Thus, $E^{c} \in R$. Also, let $E_{1}, E_{2}, \cdots \in R$ which is disjoint sequence. Then, we want to show $E:=\bigcup_{n=1}^{\infty} E_{n} \in$ R. Note that

$$
\begin{aligned}
& E_{x}=\left\{y:(x, y) \in \bigcup_{n=1}^{\infty} E_{n}\right\}=\bigcup_{n=1}^{\infty}\left\{y:(x, y) \in E_{n}\right\}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)_{x} \in n \\
& E_{y}=\left\{x:(x, y) \in \bigcup_{n=1}^{\infty} E_{n}\right\}=\bigcup_{n=1}^{\infty}\left\{x:(x, y) \in E_{n}\right\}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{y} \in m
\end{aligned}
$$

Thus R is a σ-algebra. Hence the statement holds as mentioned above.
For (ii), suppose $f: X \times Y \rightarrow S$ is $(m \otimes n, \mathcal{S})$-measurable function. Let $x \in X, G \in \mathcal{S}$. Then it suffices to show that $f_{x}^{-1}(G) \in n$ and $\left(f^{y}\right)^{-1}(G) \in m$. Note that

$$
\begin{gathered}
f_{x}^{-1}(G)=\left\{y: f_{x}(x, y) \in G\right\}=\left\{y:(x, y) \in f^{-1}(G)\right\}=\left(f^{-1}(G)\right)_{x} \\
\left(f^{y}\right)^{-1}(G)=\left\{x: f^{y}(x, y) \in G\right\}=\left\{x:(x, y) \in f^{-1}(G)\right\}=\left(f^{-1}(G)\right)^{y}
\end{gathered}
$$

Since f is $(m \otimes n, \mathcal{S})$-measurable, $f^{-1}(G) \in m \otimes n$ and by part $(\mathrm{i}),\left(f^{-1}(G)\right)_{x} \in n$ and $\left(f^{-1}(G)\right)^{y} \in m$. Thus, the conclusion holds.

Definition 3.100. A monotone class on X is a subset \mathcal{C} of $\mathcal{P}(X)$ that is closed under taking

- countable increasing unions, i.e., if there exist $E_{1}, E_{2}, \cdots \in \mathcal{C}$ with $E_{1} \subseteq E_{2} \subseteq \cdots$ then $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{C}$.
- countable decreasing intersections, i.e., if there exist $E_{1}, E_{2}, \cdots \in \mathcal{C}$ with $E_{1} \supseteq E_{2} \supseteq \cdots$ then $\bigcap_{n=1}^{\infty} E_{n} \in \mathcal{C}$.

Remark 3.101. (i) Every σ-algebra is a monotone class.
(ii) If Λ is a set and $\forall \lambda \in \Lambda, \mathcal{C}_{\lambda} \subseteq \mathcal{P}(X)$ is a monotone class, then $\bigcap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ is a monotone class.
(iii) Given $\mathcal{F} \subseteq \mathcal{P}(X), \exists$ the smallest monotone class on X containing \mathcal{F}. This is called the monotone class generated by \mathcal{F}.

Proof. For (ii), note that if E_{1}, \cdots is countable increasing sequence (or decreasing sequence) in $\bigcap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$, then they are an countable increasing sequence in each \mathcal{C}_{λ}, thus their union (or intersection) is in each \mathcal{C}_{λ}, hence the union (or intersection) is in $\bigcap_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$.

For (iii), just define $A=\bigcap_{F \in \mathcal{C}} \mathcal{C}$. Then by part (ii), it is also a monotone class, and it is the smallest one.

Lemma 3.102 (The monotone class lemma, theorem 2.35 in [1] p.66). If \mathfrak{a} is an algebra of subsets of X, and \mathcal{C} be a monotone class generated by \mathfrak{a}, then $\mathcal{C}=\sigma-\operatorname{alg}(\mathfrak{a})$.
Proof. By definition of σ-algebra, $\mathcal{C} \subseteq \sigma$-alg (\mathfrak{a}) is clear. To show reversed inclusion, it suffices to show that \mathcal{C} is a σ-algebra.

Given $E \subseteq X$, let

$$
\mathcal{C}(E)=\{F \in \mathcal{C}: F \backslash E \in \mathcal{C}, E \backslash F \in \mathcal{C}, E \cap F \in \mathcal{C}\}
$$

Claim 3.103. $\mathcal{C}(E)$ is a monotone class.
Proof of the claim. If $F_{j} \in \mathcal{C}(E)$ with $F_{j} \subseteq F_{j+1}$ for all $j \in \mathbb{N}$, then let $F:=\bigcup_{j=1}^{\infty} F_{j}$. We want to show $F \in \mathcal{C}(E)$ to show that $\mathcal{C}(E)$ satisfies closed under countable increasing union. Note that

$$
F \backslash E=\bigcup_{j=1}^{\infty}\left(F_{j} \backslash E\right) \text { and } E \backslash F=\bigcap_{j=1}^{\infty}\left(E \backslash F_{j}\right) \text {, and } E \cap F=\bigcup_{j=1}^{\infty}\left(E \cap F_{j}\right)
$$

Since $F_{j} \backslash E$ and $E \cap F_{j}$ are countable increasing in \mathcal{C} since $F_{j} \in \mathcal{C}(E)$ for all $j \in \mathbb{N}$, its union is in \mathcal{C}. Also, since $E \backslash F_{j}$ is countable decreasing in \mathcal{C} since $F_{j} \in \mathcal{C}(E)$ for all $j \in \mathbb{N}$, its intersection is in \mathcal{C}. Thus,

$$
F \backslash E=\bigcup_{j=1}^{\infty} F_{j} \backslash E \in \mathcal{C} \text { and } E \backslash F=\bigcap_{j=1}^{\infty} E \backslash F_{j} \in \mathcal{C}, \text { and } E \cap F=\bigcup_{j=1}^{\infty} E \cap F_{j} \in \mathcal{C}
$$

Thus, $\mathcal{C}(E)$ satisfies countable increasing union condition.

Similarly, let $F_{j} \in \mathcal{C}(E)$ with $F_{j} \supseteq F_{j+1}$ for all $j \in \mathbb{N}$, then let $F:=\bigcap_{j=1}^{\infty} F_{j}$. We want to show $F \in \mathcal{C}(E)$ to show that $\mathcal{C}(E)$ satisfies closed under countable decreasing intersection. Note that

$$
F \backslash E=\bigcap_{j=1}^{\infty}\left(F_{j} \backslash E\right) \text { and } E \backslash F=\bigcup_{j=1}^{\infty}\left(E \backslash F_{j}\right) \text {, and } E \cap F=\bigcap_{j=1}^{\infty}\left(E \cap F_{j}\right)
$$

Since $F_{j} \backslash E$ and $E \cap F_{j}$ are countable decreasing in \mathcal{C} since $F_{j} \in \mathcal{C}(E)$ for all $j \in \mathbb{N}$, its intersection is in \mathcal{C}. Also, since $E \backslash F_{j}$ is countable increasing in \mathcal{C} since $F_{j} \in \mathcal{C}(E)$ for all $j \in \mathbb{N}$, its union is in \mathcal{C}. Thus,

$$
F \backslash E=\bigcap_{j=1}^{\infty}\left(F_{j} \backslash E\right) \in \mathcal{C} \text { and } E \backslash F=\bigcup_{j=1}^{\infty}\left(E \backslash F_{j}\right) \in \mathcal{C}, \text { and } E \cap F=\bigcap_{j=1}^{\infty}\left(E \cap F_{j}\right) \in \mathcal{C} .
$$

Thus, $\mathcal{C}(E)$ also satisfies countable decreasing intersection condition. Hence it is a monotone class.
Claim 3.104. Let $E, F \subset X$, then $F \in \mathcal{C}(E) \Longleftrightarrow E \in \mathcal{C}(F)$
Proof of the claim.

$$
F \in \mathcal{C}(E) \Longleftrightarrow F \backslash E \in \mathcal{C}, E \backslash F \in \mathcal{C}, \text { and } E \cap F \in \mathcal{C} \Longleftrightarrow E \in \mathcal{C}(F)
$$

Claim 3.105. If $B \in \mathfrak{a}$ then $\mathcal{C} \subseteq \mathcal{C}(B)$.
Proof of the claim. Since $\mathcal{C}(B)$ is a monotone class by claim 3.103 , it suffices to show that $\mathfrak{a} \subseteq \mathcal{C}(B)$. Let $A \in \mathfrak{a}$ then since \mathfrak{a} is an algebra,

$$
A \backslash B, B \backslash A, A \cap B \in \mathfrak{a} \subseteq \mathcal{C}
$$

Thus, $A \in \mathcal{C}(B)$ by construction of $\mathcal{C}(B)$. Since A was arbitrarily chosen, $\mathcal{C} \subseteq \mathcal{C}(B)$.
Claim 3.106. For all $E \in \mathcal{C}, \mathcal{C}=\mathcal{C}(E)$.
Proof of the claim. By construction of $\mathcal{C}(E), \mathcal{C} \supseteq \mathcal{C}(E)$. To show the other direction, it suffices to show that $\mathfrak{a} \subseteq \mathcal{C}(E)$, then the monotone class generated by \mathfrak{a}, which is \mathcal{C} is contained in $\mathcal{C}(E)$.

Let $B \in \mathfrak{a}$. By the claim 3.105,

$$
E \in \mathcal{C} \subseteq \mathcal{C}(B)
$$

Then by the claim 3.104,

$$
E \in \mathcal{C}(B) \Longrightarrow B \in \mathcal{C}(E)
$$

Since B was arbitrarily chosen, $\mathfrak{a} \subseteq \mathcal{C}(E)$, as desired.
Claim 3.107. \mathcal{C} is an algebra.
Proof of the claim. Let $E, F \in \mathcal{C}$. Then, by the claim 3.106, $E \in \mathcal{C}=\mathcal{C}(F)$. Thus, $E \backslash F, F \backslash E$, and $E \cap F \in \mathcal{C}$. Since $X \in \mathfrak{a} \subseteq \mathcal{C}$, we have $E^{c} \in \mathcal{C}$, by taking $F=X$. Thus, $E \cup F=\left(E^{c} \cap F^{c}\right) \in \mathcal{C}$ for any $E, F \in \mathcal{C}$, since $E^{c} \in \mathcal{C}=\mathcal{C}\left(F^{c}\right)$ by the claim 3.106. Thus \mathcal{C} closed under complements and finite union and intersection, thus it is an algebra.

Claim 3.108. \mathcal{C} is a σ-algebra.

Proof of the claim. If $E_{1}, E_{2}, \cdots \in \mathcal{C}$, then $\forall n \in \mathbb{N}$, let

$$
G_{n}:=\bigcup_{j=1}^{n} E_{j} \in \mathcal{C}
$$

since \mathcal{C} is an algebra. Since \mathcal{C} is also a monotone class, and G_{n} forms a countable increasing sequence,

$$
\bigcup_{j=1}^{\infty} E_{j}=\bigcup_{n=1}^{\infty} G_{n} \in \mathcal{C}
$$

Theorem 3.109 (Theorem 2.36 in [1] p.66). Suppose (X, m, μ) and (Y, n, ν) are σ-finite. Let $E \in m \otimes n$. Then the functions $x \mapsto \nu\left(E_{x}\right), y \mapsto \mu\left(E^{y}\right)$ are measurable and

$$
\int \nu\left(E_{x}\right) d \mu(x)=\mu \times \nu(E)=\int \mu\left(E^{y}\right) d \nu(y)
$$

Proof. Suppose $\mu(X)<+\infty$ and $\nu(Y)<+\infty$. Let \mathcal{D} be the set of all $E \in m \otimes n$ such that the conclusion holds.

Claim 3.110. If $A \in m$ and $B \in n$, then $E=A \times B \in \mathcal{D}$.
Proof of the claim. Note that

$$
E_{x}:=\{y:(x, y) \in E\}=\left\{\begin{array}{ll}
\emptyset & \text { if } x \notin A \\
B & \text { if } x \in A
\end{array} \text { and } E^{y}:=\{x:(x, y) \in E\}= \begin{cases}\emptyset & \text { if } y \notin B \\
A & \text { if } y \in B\end{cases}\right.
$$

Thus,

$$
\nu\left(E_{x}\right)=\left\{\begin{array}{ll}
0 & \text { if } x \notin A \\
\nu(B) & \text { if } x \in A
\end{array}=\nu(B) 1_{A}(x) \text { and } \mu\left(E^{y}\right)=\left\{\begin{array}{ll}
0 & \text { if } y \notin B \\
\mu(A) & \text { if } y \in B
\end{array}=\mu(A) 1_{B}(y)\right.\right.
$$

Thus, $x \mapsto \nu\left(E_{x}\right)=\nu(B) 1_{A}(x)$ is clearly μ-measurable and $y \mapsto \mu\left(E^{y}\right)=\mu(A) 1_{B}(y)$ is ν-measurable. Hence,

$$
\int \nu\left(E_{x}\right) d \mu(x)=\nu(B) \mu(A)=\mu \times \nu(E)=\nu(B) \mu(A)=\int \mu\left(E^{y}\right) d \nu(y)
$$

Hence $E \in \mathcal{D}$.
Claim 3.111. If $E=\bigcup_{i=1}^{n} A_{i} \times B_{i}$ is a finite disjoint union where $A_{i} \in m, B_{i} \in n$, then $E \in \mathcal{D}$.
Proof. Note that

$$
E_{x}:=\{y:(x, y) \in E\}=\left\{\begin{array}{ll}
\emptyset & \text { if } x \notin \bigcup_{i=1}^{n} A_{i} \\
B_{i} & \text { if } x \in A_{i}
\end{array} \text { and } E^{y}:=\{x:(x, y) \in E\}= \begin{cases}\emptyset & \text { if } y \notin \bigcup_{i=1}^{n} B_{i} \\
A_{i} & \text { if } y \in B_{i}\end{cases}\right.
$$

Thus,
$\nu\left(E_{x}\right)=\left\{\begin{array}{ll}0 & \text { if } x \notin \bigcup_{i=1}^{n} A_{i} \\ \nu\left(B_{i}\right) & \text { if } x \in A_{i}\end{array}=\sum_{i=1}^{n} \nu\left(B_{i}\right) 1_{A_{i}}(x)\right.$ and $\mu\left(E^{y}\right)= \begin{cases}0 & \text { if } y \notin \bigcup_{i=1}^{n} B_{i}=\sum_{i=1}^{n} \mu\left(A_{i}\right) 1_{B_{i}}(y) . \\ \mu\left(A_{i}\right) & \text { if } y \in B_{i}\end{cases}$

Thus, $x \mapsto \nu\left(E_{x}\right)=\sum_{i=1}^{n} \nu\left(B_{i}\right) 1_{A_{i}}(x)$ is clearly μ-measurable since it is a simple fuction, and by the same reason, $y \mapsto \mu\left(E^{y}\right)=\sum_{i=1}^{n=1} \mu\left(A_{i}\right) 1_{B_{i}}(y)$ is ν-measurable. Hence,

$$
\int \nu\left(E_{x}\right) d \mu(x)=\sum_{i=1}^{n} \nu\left(B_{i}\right) \mu\left(A_{i}\right)=\mu \times \nu(E)=\sum_{i=1}^{n} \nu\left(B_{i}\right) \mu\left(A_{i}\right)=\int \mu\left(E^{y}\right) d \nu(y) .
$$

Hence $E \in \mathcal{D}$.
Claim 3.112. \mathcal{D} is a monotone class.
Proof. Suppose $E_{n} \in \mathcal{D}$ with $E_{n} \subseteq E_{n+1}$ for each $n \in \mathbb{N}$, and let $E:=\bigcup_{n=1}^{\infty} E_{n}$. Then,

$$
\begin{aligned}
& E_{x}=\{y:(x, y) \in E\}=\bigcup_{n=1}^{\infty}\left\{y:(x, y) \in E_{n}\right\}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)_{x} \\
& E^{y}=\{x:(x, y) \in E\}=\bigcup_{n=1}^{\infty}\left\{x:(x, y) \in E_{n}\right\}=\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{y}
\end{aligned}
$$

By continuity from below, we know that

$$
\lim _{n \rightarrow \infty} \nu\left(\left(E_{n}\right)_{x}\right)=\nu\left(\bigcup_{n=1}^{\infty}\left(E_{n}\right)_{x}\right)=\nu\left(E_{x}\right) \text { and } \lim _{n \rightarrow \infty} \mu\left(\left(E_{n}\right)^{y}\right)=\mu\left(\bigcup_{n=1}^{\infty}\left(E_{n}\right)^{y}\right)=\nu\left(E^{y}\right)
$$

Thus $x \mapsto \nu\left(E_{x}\right)$ and $y \mapsto \mu\left(E^{y}\right)$ is the limit of measurable functions, therefore by the corollary 2.9 , it is measurable.

Also, let $f_{n}:=\nu\left(\left(E_{n}\right)_{x}\right)$ and $g_{n}:=\mu\left(\left(E_{j}\right)^{y}\right)$. Then, $f_{n} \leq f_{n+1}, g_{n} \leq g_{n+1}$ for any $n \in \mathbb{N}$, since $E_{n} \subseteq E_{n+1}$. And as shown above,

$$
\lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \nu\left(\left(E_{n}\right)_{x}\right)=\nu\left(E_{x}\right) \text { and } \lim _{n \rightarrow \infty} g_{n}=\lim _{n \rightarrow \infty} \mu\left(\left(E_{n}\right)^{y}\right)=\mu\left(E^{y}\right)
$$

Thus we can apply the Monotone Convergence Theorem on the sequence of f_{n} and g_{n}. Thus,

$$
\int \nu\left(E_{x}\right) d \mu(x) \underbrace{=}_{\mathrm{MCT}} \lim _{n \rightarrow \infty} \int \nu\left(\left(E_{n}\right)_{x}\right) d \mu(x) \underbrace{=}_{E_{n} \in \mathcal{D}, \forall n \in \mathbb{N}} \lim _{n \rightarrow \infty} \mu \times \nu\left(E_{n}\right) \underbrace{=}_{\text {continuity from below }} \mu \times \nu(E)
$$

and

$$
\int \mu\left(E^{y}\right) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \lim _{n \rightarrow \infty} \int \mu(\left(E_{n}\right)^{y} d \nu(y) \underbrace{=}_{E_{n} \in \mathcal{D}, \forall n \in \mathbb{N}} \lim _{n \rightarrow \infty} \mu \times \nu\left(E_{n}\right) \underbrace{=}_{\text {continuity from below }} \mu \times \nu(E)
$$

Thus, $E \in \mathcal{D}$.
Conversely, suppose $E_{n} \in \mathcal{D}$ with $E_{n} \supseteq E_{n+1}$ for each $n \in \mathbb{N}$, and let $E:=\bigcap_{n=1}^{\infty} E_{n}$. Then,

$$
\begin{aligned}
& E_{x}=\{y:(x, y) \in E\}=\bigcap_{n=1}^{\infty}\left\{y:(x, y) \in E_{n}\right\}=\bigcap_{n=1}^{\infty}\left(E_{n}\right)_{x} . \\
& E^{y}=\{x:(x, y) \in E\}=\bigcap_{n=1}^{\infty}\left\{x:(x, y) \in E_{n}\right\}=\bigcap_{n=1}^{\infty}\left(E_{n}\right)^{y} .
\end{aligned}
$$

By continuity from above, we know that

$$
\lim _{n \rightarrow \infty} \nu\left(\left(E_{n}\right)_{x}\right)=\nu\left(\bigcap_{n=1}^{\infty}\left(E_{n}\right)_{x}\right)=\nu\left(E_{x}\right) \text { and } \lim _{n \rightarrow \infty} \mu\left(\left(E_{n}\right)^{y}\right)=\mu\left(\bigcap_{n=1}^{\infty}\left(E_{n}\right)^{y}\right)=\nu\left(E^{y}\right)
$$

Thus $x \mapsto \nu\left(E_{x}\right)$ and $y \mapsto \mu\left(E^{y}\right)$ is the limit of measurable functions, therefore by the corollary 2.9 , it is measurable.

Since μ, ν are finite measures, the function $x \mapsto \nu\left(\left(E_{1}\right)_{x}\right), y \mapsto \mu\left(E_{1}^{y}\right)$ is integrable. Since $\nu\left(\left(E_{n}\right)_{x}\right) \leq$ $\nu\left(\left(E_{1}\right)_{x}\right), \mu\left(E_{n}^{y}\right) \leq \mu\left(E_{1}^{y}\right)$ for any $n \in \mathbb{N}$, we can apply the Dominated Convergence Theorem. Thus,

$$
\int \nu\left(E_{x}\right) d \mu(x) \underbrace{=}_{\mathrm{DCT}} \lim _{n \rightarrow \infty} \int \nu\left(\left(E_{n}\right)_{x}\right) d \mu(x) \underbrace{=}_{E_{n} \in \mathcal{D}, \forall n \in \mathbb{N}} \lim _{n \rightarrow \infty} \mu \times \nu\left(E_{n}\right) \quad \underbrace{=}_{\text {continuity from above }} \mu \times \nu(E)
$$

and

$$
\int \mu\left(E^{y}\right) d \nu(y) \underbrace{=}_{\mathrm{DCT}} \lim _{n \rightarrow \infty} \int \mu(\left(E_{n}\right)^{y} d \nu(y) \underbrace{=}_{E_{n} \in \mathcal{D}, \forall n \in \mathbb{N}} \lim _{n \rightarrow \infty} \mu \times \nu\left(E_{n}\right) \underbrace{=}_{\text {continuity from above }} \mu \times \nu(E)
$$

Thus, $E \in \mathcal{D}$. Hence, \mathcal{D} is a monotone class.
Let \mathfrak{a} be a set of finite disjoint unions of measurable rectangles. Then by the argument in [1] p. 64 with the Proposition 1.7 in $[1] \mathrm{m} \mathfrak{a}$ is an algebra. By claim $3.111, \mathfrak{a} \subseteq \mathcal{D}$. And since \mathcal{D} is a monotone class by the claim 3.112 , by the monotone class lemma,

$$
m \otimes n=\sigma-\operatorname{alg}(\mathfrak{a}) \subseteq \mathcal{D}
$$

Thus every statement holds for any set in $m \otimes n$.
Now suppose μ and ν are σ-finite measure. Take $A_{1} \subseteq A_{2} \subseteq \cdots X$, such that $A_{n} \in m$ and $\bigcup_{n=1}^{\infty} A_{n}=X$, and $\mu\left(A_{n}\right)<+\infty, \forall n \in \mathbb{N}$, Similarly, take $B_{1} \subseteq B_{2} \subseteq \cdots \subseteq Y$ such that $B_{n} \in n, \bigcup_{n=1}^{\infty} B_{n}=Y$ and $\nu\left(A_{n}\right)<+\infty, \forall n \in \mathbb{N}$.

Now fix $n \in \mathbb{N}$. Let $\bar{\mu}, \bar{\nu}$ are measures on (X, m) and (Y, n) such that

$$
\bar{\mu}(C):=\mu\left(C \cap A_{n}\right), \bar{\nu}(D)=\nu\left(D \cap B_{n}\right)
$$

for $C \in m, D \in n$. Then these $\bar{\nu}, \bar{\mu}$ are finite measures, thus the statement holds as shown above.
Claim 3.113. $\forall F \in m \otimes n, \bar{\mu} \times \bar{\nu}(F)=\mu \times \nu\left(F \cap\left(A_{n} \times B_{n}\right)\right.$
Proof. Let $A \in m, B \in n$. Then, by construction,

$$
\bar{\mu} \times \bar{\nu}(A \times B)=\bar{\mu}(A) \bar{\nu}(B)=\mu\left(A \cap A_{n}\right) \nu\left(B \cap B_{n}\right)=\nu\left(A \times B \cap A_{n} \times B_{n}\right)
$$

Let $F \in m \otimes n$. Then, since $m \otimes n$ is σ-algebra generated by measurable rectangles in $m \times n, F=\bigcup_{j=1}^{\infty} C_{j} \times D_{j}$ for some disjoint $C_{j} \in m, D_{j} \in n$ for any $j \in \mathbb{N}$. Then,

$$
\begin{aligned}
\bar{\mu} \times \bar{\nu}(F) & =\bar{\mu} \times \bar{\nu}\left(\bigcup_{j=1}^{\infty} C_{j} \times D_{j}\right) \underbrace{=}_{\text {Ctbl additivity }} \sum_{j=1}^{\infty} \bar{\mu} \times \bar{\nu}\left(C_{j} \times D_{j}\right) \\
& =\sum_{j=1}^{\infty} \mu \times \nu\left(C_{j} \times D_{j} \cap A_{n} \times B_{n}\right) \underbrace{=}_{\text {Ctbl additivity }} \mu \times \nu\left(\bigcup_{j=1}^{n}\left(C_{j} \times D_{j} \cap A_{n} \times B_{n}\right)\right) \\
& =\mu \times \nu\left(\left(\bigcup_{j=1}^{n} C_{j} \times D_{n}\right) \cap A_{n} \times B_{n}\right)=\mu \times \nu\left(F \cap A_{n} \times B_{n}\right)
\end{aligned}
$$

as desired.
Claim 3.114. $\forall f \in L^{+}(X, m), \int f(x) d \bar{\mu}(x)=\int f(x) 1_{A_{n}}(x) d \mu(x)$. Similarly, $\forall f \in L^{+}(Y, n), \int f(x) d \bar{\nu}(x)=$ $\int f(x) 1_{B_{n}}(x) d \nu(x)$.

Proof. It is just machinery argument; let f be a simple function, then $f=\sum_{j=1}^{k} a_{j} 1_{C_{j}}$ for some $k \in \mathbb{N}$, $C_{j} \in m$ for all $j \in[k]$, and C_{j} 's are disjoint. Then,
$\int f(x) d \bar{\mu}(x) \underbrace{=}_{\text {Prop 2.13 }} \sum_{j=1}^{k} a_{j} \int 1_{C_{j}}=\sum_{j=1}^{k} a_{j} \bar{\mu}\left(C_{j}\right)=\sum_{j=1}^{k} a_{j} \mu\left(C_{j} \cap A_{n}\right)=\sum_{j=1}^{k} a_{j} \int 1_{C_{j}} 1_{A_{n}} \underbrace{=}_{\text {Prop 2.13 }}=\int f(x) 1_{A_{n}} d \mu(x)$,
as desired. Now let f be any measurable function. Then, by Theorem 2.10 (a) in [1], there exists a sequence of simple functions such that $0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f$ and $\phi_{j} \rightarrow f$ pointwisely as $j \rightarrow \infty$. Then, since this sequence is also in L^{+}we can apply the Monotonce Convergence Theorem to conclude that

$$
\int f(x) d \bar{\mu}(x)=\int \lim _{j \rightarrow \infty} \phi_{j} d \bar{\mu}(x) \underbrace{=}_{\mathrm{MCT}} \lim _{j \rightarrow \infty} \int \phi_{j}(x) d \bar{\mu}(x)=\lim _{j \rightarrow \infty} \int \phi_{j} 1_{A_{n}}(x) d \mu(x) \underbrace{=}_{\mathrm{MCT}} \int f 1_{A_{n}}(x) d \mu(x),
$$

since $\phi_{j} 1_{A_{n}} \rightarrow f 1_{A_{n}}$ pointwisely and $\phi_{j} 1_{A_{n}} \leq \phi_{j} 1_{A_{n}}$. Hence, the first statement holds for any $f \in L^{+}(X, m)$ For the second statement, it is the same argument just when we change μ to ν and A_{n} to B_{n}. Hence I omit.

Since each $\bar{\nu}$ and $\bar{\mu}$ are finite measure, by the case just proved, $x \mapsto \bar{\nu}\left(E_{x}\right)$ and $y \mapsto \int \bar{\mu}\left(E^{y}\right)$ are measurable, and

$$
\begin{equation*}
\int \bar{\mu}\left(E_{x}\right) d \bar{\mu}(x)=\bar{\mu} \times \bar{\nu}(E)=\int \bar{\nu}\left(E^{y}\right) d \bar{\nu} \tag{10}
\end{equation*}
$$

for any $E \in m \otimes n$. However, note that
$\bar{\nu}\left(E_{x}\right)=\nu\left(E_{x} \cap B_{n}\right)=\nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right)$ when $x \in A_{n}$ and $\bar{\mu}\left(E^{y}\right)=\mu\left(E_{y} \cap A_{n}\right)=\mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right)$ when $y \in B_{n}$ since
$\left(E \cap\left(A_{n} \times B_{n}\right)\right)_{x}=\left\{y:(x, y) \in E \cap\left(A_{n} \times B_{n}\right)\right\}=\left\{\begin{array}{ll}\emptyset & \text { if } x \notin A_{n} \\ \left\{y:(x, y) \in E, y \in B_{n}\right\} & \text { if } x \in A_{n}\end{array}= \begin{cases}\emptyset & \text { if } x \notin A_{n} \\ E_{x} \cap B_{n} & \text { if } x \in A_{n}\end{cases}\right.$ $\left(E \cap\left(A_{n} \times B_{n}\right)\right)^{y}=\left\{x:(x, y) \in E \cap\left(A_{n} \times B_{n}\right)\right\}=\left\{\begin{array}{ll}\emptyset & \text { if } y \notin B_{n} \\ \left\{x:(x, y) \in E, x \in A_{n}\right\} & \text { if } y \in B_{n}\end{array}= \begin{cases}\emptyset & \text { if } x \notin A_{n} \\ E^{x} \cap A_{n} & \text { if } y \in B_{n}\end{cases}\right.$

Thus,
$\nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right)=1_{A_{n}}(x) \nu\left(E_{x} \cap B_{n}\right)=\bar{\nu}\left(E_{x}\right) 1_{A_{n}}(x)$ and $\mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right)=1_{B_{n}}(y) \nu\left(E^{y} \cap A_{n}\right)=\bar{\mu}\left(E^{y}\right) 1_{B_{n}}(y)$.
Thus, since $x \mapsto \bar{\nu}\left(E_{x}\right)$ and $y \mapsto \int \bar{\mu}\left(E^{y}\right)$ are measurable, by the proposition $2.6, x \mapsto \bar{\nu}\left(E_{x}\right) 1_{A_{n}}(x)$ and $y \mapsto \bar{\mu}\left(E^{y}\right) 1_{B_{n}}(y)$ are measurable. Thus,
$\int \nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right) d \mu(x)=\int \bar{\nu}\left(E_{x}\right) 1_{A_{n}} d \mu(x) \underbrace{=}_{\text {Claim 3.114 }} \int \bar{\nu}\left(E_{x}\right) d \bar{\mu}(x) \underbrace{=}_{(10)} \bar{\mu} \times \bar{\nu}(E) \underbrace{=}_{\text {Claim 3.113 }} \mu \times \nu\left(E \cap A_{n} \times B_{n}\right)$.
and
$\int \mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right) d \nu(x)=\int \bar{\mu}\left(E^{y}\right) 1_{B_{n}} d \nu(y) \underbrace{=}_{\text {Claim 3.114 }} \int \bar{\nu}\left(E^{y}\right) d \bar{\nu}(y) \underbrace{=}_{(10)} \bar{\mu} \times \bar{\nu}(E) \underbrace{=}_{\text {Claim 3.113 }} \mu \times \nu\left(E \cap A_{n} \times B_{n}\right)$.
Now let $n \rightarrow \infty$. Then, $E \cap A_{n} \times B_{n}$ is increasing and $E=\bigcup_{n=1}^{\infty} E \cap\left(A_{n} \times B_{n}\right)$, thus by continuity from below,

$$
\begin{equation*}
\nu\left(E \cap\left(A_{n} \times B_{n}\right)\right) \leq \nu\left(E \cap\left(A_{n+1} \times B_{n+1}\right)\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu \times \nu(E)=\lim _{n \rightarrow \infty} \mu \times \nu\left(E \cap A_{n} \times B_{n}\right) \tag{12}
\end{equation*}
$$

Also note that $\left(E \cap A_{n} \times B_{n}\right)_{x} \subseteq\left(E \cap A_{n+1} \times B_{n+1}\right)_{x}$ and $E_{x}=\bigcup_{n=1}^{\infty}\left(E \cap\left(A_{n+1} \times B_{n+1}\right)\right)_{x}$. Thus, as a function, $\nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right)$ the condition of the Monotone convergence theorem. Thus, $x \mapsto \nu\left(E_{x}\right) d \mu(x)$ is measurable by the Corollary 2.9. and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int \nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right) d \mu(x) \underbrace{=}_{\mathrm{MCT}} \int \nu\left(E_{x}\right) d \mu(x) \tag{13}
\end{equation*}
$$

Similarly, note that $\left(E \cap A_{n} \times B_{n}\right)^{y} \subseteq\left(E \cap A_{n+1} \times B_{n+1}\right)^{y}$ and $E^{y}=\bigcup_{n=1}^{\infty}\left(E \cap\left(A_{n+1} \times B_{n+1}\right)\right)^{y}$. Thus, as a function, $\mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right)$ satisfies the condition of the Monotone convergence theorem. Thus, $y \mapsto \mu\left(E^{y}\right) d \nu(y)$ is measurable by the Corollary 2.9. and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int \mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \int \mu\left(E^{y}\right) d \nu(y) \tag{14}
\end{equation*}
$$

From (11), (12), (13), and (14) we show that

$$
\mu\left(E \cap A_{n} \times B_{n}\right) \nearrow \mu \times \nu(E)
$$

and

$$
\int \nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right) d \mu(x) \nearrow \int \nu\left(E_{x}\right) d \mu(x) \text { and } \int \mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right) d \nu(y) \nearrow \int \mu\left(E_{x}\right) d \nu(y)
$$

And since

$$
\int \nu\left(\left(E \cap A_{n} \times B_{n}\right)_{x}\right) d \mu(x)=\mu\left(E \cap A_{n} \times B_{n}\right)=\int \mu\left(\left(E \cap A_{n} \times B_{n}\right)^{y}\right) d \nu(y)
$$

for each $n \in \mathbb{N}$, we can conclude that

$$
\int \nu\left(E_{x}\right) d \mu(x)=\mu \times \nu(E)=\int \mu\left(E_{x}\right) d \nu(y)
$$

as desired.
Theorem 3.115 (Tonelli's Theorem, Theorem 2.37(a) in [1] p.67). Let (X, m, μ) and (Y, n, ν) be σ-finite measure spaces. Let $f \in L^{+}(X \times Y, m \otimes n)$ and

$$
g(x):=\int f_{x}(y) d \nu(y) \in[0, \infty] \text { and } h(y):=\int f^{y}(x) d \mu(x) \in[0, \infty]
$$

Then, $g \in L^{+}(X, m), h \in L^{+}(Y, n)$, and

$$
\int g(x) d \mu(x)=\int h(y) d \nu(y)=\int f(x, y) d(\mu \times \nu)(x, y) \in[0, \infty]
$$

Note that f_{x}, f^{y} are measurable by theorem 2.34 in [1].
Proof. If $E \in m \otimes n$, let $f=1_{E}$ Then

$$
f_{x}=1_{E_{x}}, g(x)=\nu\left(E_{x}\right), f^{y}=1_{E^{y}}, h(y)=\mu\left(E^{y}\right) .
$$

By theorem 2.36 in [1], g and h are measurable and

$$
\int g(x) d \mu(x)=(\mu \times \nu)(E)=\int f d(\mu \times \nu)=(\mu \times \nu)(E)=\int h(y) d \mu(y)
$$

By linearlity and using the proposition 2.13 in [1], the conclusion holds for every simple function with $f \geq 0$.

Now let $f \in L^{+}(m \otimes n)$. Then by theorem 2.10, there exists a sequence of simple functions ϕ_{n} such that

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f \text { s.t. } \phi_{n} \rightarrow f \text { pointwise. }
$$

Fix $x \in X$. Then, $\left(\phi_{n}\right)_{x}(y) \leq\left(\phi_{n+1}\right)_{x}(y)$ and $\left(\phi_{n}\right)_{x} \rightarrow f_{x}$ pointwise. Thus, we can apply the Monotone convergence theorem to conclude that

$$
\lim _{n \rightarrow \infty} \int\left(\phi_{n}\right)_{x}(y) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \int f_{x} d \nu=g(x)
$$

Now let $g_{n}:=\int\left(\phi_{n}\right)_{x}(y) d \nu(y)$. Then since $\phi_{n} \leq \phi_{n+1}$ for any $n \in \mathbb{N}, g_{n} \leq g_{n+1}$, and by the above equation, $g_{n} \rightarrow g$ pointwise. Thus,

$$
\lim _{n \rightarrow \infty} \int g_{n}(x) d \mu(x) \underbrace{=}_{\mathrm{MCT}} \int g(x) d \mu(x) .
$$

Also, the lefthandside of above equation is

$$
\lim _{n \rightarrow \infty} \int g_{n}(x) d \mu(x) \underbrace{=}_{\text {Def. }} \lim _{n \rightarrow \infty} \int\left(\int\left(\phi_{n}\right)_{x}(y) d \nu(y)\right) d \mu(x)=\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y)
$$

where the last equality comes from the fact we proved that Tonelli's theorem holds for simple function. Thus, we can conclude that

$$
\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y)=\int g(x) d \mu(x)
$$

And the lefthandside with the MCT gives the conclusion that

$$
\begin{equation*}
\int g(x) d \mu(x)=\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y) \underbrace{=}_{\mathrm{MCT}} \int f d(\mu \times \nu) \tag{15}
\end{equation*}
$$

Similarly, fix $y \in Y$. Then, $\left(\phi_{n}\right)^{y}(x) \leq\left(\phi_{n+1}\right)^{y}(x)$ and $\left(\phi_{n}\right)^{y} \rightarrow f^{y}$ pointwise. Thus, we can apply the Monotone convergence theorem to conclude that

$$
\lim _{n \rightarrow \infty} \int\left(\phi_{n}\right)^{y}(x) d \mu(x) \underbrace{=}_{\mathrm{MCT}} \int f^{y} d \mu=h(x) .
$$

Now let $h_{n}:=\int\left(\phi_{n}\right)^{y}(x) d \mu(x)$. Then since $\phi_{n} \leq \phi_{n+1}$ for any $n \in \mathbb{N}, h_{n} \leq h_{n+1}$, and by the above equation, $h_{n} \rightarrow g$ pointwise. Thus,

$$
\lim _{n \rightarrow \infty} \int h_{n}(y) d \nu(y) \underbrace{=}_{\mathrm{MCT}} \int g(y) d \nu(y)
$$

Also, the lefthandside of above equation is

$$
\lim _{n \rightarrow \infty} \int g_{n}(y) d \nu(y) \underbrace{=}_{\text {Def. }} \lim _{n \rightarrow \infty} \int\left(\int\left(\phi_{n}\right)^{y}(x) d \mu(x)\right) d \nu(y)=\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y)
$$

where the last equality comes from the fact we proved that Tonelli's theorem holds for simple function. Thus, we can conclude that

$$
\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y)=\int h(y) d \nu(y)
$$

And the lefthandside with the MCT gives the conclusion that

$$
\begin{equation*}
\int h(y) d \nu(y)=\lim _{n \rightarrow \infty} \int \phi_{n}(x, y) d(\mu \times \nu)(x, y) \underbrace{=}_{\mathrm{MCT}} \int f d(\mu \times \nu) \tag{16}
\end{equation*}
$$

Hence, by (15) and (16), we can conclude that

$$
\int g(x) d \mu(x)=\int f d(\mu \times \nu)=\int h(y) d \nu(y)
$$

Theorem 3.116 (Fubini's theorem, theorem 2.37(b) in [1] p.67). Let (X, m, μ) and (Y, n, ν) be σ-finite measure spaces. Let $f \in L^{1}(X \times Y, m \otimes n)$ Then $f_{x} \in L^{1}(\nu)$ for a.e. $x \in X$, and f^{y} inL $L^{1}(\mu)$ for a.e. $y \in Y$.

Consider the almost everywhere defined functions

$$
g(x):=\int f_{x}(y) d \nu(y)=\int f(x, y) d \nu(y) \text { and } h(y):=\int f^{y}(x) d \mu(x)=\int f(x, y) d \mu(x)
$$

Then, $g \in L^{1}(\mu), h \in L^{1}(\nu)$, and

$$
\int g(x) d \mu(x)=\int f(x, y) d(\mu \times \nu)(x, y)=\int h(y) d \nu(y)
$$

i.e.,

$$
\int\left(\int f(x, y) d \nu(y)\right) d \mu(x)=\int f(x, y) d(\mu \times \nu)(x, y)=\int\left(\int f(x, y) d \mu(x)\right) d \nu(y)
$$

Proof. If $f \geq 0$ then $f \in L^{+}$, thus by Tonelli's theorem, g and h are defined everywhere, taking values in $[0,+\infty]$. Also, since $f \in L^{1}$, thus by tonelli's theorem

$$
\int g \mu=\int h \nu=\int f d(\mu \times \nu)<\infty
$$

holds. From this result, with the proposition 2.20, we can conclude that $g(x)<\infty$ a.e. and $h<+\infty$ a.e. Thus we proved Fubini's theorem when $f \in L^{1} \cap L^{+}$.

Now assume $f \in L_{\mathbb{R}}^{1}(\mu \times \nu)$, means that range of f is \mathbb{R}. Then,

$$
f=f_{+}-f_{-} \text {for } f_{+}, f_{-} \geq 0 \text { and }|f|=f_{+}+f_{-} .
$$

Since $f_{+}, f_{-} \in L^{1} \cap L^{+}$, Fubini's theorem holds for each f_{+}and f_{-}.
Note that

$$
f_{x}=\left(f_{+}\right)_{x}-\left(f_{-}\right)_{x} \text { and } f^{y}=\left(f_{+}\right)^{y}-\left(f_{-}\right)^{y}
$$

and by Fubini's theorem in case of $f_{+}, f_{-},\left(f_{+}\right)_{x},\left(f_{-}\right)_{x} \in L^{1}(\nu)$ for a.e. x and $\left(f_{+}\right)^{y},\left(f_{-}\right)^{y} \in L^{1}(\mu)$ for a.e. y. Thus,

$$
g(x)=\int f_{x} d \nu=\int\left(f_{+}\right)_{x} d \nu-\int\left(f_{-}\right)_{x} d \nu
$$

and

$$
h(y)=\int f^{y} d \mu=\int\left(f_{+}\right)^{y} d \mu-\int\left(f_{-}\right)^{y} d \mu
$$

and by Fubini's theorem in case of $f_{+}, f_{-}, \int\left(f_{+}\right)_{x}, \int\left(f_{-}\right)_{x} d \nu \in L^{1}(\nu)$ and $\left(f_{+}\right)^{y},\left(f_{-}\right)^{y} \in L^{1}(\mu)$. Thus, $g \in L^{1}(\mu), h \in L^{1}(\nu)$. Also, by Fubini's theorem in case of f_{+}, f_{-}we know

$$
\int\left(f_{+}\right)_{x} d \nu-\int\left(f_{-}\right)_{x} d \nu=\int f_{+} d(\mu \times \nu)-\int f_{-} d(\mu \times \nu)=\int\left(f_{+}\right)^{y} d \mu-\int\left(f_{-}\right)^{y} d \mu
$$

Thus,
$\int g(x) d \mu(x)=\int\left(f_{+}\right)_{x} d \nu-\int\left(f_{-}\right)_{x} d \nu=\int f_{+} d(\mu \times \nu)-\int f_{-} d(\mu \times \nu)=\int\left(f_{+}\right)^{y} d \mu-\int\left(f_{-}\right)^{y} d \mu=\int h(y) d \nu(y)$.

And by proposition 2.13 in [1],

$$
\int f_{+} d(\mu \times \nu)-\int f_{-} d(\mu \times \nu)=\int\left(f_{+}-f_{-}\right) d(\mu \times \nu)=\int f d(\mu \times \nu)
$$

Thus, we have

$$
\int g(x) d \mu(x)=\int f d(\mu \times \nu)=\int h(y) d \nu(y)
$$

as desired. Thus we can say that Fubini's theorem holds for any function having codomain \mathbb{R}.
Now let $f \in L^{1}$. Then $f=\operatorname{Re} f+i \operatorname{Im} f$, and each $\operatorname{Re} f, \operatorname{Im} f \in L_{\mathbb{R}}^{1}(\mu \times \nu)$. Thus, Fubini's theorem holds for Ref and Imf. Now note that

$$
f_{x}=(\operatorname{Re} f)_{x}+i(\operatorname{Imf})_{x} \text { and } f_{x}=(\operatorname{Ref})^{y}+i(\operatorname{Imf})^{y}
$$

Hence, $(\operatorname{Ref})_{x},(\operatorname{Imf})_{x} \in L^{1}(\nu)$ a.e. y and $(\operatorname{Ref})^{y},(\operatorname{Imf})^{y} \in L^{1}(\mu)$ a.e. x, thus for almost every x,

$$
\left|\int f_{x} d \nu\right|=\left|\int(\operatorname{Re} f)_{x} d \nu+i \int(\operatorname{Imf})_{x} d \nu\right| \leq\left|\int(\operatorname{Re} f)_{x} d \nu\right|+\left|\int(\operatorname{Imf})_{x} d \nu\right|<\infty
$$

and for almost every y,

$$
\left|\int f^{y} d \mu\right|=\left|\int(\operatorname{Ref})^{y} d \mu+i \int(\operatorname{Im} f)^{y} d \mu\right| \leq\left|\int(\operatorname{Ref})^{y} d \mu\right|+\left|\int(\operatorname{Im} f)^{y} d \mu\right|<\infty
$$

Hence $f_{x} \in L^{1}(\nu)$ for a.e. y and $f^{y} \in L^{1}(\mu)$ for a.e. x.
Also,

$$
g(x)=\int f_{x} d \nu=\int(\operatorname{Ref})_{x} d \nu+i \int(\operatorname{Imf})_{x} d \nu \text { and } h(y)=\int f^{y} d \mu=\int(\operatorname{Ref})^{y} d \mu+i \int(\operatorname{Imf})^{y} d \mu
$$

By Fubini's theorem on real function, $\int(\operatorname{Ref})_{x} d \nu, \int(\operatorname{Imf})_{x} d \nu \in L^{1}(\mu)$ and $\int(\operatorname{Ref})^{y} d \mu, \int(\operatorname{Imf})^{y} d \mu \in L^{1}(\nu)$ we can conclude that

$$
\left|\int g d \mu\right|=\left|\iint(R e f)_{x} d \nu d \mu+i \iint(\operatorname{Imf})_{x} d \nu d \mu\right| \leq\left|\iint(\operatorname{Ref})_{x} d \nu d \mu\right|+\left|\iint(\operatorname{Imf})_{x} d \nu d \mu\right|<\infty
$$

and

$$
\left|\int h d \nu\right|=\left|\iint(R e f)^{y} d \mu d \nu+i \iint(\operatorname{Im} f)^{y} d \mu d \nu\right| \leq\left|\iint(R e f)^{y} d \mu d \nu\right|+\left|\iint(\operatorname{Imf})^{y} d \mu d \nu\right|<\infty
$$

Thus $g \in L^{1}(\mu), h \in L^{1}(\nu)$.
And since Fubini's theorem holds for $\operatorname{Ref}, \operatorname{Imf}$,

$$
\int g d \mu=\iint(\operatorname{Re} f)_{x} d \nu d \mu+i \iint(\operatorname{Imf})_{x} d \nu d \mu=\int \operatorname{Re} f d(\mu \times \nu)+i \int \operatorname{Imf} d(\mu \times \nu)=\int f d(\mu \times \nu)
$$

and

$$
\int h d \nu=\iint(\operatorname{Ref})^{y} d \mu d \nu+i \iint(\operatorname{Im} f)^{y} d \mu d \nu=\int \operatorname{Refd}(\mu \times \nu)+i \int \operatorname{Imf} d(\mu \times \nu)=\int f d(\mu \times \nu)
$$

Thus,

$$
\int g d \mu=\int f d(\mu \times \nu)=\int h d \nu
$$

as desired. Thus Fubini's theorem holds for any function in $L^{1}(\mu \times \nu)$.

Corollary 3.117 (Typical Application; Change of order). Given $f: X \times Y \rightarrow \mathbb{C}$, if $|f| \in L^{1}$, then

$$
\int\left(\int f(x, y) d \mu(x)\right) d \nu(y)=\int\left(\int f(x, y) d \nu(y)\right) \mu(x)
$$

Proof. First we have to show

$$
\int\left(\int|f(x, y)| d \mu(x)\right) d \nu(y)<\infty \text { or } \int\left(\int|f(x, y)| d \nu(y)\right) \mu(x)<\infty
$$

Then, since $|f| \in L^{+}(X \times Y, m \otimes n)$, by Tonelli's theorem,

$$
\int\left(\int|f(x, y)| d \mu(x)\right) d \nu(y)=\int|f| d(\mu \times \nu)=\left(\int|f(x, y)| d \nu(y)\right) \mu(x)<\infty
$$

thus $f \in L^{1}(\mu \times \nu)$. Then by the Fubini's theorem, we can conclude that

$$
\int\left(\int f(x, y) d \mu(x)\right) d \nu(y)=\int f(x, y) d(\mu \times \nu)=\int\left(\int f(x, y) d \nu(y)\right) \mu(x)
$$

3.6 The n-Dimensional Lebesgue Integral

Fix $n \geq 2$. Let m^{n} denotes the completion of $m \times m \times \cdots \times m$ on $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}}$, i.e., the completion of $\mathcal{L} \otimes \mathcal{L} \otimes \cdots \otimes \mathcal{L}$. Note that the completion is not the same as $\mathcal{L} \otimes \mathcal{L} \otimes \cdots \otimes \mathcal{L}$.

Proposition 3.118. $\mathcal{L} \otimes \mathcal{L} \otimes \cdots \otimes \mathcal{L} \subsetneq \mathcal{L}^{n}$
Proof. It suffices to show that there exists a set in \mathcal{L}^{n} but not in $\mathcal{L} \otimes \mathcal{L} \otimes \cdots \otimes \mathcal{L}$. For $n=2$, let $E \in \mathcal{L} \otimes \mathcal{L}$, $A \subseteq \mathbb{R}$ such that $A \notin \mathcal{L}$ and $x \in \mathbb{R}$. Now, let

$$
F:=(E \backslash(\{x\} \times \mathbb{R})) \cup(\{x\} \times A)
$$

Then, $m^{2}(F \Delta E)=0$. By completeness of $\mathcal{L}, F \Delta E \in \mathcal{L}^{2}$, which implies $F \backslash E \in \mathcal{L}^{2}$ since it is subset of $F \Delta E$, thus $F=F \backslash E \cup E \in \mathcal{L}^{2}$.

However, $F_{x}=A$ by the Proposition 2.34. If $F \in \mathcal{L} \otimes \mathcal{L}$ then $F_{x}=A \in \mathcal{L}$, contradiction. Thus, $F \in \mathcal{L}^{2} \backslash \mathcal{L} \otimes \mathcal{L}$.

Theorem 3.119 (Theorem 2.40 in [1] p.70. Approximation of sets.). (a)

$$
m^{n}(E)=\inf \left\{m^{n}(U): U \text { open in } \mathbb{R}^{n}, E \subseteq U\right\}=\sup \left\{m^{n}(K): K \subseteq E, K \text { compact }\right\}
$$

(b) $E=A_{1} \cup N_{1}=A_{2} \backslash N_{2}$ where A_{1} is F_{σ} set in \mathbb{R}^{n}, and A_{2} is G_{δ} set in \mathbb{R}^{n}, and N_{1}, N_{2} are null sets.
(c) If $m(E)<\infty$, for any $\epsilon>0$ there exists a finite collection $\left(R_{j}\right)_{j=1}^{N}$ of disjoint rectangles whose sides are intervals such that $m\left(E \Delta \bigcup_{j=1}^{N} R_{j}\right)<\epsilon$.

Proof. Let $E \in \mathcal{L}^{n}$. Note that m^{n} induces outer measure on \mathbb{R}^{n} with respect to an algebra $\times^{n} \mathcal{L}$. Thus, by definition of outer measure, we have disjoint sequence of measurable rectangles $T_{1}, T_{2}, \cdots \in \mathcal{L} \times \mathcal{L} \times \cdots \times \mathcal{L}$ such that

$$
E \subseteq \bigcup_{i=1}^{\infty} T_{i} \text { and for some } \epsilon>0, m^{n}\left(\bigcup_{i=1}^{\infty} T_{i}\right) \leq m^{n}(E)+\epsilon
$$

(Note that $E=E^{\prime} \cup F$ for some E^{\prime} in $\mathcal{B}_{\mathbb{R}^{n}}$ and $F \subset N, N \in \mathcal{B}_{\mathbb{R}^{n}}$. Thus, we can choose such T_{i} using $E \subseteq E^{\prime} \cup N \in \mathcal{B}_{\mathbb{R}^{n}}$.) For each j, by applying theorem 1.18 for each side of the rectangle T_{j} with $\epsilon^{\prime}=$
$\left(\frac{\epsilon^{2}}{n^{2} 2^{2 n} \prod_{k=1}^{n} m\left(\left(T_{j}\right)_{x_{k}}\right)}\right)$ we get a rectangle U_{j} having each side as union of disjoint open intervals such that $U_{j} \supset T_{j}$ and for each $k \in[n]$,

$$
m\left(\left(U_{j}\right)_{x_{k}}\right) \leq m\left(\left(T_{j}\right)_{x_{k}}+\epsilon^{\prime},\right.
$$

thus

$$
m^{n}\left(U_{j}\right) \leq \prod_{k=1}^{n}\left(m\left(\left(T_{j}\right)_{k}+\epsilon^{\prime}\right)=m^{n}\left(T_{j}\right)+\sum_{k=0}^{n-1}\binom{n}{k} \sum_{\sigma \in S_{k}} \prod_{l=1}^{k} m\left(\left(T_{j}\right)_{\sigma(l)}\right)\left(\epsilon^{\prime}\right)^{n-k} \leq m^{n}\left(T_{j}\right)+\sum_{k=0}^{n-1} \frac{\binom{n}{k}}{2^{n}} \frac{\left(\frac{\epsilon}{2^{n}}\right)^{n-k}}{n^{2}}\right.
$$

since $\prod_{l=1}^{k} m\left(\left(T_{j}\right)_{\sigma(l)}\right)<\prod_{l=1}^{n} m\left(\left(T_{j}\right)_{l}\right)$. Hence,

$$
m^{n}\left(U_{j}\right) \leq m^{n}\left(T_{j}\right)+\sum_{k=0}^{n-1} \frac{\binom{n}{k}}{2^{n}} \frac{\left(\frac{\epsilon}{2^{n}}\right)^{n-k}}{n^{2}} \leq m^{n}\left(T_{j}\right)+\epsilon 2^{-n}
$$

Now let $U=\bigcup_{j=1}^{\infty} U_{j}$ then U is open and

$$
m^{n}(U) \leq \sum_{n=1}^{\infty} m^{n}\left(U_{j}\right) \leq \sum_{n=1}^{\infty} m^{n}\left(T_{j}\right)+\epsilon \leq m^{n}(E)+2 \epsilon
$$

Since ϵ was arbitrarily chosen, $m(E)=\inf \{m(U): U \supset E, U$ is open. $\}$ The second one and part (b) follows from the exact same argument in Theorem 1.18 and 1.19 in [1][p.36-37].

For part (c), if $m^{n}(E)<\infty$, then $m^{n}\left(U_{j}\right)<\infty$. Note that each side of U_{j} consists of countable open intervals, thus, numbering each disjoint intervals of each sides of U_{j} and let $V_{j, k}$ be rectangle generated by subunion of intervals of U_{j} in each section from number 1 interval to number k interval. Then, $\lim _{k \rightarrow \infty} m^{n}\left(V_{j, k}\right)=m^{n}\left(U_{j}\right)$ Thus, $\exists N_{j}$ such that

$$
\forall k \geq N_{j}, m^{n}\left(V_{j, k}\right) \geq m^{n}\left(U_{j}\right)-\epsilon 2^{-j}
$$

Then let $V_{j}=V_{j, N_{j}}$. Then since $m^{n}\left(\bigcup_{j=n}^{\infty} U_{j}\right) \rightarrow 0$ as $n \rightarrow \infty$, there exists $N \in \mathbb{N}$ such that $m^{n}\left(\bigcup_{j=N+1}^{\infty} U_{j}\right)<$ ϵ. Thus,

$$
m^{n}\left(E \backslash \bigcup_{j=N}^{\infty} V_{j}\right)=\bigcup_{j=1}^{N} U_{j} \backslash V_{j}+m^{n}\left(\bigcup_{j=N+1}^{\infty} U_{j}\right)<2 \epsilon
$$

and

$$
m^{n}\left(\left(\bigcup_{j=1}^{N} V_{j}\right) \backslash E\right) \leq m^{n}\left(\left(\bigcup_{j=1}^{\infty} E_{j}\right) \backslash E\right) \leq \epsilon
$$

which is derived from the construction of U_{j}. Thus $V:=\bigcup_{j=1}^{N} V_{j}$ gives

$$
m^{n}(E \Delta V)=2 \epsilon+\epsilon=3 \epsilon
$$

as desired for (c).
Theorem 3.120 (Theorem 2.41 in citefo p. 71, Approximation in L^{1}.). If $f \in L^{1}\left(m^{n}\right)$ and $\epsilon>0$, then
(a) \exists a simple function $\phi=\sum_{j=1}^{n} a_{j} 1_{R_{j}}$ where each R_{j} is a product of bounded intervals, such that

$$
\int|f-\phi| d m^{n}<\epsilon
$$

(b) $\exists a$ continuous function $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of bounded supports such that

$$
\int|f-g| d m^{n}<\epsilon
$$

Proof. By the argument in Thoerem 2.26, approximate f by a simple function, and approximate each preimage in the simple function using Theorem 2.40 (c), and change those preimage to the approximated rectangle. Now, by using the argument in $2.26(\mathrm{~b})$, get a continuous function.

Theorem 3.121 (Theorem 2.42 in [1] p. 72, Translation invariant of m^{n}.). If $a \in \mathbb{R}^{n}$, letting $\tau_{a}(x)=x+a$. Then
(a) $E \in \mathcal{L}^{n} \Longrightarrow \tau_{a}(E) \in \mathcal{L}^{n}$, and $m\left(\tau_{a}(E)\right)=m(E)$.
(b) If $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is Lebesgue measurable, then so is $f \circ \tau_{a}$.
(c) If $f \in L^{+}\left(m^{n}\right)$ then $\int f \circ \tau_{a} d m^{n}=\int f d m^{n}$
(d) If $f \in L^{1}\left(m^{n}\right)$ then $f \circ \tau_{a} \in L^{1}\left(m^{n}\right)$.

Proof. Since τ_{a} and τ_{-a} are continuous, $\tau_{a}(E) \in \mathcal{B}_{\mathbb{R}^{n}}$ if $E \in \mathcal{B}+\mathbb{R}^{n}$. If $E \in \times{ }^{n} \mathcal{B}_{\mathbb{R}}$, then

$$
m^{n}\left(\tau_{a}(E)\right)=\prod_{i=1}^{n} m\left(\tau_{a_{i}}\left(E_{x_{i}}\right)\right) \underbrace{=}_{\text {Thm 1.21 }} \prod_{i=1}^{n} m\left(E_{x_{i}}\right)=m^{n}(E)
$$

If $E \in \mathcal{B}_{\mathbb{R}^{n}}$, then $E=\bigcup_{j=1}^{\infty} E_{j}$ for some disjoint $E_{j} \in \times^{n} \mathcal{B}_{\mathbb{R}}$, hence

$$
m^{n}\left(\tau_{a}(E)\right)=m^{n}\left(\bigcup_{j=1}^{\infty} \tau_{a}\left(E_{j}\right)\right)=\sum_{j=1}^{\infty} m\left(\tau_{a}\left(E_{j}\right)\right)=\sum_{j=1}^{\infty} m\left(E_{j}\right)=m(E)
$$

If $E \in \mathcal{L}^{n}$, then $E=E^{\prime} \cup F$ where $E^{\prime}, N \in \mathcal{B}_{\mathbb{R}^{n}}$ and $F \subseteq N$ and $m^{n}(N)=0$. Thus,

$$
m^{n}\left(\tau_{a}(E)\right)=m^{n}\left(\tau_{a}\left(E^{\prime} \cup F\right)\right)=m^{n}\left(\tau_{a}\left(E^{\prime}\right) \cup \tau_{a}(F)\right)=m^{n}\left(\tau_{a}\left(E^{\prime}\right)\right)+m^{n}\left(\tau_{a}(F)\right)=m^{n}\left(E^{\prime}\right)+m^{n}\left(\tau_{a}(F)\right)
$$

and since $\tau_{a}(F) \subseteq \tau_{a}(N)$ and $m^{n}\left(\tau_{a}(N)\right)=m^{n}(N)=0, m^{n}\left(\tau_{a}(F)\right)=0$. Thus,

$$
m^{n}\left(\tau_{a}(E)\right)=m^{n}\left(E^{\prime}\right)+m^{n}\left(\tau_{a}(F)\right)=m^{n}\left(E^{\prime}\right)=m^{n}(E)
$$

Thus part (a) is proved.
For part (b), let $E \in \mathcal{B}_{\mathbb{C}}$. Then, $f^{-1}(E) \in \mathcal{L}^{n}$, thus $\tau_{a}^{-1}\left(f^{-1}(E)\right)=\tau_{-a}\left(f^{-1}(E)\right) \in \mathcal{L}^{n}$ by part (a). Hence $\left(f \circ \tau_{a}\right)^{-1}(E) \in \mathcal{L}^{n}$, thus $f \circ \tau_{a}$ is also Lebesgue measurable.

For part (c), the statement holds when $f=1_{E}$, since then $f \circ \tau_{a}=1_{\tau_{a}(E)}$, hence

$$
\int f d m^{n}=m(E)=m\left(\tau_{a}(E)\right)=\int 1_{\tau_{a}(E)}=\int f \circ \tau_{a]} d m^{n}
$$

Thus, by linearlity the statement holds for any simple function. And by Theorem 2.41, any Lebesgue measurable function can be approximated by the sequence of simple functions, thus using the Monotone Convergence Theorem, we can conclude that the result holds for any measurable functions. Thus (d) also follows from the result of (c).

Definition 3.122 (Cube, Jordan Content, etc.). Define cube in \mathbb{R}^{n} is a Cartesian product of n closed intervals whose side lengths are all equal. For $k \in \mathbb{Z}$, let Q_{k} be the collection of cubes whose side length is 2^{-k} and whose vertices are in the lattice $\left(2^{-k} \mathbb{Z}\right)^{n}$. Note that any two cubes in Q_{k} have disjoint interiors, and that the cube in Q_{k+1} are obtained from the cubes in Q_{k} by bisecting the sides.

If $E \subset \mathbb{R}^{n}$, we define the inner and outer approximations to E by the grid of cubes Q_{k} to be

$$
\underline{A}(E, k):=\bigcup\left\{Q \in Q_{k}: Q \subset E\right\}
$$

$$
\bar{A}(E, k):=\bigcup\left\{Q \in Q_{k}: Q \cap E \neq \emptyset\right\}
$$

Then since cubes are disjoint, and have measure $2^{-n k}$, so

$$
m(\underline{A}(E, k))=\left|\left\{Q \in Q_{k}: Q \subset E\right\}\right| \cdot 2^{-n k} \quad m(\bar{A}(E, k))=\left|\left\{Q \in Q_{k}: Q \cap E \neq \emptyset\right\}\right| \cdot 2^{-n k}
$$

Also, $\underline{A}(E, k)$ increase with k while $\bar{A}(E, k)$ decrease when k increase, since each cube in Q_{k} is a union of cubes in Q_{k+1}. And since they are boudned, so the limits

$$
\underline{\kappa}(E):=\lim _{k \rightarrow \infty} m(\underline{A}(E, k)) \quad \bar{\kappa}(E):=\lim _{k \rightarrow \infty} m(\bar{A}(E, k))
$$

exists. They are called inner and outer content of E. if they are equal, then the common value $\kappa(E)$ is called the Jordan Content of E.

Note that Jordan content is meaningful only when E is bounded; otherwise $\kappa(E)=\infty$.
Lemma 3.123 (Lemma 2.43 in [1] p.72). Let

$$
\underline{A}(E) \bigcup_{k=1}^{\infty} \underline{A}(E, k) \text { and } \underline{A}(E) \bigcap_{k=1}^{\infty} \underline{A}(E, k)
$$

Then, by definition of inner and outer approximation,

$$
\underline{A}(E) \subset E \subset \bar{A}(E)
$$

and $\underline{A}(E)$ and \bar{A} are Borel sets, and

$$
\underline{\kappa}(E)=m(\underline{A}(E)) \text { and } \bar{\kappa}(E)=m(\bar{A}(E))
$$

Thus, the jordan content of E exists if and only if $m(\bar{A}(E) \backslash \underline{A}(E))=0$, which implies $\kappa(E)=m(E)$.
Then, if $U \subseteq \mathbb{R}^{n}$ is open, then $U=\underline{A}(U)$. Moreover, U is a countable union of cubes with disjoint interiors.

Proof. Since we know $\underline{A}(U) \subset U$, it suffices to show that $\underline{A}(U) \supset U$. Let $x \in U$, and $\delta=\inf \{|y-x|: y \notin U\}$. Then, since U is open set, $\delta>0$. So, if there exists a cube $\bar{Q} \in Q_{k}$ containing x, then $\forall y \in Q,|y-x| \leq 2^{-k} \sqrt{n}$, thus $Q \subset U$ iff $2^{-k} \sqrt{n}<\delta$. Since $2^{-k} \sqrt{n} \rightarrow 0$ as $k \rightarrow \infty$, we can take a large enough k, such that $k>\log \frac{\sqrt{n}}{\delta}$, to get $Q \subset U$. Then, $x \in \underline{A}(U, k) \subset \underline{A}(U)$. Since x was arbitrary, $U \subset \underline{A}(U)$, as desired.

For the second statement, we can rewrite $\underline{A}(U)$ as below;

$$
\underline{A}(U)=\underline{A}(U, 0) \cup \bigcup_{k=1}^{\infty}(\underline{A}(U, k) \backslash \underline{A}(U, k-1)) .
$$

Since closure of $\underline{A}(U, k) \backslash \underline{A}(U, k-1)$ is disjoint union of cubes in Q_{k} and $\underline{A}(U, 0)$ is a countable union of cubes, so does $\underline{A}(U)$ and by construction their interiors are pairwise disjoint.

Remark 3.124. The above lemma implies that Lebesgue measure of any open set is equal to its inner content. Also, it implies that Lebesgue measure of any compact set is equal to its outer content.
Proof. First statement is just result of the lemma. For the second statement, let $F \subset \mathbb{R}^{n}$ be compact. Let $Q^{0}=\left\{x: \max \left|x_{j}\right| \leq 2^{M}\right\}$, a rectangle centered at the origin, whose interior $\operatorname{int}\left(Q_{0}\right)$ contains F. If $Q \in Q_{k}$ such that $Q \subset Q_{0}$, then either $Q \cap F \neq \emptyset$ or $Q \subset\left(Q_{0} \backslash F\right)$, thus

$$
m(\bar{A}(F, k))+m\left(\underline{A}\left(Q_{0} \backslash F, k\right)\right)=m\left(Q_{0}\right)
$$

Letting $k \rightarrow \infty$, we get

$$
\bar{\kappa}(F)+\underline{\kappa}\left(Q_{0} \backslash F\right)=m\left(Q_{0}\right) .
$$

Note that $Q_{0} \backslash F$ is the union of oepn set $\operatorname{int}\left(Q_{0}\right) \backslash F$ and the boundary of Q_{0}, which has the content zero. Thus,

$$
\underline{\kappa}\left(Q_{0} \backslash F\right)=\underline{\kappa}\left(i n t Q_{0} \backslash F\right)=m\left(Q_{0} \backslash F\right)
$$

where the last equality comes from the lemma 2.43 . Hence, we have desired result.

Theorem 3.125 (Theorem 2.44 in [1] p.73). Let $T \in G L(n, \mathbb{R})$
(a) $E \in \mathcal{L}^{n} \Longrightarrow T(E) \in \mathcal{L}^{n}$ and $m(T(E))=|\operatorname{det}(T)| m(E)$.
(b) $f \in L^{+}\left(\mathcal{L}^{n}\right) \Longrightarrow f \circ T \in L^{+}\left(\mathcal{L}^{n}\right)$ and $\int f d m^{n}=|\operatorname{det} T| \int f \circ T d m^{n}$
(c) $f \in L^{1}\left(\mathcal{L}^{n}\right) \Longrightarrow f \circ T \in L^{1}\left(m^{n}\right)$

To prove this result, we use the fact from the linear algebra that every $T \in G L(n, \mathbb{R})$ can be written as the product of finitely many transformations of three elementary types, such that

$$
\begin{aligned}
T_{1}\left(x_{1}, \cdots, x_{j}, \cdots, x_{n}\right) & =\left(x_{1}, \cdots, c x_{j}, \cdots, x_{n}\right) & (c \neq 0), \\
T_{2}\left(x_{1}, \cdots, x_{j}, \cdots, x_{n}\right) & =\left(x_{1}, \cdots, x_{j}+c x_{k}, \cdots, x_{n}\right) & (k \neq j) \\
T_{3}\left(x_{1}, \cdots, x_{j}, \cdots, x_{j}, \cdots, x_{n}\right) & =\left(x_{1}, \cdots, x_{k}, \cdots, x_{j}, \cdots, x_{n}\right) & (k \neq j)
\end{aligned}
$$

Also note that every $T \in G L(n, \mathbb{R})$ is continuous.
Proof. If f is Borel measurable, then $f \circ T$ is also Borel measurable since T is continuous.
Also, for $T_{3},\left|\operatorname{det} T_{3}\right|=|-1|=1$, and part (a),(b) and (c) holds because T_{3} is just interchange of variables and Tonelli theorem gives part (a) and (b) and Fubini theorem gives part (c). (Note that part (a) is a special case of part (b) when $f=1_{E}$ for some borel set E.) For T_{2}, using Tonelli's theorem (for (a),(b)) or Fubini's theorem (for (c)) we integrate first with respect to x_{j}, and by theorem 1.21 in [1], we know that

$$
\int f(t+a) d t=\int f(t) d t
$$

for one variable integration. Thus, this gives the same integration, i.e.,

$$
\int f d m^{n}=\int f \circ T d m^{n}=\left|\operatorname{det} T_{2}\right| \int f \circ T d m^{n}
$$

where the last equality holds since $\operatorname{det} T_{2}=1$. Thus (a),(b), and (c) holds for T_{2}. For T_{1}, using Tonelli's theorem (for (a),(b)) or Fubini's theorem (for (c)) we integrate first with respect to x_{j}, and by theorem 1.21 in [1], we know that

$$
\int f(c t) d t=|c| \int f(t) d t
$$

for one variable integration. Thus, this gives

$$
\int f d m^{n}=|c| \int f \circ T d m^{n}=\left|\operatorname{det} T_{1}\right| \int f \circ T d m^{n}
$$

since $\left|\operatorname{det} T_{1}\right|=|c|$.
Now if $T, S \in G L(n, \mathbb{R})$ are matrices which the theorem holds for, then

$$
\int f d x=|\operatorname{det} T| \int f \circ T d x=|\operatorname{det} T||\operatorname{det} S| \int(f \circ T) \circ S d x=|\operatorname{det} T \circ S| \int f \circ(T \circ S) d x
$$

this implies that this thoerem holds for $T \circ S$, too. Since every matrix in $G L(n, \mathbb{R})$ is generated by composition of T_{1}, T_{2}, and T_{3}, the theorem holds for every matrix in $G L(n, \mathbb{R})$.

For f is Lebesgue measurable, then for any Borel set $E \in \mathbb{R}^{n}, f^{-1}(E)=F \cup N$ where F is Borel measurable and N is a null set with respect to Lebesgue measure. Since Lebesgue measure is completion of Borel measure, thus there is a Borel measurable set N^{\prime} such that $N \cup N^{\prime}$ and $m(N)=0$. Hence,

$$
m\left(T^{-1}(N)\right) \leq m\left(T^{-1}\left(N^{\prime}\right)\right) \underbrace{=}_{\text {(a) }}\left|\operatorname{det} T^{-1}\right| m\left(N^{\prime}\right)=0 \Longrightarrow T^{-1}(N) \text { is Lebesgue measurable. }
$$

Thus, $T^{-1}(E)$ and $T^{-1}(N)$ are Lebesgue measurable, this implies $(f \circ T)^{-1}$ is Lebesgue measurable. Thus the above argument can be applied for any Lebesgue measurable sets.

Corollary 3.126 (Corollary 2.46 in [1] p.74). m^{n} is invariant under rotation.
Proof. If T is a rotation, then $T T^{*}=I$, which implies $(\operatorname{det} T)^{2}=1 \Longrightarrow|\operatorname{det} T|=1$. Note that T^{*} is the transpose of T.

Let $\Omega \subseteq \mathbb{R}^{n}$ be open. Let $g: \Omega \rightarrow \mathbb{R}^{n}$ be C^{1}. Then, $g(x):=\left(g_{1}(x), g_{2}(x), \cdots, g_{n}(x)\right)$. Let's denote

$$
\left(D_{x} g=\right) D g(x):=\left(\frac{\partial g_{i}}{\partial x_{j}}(x)\right)_{1 \leq i \leq n, 1 \leq j \leq n}
$$

Definition 3.127 (Diffeomorphism). The above g is called Diffeomorphism if $D_{g}(x)$ is invertible for all $x \in \Omega$ and g is injective, i.e., 1-1.

If g is a diffeomorphism, then by the inverse function theorem, g^{-1} is in C^{1}, and that $D_{x}\left(g^{-1}\right)=$ $\left(D_{g^{-1}(x)} g\right)^{-1}$ for all $x \in g(\Omega)$. Also, for any $T \in G L(n, \mathbb{R}), D_{x} T \circ g=T D_{x} g$; this can be obtained by using the result of elementary matrices.

Theorem 3.128 (Theorem 2.47 in [1] p.74). Suppose $\Omega \subset \mathbb{R}^{n}$ and $g: \Omega \rightarrow \mathbb{R}^{n}$ is C^{1} diffeomorphism.

1. If $f: g(\Omega) \rightarrow \mathbb{R}^{n}$ is m^{n}-measurable and $f \in L^{1}$, then $f \circ g$ is m^{n}-measurable. If $f \geq 0$ or $f \in L^{1}$, then

$$
\int_{g(\Omega)} f d m^{n}=\int_{\Omega} f \circ g(x)\left|\operatorname{det}\left(D_{g}(x)\right)\right| d m^{n}
$$

2. If $E \subset \Omega$ and $E \in \mathcal{L}^{n}$, then $G(E) \in \mathcal{L}^{n}$ and $m(G(E))=\int_{E}\left|\operatorname{det} D_{x} g\right| d x$.

Before solving this, we need a notation for ∞ norm.
Definition 3.129 (∞-norm). For any $x \in \mathbb{R}^{n}$ or $T=\left(T_{i j}\right) \in G L(n, \mathbb{R})$, we set

$$
\|x\|=\max _{1 \leq j \leq n}\left|x_{j}\right| \text { and }\|T\|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|T_{i j}\right|
$$

Then, $\|T x\| \leq\|T\|\|x\|$ and $\{x:\|x-a\| \leq h\}$ is the cube of side length $2 h$ centered at a.
Proof. It suffices to show that Borel measurable functions and Borel measurable sets. If this holds for Borel measurable sets and functions, then we can extend this for the case of Lebesgue measurable function and sets using $E=B \cup N$ for $E \in \mathcal{L}^{n}, B \in \mathcal{B}^{n}, N \in \mathcal{L}^{n}$ with $m(N)=0$.

Let $Q \subset \Omega$ be a cube say $Q=\{x:\|x-a\| \leq h\}$ for some $a \in \Omega$ and $h>0$. By the mean value theorem,

$$
g_{i}(x)-g_{i}(a)=\sum_{j=1}^{n}\left(x_{j}-a_{j}\right)\left(\frac{\partial g_{i}}{\partial x_{j}}\right)(y)
$$

for some y in a line segment from x to a. Thus, for any $x \in Q$,

$$
\begin{aligned}
\|g(x)-g(a)\| & =\max _{1 \leq i \leq n}\left\{\left|\sum_{j=1}^{n}\left(x_{j}-a_{j}\right)\left(\frac{\partial g_{i}}{\partial x_{j}}\right)\left(y_{i}\right)\right|\right\} \leq h \max _{1 \leq i \leq n}\left\{\left|\sum_{j=1}^{n}\left(\frac{\partial g_{i}}{\partial x_{j}}\right)\left(y_{i}\right)\right|\right\} \leq h \max _{1 \leq i \leq n}\left\{\sum_{j=1}^{n}\left|\left(\frac{\partial g_{i}}{\partial x_{j}}\right)\left(y_{i}\right)\right|\right\} \\
& \leq h \max _{1 \leq i \leq n}\left\{D_{y_{i}} g\right\} \leq h \sup _{y \in Q}\left\|D_{y} g\right\|
\end{aligned}
$$

since $h \geq\left(x_{j}-a_{j}\right)$ for any $j \in[n]$ and each $\sum_{j=1}^{n}\left|\left(\frac{\partial g_{i}}{\partial x_{j}}\right)\left(y_{i}\right)\right|$ is less than $D_{y_{i}} g$ by definition of norm. Thus, $g(Q)$ is contained in a rectangle with side length $h \sup _{y \in Q}\left\|D_{y} g\right\|$. Therefore, $g(Q)$ is contained in $\sup _{y \in Q}\left\|D_{y} g\right\| \cdot I(Q)$, where I is an identity matrix in $G L(n, \mathbb{R})$. Hence,

$$
m(g(Q)) \leq m\left(\sup _{y \in Q}\left\|D_{y} g\right\| \cdot I(Q)\right) \underbrace{=}_{\text {Thm 2.44(a) }}\left(\sup _{h \in Q}\left\|D_{y} g\right\|\right)^{n} m(Q)
$$

Since g was arbitrary, for any $T \in G L(n, \mathbb{R})$, we can apply the same argument of $T^{-1} \circ g$, thus we have
$m(g(Q)) \underbrace{=}_{2.44(\mathrm{a})}|\operatorname{det} T| m\left(T^{-1} \circ g(Q)\right) \leq|\operatorname{det} T|\left(\sup _{y \in Q}\left\|D_{y}\left(T^{-1} \circ g\right)\right\|\right)^{n} m(Q) \leq|\operatorname{det} T|\left(\sup _{y \in Q}\left\|T^{-1} D_{y} g\right\|\right)^{n} m(Q)$.
Since g is C^{1}-Diffeomorphism, $D_{y} g$ and $\left(D_{y} g\right)^{-1}$ is continuous with respect to y. Thus for any $\epsilon>0, \exists \delta>0$ so that if $\|y-z\| \leq \delta$,

$$
\left\|\left(D_{z} g\right)^{-1} D_{y} g\right\|^{n} \leq 1+\epsilon
$$

Thus, let $Q_{1}, \cdots Q_{N}$ be subdivided disjoint cubes of Q such that its side length is less than δ and whose center is $x_{1}, \cdots x_{N}$ respectively. Then,

$$
m(g(Q)) \leq \sum_{j=1}^{N} m\left(g\left(Q_{j}\right)\right) \leq \sum_{j=1}^{N}\left|\operatorname{det} D_{x_{j}} g\right|\left(\sup _{y \in \mathbb{Q}_{j}}\left\|\left(D_{x_{j}} g\right)^{-1} D_{y} g\right\|\right)^{n} m\left(Q_{j}\right) \leq(1+\epsilon) \sum_{j=1}^{N}\left|\operatorname{det} D_{x_{j}} g\right| m\left(Q_{j}\right)
$$

And the last sum $(1+\epsilon) \sum_{j=1}^{N}\left|\operatorname{det} D_{x_{j}} g\right| m(Q)$ is integral of $(1+\epsilon) \sum_{j=1}^{N}\left|\operatorname{det} D_{x_{j}} g\right| 1_{Q_{j}}$. Therefore, it tends to go $\left|\operatorname{det} D_{x} g\right|$ as $\delta \rightarrow 0$ (Why??? I don't understand.). Thus, letting $\delta \rightarrow 0$ and $\epsilon \rightarrow 0$, we find that

$$
m(g(Q)) \leq \int_{Q}\left|\operatorname{det} D_{x} g\right| d x
$$

Now we claim that this estimate hold with Q is replaced by any Borel set in Ω. Let $U \subset \Omega$ is open. Then by Lemma 2.43 $U=\bigcup_{1}^{\infty} Q_{j}$ where Q_{j} are cubes with disjoint interiors. Since the boundary of the cubes have Lebesgue measure 0 , we hvae

$$
m(g(U)) \leq \sum_{j=1}^{\infty} m\left(g\left(Q_{j}\right)\right) \leq \sum_{j=1}^{\infty} \int_{Q_{j}}\left|\operatorname{det} D_{x} g\right| d x=\int_{U}\left|\operatorname{det} D_{x} g\right| d x .
$$

Moreover, if $E \subset \Omega$ is any Borel set of finite measure, by theorem 2.40 there is a decreasing sequence of $U_{j} \subset \Omega$ of finite measure such that $E \subset \bigcap_{j=1}^{\infty} U_{j}$ and $m\left(\left(\bigcap_{j=1}^{\infty} U_{j}\right) \backslash E\right)=0$. Thus, by the Dominated Convergence Theorem,

$$
m(g(E)) \leq m\left(g\left(\bigcap_{j=1}^{\infty} U_{j}\right)\right)=\lim m\left(g\left(U_{j}\right)\right) \leq \lim \int_{U_{j}}\left|\operatorname{det} D_{x} g\right| d x \underbrace{=}_{\text {DCT }} \int_{E}\left|\operatorname{det} D_{x} g\right| d x
$$

Finally, since m is σ-finite, from the above equation we can draw the conclusion that

$$
m(g(E)) \leq \int_{E}\left|\operatorname{det} D_{x} g\right| d x
$$

for any borel set, using continuity from below and Monotone Convergence Theorem.
If $f=\sum_{j=1}^{N} a_{j} 1_{A_{j}}$ is a nonnegative simple function on $g(\Omega)$, we have

$$
\int g(\Omega) f(x) d x=\sum_{j=1}^{N} a_{j} m\left(A_{j}\right) \leq \sum_{j=1}^{N} a_{j} \int_{g^{-1}\left(A_{j}\right)}\left|\operatorname{det} D_{x} g\right| d x=\int f \circ g(x)\left|\operatorname{det} D_{x} g\right| d x
$$

Theorem 2.10 and the monotone convergence theorem implies that

$$
\int_{g(\Omega)} f(x) d x \leq \int_{\Omega} f \circ g(x)\left|\operatorname{det} D_{x} g\right| d x
$$

for any nonnegative measurable f. But the same reasoning applies with g replaced by g^{-1}, thus

$$
\int_{\Omega} f \circ g(x)\left|\operatorname{det} D_{x} g\right| d x \leq \int_{g(\Omega)} f \circ g \circ g^{-1}(x)\left|\operatorname{det} D_{g^{-1}(x)} g \| \operatorname{det} D_{x} g^{-1}\right| d x=\int_{g(\Omega)} f(x) d x .
$$

Thus it establishes (a) for $f \geq 0$ and the case $f \in L^{1}$ follows immediately. And (b) is the case when $f=1_{g(E)}$, thus the proof is complete.

3.7 Integration in Polar Coordinates

It is omitted in the class.

4 Signed Measures and Differentiation

4.1 Signed Measures

Definition 4.1 (Signed measure). A signed measure on (X, \mathcal{M}) is $\gamma: \mathcal{M} \rightarrow[-\infty,+\infty]$ satisfying
(i) $\nu(\emptyset)=0$
(ii) At most one of $+\infty,-\infty$ is in the range of γ.
(iii) If $E_{1}, E_{2}, \cdots \in \mathcal{M}$ are disjoint, then $\nu\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \nu\left(E_{j}\right)$.

Remark 4.2.

$$
\{\text { measures }\} \subseteq\{\text { signed measures }\} .
$$

Let us denote a measure as positive measure.
Example 4.3 (Example of signed measure). Firstly, μ_{1}, μ_{2} are positive measures, at least one of which is finite, then $\nu:=\mu_{1}-\mu_{2}$ is a signed measure on (X, \mathcal{M}).

Next, if f is extended μ-integrable, i.e., at least one of $\int f^{+} d \mu$ or $\int f^{-} d \mu$ is finite, and $f: X \rightarrow$ $[-\infty, \infty]$ is measurable with respect to a positive measure μ, then $\nu(E):=\int_{E} f d \mu$ is a signed measure. Note that $f^{+}=\min (f, 0), f^{-}=-\max (0,-f)$.
Proposition 4.4 (Proposition 3.1. in [1] p.86).

1. If $\left(E_{n}\right)_{n=1}^{\infty}$ is an increasing sequence in \mathcal{M}, then $\nu\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(E_{n}\right)$.
2. If $\left(E_{n}\right)_{n=1}^{\infty}$ is an decreasing sequence in \mathcal{M} and if $\nu\left(E_{1}\right)$ is finite, then $\nu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(E_{n}\right)$.

Proof. For the first one, let $F_{n}=E_{n} \backslash \bigcup_{j=1}^{n-1} E_{j}$. Then, $F_{n} \mathrm{~s}$ are disjoint and $\bigcup_{j=1}^{n} E_{j}=E_{n}=\bigcup_{j=1}^{n} F_{n}$ for any $n \in \mathbb{N}$. Thus, by the property (iii) of a signed measure,

$$
\lim _{n \rightarrow \infty} \nu\left(E_{n}\right) \underbrace{=}_{\text {(iii) }} \sum_{j=1}^{\infty} \nu\left(F_{j}\right) \underbrace{=}_{\text {(iii) }} \nu\left(\bigcup_{j=1}^{\infty} F_{j}\right)=\nu\left(\bigcup_{j=1}^{\infty} E_{j}\right) .
$$

For the second one, if $\left(E_{n}\right)_{n=1}^{\infty}$ is a decreasing sequence, then

$$
\bigcap_{n=1}^{\infty} E_{n}=E_{1} \backslash\left(E_{1} \backslash \bigcap_{n=1}^{\infty} E_{n}\right),
$$

and $E_{1} \backslash \bigcap_{n=1}^{\infty} E_{n}$ and $\bigcap_{n=1}^{\infty} E_{n}$ are disjoint. Thus,

$$
\begin{array}{rlrl}
\nu\left(\bigcap_{n=1}^{\infty} E_{n}\right) & =\nu\left(E_{1} \backslash\left(E_{1} \backslash \bigcap_{n=1}^{\infty} E_{n}\right)\right) & \\
& =\nu\left(E_{1}\right)-\nu\left(E_{1} \backslash \bigcap_{n=1}^{\infty} E_{n}\right) & \text { from disjointness of } E_{1} \backslash \bigcap_{n=1}^{\infty} E_{n} \text { and } \bigcap_{n=1}^{\infty} E_{n} \\
& =\nu\left(E_{1}\right)-\nu\left(E \cap\left(\bigcup_{n=1}^{\infty} E_{n}^{c}\right)\right) & & \text { from De Morgan's Law } \\
& =\nu\left(E_{1}\right)-\nu\left(\bigcup_{n=1}^{\infty}\left(E_{1} \cap E_{n}^{c}\right)\right) & \text { from Distribution law of ZF axiom }
\end{array}
$$

And since $\left(E_{1} \backslash E_{n}\right)_{n=1}^{\infty}$ is an increasing sequence, we can use the part (a). Thus,

$$
\nu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\nu\left(E_{1}\right)-\nu\left(\bigcup_{n=1}^{\infty}\left(E_{1} \cap E_{n}^{c}\right)\right) \underbrace{=}_{\text {part (a) }} \nu\left(E_{1}\right)-\lim _{n \rightarrow \infty} \nu\left(E_{1} \backslash E_{n}\right)=\nu\left(E_{1}\right)-\nu\left(E_{1}\right)+\lim _{n \rightarrow \infty} \nu\left(E_{n}\right) .
$$

Thus, $\nu\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} \nu\left(E_{n}\right)$, as desired.
Definition 4.5 (Positive, negative and null set). Let ν be a signed measure on (X, \mathcal{M}) and let $E \in \mathcal{M}$. We say E is

- Positive if $\forall F \in \mathcal{M}, F \subseteq E \Longrightarrow \nu(F) \geq 0$.
- Negatvie if $\forall F \in \mathcal{M}, F \subseteq E \Longrightarrow \nu(F) \leq 0$.
- Null set if $\forall F \in \mathcal{M}, F \subseteq E \Longrightarrow \nu(F)=0$.

Lemma 4.6 (Lemma 3.2 in [1] p.86).
(a) Every measurable subset of a positive set is a positive set.
(b) Every countable union of positive sets is a positive set.

Proof. For (a), let E be a positive set and F be a subset of E. Since every subset of F is also a subset of E, thus it has positive measure, therefore F is also a positive set.

For (b), suppose $E_{1}, \cdots \in \mathcal{M}$ are positive sets. Let $E=\bigcup_{n=1}^{\infty} E_{n}$. It suffices to show that E is positive. Replacing E_{n} by $E_{n} \backslash_{k=1}^{n-1} E_{k}$ if necessary, we may assume that E_{1}, \cdots are disjoint without loss of generality. Then, let $F \subset E$. Then,

$$
\nu(F)=\nu\left(\bigcup_{n=1}^{\infty} F \cap E_{n}\right)=\sum_{n=1}^{\infty} \nu\left(F \cap E_{n}\right) \geq 0,
$$

where first inequality comes from $E=\bigcup_{n=1}^{\infty} E_{n}$ and the second equality comes from disjointness of $F \cap E_{n}$ inherited from $E_{n} \mathrm{~s}$, jand the last inequality comes from the fact that $F \cap E_{n} \mathrm{~s}$ are positive sets since each of them is a subset of E_{n} respectively. Thus, E is a positive set.

Theorem 4.7 (The Hanh Decomposition Theorem, Theorem 3.3 in [1] p.86). Let ν be a signed measure on (X, \mathcal{M}). Then \exists a positive set $P \in \mathcal{M}$ such that $N=X \backslash P$ is negative. We call $X=P \cup N a$ Hanh decomposition for ν. And this decomposition is unique up to symmetric difference of null set; if there exists another $P^{\prime}, N^{\prime} \subset X$ such that $P^{\prime} \cup N^{\prime}=X$ and $P^{\prime} \cap N^{\prime}=\emptyset$ and P^{\prime} is positive and N^{\prime} is negative, then $P \Delta P^{\prime}=N \Delta N^{\prime}$ is a null set.

Proof. Without loss of generality, let $\nu: \mathcal{M} \rightarrow[-\infty,+\infty)$. Let $r=\sup \{\nu(P): P \in \mathcal{M}, P$ is positive $\}$. Since $\emptyset \in\{\nu(P): P \in \mathcal{M}, P$ is positive $\}, r$ is well-defined, thus we have a sequence of positive sets P_{n} such that $\lim _{n \rightarrow \infty} \nu\left(P_{n}\right)=r$. Let $P=\bigcup_{n=1}^{\infty} P_{n}$. Then by the lemma, P is a positive set, thus

$$
r \geq \nu(P)=\nu\left(P_{n}\right)+\nu\left(P \backslash P_{n}\right)
$$

and since $\nu\left(P \backslash P_{n}\right) \geq 0$ since $P \backslash P_{n}$ is a subset of a positive set P,

$$
r \geq \nu(P) \geq \nu\left(P_{n}\right) .
$$

By letting $n \rightarrow \infty$, we have $\nu(P)=r$. Let $N=X \backslash P$.
Claim 4.8. If EinM, $E \subset N$, and E is positive, then E is a null set.

Proof. Let E^{\prime} be a measurable subset of E. Then,

$$
\nu\left(P \cup E^{\prime}\right)=\nu(P)+\nu\left(E^{\prime}\right)=r+\nu\left(E^{\prime}\right)
$$

and $P \cup E$ is positive. However, by choice of $r, \nu\left(E^{\prime}\right) \leq 0$. Since E^{\prime} is positive, $\nu\left(E^{\prime}\right) \geq 0$. Thus, $\nu\left(E^{\prime}\right)=0$. Since E^{\prime} was arbitrarily chosen, E is a null set.

Claim 4.9. If $A \in \mathcal{M}, A \subseteq N$ and $\nu(A)>0$, then $\exists B \in \mathcal{M}, B \subseteq A$ such that $\nu(B)>\nu(A)$.
Proof. We used $r<+\infty$ since $\nu(P)=r \in[0,+\infty)$. Suppose A is not a null set. Then by claim $1, A$ is not positive. Thus, $\exists C \in \mathcal{M}, C \subseteq A$ such that $\nu(C)<0$. Let $B=A \backslash C$. Then, $\nu(B)=\nu(A)-\nu(C)>\nu(A)$.

Claim 4.10. N is negative.
Proof. Suppose for contradiction that N is not a negative set. Then $\exists A_{0}:=A \in \mathcal{M}, A \subseteq N$ such that $\nu(A)>0$. By claim $2, \exists A_{1} \in \mathcal{M}, A_{1} \subseteq A$, such that $\nu(A)>\nu(A)$. Let $n_{1} \in \mathbb{N}$ be the least number such that $\exists A_{1} \subset A_{0}$ with $\nu\left(A_{1}\right)>\nu\left(A_{0}\right)+\frac{1}{n_{1}}$. Likewise, let $n_{2} \in \mathbb{N}$ be the least number such that $\exists A_{2} \in \mathcal{M}, A_{2} \subseteq A_{1}$ with $\nu\left(A_{2}\right)>\nu\left(A_{1}\right)+\frac{1}{n_{2}}$. We can continue in this manner, thus we get

$$
A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \text { and } 0<\nu\left(A_{0}\right)<\nu\left(A_{1}\right)<\cdots,
$$

and integers $n_{1}, n_{2}, \cdots \in \mathbb{N}$ such that $\forall j \in \mathbb{N}$. Let $E=\bigcap_{n=0}^{\infty} A_{n}$. Then, by the Proposition 3.1.(b) in [1],

$$
\nu(E)=\lim _{n \rightarrow \infty} \nu\left(A_{n}\right) \in(0,+\infty)
$$

since $\nu\left(A_{n}\right) \in(0,+\infty)$ for all $n \in \mathbb{N}$, by assumption that the range of ν doesn't contain $+\infty$. However,

$$
\nu\left(A_{k}\right) \geq \sum_{j=1}^{k} \frac{1}{n_{j}}+\nu\left(A_{0}\right)
$$

By letting $k \rightarrow \infty$, the left hand side goes to $\nu(E)$, and the right hand side goes to $\sum_{j=1}^{\infty} \frac{1}{n_{j}}+\nu\left(A_{0}\right)$. Thus,

$$
\sum_{j=1}^{\infty} \frac{1}{n_{j}}<+\infty \Longrightarrow n_{j} \rightarrow \infty \text { as } j \rightarrow \infty
$$

Note that $E \subset N$ and $\nu(E)>0$. Thus, by claim $2, \exists B \subset E$ such that $\nu(B)>\nu(E)$. Let $m \in \mathbb{N}$ such that $\nu(B)>\nu(E)+\frac{1}{m}$. Let $j \in \mathbb{N}$ such that $n_{j}>m$. Since $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$, such j exists. Then,

$$
B \subseteq E \subseteq A_{j-1} \text { and } \nu(B) \geq \nu(E)+\frac{1}{m} \geq \nu\left(A_{j-1}\right)+\frac{1}{m}
$$

and this contradicts the minimality of n_{j}, which is chosen by the least one. Thus N should be a negative set.

To show uniqueness, let $P, N, P^{\prime}, N^{\prime}$ are given in the problem. Note that $P \backslash P^{\prime}=N^{\prime} \backslash N$ is both positive and negative, thus it is a null set. By the same argument, $P^{\prime} \backslash P=N \backslash N^{\prime}$ is null. Hence,

$$
P \Delta P^{\prime}=\left(P^{\prime} \backslash P\right) \cup\left(P \backslash P^{\prime}\right)=\left(N \backslash N^{\prime}\right) \cup\left(N^{\prime} \backslash N\right)=N \Delta N^{\prime}
$$

is a union of null sets, thus it is null.
Definition 4.11 (Mutually singular). Let μ and ν be signed measure on (X, \mathcal{M}). We say that μ and ν are mutually singular and write

$$
\mu \perp \nu
$$

, when $X=E \cup F, E \cap F=\emptyset, E, F \in \mathcal{M}$ such that E is null for μ and F is null for ν.

Theorem 4.12 (The Jordan Decomposition Theorem, Theorem 3.4 in [1] p. 87). Let ν be a signed measure on (X, \mathcal{M}). Then \exists ! positive measures ν^{+}and ν^{-}such that $\nu=\nu^{+}-\nu^{-}$, and $\nu^{+} \perp \nu^{-}$.

Proof. Let $X=P \cup N$ be a Hanh decomposition for ν. Let $\nu^{+}(A)=\nu(A \cap P), \nu_{-}(A)=-\nu(A \cap N)$. So ν^{+}, ν^{-}are also positive measure. Clearly, $\nu=\nu^{+}-\nu^{-}$since $\nu(A)=\nu(A \cap P)+\nu(A \cap N)=\nu^{+}(A)-\nu^{-}(A)$, and $\nu^{-}(P)=\nu(P \cap N)=0, \nu^{+}(N)=\nu(P \cap N)=0$. Thus, P is null for ν^{-}and N is null for ν^{+}.

To see uniqueness, suppose $\nu=\mu^{+}-\mu^{-}$for some positive measures μ^{+}and μ^{-}with $\mu^{+} \perp \mu^{-}$. There exists $E, F \in \mathcal{M}$ such that $E \cup F=X, E \cap F=\emptyset$ and E is μ^{+}-null set, and F is μ^{-}-null set. Then, E is ν-negative, and F is ν-positive, so $X=F \cup E$ is a Hanh decomposition for ν. By the Hanh decomposition theorem, $F \Delta P=E \Delta N$ is ν-nul, so $\forall A \in \mathcal{M}$,

$$
A \cap(F \Delta P)=(A \cap F) \Delta(A \cap P)
$$

is ν-null. Thus,

$$
\mu^{+}(A)=\mu^{+}(A)-\mu^{+}(A \cap E)=\mu^{+}(A \cap F)=\mu^{+}(A \cap F)-\mu^{-}(A \cap F)=\nu(A \cap F)=\nu(A \cap P)=\nu^{+}(A)
$$

So $\mu^{+}=\nu^{+}$, thus $\mu^{-}=\nu^{-}$.
Definition 4.13 (Positive Variation, Total variation). We call ν^{+}the positive variations of ν and ν^{-} the negative variations of ν. The total variation of ν is a measure $|\nu|:=\nu^{+}+\nu^{-}$.

Definition 4.14 (Finite, σ-finite signed measure). A signed measure ν is finite iff $|\nu|$ is a finite (positive) measure. Also, a signed measure ν is σ-finite iff $|\nu|$ is a σ-finite (positive) measure.

Observation 4.15. The followings are equivalent.
(i) ν is finite
(ii) $\nu: \mathcal{M} \rightarrow(-\infty,+\infty)$
(iii) ν^{+}and ν^{-}are finite.

Proof. Suppose (i). Then, $|\nu|(X)=\nu^{+}(P)+\nu^{-}(N)<\infty$, thus

$$
-\infty<\nu^{-}(N) \leq \nu^{+}(E)-\nu^{-}(E)=\nu(E)=\nu^{+}(E)-\nu^{-}(E) \leq \nu^{+}(P)<\infty
$$

Hence, (ii) holds. Also, if (ii) holds, then $\nu^{+}(X)=\nu^{+}(P)<\infty$ and $\nu^{-}(X)=\nu^{-}(N)<\infty$, thus they are finite measure. If (iii) holds, then, $|\nu|=\nu^{+}+\nu^{-}$is finite positive measure, thus μ is finite.

Definition $4.16\left(L^{1}\right.$ of a signed measure). Let $L^{1}(\nu):=L^{1}(|\nu|)$. Hence for any $f \in L^{1}(\nu), \int f d \nu=$ $\int f d \nu^{+}-\int f d \nu^{-}<\infty$.

Example 4.17.

Some examples, and Push forward $m \perp\left(\sum_{n} \lambda_{n} \delta_{t_{n}}\right)$ where m is the Lebesgue measure, and $\delta_{t_{n}}$ is a Dirac measure at $t_{n} \in \mathbb{R}$, and $\lambda_{n} \in \mathbb{R}$ for any $n \in \mathbb{N}$. Note that Dirac measure gives 1 and 0 only.

Some exbmples, bnd Push forwbrd m^{2} be the Lebesgue measure on \mathbb{R}^{2}, and $D=\{(x, x): x \in \mathbb{R}\}$. Then, $m^{2}(D)=0$. Let $\mu(A):=m(\{x:(x, x) \in A\})$. Then, $\mu \perp m^{2}$. Note that this $\mu=i_{*} m$ is called push-forward of m where $i: \mathbb{R} \rightarrow D$.

If $f: X \rightarrow Y$ is measurable and if σ is a measure on X, then $f_{*} \sigma$ is a measure on Y given by $f_{*} \sigma(E)=$ $\sigma(f(E))$.

Proof. To see that $m^{2}(D)=0$, start with $D_{k}=\{(x, x):|x| \leq k\}$. By rotating this $D, m^{2}(D)=m^{2}(\{(x, 0)$: $|x| \leq k\}$). Now let $A_{n, k}=\left\{(x, y):|x| \leq k,|y| \leq \frac{1}{n}\right\}$. Then, $A_{n, k}$ s are decreasing sequence with $m^{2}\left(A_{n, k}\right)=$ $\frac{2}{n}$. And $\{(x, 0):|x| \leq k\} \subseteq A_{n, k}$ for any $n \in \mathbb{N}$. Thus,

$$
0 \leq m^{2}\left(D_{k}\right)=m^{2}(\{(x, 0):|x| \leq 1\}) \leq m^{2}\left(A_{n, k}\right)=\frac{2 k}{n}
$$

for all $n \in \mathbb{N}$. Thus, by letting $n \rightarrow \infty, m^{2}\left(D_{k}\right)=0$. From the fact that $D_{k} \mathrm{~s}$ are increasing seqeunce, using continuity from below

$$
m^{2}(D)=m^{2}\left(\bigcup_{k=1}^{\infty} D_{k}\right)=\lim _{n \rightarrow \infty} m^{2}\left(D_{n}\right)=0
$$

Hence, since $i(A) \subseteq D$, for any $A \in \mathcal{M}$,

$$
\mu(A)=m^{2}(i(A)) \leq m^{2}(D)=0
$$

Since μ is zero mesure, we can conclude that $\mu \perp m^{2}$.
Definition 4.18 (Absolute continuity). Let ν be a signed measure and μ be a positive measure on (X, \mathcal{M}). We say ν is absolutely continuous with respect to μ or

$$
\nu \ll \mu
$$

if $\forall E \in \mathcal{M}, \mu(E)=0 \Longrightarrow \nu(E)=0$, equivalently, if E is a μ-null set, then E is a ν-null set.
Observation 4.19 (Exercise 3.8, proved in the Homework). $\nu \ll \mu \Longleftrightarrow \nu^{+} \ll \mu$ and $\nu^{-} \ll \mu$
Example 4.20. Fix μ. Choose $f^{+}, f^{-} \in L^{+}(\mu)$ with $\int f^{+} d \mu<+\infty$ or $\int f^{-} d \mu<+\infty$. Then, without loss of generality, up to μ-null sets, either $f^{+}: X \rightarrow[0,+\infty)$ or $f^{-}: X \rightarrow[0,+\infty)$. Let $f:=f^{+}-f^{-}$and let $\nu(E):=\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu$. Then, ν is a signed measure and $\nu \ll \mu$.

Proof. From countable additivity of integration, and by construction avoiding ∞, ν is a signed measure. Also, for any μ-null set $E, \nu(E)=\int_{E} f d \mu=0$, by approximating the integral using simple functions. Hence, $\nu \ll \mu$.

Observation 4.21. If $\nu \perp \mu$ and $\nu \ll \mu$, then $\nu=0$
Proof. From $\nu \perp \mu$, there exists $E, F \in \mathcal{M}$ such that $E \cup F=X, E \cap F=\emptyset$ and E is μ null set and F is ν null set. Also, since $\nu \ll \mu$, for any subset $B \subset E, \nu(B)=0$ from the fact $\mu(B)=0$. Thus for any $A \in \mathcal{M}$,

$$
\nu(A)=\nu(A \cap E)+\nu(A \cap F)=0+0=0
$$

Theorem 4.22 (Theorem 3.5 in [1] p.89). Let μ be a positive measure and let ν be a finite signed measure on (X, \mathcal{M}). Then,

$$
\nu \ll \mu \Longleftrightarrow(\forall \epsilon, \exists \delta>0 \text { such that } E \in \mathcal{M}, \mu(E)<\delta \Longrightarrow|\nu|(E)<\epsilon) \cdots(*)
$$

Proof. Without loss of generality, let $\nu=|\nu|$ be a positive measure. Then, if (*) holds, let $E \in \mathcal{M}$ with $\mu(E)=0$. Then by $(*), \nu(E)<\epsilon$ for all ϵ, thus $\nu(E)=0$. Hence $\nu \ll \mu$.

Conversely, to prove by contrapositive statement, assume $(*)$ fails. Then, $\exists \epsilon>0$ such that $\forall \delta>0$, $\exists E \in \mathcal{M}$ such that $\mu(E)<\delta$ but $\nu(E) \geq \epsilon$. Choose $E_{n} \in \mathcal{M}$ such that $\mu\left(E_{n}\right)<2^{-n}$ with $\nu\left(E_{n}\right) \geq \epsilon$. Let $G:=\lim \sup _{n \rightarrow \infty} E_{n}=\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{n}$, and let $F_{k}:=\bigcup_{n=k}^{\infty} E_{n}$. Then $\left(F_{n}\right)_{n=1}^{\infty}$ is a decreasing sequence, thus

$$
\mu(G) \leq \mu\left(F_{k}\right) \leq \sum_{n=k}^{\infty} \mu\left(E_{n}\right)<\sum_{k=1}^{\infty} 2^{-n}=2^{-k+1}
$$

By letting $k \rightarrow \infty, \mu(G)=0$. However,

$$
\nu\left(F_{k}\right) \geq \nu\left(E_{k}\right) \geq \epsilon
$$

and ν is finite, this gives us to continuity from above, thus we have

$$
\nu(G)=\lim _{k \rightarrow \infty} \nu\left(F_{k}\right) \geq \epsilon
$$

thus $\nu \ll \mu$.
For the case when ν is finite signed measure, this follows from the Exercise 8 that $\nu \ll \mu \Longleftrightarrow|\nu| \ll \mu$.
Corollary 4.23 (Corollary 3.6 in [1] p.89). If $f \in L^{1}(\mu)$, for every $\epsilon>0$, there exists $\delta>0$ such that $\left|\int_{E} f d \mu\right|<\epsilon$ whenever $\mu(E)<\delta$.

Proof. Since f is extended μ-integrable real-valued function, $\nu(E):=\int_{E} f d \mu$ is a finite signed measure and $\nu \ll \mu$. Thus, by the theorem, the statement holds. If f is complex valued function, apply the theorem on Ref and Imf, and take such δ s for Ref and Imf using $\frac{\epsilon}{2}$.

Lemma 4.24 (Lemma 3.7 in [1] p.89). If ν and μ are finite positive measure on (X, \mathcal{M}), then either $\nu \perp \mu$ or $\exists \epsilon>0, \exists E \in \mathcal{M}$ such that $\nu \geq \epsilon \mu$ on E, i.e.,

$$
\forall A \in \mathcal{M}, A \subset E \Longrightarrow \nu(A) \geq \epsilon \mu(A)
$$

Proof. Suppose ν and μ are positive measures. Then, given $n \in \mathbb{N}$, consider the signed measure $\nu-\frac{1}{n} \mu$ and let $X=P_{n} \cup N_{n}$ be Hanh decomposition for $\nu-\frac{1}{n} \mu$. Let $P=\bigcup_{n=1}^{\infty} P_{n}$ and $N=\bigcap_{n=1}^{\infty} N_{n}$. Then, $P \cup N=X, P \cap N=\emptyset$, and $\forall n \in \mathbb{N}$, from the fact that $N \subset N_{n}$,

$$
\left(\nu-\frac{1}{n} \mu\right)(N) \leq 0 \Longrightarrow 0 \leq \nu(N) \leq \frac{1}{n} \mu(N)
$$

So letting $n \rightarrow \infty, \nu(N)=0$ Hence N is null set for ν. If $\mu(P)=0$, then $\mu \perp \nu$. If $\mu(P)>0$, then since $\mu(P) \leq \sum_{n=1}^{\infty} \mu\left(P_{n}\right)$, there exists $n \in \mathbb{N}$ such that $\mu\left(P_{n}\right)>0$. Take $E=P_{n}$. Suppose $A \in \mathcal{M}, A \subset E$. Since P_{n} is positive for $\nu-\frac{1}{n} \mu$, we have

$$
\left(\nu-\frac{1}{n} \mu\right)(A) \geq 0 \Longrightarrow \nu(A) \geq \frac{1}{n} \mu(A) .
$$

Thus, $\nu \geq \frac{1}{n} \mu$ on E.
Note that Folland says he proved the Lemma 3.7 in general case. However, this proof require that (at least) ν should be finite positive measure. Thus I limited the condition for the lemma. This limited version is enough for proving Radon-Nikodym theorem.

Theorem 4.25 (The Lebesgue-Radon-Nikodym Theorem, 3.8 in [1] p.90). Let μ be a σ-finite measure and ν be a σ-finite signed measure on (X, \mathcal{M}). Then, \exists ! pair of σ-finite signed measure (λ, ρ) on (X, \mathcal{M}) such that

$$
\nu=\lambda+\rho \text { and } \lambda \perp \mu \text { and } \rho \ll \mu
$$

Moreover, \exists an extended μ-integrable function $f: X \rightarrow \mathbb{R}$ such that $d \rho=f d \mu$
Definition 4.26 (Extended μ-integrable function, revisited). A μ-measurable function $f: X \rightarrow \mathbb{R}$ or $f: X \rightarrow[-\infty, \infty]$ is extended μ-integrable function if letting $f^{+}=\min (f, 0), f^{-}=-\max (0,-f)$. so that $f=f^{+}-f^{-}$, then either $\int f^{+} d \mu$ or $\int f^{-} d \mu$ is finite. and $f: X \rightarrow[-\infty, \infty]$ is measurable with respect to a positive measure μ, then $\nu(E):=\int_{E} f d \mu$ is a signed measure.

Then, $\nu(E):=\int_{E} d \mu$ defines a signed measure $\nu \ll \mu$ and we write $d \nu=f d \mu$ or $f=\frac{d \nu}{d \mu}$.
Proof of the theorem. Without loss of generality, assume ν is a positive measure.
(i) Case I : ν is a positive finite measure. Let

$$
\begin{aligned}
\mathcal{F} & :=\left\{f: X \rightarrow[0, \infty]: f \text { is measurable and } \forall E \in \mathcal{M}, \int_{E} f d \mu \leq \nu(E)\right\} \\
& =\{f: X \rightarrow[0, \infty]: \exists \text { a measure } \sigma \text { s.t. } d \lambda=d \nu-f d \mu \text { is a positive measure. }\}
\end{aligned}
$$

Thus if \mathcal{F} is nonempty, then for any $f \in \mathcal{F}$ we can write $d \nu=d \lambda+d \mu$ for some positive measure λ. (Note that $0 \in \mathcal{F}$, thus \mathcal{F} is nonempty.

Claim 4.27. If $f, g \in \mathcal{F}$ then $h:=\max (f, g) \in \mathcal{F}$
Proof. Let $h=\max (f, g), A:=\{x \in X: f(x) \geq g(x)\}$. Then for any $E \in \mathcal{M}$,

$$
\int_{E} h d \mu=\int_{E \cap A} h d \mu+\int_{E \backslash A} h d \mu=\int_{E \cap A} f d \mu+\int_{E \backslash A} g d \mu \underbrace{\leq}_{f, g \in \mathcal{F}} \nu(E \cap A)+\nu(E \backslash A)=\nu(E)
$$

Let $r=\sup \left\{\int f d \mu: f \in \mathcal{F}\right\}$. Then, $r \leq \nu(X)<+\infty$, from finiteness of ν.
Claim 4.28. There exists $f \in \mathcal{F}$ such that $\int f d \mu=r$.
Proof. Choose $f_{n} \in \mathcal{F}$ such that $r=\lim _{n \rightarrow \infty} \int f_{n} d \mu$. Let $g_{n}=\max \left(f_{1}, \cdots, f_{n}\right)$. Then, by the previous claim, $g_{n} \in \mathcal{F}$. And $g_{1} \leq g_{2} \leq \cdots$. Also,

$$
\int g_{n} d \mu \geq \int f_{n} d \mu
$$

Thus,

$$
r=\lim _{n \rightarrow \infty} f_{n} \leq \lim _{n \rightarrow \infty} \int g_{n} d \mu \leq r \Longrightarrow \lim _{n \rightarrow \infty} \int g_{n} d \mu=r
$$

Let $f=\lim _{n \rightarrow \infty} g_{n}$ pointwisely. Then, $f: X \rightarrow[0,+\infty]$ Then, by the Monotone convergence theorem,

$$
\int f d \mu=\lim _{n \rightarrow \infty} \int g_{n} d \mu=r
$$

To see $f \in \mathcal{F}$, note that for any $E \in \mathcal{M}$,

$$
\int_{E} f d \mu=\lim _{n \rightarrow \infty} \int_{E} g_{n} d \mu \leq \nu(E)
$$

Thus $f \in \mathcal{F}$, hence done.
The f obtained by above claim is $f: X \rightarrow[0, \infty]$. Since $f \in L^{1}(\mu)$, this implies $f^{-1}(\{\infty\})$ is μ-null set. Thus, by redefining f on $f^{-1}(\{\infty\})$, for example, $\forall x \in f^{-1}(\{\infty\}), f(x):=0$, we have $f: X \rightarrow[0, \infty)$. Similarly, we define the measure ρ by $\rho(E):=\int_{E} f d \mu$, thus $d \rho=f d \mu$, and let $\lambda=\nu-\rho$. Note that λ is a positive measure, since we just take f such that integration with f on any measurable set is less than ν-measure of the set.

Claim 4.29. $\lambda \perp \mu$.
Proof. Suppose not. Then by the lemma $3.7, \exists \epsilon>0, \exists F \in \mathcal{M}$ such that

$$
\mu(F)>0 \text { and } \lambda \geq \epsilon \mu \text { on } F .
$$

This implies

$$
f+\epsilon 1_{F} \in \mathcal{F}
$$

since $\forall E \in \mathcal{M}$,

$$
\begin{aligned}
\int_{E}\left(f+\epsilon 1_{F}\right) d \mu & =\int_{E} f d \mu+\epsilon \mu(F \cap E)=\rho(E)+\epsilon \mu(F \cap E)=\rho(E \backslash F)+(\rho+\epsilon \mu)(E \cap F) \\
& \leq \rho(E \backslash F)+(\rho+\lambda)(E \cap F)=\rho(E \backslash F)+\nu(E \cap F) \\
& \leq \nu(E \backslash F)+\nu(E \cap F)=\nu(E)
\end{aligned}
$$

where first inequality comes from $\nu \geq \epsilon \mu$ on F and the last inequality comes from $\rho+\lambda=\nu$. However,

$$
\int\left(f+\epsilon 1_{F}\right) d \mu=\int f d \mu+\epsilon \mu(F)=r+\epsilon \mu(F)>r
$$

contradicting to the maximality of r.
Thus $\rho \ll \mu, \nu \perp \mu$, and $\nu=\lambda+\rho$, and $d \rho=f d \mu$ is constructed.
(ii) Case II: General case. If μ is σ-finite measure and ν is σ-finite signed measure on (X, \mathcal{M}), let $E_{1}, E_{2}, \cdots \in \mathcal{M}$ be disjoint such that

$$
\bigcup_{n=1}^{\infty} E_{n}=X \text { and } \forall n \in \mathbb{N}, \mu\left(E_{n}\right)<+\infty, \text { and }|\nu|\left(E_{n}\right)<+\infty
$$

Perform the construction for each pair $\left(\mu_{n}, \nu_{n}\right)$ when

$$
\mu_{n}\left(E_{n}\right):=\mu\left(A \cap E_{n}\right) \text { and } \nu_{n}(A):=\nu\left(A \cap E_{n}\right)
$$

Then, define

$$
\lambda=\sum_{n=1}^{\infty} \lambda_{n}, \rho=\sum_{n=1}^{\infty} \rho_{n}, f=\sum_{n=1}^{\infty} f_{n}
$$

This works since E_{n} s are disjoint.
To see uniqueness, if $\nu=\lambda+\rho=\lambda^{\prime}+\rho^{\prime}, \lambda \perp \mu, \lambda^{\prime} \perp \mu$, and $\rho \ll \mu, \rho^{\prime} \ll \mu$, then $\lambda-\lambda^{\prime}=\rho^{\prime}-\rho$, and $\lambda-\lambda^{\prime} \perp \mu, \rho^{\prime}-\rho \ll \mu$. Thus,

$$
\lambda-\lambda^{\prime}=0=\rho^{\prime}-\rho
$$

as desired.

Definition 4.30 (Lebesgue Decomposition).
(1) For ν, μ in the theorem, such $\nu=\lambda+\rho, \lambda \perp \mu, \rho \ll \mu$ is called the Lebesgue decomposition of ν with respect to μ.
(2) If $\nu \ll \mu$, then $\rho=\nu$, thus \exists extended μ-integrable function f such that $d \nu=f d \mu$. This f is called the Radon-Nikodym derivative of ν with respect to μ. And we write

$$
f=\frac{d \nu}{d \mu} \text { so that } d \nu=\left(\frac{d \nu}{d \mu}\right) d \mu
$$

Note that $\frac{d \nu}{d \mu}$ is unique up to redefinements of μ-null sets, as we constructed above.

Observation 4.31. If on $(X, \mathcal{M}), \nu_{1}, \nu_{2}$ are σ-finite signed measure and μ is σ-finite (positive) measure, and

$$
\nu_{1} \ll \mu, \nu_{2} \ll \mu
$$

and if either $\nu_{1}, \nu_{2}: \mathcal{M} \rightarrow(-\infty,+\infty]$, then $\nu_{1}+\nu_{2}$ is a σ-finite signed measure, $\nu_{1}+\nu_{2} \ll \mu$. And

$$
\left(\nu_{1}+\nu_{2}\right)(E)=\nu_{1}(E)+\nu_{2}(E)=\int_{E}\left(\frac{d \nu_{1}}{d \mu}\right) d \mu+\int_{E}\left(\frac{d \nu_{2}}{d \mu}\right)=\int_{E}\left(\frac{d \nu_{1}}{d \mu}+\frac{d \nu_{2}}{d \mu}\right) d \mu
$$

Thus, $\frac{d\left(\nu_{1}+\nu_{2}\right)}{d \mu}=\frac{d \nu_{1}}{d \mu}+\frac{d \nu_{2}}{d \mu}$.
Proof. Since ν_{1}, ν_{2} are σ-finite measure, $\left|\nu_{1}\right|,\left|\nu_{2}\right|$ are σ-finite measure. Hence, there exists E_{1}, \cdots, and F_{1}, \cdots such that $\bigcup_{i=1}^{\infty} E_{i}=X=\bigcup_{i=1}^{\infty} F_{i}$ and $\left|\nu_{1}\right|\left(E_{i}\right)<\infty,\left|\nu_{2}\right|\left(F_{i}\right)<\infty$. Let $G_{i j}=E_{i} \cap F_{j}$. Then, for a bijection between \mathbb{N}^{2} and \mathbb{N}, we can regard $\left(G_{i j}\right)=\left(G_{i}\right)$, and

$$
\left(\nu_{1}+\nu_{2}\right)\left(G_{i}\right) \leq \nu_{1}\left(E_{k}\right)+\nu_{2}\left(F_{k^{\prime}}\right)<\infty \text { for some } k, k^{\prime} \in \mathbb{N}
$$

also $\bigcup_{i=1}^{\infty} G_{i}=X$. Hence $\left(\nu_{1}+\nu_{2}\right)$ is σ-finite. And if $E \in \mathcal{M}$ with $\mu(E)=0$, then

$$
\left(\nu_{1}+\nu_{2}\right)(E)=\nu_{1}(E)+\nu_{2}(E)=0+0=0
$$

Thus, $\nu_{1}+\nu_{2} \ll \mu$. The rest is obvious from calculation.
Proposition 4.32 (Proposition 3.9 in [1] p.91). Suppose on $(X, \mathcal{M}) \mu$ and λ are σ-finite measure, ν is a σ-finite signed measure and $\nu \ll \mu$ and $\mu \ll \lambda$.
(a) If $g \in L^{1}(\nu)$ then $g \frac{d \nu}{d \mu} \in L^{1}(\mu)$ and $\int g d \nu=\int g\left(\frac{d \nu}{d \mu}\right) d \mu$. Furthermore, if $g \in L^{+}(\mathcal{M})$ and ν is a positive measure, then $\frac{d \nu}{d \mu} \geq 0$ and $\int g d \nu=\int g\left(\frac{d \nu}{d \mu}\right) d \mu$.
(b) (Chain rule) From given condition, $\nu \ll \lambda$ and

$$
\frac{d \nu}{d \lambda}=\left(\frac{d \lambda}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) \text { for } \lambda \text {-a.e. }
$$

Proof. Using the Jordan Decomposition, $\nu=\nu^{+}-\nu^{-}$. We may without loss of generality assume that ν is a positive measure. Suppose $g=1_{E}$ for some $E \in \mathcal{M}$. Then,

$$
\int 1_{E} d \nu=\nu(E)=\int_{E} \frac{d \nu}{d \mu} d \mu=\int 1_{E}\left(\frac{d \nu}{d \mu}\right) d \mu
$$

So the given integration holds when $g=1_{E}$ case. Since E was arbitrary and integration is linear functional, the integration formula holds for any simple function. Now let $g \in L^{+}(\mathcal{M})$. Then by theorem 2.10 , there exists a sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ of simple functions,

$$
\phi_{1} \leq \phi_{2} \leq \cdots, \phi_{n} \rightarrow g
$$

Thus, by the Monotone Convergence theorem,

$$
\int g d \nu \underbrace{=}_{\mathrm{MCT}} \lim _{n \rightarrow \infty} \int \phi_{n} d \nu=\lim _{n \rightarrow \infty} \int \phi_{n}\left(\frac{d \nu}{d \mu}\right) d \mu \underbrace{=}_{\mathrm{MCT}} \int g\left(\frac{d \nu}{d \mu}\right) d \mu
$$

If ν is positive, then After redefining μ-null set of $\frac{d \nu}{d \mu}$'s domain, it is positive.
If $g \in L^{1}(\nu)$, then $g=g^{+}-g^{-}$for $g^{+}, g^{-} \in L^{+}(\mathcal{M}) \cap L^{1}(\nu)$. Thus,

$$
\int g d \nu=\int g^{+} d \nu-\int g^{-} d \nu=\int\left(g^{+}-g^{-}\right) \frac{d \nu}{d \mu} d \mu=\int g \frac{d \nu}{d \mu} d \mu
$$

For part (b) with positive measure ν, let $E \in \mathcal{M}$. Then,

$$
\nu(E)=\int_{E} \frac{d \nu}{d \lambda} d \lambda
$$

whereas

$$
\int_{E}\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) d \lambda=\int 1_{E} \cdot\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) d \lambda=\int g d \mu
$$

where the last equality comes from the fact that $1_{E}\left(\frac{d \nu}{d \mu}\right) \geq 0$ and $\int g\left(\frac{d \mu}{d \lambda}\right) d \lambda=\int g d \mu$ when we replace ν with μ and μ with λ in the part (a). Also,

$$
\int g d \mu=\int 1_{E} \frac{d \lambda}{d \mu} d \mu=\int_{E} \frac{d \nu}{d \mu} d \mu=\nu(E)
$$

where the last eqaulity comes from the definition of Radon-Nikodym derivative. Thus, by summing these calculation,

$$
\int_{E} \frac{d \nu}{d \lambda} d \lambda=\nu(E)=\int_{E}\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) d \lambda
$$

which implies $\frac{d \nu}{d \lambda}=\left(\frac{d \nu}{d \mu}\right)\left(\frac{d \mu}{d \lambda}\right) \lambda$-a.e.
Corollary 4.33 (Corollary 3.10 in citefo, p.91). If μ and λ are σ-finite measure and $\mu \ll \lambda, \lambda \ll \mu$, then $\left(\frac{d \mu}{d \lambda}\right)\left(\frac{d \lambda}{d \mu}\right)=1 \mu$-a.e. and ν-a.e.

Example 4.34 (Nonexample: Dirac δ-function). Let μ be Lebesgue measure and ν the point of mass at 0 on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$. Then, $\nu \perp \mu$. Thus there is no Radon-Nikodym Derivative, even if Dirac δ-function behave like Radon-Nikodym derivative. (Actually, it is not the function.)

Proposition 4.35 (Proposition 3.11 in [1] p.91). If μ_{1}, \cdots, μ_{n} are positive measures on (X, \mathcal{M}) there is a measure μ such that $\mu_{j} \ll \mu$ for all j, namely, $\mu=\sum_{j=1}^{n} \mu_{j}$.
Proof. Since each μ_{i} is positive, $\mu(E)=0 \Longrightarrow \mu_{i}(E)=0$. for all $i \in \mathbb{N}$.

4.2 Complex Measures

Definition 4.36 (Complex Measure). A complex measure on (X, \mathcal{M}) is $\nu: \mathcal{M} \rightarrow \mathbb{C}$ such that
(i) $\nu(\emptyset)=0$
(ii) If $E_{1}, E_{2}, \cdots \in \mathcal{M}$ are disjoint, then $\nu\left(\bigcup_{j}=1\right)^{\infty} E_{j}=\sum_{j=1}^{\infty} \nu\left(E_{j}\right)$
where the series converges absolutely.
Observation 4.37. If ν is a \mathbb{C}-measure and $\nu_{r}(E)=\operatorname{Re} \nu(E), \nu_{i}(E)=\operatorname{Im} \nu(E)$, then ν_{r} and ν_{i} are signed measure, and each omits $\pm \infty$. So, $\nu_{r}, \nu_{i}: \mathcal{M} \rightarrow[-k, k]$ for some $k \in \mathbb{N}$. Thus, $\sup \{|\nu(E)|: E \in \mathcal{M}\}<\infty$.

Proof. This follows from that series converges absolutely. So a positive measure is a complex measure only if it is finite. Or if μ is positive measure and $f \in L^{1}(\mu)$, then $f d \mu$ is a positive measure.

Definition 4.38 (Mutual singularity, absolute continuity for complex measure). If ν is a complex measure and μ is a signed measure, then $\nu \perp \mu$ means $\nu_{r} \perp \mu$ and $\nu_{i} \perp \mu$. If ν and μ are both complex measure then $\nu \perp \mu$ means $\nu \perp \mu_{r}$ and $\nu \perp \mu_{i}$. If ν is a complex measure and λ is a positive measure, then $\nu \ll \lambda$ means $\nu_{r} \ll \lambda$ and $\nu_{i} \ll \lambda$.

Theorem 4.39 (Complex version of the Lebesgue-Radon-Nikodym theorem, 3.12 in [1] p. 93). Let ν be a complex measure, μ be a σ-finite positive measures on (X, \mathcal{M}). Then, $\exists!$ complex measure λ, ρ such that

$$
\nu=\lambda+\rho, \lambda \perp \mu, \text { and } \rho \ll \mu
$$

Also, $\exists f \in L^{1}(\mu)$ such that $d \rho=f d \mu$, where f is unique up to redefining of a μ-null set.
Proof. By applying the Lebesgue-Radon-Nikodym theorem on ν_{r} and ν_{i}, we have λ_{i}, λ_{r} and ρ_{i}, ρ_{r} and f_{r}, f_{i} which satisfy the desired properties. Then let $\lambda=\lambda_{r}+i \lambda_{i}, \rho=\rho_{r}+i \rho_{i}$, and $f=f_{r}+i f_{i}$. Then desired property still holds. Also, uniqueness is derived from the each ν_{i} and ν_{r}.

Proposition 4.40 (Lemma for defining Total variation of a complex measure). Let ν be a complex measure on (X, \mathcal{M}). Then, \exists a finite measure μ such that $\nu \ll \mu$ and letting $f=\frac{d \nu}{d \mu}$ so that $d \nu=f d \mu$. Thus, by the complex version of Radon-Nikodym theorem(3.12) there exists $f=\frac{d \nu}{d \mu}$ so that $d \nu=f d \mu$.

If also μ^{\prime} is a finite measure and $d \nu=f^{\prime} d \mu^{\prime}$ then $|f| d \mu=\left|f^{\prime}\right| d \mu^{\prime}$.
Proof. Let $\mu=\left|\nu_{r}\right|+\left|\nu_{i}\right|$ Then, $\nu \ll \mu$. Let $\rho=\mu+\mu^{\prime}$. Then, $\mu \ll \rho, \mu^{\prime} \ll \rho$. Thus, $\mu=\left(\frac{d \mu}{d \rho}\right) d \rho, \mu^{\prime}=$ $\left(\frac{d \mu^{\prime}}{d \rho}\right) d \rho$. By the chain rule,

$$
f^{\prime} \frac{d \mu^{\prime}}{d \rho} d \rho=f^{\prime} d \mu^{\prime}=d \nu=f d \mu=f \frac{d \mu}{d \rho} d \rho
$$

Thus,

$$
f^{\prime} \frac{d \mu^{\prime}}{d \rho} d \rho=\nu f \frac{d \mu}{d \rho} d \rho
$$

Then, by the uniqueness of the Radon-Nikodym derivative, we have

$$
f^{\prime} \frac{d \mu^{\prime}}{d \rho}=f \frac{d \mu}{d \rho} \text { for } \rho \text {-a.e. }
$$

Thus,

$$
\left|f^{\prime}\right| \frac{d \mu^{\prime}}{d \rho}=|f| \frac{d \mu}{d \rho} \text { for } \rho \text {-a.e. } \Longrightarrow|f| d \mu=\left|f^{\prime}\right| d \mu^{\prime}
$$

Definition 4.41 (Total variation for complex measure). Given a complex measure ν, its total variation is the finite positive measures $|\nu|$ defined by

$$
d|\nu|:=|f| d \mu
$$

as in the previous proposition.
Observation 4.42. If ν is a finite signed (real-valued) measure with Jordan decomposition $\nu=\nu^{+}-\nu^{-}$, then we already defined

$$
|\nu|_{\mathbb{R}}:=\nu^{+}+\nu^{-}
$$

Let's check that our new definition agrees with original one, i.e., $|\nu|=\nu^{+}+\nu^{-}$. Note that $\nu^{+}+\nu^{-}$is a finite measure and $\nu \ll \nu^{+}+\nu^{-}$and letting $X=P \cup N$ be a Hanh decomposition for ν. So, we know

$$
\nu^{+}(E)=\nu(E \cap P) \text { and } \nu^{-}(E)=-\nu(E \cap N)
$$

Thus,

$$
\nu(E)=\int_{E}\left(1_{P}-1_{N}\right) d\left(\nu^{+}+\nu^{-}\right) \Longrightarrow d \nu=1_{P}-1_{N} d|\nu|_{\mathbb{R}}
$$

By definition,

$$
d|\nu|=\left|1_{P}-1_{N}\right| d|\nu|_{\mathbb{R}}=d|\nu|_{\mathbb{R}}
$$

since $\left|1_{P}-1_{N}\right|=1_{X}=1$. So $|\nu|=|\nu|_{\mathbb{R}}$, as desired.

Definition $4.43\left(L^{1}, L^{+}\right.$for complex measure). For a complex measure $\nu, L^{1}(\nu):=L^{1}\left(\nu_{r}\right) \cap L^{1}\left(\nu_{i}\right)$ and for $h \in L^{1}(\nu)$,

$$
\int h d \nu=\int h d \nu_{r}+i \int h d \nu_{i}
$$

Proposition 4.44 (Proposition 3.13 in [1] p. 94). Let ν be a complex measure on (X, \mathcal{M}). Then,
(a) $\forall E \in \mathcal{M},|\nu(E)| \leq|\nu|(E)$
(b) $\nu \ll|\nu|$ and $\frac{d \nu}{d|\nu|}$ has absolute value 1ν-a.e.
(c) $L^{1}(\nu)=L^{1}(|\nu|)$ and $\forall f \in L^{1}(\nu)$,

$$
\left|\int f d \nu\right| \leq \int|f| d|\nu|
$$

Proof. Let $d \nu=f d \mu, d|\nu|=|f| d \mu$ be as in definition of $|\nu|$. Then,

$$
|\nu(E)|=\left|\int_{E} f d \mu\right| \leq \int|f| d \mu=|\nu|(E)
$$

This proves (a) and show that $\nu \ll|\nu|$. For part (b), note that

$$
f d \mu=d \nu=\left(\frac{d \nu}{d|\nu|}\right) d|\nu|=h|f| d \mu
$$

Thus, $h|f|=f \mu$-a.e. However, $\{x:|f|(x)=0\}$ is $|\nu|$-null set since $|\nu|=|f| d \mu$. Thus, $|h|=1,|\nu|$-a.e.
For the part (c), Suppose ν be a complex measure on (X, \mathcal{M}). We want to show that $L^{1}(\nu)=L^{1}(|\nu|)$, and if $f \in L^{1}(\nu)$, then $\left|\int f d \nu\right| \leq \int|f| d|\nu|$. Before start the proof, we need a lemma.
Lemma 4.45. $L^{1}(\nu)=L^{1}(|\nu|)$.
Proof of the Lemma. For any simple function $f=\sum_{j=1}^{n} a_{j} 1_{A_{j}}$ with $A_{j} \in \mathcal{M}$,

$$
\int f d|\nu|=\sum_{j=1}^{n} a_{j}|\nu|\left(A_{j}\right)=\sum_{j=1}^{n} a_{j} \nu^{+}\left(A_{j}\right)+\sum_{j=1}^{n} a_{j} \nu^{-}\left(A_{j}\right)=\int f d \nu^{+}+\int f d \nu^{-}
$$

Thus for any $f \in L^{1}(\nu)=L^{1}\left(\nu^{+}\right) \cap L^{1}\left(\nu^{-}\right)$,

$$
\int|f| d|\nu| \leq \int|f| d \nu^{+}+\int|f| d \nu^{-}<\infty
$$

Since f was arbitrarily chosen, $L^{1}(\nu) \subseteq L^{1}(|\nu|)$. Conversely, if $f \in L^{1}(|\nu|)$, then

$$
\int|f| d|\nu|=\int|f| d \nu^{+}+\int f d \nu^{-}<\infty \Longrightarrow \int|f| d \nu^{+}<\infty \text { and } \int f d \nu^{-}<\infty
$$

thus $f \in L^{1}\left(\nu^{+}\right) \cap L^{1}\left(\nu^{-}\right)=L^{1}(\nu)$. Hence $L^{1}(\nu)=L^{1}(|\nu|)$
From the definition of complex measure space and the lemma,

$$
L^{1}(\nu)=L^{1}\left(\nu_{r}\right) \cap L^{1}\left(\nu_{i}\right)=L^{1}\left(\left|\nu_{r}\right|\right) \cap L^{1}\left(\left|\nu_{i}\right|\right)
$$

Let $\mu:=\left|\nu_{r}\right|+\left|\nu_{i}\right|$ Then, since each ν_{r} and ν_{i} are finite measure, so does μ. And also $\nu_{r} \ll \mu$ and $\nu_{i} \ll \mu$ by construction. Thus, by the Lebesgue-Radon-Nikodym theorem (Theorem 3.8), we have a μ-integrable function $g_{r}: X \rightarrow \mathbb{R}$ and $g_{i}: X \rightarrow \mathbb{R}$ such that

$$
\nu_{r}=g_{r} d \mu \text { and } \nu_{i}=g_{i} d \mu
$$

Thus, for any $E \in \mathcal{M}$,

$$
\nu(E)=\int_{E} d \nu=\int_{E} d \nu_{r}+i \int_{E} d \nu_{i}=\int_{E} g_{r}+i g_{i} d \mu
$$

Let $g:=g_{r}+i g_{i}$. Then, by the uniqueness of Radon-Nikodym derivative from theorem 3.8, $d|\nu|=$ $|g| d \mu, d\left|\nu_{r}\right|=\left|g_{r}\right| d \mu$, and $d\left|\nu_{i}\right|=\left|g_{i}\right| d \mu$. Also, the triangle inequality gives $\left|g_{r}\right| \leq|g|$ and $\left|g_{i}\right| \leq|g|$, thus

$$
\begin{aligned}
\left|\nu_{r}\right|(E) & =\int_{E}\left|\nu_{r}\right|
\end{aligned}=\int_{E}\left|g_{r}\right| d \mu \leq \int_{E}|g| d \mu=|\nu|(E)
$$

Thus, $\nu_{r} \ll|\nu|, \nu_{i} \ll|\nu|$, therefore by the Lebesgue-Radon-Nikodym theorem, there exists $|\nu|$-integrable function h_{r}, h_{i} such that $\nu_{r}=h_{r}|\nu|, \nu_{i}=h_{i}|\nu|$. Thus, for any $E \in \mathcal{M}$,

$$
\nu(E)=\int_{E} h_{r}+i h_{i} d|\nu|=\int_{E}\left(h_{r}+i h_{i}\right)|g| d \mu
$$

Let $h:=h_{r}+i h_{i}$. Since $\nu(E)=\int_{E} g d \mu$, this implies

$$
g=h|g| \text { for } \mu \text {-a.e. }
$$

And since $|\nu| \ll \mu$, this implies $g=h|g||\nu|$-a.e. Now let $E=g^{-1}(\{0\})$. Since g is $|\nu|$ measurable, E is $|\nu|$ measurable, therefore

$$
|\nu|(E)=\int_{E}|g| d \mu=\int_{E} 0 d \mu=0
$$

Thus, $g \neq 0|\nu|$-a.e., this implies $|h|=1|\nu|$-a.e. Also, triangle inequality implies $\left|h_{r}\right| \leq|h|=1$ and $\left|h_{i}\right| \leq|h|=1$.

To show the inequality, let $f \in L^{1}(\nu) \underbrace{=}_{\text {by the Lemma }} L^{1}(|\nu|)$. Then,

$$
\begin{aligned}
& \int|f| d\left|\nu_{r}\right|=\int|f|\left|h_{r}\right| d|\nu| \underbrace{\leq}_{\text {since }\left|h_{r}\right| \leq 1} \int|f| d|\nu|<\infty \\
& \int|f| d\left|\nu_{i}\right|=\int|f|\left|h_{i}\right| d|\nu| \underbrace{\leq}_{\text {since }\left|h_{i}\right| \leq 1} \int|f| d|\nu|<\infty
\end{aligned}
$$

Thus, $f \in L^{1}\left(\left|\nu_{r}\right|\right) \cap L^{1}\left(\left|\nu_{i}\right|\right)=L^{1}\left(\nu_{r}\right) \cap L^{1}\left(\nu_{i}\right)$. Conversely, if $f \in L^{1}\left(\left|\nu_{r}\right|\right) \cap L^{1}\left(\left|\nu_{i}\right|\right)$, then

$$
\int|f| d|\nu|=\int|f| 1 d|\nu|=\int|f|\left|h_{r}+i h_{i}\right| d|\nu| \leq \int|f|\left|h_{r}\right| d|\nu|+\int|f|\left|h_{i}\right| d|\nu|=\int|f| d\left|\nu_{r}\right|+\int|f| d\left|\nu_{i}\right|<\infty
$$

Thus, $f \in L^{1}(|\nu|)=L^{1}(\nu)$.
Also, note that for $f \in L^{1}(\nu)=L^{1}(|\nu|)$,
$\left|\int f d \mu\right|=\left|\int f d \nu_{r}+i f d \nu_{i}\right|=\left|\int f h_{r} d\right| \nu\left|+i f h_{i} d\right| \nu| |=\left|\int f\left(h_{r}+i h_{i}\right) d\right| \nu| | \leq \int|f|\left|h_{r}+i h_{i}\right| d|\nu|=\int|f| d|\nu|$, as desired.

Proposition 4.46 (Proposition 3.14 in [1] p.94). If ν_{1} and ν_{2} are complex measures on (X, \mathcal{M}), then $\left|\nu_{1}+\nu_{2}\right| \leq\left|\nu_{1}\right|+\left|\nu_{2}\right|$

Proof. By the proposition 4.40, we can write $\nu_{j}=f_{j} d \mu$ for $j=1,2$ and some μ-integrable function f_{j}. Then

$$
d\left|\nu_{1}+\nu_{2}\right|=\left|f_{1}+f_{2}\right| d \mu \leq\left|f_{1}\right| d \mu+\left|f_{2}\right| d \mu=d\left|\nu_{1}\right|+d\left|\nu_{2}\right|
$$

4.3 Differentiation on Euclidean Space

On \mathbb{R}, take $d \nu=f d m$, where $d m$ is the Lebesgue measure, with $f \in L^{1}(m)$. Let

$$
F(t):= \begin{cases}\nu((0, t]) & t>0 \\ 0 & t=0 \\ -\nu([t, 0]) & t<0\end{cases}
$$

Does this function F differentiable? If it is differentiable, we should show that

$$
\lim _{r \searrow 0} \frac{F\left(t_{0}+r\right)-F\left(t_{0}-r\right)}{2 r}=\lim _{r \searrow 0} \frac{\nu\left(\left(t_{0}-r, t_{0}+r\right]\right)}{m\left(\left(t_{0}-r, t_{0}+r\right]\right.}=\lim _{r \searrow 0} \frac{\int_{\left[t_{0}-r, t_{0}+r\right] f(y) d m(y)}}{m\left(\left[t_{0}-r, t_{0}+r\right]\right.} \overbrace{=}^{?} f\left(t_{0}\right)
$$

To show this, fix $n \in \mathbb{N}$ and let m denote the Lebesgue measure on \mathbb{R}^{n}.
Definition 4.47 (Locally integrable). $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is locally integrable if $\int_{K}|f(x)| d m(x)<+\infty$ for all bounded measureable set $K \subseteq \mathbb{R}^{n}$. It is enough to take $K=B(r, x)$ where

$$
B(r, x):=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}
$$

Let $L_{\text {loc }}^{1}$ denote the set of locally integrable functions f on \mathbb{R}^{n}.
Remark 4.48 (Notation). For $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right), x \in \mathbb{R}^{n}, r>0$, let

$$
A_{r} f(x):=\frac{1}{m(B(r, x))} \int_{B(r, x)} f(y) d y
$$

"A" means average.
(1) $E \in \mathbb{R}^{n}$ is measurable, then $m(r E)=r^{n} m(E)$ by the theorem 2.44 in [1][p.73].
(2) $m(B(r, x))=m(B(r, 0))=\frac{r^{n} \pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)}$. where

$$
\Gamma(1+k)=k!, \Gamma\left(k+\frac{1}{2}\right)=\frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{2^{k}} \sqrt{\pi}
$$

Definition 4.49 (Jointly continuous). A function $g(a, b)$ is jointly continuous iff $g(a, b) \rightarrow g(x, y)$ when $a \rightarrow x$ and $b \rightarrow y$.
Lemma 4.50 (Lemma 3.16 in [1]p.96). If $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, then $A_{r} f(x)$ is jointly continuous in $r>0$ and $x \in \mathbb{R}^{n}$
Proof. This is equivalent to showing $(r, x) \mapsto \int_{B(r, x)} f(y) d m(y)$ is jointly continuous. Let $r_{k} \rightarrow r>0$, $x_{k} \rightarrow x$. Then, for some large enough $k,\left|1_{B\left(r_{k}, x_{k}\right)} f\right| \leq\left|1_{B\left(r_{k}, x\right)} f\right|$. Thus, by the DCT,

$$
\lim _{k \rightarrow \infty} \int 1_{B\left(r_{k}, x_{k}\right)} f d m \underbrace{=}_{\mathrm{DCT}} \int 1_{B(r, x)} f d m .
$$

Definition 4.51 (Hardy Littlewood Maximal Function). If $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ then the Hardy-littlewood maximal function of f is

$$
(H f)(x)=\sup _{r>0} A_{r}|f|(x)
$$

Thus,

$$
(H f)^{-1}((t, \infty))=\bigcup_{r>0}\left(A_{r}|f|\right)^{-1}((t, \infty))
$$

and this set is open by the lemma 3.16 since $A_{r}(f)$ is continuous on any $t \in \mathbb{R}^{n}$.

Theorem 4.52 (The Hardy-Littlewood maximal theorem, 1930, 3.17 in [1] p.96). $\exists C>0$ depnding on n such that $\forall f \in L^{1}(m), \forall \alpha>0$,

$$
m(\{x: H f(x)>\alpha\}) \leq \frac{C}{\alpha} \int|f| d m
$$

Or since $\|f\|_{1}=\int|f| d m$, we can restate it as

$$
m(\{x: H f(x)>\alpha\}) \leq \frac{C}{\alpha}\|f\|_{1}
$$

To see this, we need a technical lemma, 3.15 in [1].
Lemma 4.53 (Lemma 3.15 in [1], p.96). Let \mathcal{C} be a collection of open balls in \mathbb{R}^{n} and let $u=\bigcup_{B \in \mathcal{C}} B$. If $t<m(U)$, there exists a disjoint sequence $B_{1}, \cdots B_{k} \in \mathcal{C}$ such that $\sum_{j=1}^{k} m\left(B_{j}\right)>3^{-n} t$.
Proof. By theorem 2.40 in [1], there exists a compact set $K \subset U$ such that $c<m(K)$. Since K is compact and \mathcal{C} is a cover of K it has a finite subcover, say $\mathcal{L}_{1}:=\left\{A_{1}, \cdots, A_{q}\right\}$. Let $B_{1} \in \mathcal{L}$ be a ball with maximal radius. Let $\mathcal{L}_{2}:=\left\{A \in \mathcal{L}_{1}: A \cap B_{1}=\emptyset\right\}$. If \mathcal{L}_{\in} is empty, then stop. Otherwise, take $B_{2} \in \mathcal{L}_{2}$ such that B_{2} has the maximal radius in \mathcal{L}_{2}, and let $L_{3}:=\left\{A \in \mathcal{L}_{2}: A \cap\left(B_{1} \cup B_{2}\right)=\emptyset\right\}$. Continue this process until we stop. (Since \mathcal{L}_{1} has finitely many balls, this process must stop at some point.) Say $\mathcal{L}_{k+1}=\emptyset$. Then, $\left\{B_{1}, \cdots B_{k}\right\}$ are chosen ball which are pairwise disjoint. Then, $\forall A \in \mathcal{L}_{1} \backslash\left\{B_{1}, \cdots B_{k}\right\}, A \cap B_{p}$ for some $p \in[k]$. Now let

$$
p=\min _{p \in[k]}\left\{A \cap B_{l} \neq \emptyset: A \in \mathcal{L}_{1} \backslash\left\{B_{1}, \cdots B_{k}\right\}, B_{l} \in\left\{B_{1}, \cdots, B_{k}\right\}\right\}
$$

Then, $A \cap\left(B_{1} \cup \cdots \cup B_{p-1}\right)=\emptyset$. Thus, $A \in \mathcal{L}_{p}$, thus A has a radius less than B_{p}, hence $A \subset B_{p}^{*}$ where B_{p}^{*} is a ball concentric with B_{p} whose radius is three times that of B_{p}. Since A was arbitrary, every element in $\mathcal{L}_{1} \backslash\left\{B_{1}, \cdots B_{k}\right\}$ is contained in one of B_{p}^{*} and each B_{p} is contained in B_{p}^{*}. Thus,

$$
K \subset \bigcup_{j=1}^{k} B_{j} \Longrightarrow t<m(K)<3^{n} \sum_{j=1}^{k} m\left(B_{j}\right) \Longrightarrow \frac{t}{3^{n}}<\sum_{j=1}^{k} m\left(B_{j}\right)
$$

Proof of the Maximal theorem. Let $E_{\alpha}=\{x: H f(x)>\alpha\}$. If $x \in E_{\alpha}$, let $r_{x}>0$ such that $A_{r_{x}}|f|(x)>\alpha$. Thus,

$$
E_{\alpha} \subset \bigcup_{x \in E_{\alpha}} B\left(r_{x}, x\right)
$$

Therefore, if $c<m\left(E_{\alpha}\right)$, then by the lemma 3.15 in [1], there exists $x_{1}, \cdots, x_{k} \in E_{\alpha}$ such that $B_{j}:=$ $B\left(r_{x_{j}}, x_{j}\right)$ s are disjoint and $\sum_{j=1}^{k} m\left(B_{j}\right)>3^{-n} t$. Since each $x_{j} \in E_{\alpha}$, this implies

$$
\frac{1}{m\left(B_{j}\right)} \int_{B_{j}}|f| d m>\alpha \Longrightarrow \frac{1}{\alpha} \int_{B_{j}}|f| d m>m\left(B_{j}\right) \text { for each } j
$$

Thus,

$$
t 3^{-n} \leq \sum_{j=1}^{k} m\left(B_{j}\right)<\frac{1}{\alpha} \sum_{j=1}^{k} \int_{B_{j}}|f| d m=\frac{1}{\alpha} \int 1_{\bigcup_{j=1}^{k} B_{j}}|f| d m \leq \frac{1}{\alpha} \int_{\mathbb{R}^{n}}|f| d m=\frac{1}{\alpha} \int|f| d m
$$

Thus,

$$
t<\frac{3^{n}}{\alpha} \int|f| d m
$$

and by taking supremum on t, we can conclude that

$$
m\left(E_{\alpha}\right) \leq \frac{3^{n}}{\alpha} \int|f| d m
$$

Actually, Stein and Stromberg (1983) gives that $C=O(n \log n)$ result. Now we will prove that $\lim _{r \searrow 0} A_{r} f(y)=$ $f(x)$ for "most" x. But for particular $x, \lim _{r \searrow 0} A_{r} f(y)$ need not exists. For example, let $f=\sum_{n=1}^{\infty} 1_{\left[2^{\left.-n^{2}-1,2^{-n^{2}}\right]} \text {. }\right.}$. If $r=2^{-n^{2}}$ then $A_{r} f(0)>\frac{1}{4}$. If $r=2^{-n^{2}-1}$ then

$$
A_{r} f(0)=\frac{2^{-n^{2}}-2^{-n^{2}-1}}{2 \cdot 2^{-n^{2}}}+\sum_{k=n+1}^{\infty} \frac{2^{-k^{2}}-2^{-k^{2}-1}}{2 \cdot 2^{-n^{2}}} \geq \frac{2^{-n^{2}}-2^{-n^{2}-1}}{2 \cdot 2^{-n^{2}}}=\frac{2^{-n^{2}-1}}{4 \cdot 2^{-n^{2}-1}}=\frac{1}{4}
$$

However, if $r=2^{-n^{2}-1}$ then

$$
A_{r} f(0)=\frac{2^{-(n+1)^{2}}-2^{-(n+1)^{2}-1}}{2^{-n^{2}-1}}+\sum_{k=n+2}^{\infty} \frac{2^{-k^{2}}-2^{-k^{2}-1}}{2 \cdot 2^{-n^{2}-1}} \leq \frac{2^{-(n+1)^{2}}}{2^{-n^{2}-1}}=2^{-2 n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

So $\lim \sup _{r \searrow 0} A_{r} f(0) \geq \frac{1}{4}$ but $\liminf _{r \searrow 0} A_{r} f(0)=0$, therefore limit doesn't exists.
Theorem 4.54 (Differntiation Theorem Version 1. 3.18 in [1] p.97). If $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ then $\lim _{r \rightarrow 0^{+}} A_{r} f(x)=$ $f(x)$ for a.e. $x \in \mathbb{R}^{n}$.
Proof. It will suffices to show that $\forall N \in \mathbb{N}, \lim _{r \rightarrow 0^{+}} A_{r} f(x)=f(x)$ for a.e. $x \in B(N, 0)$, However, since we are interested in local points near x with small radius r, thus when we set $r<1$, then

$$
A_{r} f(x)=A_{r}\left(f 1_{B(N, 0)}\right)
$$

Thus we may assume that $f \in L^{1}$
By the theorem 2.41, $\exists g: \mathbb{R}^{n} \rightarrow \mathbb{C}$ continuous and compactly supported function, such that $\|f-g\|_{1}<\epsilon$.
Claim 4.55. $\lim _{r \rightarrow 0^{+}} A_{r} g(x)=g(x)$ for any $x \in \mathbb{R}^{n}$
Proof of the claim. Since g is continuous, $\forall x \in \mathbb{R}^{n}$ and $\forall \delta>0, \exists r>0$ such that $|g(y)-g(x)|<\delta$ whenever $|y-x|<r$. Thus,

$$
\left|A_{r} g(x)-g(x)\right|=\frac{1}{m(B(r, x))}\left|\int_{B(r, x)}(g(y)-g(x))\right|<\frac{\delta m(B(r, x))}{m(B(r, x))}=\delta
$$

Thus $A_{r} g(x) \rightarrow g(x)$ as $r \rightarrow 0$.
Now, note that

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}} A_{r} f(x)=f(x) \text { for a.e. } x \in \mathbb{R}^{n} & \Longleftrightarrow \lim _{r \rightarrow 0^{+}}\left|A_{r} f(x)-f(x)\right|=0 \text { for a.e. } x \in \mathbb{R}^{n} \\
& \Longleftrightarrow \inf _{\delta>0} \sup _{0<r<\delta}\left|A_{r} f(x)-f(x)\right|=0 \text { for a.e. } x \in \mathbb{R}^{n}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\inf _{\delta>0} \sup _{0<r<\delta}\left|A_{r} f(x)-f(x)\right| \underbrace{\leq}_{\text {Triangle ineq. }} & \lim \sup _{r \rightarrow 0^{+}}\left|A_{r} f(x)-A_{r} g(x)\right| \\
& +\lim \sup _{r \rightarrow 0^{+}}\left|A_{r} g(x)-g(x)\right| \\
& +\lim \sup _{r \rightarrow 0^{+}}|g(x)-f(x)|
\end{aligned}
$$

For the first term,

$$
\begin{aligned}
\lim _{r \rightarrow 0^{+}}\left|A_{r} f(x)-A_{r} g(x)\right| & =\left|\frac{1}{m(B(r, x))} \int_{B(r, x)}(f(y)-g(y)) d y\right| \leq \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-g(y)| d y \\
& =A_{r}|f-g|(x) \leq H(f-g)(x)
\end{aligned}
$$

And $\lim \sup _{r \rightarrow 0^{+}}\left|A_{r} g(x)-g(x)\right|=0$ by the above claim. Thus,

$$
\lim \sup _{r \rightarrow 0^{+}}\left|A_{r} f(x)-f(x)\right| \leq H(f-g)(x)+|f-g|(x)
$$

To show this, let

$$
\alpha>0, E_{\alpha}:=\left\{x \in \mathbb{R}^{n}: \lim \sup _{r \rightarrow 0^{+}}\left|A_{r} f(x)-f(x)\right| \geq \alpha\right\}
$$

Then,

$$
E_{\alpha} \subseteq F_{\frac{\alpha}{2}} \cup G_{\frac{\alpha}{2}}
$$

when

$$
F_{\alpha}:=\left\{x \in \mathbb{R}^{n}: H(f-g)(x)>\alpha\right\}, G_{\alpha}:=\left\{x \in \mathbb{R}^{n}:|f-g|>\alpha\right\} .
$$

However, by the Hardy Littlewood Maximal Theorem,

$$
m\left(F_{\frac{\alpha}{2}}\right) \leq \frac{C}{\frac{\alpha}{2}}\|f-g\|_{1}<\frac{2 C \epsilon}{\alpha} \text { and } m\left(G_{\frac{\alpha}{2}}\right) \leq \frac{\|f-g\|_{1}}{\frac{\alpha}{2}}<\frac{2 \epsilon}{\alpha}
$$

Thus,

$$
m\left(E_{\alpha}\right) \leq \frac{2 C+1}{\alpha} \epsilon \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

Therefore,

$$
\forall x \in \mathbb{R}^{n} \backslash, \bigcup_{j=1}^{\infty} E_{\frac{1}{j}}, \lim _{r \rightarrow 0^{+}} A_{r} f(x)=f(x)
$$

This implies that

$$
\lim _{r \rightarrow 0^{+}} A_{r} f(x)=f(x) \text { for a.e. } x
$$

So, the theorem 3.18 implies that

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{m(B(r, x))} \int_{B(r, x)}(f(y)-f(x)) d m(y)=0 \text { for a.e. } x .
$$

However, even this is true when we change $f(y)-f(x)$ to $|f(y)-f(x)|$.
Definition 4.56 (Lebesgue set of f). For $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, the Lebesgue set of f is

$$
L_{f}:=\left\{x \in \mathbb{R}^{n}: \lim _{r \rightarrow 0^{+}} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-f(x)| d m(y)=0\right\}
$$

Theorem 4.57 (Theorem 3.20 in [1] p.98). If $f \in L_{l o c}^{1}\left(\mathbb{R}^{m}\right)$ Then $\left.m\left(L_{f}\right)^{c}\right)=0$
Proof. For $z \in \mathbb{C}$, let $f_{z}(x)=|f(x)-z|$ and apply the theorem 3.18 in [1]. Then, $\exists E_{z} \subseteq \mathbb{R}^{n}$ such that $m\left(E_{z}\right)=0$ and $\forall x \in E_{z}^{c}$,

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-z| d m(y)=|f(x)-z|
$$

Now let D be a countable dense subset of \mathbb{C}, and let $E=\bigcup_{z \in D} E_{z}$. Then, $m(E)=0$, since it is countable union of null sets. Let $x \in E^{c}, \epsilon>0$, and let $z \in D$ such that $|z-f(x)|<\epsilon$. This choice is possible since D is countable dense. Then,

$$
\forall y \in \mathbb{R}^{n},|f(y)-f(x)|<\epsilon+|f(y)-z|
$$

Since $x \in E_{z}^{c}$,

$$
\begin{aligned}
\lim \sup _{r \rightarrow 0^{+}} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-f(x)| d m(y) & \leq \epsilon+\lim \sup _{r \rightarrow 0^{+}} \frac{1}{m(B(r, x))} \int_{B(r, x)}|f(y)-z| d m(y) \\
& =\epsilon+|f(x)-z| \leq 2 \epsilon
\end{aligned}
$$

where the equality comes from the fact that $z \in E_{z}^{c}$, and the last inequality comes from our choice of z as $|z-f(x)|<\epsilon$. Thus by letting $\epsilon \rightarrow 0, x \in L_{f}^{c}$.
Definition 4.58 (Shrink Nicely). A family $\left(E_{r}\right)_{r>0}$ of subsets of \mathbb{R}^{n} shrink nicely to $x \in \mathbb{R}^{n}$ if
(i) $\forall r>0, E_{r} \subseteq B(r, x)$.
(ii) $\exists \alpha>0$, s.t. $\forall r>0, m\left(E_{r}\right) \leq \alpha m(B(r, x))$.

Example 4.59 (Example of a family shrinking nicely). Let $E_{r}=x+B\left(\frac{r}{3},\left(\frac{r}{2}, 0, \cdots, 0\right)\right)$ on \mathbb{R}^{n}. Then, since the farthest point of E_{r} from x is $\left(\frac{5 r}{6}, 0, \cdots, 0\right), E_{r} \subseteq B(r, x)$ and

$$
m\left(E_{r}\right)=V\left(\frac{r}{3}\right)=C r^{n} 3^{-n}>4^{-n}\left(C r^{n}\right)=4^{-n} m(B(r, x))
$$

Thus $\left(E_{r}\right)_{r>0}$ shrinks nicely to x.
Proposition 4.60 (The Lebesgue Differentiation Theorem, 3.21 in [1], p.98). If $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, $x \in L_{f}$, and if $\left(E_{r}\right)_{r>0}$ is a family shrinking nicely to x, then

$$
\lim _{r \rightarrow 0^{+}} \int_{E_{r}}|f(y)-f(x)| d m(y)=0
$$

Proof. From shirinking nicely to x property

$$
\frac{1}{m\left(E_{r}\right)} \int_{E_{r}}|f(y)-f(x)| d m(y) \leq \frac{1}{\alpha m(B(r, x))} \int_{B(r, x)}|f(y)-f(x)| d m(y)
$$

and $\frac{1}{\alpha m(B(r, x))} \int_{B(r, x)}|f(y)-f(x)| d m(y) \rightarrow 0$ as $r \rightarrow 0^{+}$since $x \in L_{f}$.
Definition 4.61 (Regular Borel measure). A Borel measure ν on \mathbb{R}^{n} is regular if
(i) $\nu(K)<\infty$ for all compact subset $K \subseteq \mathbb{R}^{n}$
(ii) $\forall E \in \mathcal{B}_{\mathbb{R}^{n}}, \nu(E)=\inf \left\{\nu(U): U\right.$ is open, $\left.U \subseteq \mathbb{R}^{n}, E \subseteq U\right\}$.

If ν is signed or complex Borel measure, then ν is regular if $|\nu|$ is regular.
Proposition 4.62. If ν is regular, then $\forall E \in \mathcal{B}\left(\mathbb{R}^{n}\right)$,

$$
\nu(E)=\sup \left\{\nu(K): K \subseteq \mathbb{R}^{n}, K \text { is compact, } K \subseteq E\right\}
$$

Proof. Without loss of generality, let E be bounded, such that $E \subseteq B(N, 0)$. Let $F=B(N, 0) \backslash E$. Let $\epsilon>0$. Then, by the regularity, $\exists U \subseteq \mathbb{R}^{n}$ open, such that $F \subseteq U$, such that

$$
\nu(U)<\nu(F)+\epsilon .
$$

Let $K=\overline{B(N, 0)} \backslash U \subseteq E$. Then,

$$
\begin{aligned}
\nu(E \backslash K) \leq \nu(E)-\nu(K) & =\nu(E)-(\nu(B(N-\epsilon, 0))-\nu(U)) \\
& <\nu(E)-\nu(B(N-\epsilon, 0))+\nu(F)+\epsilon \\
& =\nu(B(N, 0))-\nu(B(N-\epsilon, 0))+\epsilon \\
& =\epsilon C(\epsilon)
\end{aligned}
$$

where $C(\epsilon)$ is just polynomial of ϵ. Thus, letting $\epsilon \rightarrow 0, \nu(E \backslash K) \rightarrow 0$. Hence the desired conclusion holds.

Theorem 4.63 (Theorem 2.40, Dr. Dykema's proof). Lebesgue measure m on \mathbb{R}^{n} is regular.
Proof. The case $n=1$ is done by theorem 1.18. on [1][p.36]. For $n>1$, condition (i) is clear. For (ii), let $E \in \mathcal{B}_{\mathbb{R}^{n}}$. If $m(E)=+\infty$, then it is okay, since \mathbb{R}^{n} covers E. If $m(E)<+\infty$, then from definition of product measure, for any fixed $\epsilon>0, \exists k \in \mathbb{N}$ with $B_{1}, \cdots, B_{k} \subseteq \mathbb{R}^{n}$ such that

$$
\forall j \in[k], B_{j}:=A_{j, 1} \times A_{j, 2} \times \cdots \times A_{j, n}, \text { where } A_{j, i} \in \mathcal{B}_{\mathbb{R}} \text { and } E \subseteq \bigcup_{j=1}^{k} B_{j} \text { and } m(E)+\epsilon \geq \sum_{j=1}^{k} m\left(B_{j}\right)
$$

By the regularity of Lebesgue measure on \mathbb{R}, for any $\delta>0, \exists$ open $V_{i, j} \subseteq \mathbb{R}$ such that

$$
A_{j, i} \subseteq V_{j, i} \text { and } m\left(V_{j, i}\right)-\delta \leq m\left(A_{j, i}\right)
$$

Let $V_{j}:=\prod_{i=1}^{n} V_{j, i}$. Then, $V_{j} \supseteq B_{j}$ and V_{j} is open. By choosing δ smaller, we can have

$$
m\left(V_{j}\right)-\frac{\epsilon}{k} \leq m\left(B_{j}\right)
$$

Then, let $U=\bigcup_{j=1}^{k} U_{j}$. Then $E \subseteq U$, and $m(U)-\epsilon \leq \sum_{j=1}^{k} m\left(B_{j}\right)$.
Proposition 4.64 (Lemma for theorem 3.22 in [1] p.99). Let $f \in L^{+}\left(\mathbb{R}^{n}\right)$. Let $d \nu=f d m$. Then, ν is regular iff $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$.

Proof. If ν is regular, then $\nu(\overline{B(R, 0)})<+\infty$, so $f 1_{\overline{B(R, 0)}} \in L^{1}\left(\mathbb{R}^{n}\right)$. Thus, $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$.
Conversely, if $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Then, for ν and $K \subseteq \mathbb{R}^{n}$ where K is compact set, there exists $N \in \mathbb{N}$ such that $K \subseteq B(N, 0)$, thus $\nu(K) \leq \nu(B(N, 0))=\int f 1_{B(N, 0)} d m<\infty$, thus condition (i) of regularity holds.

To show condition (ii), suppose $E \in \mathcal{B}_{\mathbb{R}^{n}}$ is bounded. (If it is not bounded, then take $U=\mathbb{R}^{n}$.) Let $\epsilon>0$, we want to find $U \subseteq \mathbb{R}^{n}$ which is open and $E \subseteq U$, and $\nu(E)+\epsilon \geq \nu(U)$. Suppose $E \subseteq B(R, 0)$. Note that $f 1_{B(R, 0)} \in L^{1}\left(\mathbb{R}^{n}\right)$. Then by applying Corollary 3.6 in $[1][\mathrm{p} .89]$ to $f 1_{B(R, 0)}$; for any $\epsilon>0$ there exists $\delta>0$ such that $\forall F \in \mathcal{B}_{\mathbb{R}^{n}}$ with $m(F)<\delta$,

$$
\int_{F} f 1_{B(R, 0)} d m<\epsilon
$$

By regularity of Lebesgue measure, $\exists U \subseteq \mathbb{R}^{n}$ which is open and $E \subseteq U$ and $m(U \backslash E)<\epsilon$. Thus,

$$
\int_{U \backslash E} f 1_{B(R, 0)} d m<\epsilon \Longleftrightarrow \int_{U \backslash E \cap B(R, 0)} f d m<\epsilon \Longleftrightarrow \nu(U \cap B(R, 0) \backslash E)<\epsilon
$$

Since $U \cap B(R, 0)$ is open set, we are done.
Lemma 4.65. Let λ, μ be positive Borel measure on \mathbb{R}^{n}. Then, $\mu+\lambda$ is regular if and only if μ and λ are regular.

Proof. For condition (i), if $\mu+\lambda$ is regular, then any $K \subseteq \mathbb{R}^{n}$ with compactness, $\mu(K) \leq(\mu+\lambda)(K)<\infty$ and $\lambda(K) \leq(\mu+\lambda)(K)<\infty$, thus (i) holds for μ and λ. Conversely, if μ and λ is regular, then $(\mu+\lambda)(K)=$ $\mu(K)+\lambda(K)<+\infty$.

For condition (ii), suppose $\mu+\lambda$ is regular. Then, for any $E \in \mathcal{B}_{\mathbb{R}^{n}} \exists U \subseteq \mathbb{R}^{n}$ which is open, $E \subseteq U$ and

$$
(\mu+\lambda)(U)<(\mu+\lambda)(E)+\epsilon \Longrightarrow 0 \leq \mu(U)-\mu(E)+\lambda(U)-\lambda(E)<\epsilon
$$

From $U \supset E$, we know $0<\mu(U)-\mu(E)$ and $0<\lambda(U)-\lambda(E)$. Thus,

$$
0 \leq \mu(U)-\mu(E)<\epsilon \text { and } 0 \leq \lambda(U)-\lambda(E)<\epsilon
$$

Since ϵ was arbitrary, we have desired result. Conversely, if μ and λ are regular, then for any $\epsilon>0, \exists U_{1}, U_{2}$ open sets containing E and

$$
\mu\left(U_{1}\right)<\mu(E)+\epsilon \text { and } \lambda\left(U_{2}\right)<\lambda(E)+\epsilon
$$

Then, $U=U_{1} \cap U_{2}$ is also open, since it is finite intersection, and $E \subset U$. Thus,
$\mu(U)<\mu(E)+\epsilon$ and $\lambda(U)<\lambda(E)+\epsilon \Longrightarrow 0<\mu(U)+\lambda(U)-\mu(E)-\lambda(E)<\epsilon \Longrightarrow 0<(\mu+\lambda)(U)-(\mu+\lambda)(E)<\epsilon$.
Thus, by letting $\epsilon \rightarrow 0$, we have desired result.
Theorem 4.66 (Theorem 3.22 in [1], p.99). Let ν be a signed or complex Borel measure on \mathbb{R}^{n} that is regular. Let

$$
d \nu=d \lambda+f d m
$$

(where $d \rho=f d m$) be the Lebesgue-Radon-Nikodym decomposition. (So $\lambda \perp m$). Then for m-a.e. $x \in \mathbb{R}^{n}$,

$$
\lim _{r \searrow 0} \frac{\nu\left(E_{r}\right)}{m\left(E_{r}\right)}=f(x)
$$

for every family $\left(E_{r}\right)_{r>0}$ that shrink nicely to x.
Proof. Note that $\nu-\lambda=\rho=f d m$ is regular by the proposition 4.64, $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$. By the Lebesgue Differentiation theorem,

$$
\frac{\rho(E)}{m(E)}=\frac{1}{m\left(E_{r}\right)} \int_{E_{r}} f d m \rightarrow 0 \text { as } r \rightarrow 0 \text { for a.e. } x \text { and }\left(E_{r}\right)_{r>0} \text { shrinking nicely to } x .
$$

So it remains to show that for almost every x,

$$
\frac{\lambda\left(E_{r}\right)}{m\left(E_{r}\right)} \rightarrow 0 \text { as } r \searrow 0 \text { for every }\left(E_{r}\right)_{r>0} \text { shrinking nicely to } x
$$

Since shrinking nicely to x implies that $E_{r} \subseteq B(r, x)$ and that $\exists \alpha>0$ such that $\forall r, m\left(E_{r}\right)>\alpha m(B(r, x))$,

$$
\left|\frac{\lambda\left(E_{r}\right)}{m\left(E_{r}\right)}\right| \leq \frac{|\lambda|\left(E_{r}\right)}{m\left(E_{r}\right)} \leq \frac{|\lambda|(B(r, x))}{\alpha m(B(r, x))}
$$

where first equality comes from $\left|\lambda\left(E_{r}\right)\right| \leq|\lambda|\left(E_{r}\right)$ and the last equality comes from $E_{r} \subseteq B(r, x)$ and $m\left(E_{r}\right)>\alpha m(B(r, x))$. Thus, it suffices to show that for a.e. x,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{|\lambda|(B(r, x))}{\alpha m(B(r, x))}=0 \tag{17}
\end{equation*}
$$

Note that $|\lambda| \perp m$. Thus, $\exists A \in \mathcal{B}_{\mathbb{R}^{n}}$ such that $|\lambda|(A)=0=m\left(A^{c}\right)$. Let

$$
F_{k}:=\left\{x \in A: \lim \sup _{r \searrow 0} \frac{|\lambda|(B(r, x))}{\alpha m(B(r, x))}>\frac{1}{k}\right\} .
$$

It will suffices to show that $m\left(F_{k}\right)=0$. Since then (17) will holds for all $x \in A \backslash \bigcup_{k=1}^{\infty} F_{k}$ and

$$
m\left(\left(A \backslash \bigcup_{k=1}^{\infty} F_{k}\right)^{c}\right)=m\left(A^{c} \cup\left(\bigcup_{k=1}^{\infty} F_{k}\right)\right) \leq m\left(A^{c}\right)=0
$$

Let $\epsilon>0$. We have $|\lambda|\left(F_{k}\right) \leq|\lambda|(A)=0$ By the regularity of $|\lambda|$ which is from definition of regularity of signed measure, $\exists U$, open in \mathbb{R}^{n} such that $F_{k} \subseteq U$ and $|\lambda|(U)<\epsilon$. Given $x \in F_{k}, \exists r_{x}>0$ such that

$$
\frac{|\lambda|\left(B\left(r_{x}, x\right)\right.}{m\left(B\left(r_{x}, x\right)\right)}>\frac{1}{k} \text { and } B\left(r_{x}, x\right) \subset U
$$

. Let $V:=\bigcup_{x \in F_{k}} B\left(r_{x}, x\right)$. Then $F_{k} \subset V \subset U$. Then by the covering lemma 3.15 in [1][p.95], $\exists x_{1}, \cdots, x_{n} \in$ F_{k} such that $B\left(r_{x_{1}}, x_{1}\right), \cdots, B\left(r_{x_{n}}, x_{n}\right)$ are disjoint and

$$
\sum_{j=1}^{n} m\left(B\left(r_{x_{j}}, x_{j}\right)\right) \geq 3^{-n} m(V)
$$

Then,

$$
3^{-n} m(V) \leq \sum_{j=1}^{n} m\left(B\left(r_{x_{j}}, x_{j}\right)\right) \leq k \sum_{j=1}^{n}|\lambda|\left(B\left(r_{x}, x_{j}\right)\right) \leq k|\lambda|(V) \leq k|\lambda|(U) \leq k \epsilon
$$

So,

$$
m\left(F_{k}\right) \leq m(V) \leq 3^{n} k \epsilon
$$

By $\epsilon \rightarrow 0$, we has $m\left(F_{k}\right)=0$ as desired.

4.4 Functions of Bounded Variation

Suppose $G: \mathbb{R} \rightarrow \mathbb{R}$ is increasing right continuous function. Then, the Lebesgue-Stieltjes measure μ_{G} is determined by

$$
\mu_{G}([a, b])=G(b)-G(a) .
$$

Then, μ_{G} is regular, as proved in theorem 1.18.
Theorem 4.67 (Theorem 3.23 in [1]p.101). Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be increasing function. let $G(x)=F(x+):=$ $\lim _{t \rightarrow x^{+}} F(t)=\inf _{t>x} F(t)$. Then,
(a) The set of points at which F is discontinuous is at most countable.
(b) F and G are differentiable almost everywhere, and $F^{\prime}=G^{\prime}$ m-a.e.

This may be related Qualifier exam... But not sure.
Proof. For (a), let

$$
E_{N}:=\{x \in(-N, N: F(x+) \neq F(x-)\},
$$

where $F(x-):=\lim _{t \rightarrow x-} F(t)=\sup _{t<x} F(t)$. Since

$$
\sum_{x \in E_{N}}(F(x+)-F(x-)) \leq F(N)-F(-N)<\infty
$$

This implies E_{N} must be countable set; otherwise the sum should be infinity, contradiction. Hence, $\bigcup_{N=1}^{\infty} E_{N}=\{x \in \mathbb{R}: F(x+) \neq F(x-)\}$ is also countable.

For part (b), note that G is increasing and right continuous, and $G(x)=F(x)$ except $x \in E:=\{x \in \mathbb{R}$: $F(x+) \neq F(x-)\}$. Moreover,

$$
G(x+h)-G(x)=\left\{\begin{array}{ll}
\mu_{G}((x, x+h]) & \text { if } h>0 \\
-\mu_{G}((x+h, x]) & \text { if } h<0
\end{array},\right.
$$

where μ_{G} is a Lebesgue Stieltjes measure with respect to G. By theorem $1.18, \mu_{G}$ is regular. So, from Radon-Nikodym decomposition $d \mu_{G}=d \lambda+f d m, f \in L_{\text {loc }}^{1}(\mathbb{R})$. Also note that $((x, x+h])_{h>0}$ shrinks nicely to x, since $(x, x+h] \subseteq B(x, h)$ and $m(x, x+h]=h>\frac{2}{3} h=\frac{2}{3} m(B(h, x))$. Thus, by the theorem 3.22, for m-a.e. $x \in \mathbb{R}$,

$$
\frac{G(x+h)-G(x)}{h}=\frac{\mu_{G}((x, x+h])}{m((x, x+h])} \rightarrow f(x) \text { as } h \searrow 0 .
$$

Also, $((x-h, x])_{h>0}$ shrinks nicely to x, by the similar argument. Thus, by the theorem 3.22 , for m-a.e. $x \in \mathbb{R}$,

$$
\frac{G(x)-G(x-h)}{h}=\frac{\mu_{G}((x-h, x])}{m((x-h, x])} \rightarrow f(x) \text { as } h \searrow 0
$$

Thus, for m-a.e. $x \in \mathbb{R}, G$ and F are differentiable. And from part (a), $F(x) \neq G(x)$ is countable. Now it suffices to show that if $x \in \mathbb{R}$ and $F(x)=G(x)$ and $G^{\prime}(x)$ exists, then $F^{\prime}(x)=G^{\prime}(x)$.

For some fixed $x \in \mathbb{R}$, suppose $F(x)=G(x)$ and $G^{\prime}(x)$ exists, then $F^{\prime}(x)=G^{\prime}(x)$.Let $0<\alpha<1$. For $h>0$,

$$
G(x+\alpha h)=F((x+\alpha h)+) \leq F(x+h) \leq F((x+h)+)=G(x+h)
$$

where the first inequality comes from F is an increasing function. Thus,

$$
G(x+\alpha h) \leq F(x+h) \leq G(x+h) .
$$

Then, we can modify this inequality as below;

$$
\alpha \cdot \frac{G(x+\alpha h)-G(x)}{\alpha h}=\frac{G(x+\alpha h)-G(x)}{h} \leq \frac{F(x+h)-F(x)}{h} \leq \frac{G(x+h)-G(x)}{h}
$$

By letting $h \rightarrow 0$, we have

$$
\alpha G^{\prime}(x) \leq \lim \inf _{h \searrow 0} \frac{F(x+h)-F(x)}{h} \leq \lim \sup _{h \searrow 0} \frac{F(x+h)-F(x)}{h} \leq G^{\prime}(x) .
$$

By letting $\alpha \rightarrow 1$, we can conclude that $\lim _{h \rightarrow 0^{+}} \frac{F(x+h)-F(x)}{h}$ exists and equal to $G^{\prime}(x)$, as desired.
Using the almost same argument, we have

$$
G(x-\alpha h)=F((x-\alpha h)+) \geq F(x-h) \geq F((x-h)+)=G(x-h)
$$

where the first inequality comes from F is an increasing function. Thus,

$$
G(x-\alpha h) \geq F(x-h) \geq G(x-h) .
$$

Then, we can modify this inequality as below;

$$
\alpha \cdot \frac{G(x-\alpha h)-G(x)}{\alpha-h}=\frac{G(x-\alpha h)-G(x)}{-h} \leq \frac{F(x-h)-F(x)}{-h} \leq \frac{G(x-h)-G(x)}{-h}
$$

By letting $h \rightarrow 0$, we have

$$
\alpha G^{\prime}(x) \leq \lim \inf _{h \searrow 0} \frac{F(x-h)-F(x)}{-h} \leq \lim \sup _{h \searrow 0} \frac{F(x-h)-F(x)}{-h} \leq G^{\prime}(x)
$$

By letting $\alpha \rightarrow 1$, we can conclude that $\lim _{h \rightarrow 0^{+}} \frac{F(x-h)-F(x)}{-h}$ exists and equal to $G^{\prime}(x)$, as desired. Thus we can conclude that $F^{\prime}(x)$ exists and $F^{\prime}(x)=G^{\prime}(x)$.
Remark 4.68 (Notation). Let ν be a σ-finite (positive, signed, or complex) Borel measure ν on \mathbb{R}^{n}. Write $\nu=\lambda+\rho$ when $\rho \ll m$ and $\lambda \perp m$ using the Radon-Nikodym theorem. Write

$$
\nu_{a . c .}=\rho
$$

for the absolutely continuous part of ν. An atom of ν is a singleton $\{x\}$ such that $\nu(\{x\}) \neq 0$. The atomic part of ν is

$$
\nu_{\text {atomic }} \sum_{\{x:\{x\} \text { is an atom }\}} \nu(\{x\}) \delta_{x} .
$$

Note that

$$
\left|\nu_{\text {atomic }}\right| \leq|\lambda|, \text { and } \nu_{\text {s.c. }}:=\lambda-\nu_{\text {atomic }} .
$$

Then, $\nu_{\text {s.c. }} \perp m$, and we call $\nu_{\text {s.c. }}$ the singular part of ν. Thus we have

$$
\nu=\nu_{\text {a.c. }}+\nu_{\text {s.c. }}+\nu_{\text {atomic }} .
$$

Example 4.69 (Revisit Cantor set). Let $C \in[0,1]$ be the Cantor set. Then in the chapter 1 we know that

$$
C:=\left\{x \in[0,1]: \exists\left(a_{i}\right)_{i=1}^{\infty} \in\{0,2\}^{\mathbb{N}} \text { such that } x=\sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}}\right\}
$$

Also, we can represetn $[0,1]$ as

$$
[0,1]=\left\{t \in[0,1]: \exists\left(b_{i}\right)_{i=1}^{\infty} \in\{0,1\}^{\mathbb{N}} \text { such that } t=\sum_{j=1}^{\infty} \frac{b_{j}}{2^{j}}\right\}
$$

Thus, the map

$$
f: C \rightarrow[0,1] \text { by } \sum_{j=1}^{\infty} \frac{a_{j}}{3^{j}} \mapsto \sum_{j=1}^{\infty} \frac{a_{j} / 2}{2^{j}}
$$

is well-defined, increasing, and onto map. (But not injective since $f\left(\frac{7}{9}\right)=\frac{3}{4}=f\left(\frac{8}{9}\right)$.) We can extend f to $G:[0,1] \rightarrow[0,1]$ by letting G be constant on each of disjoint interval I appearing in $[0,1] \backslash C$. Such G is called Cantor-Lebesgue Function and G is increasing and onto. Thus, G is continuous, since increasing onto function is continuous. Hence,

$$
\mu_{G}\left(C^{c}\right)=0
$$

Since C^{c} are union of intervals where each interval is preimage of constant of G. So, $\mu_{G} \perp m$. However, since G is continuous, it doesn't have any jump discontinuous; so there are no atoms. Thus, μ_{G} is singular continuous.

Also note that $G^{\prime}(x)=0$ for m-a.e. i.e., except a points in C.
Definition 4.70 (Total Variation). Let $F: \mathbb{R} \rightarrow \mathbb{C}$. The total variation of F on $[a, b]$ is

$$
T V_{F}([a, b]):=\sup \left\{\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b\right\} \in[0,+\infty]
$$

Also,

$$
T_{F}(b):=T V_{F}((-\infty, b])=\sup \left\{\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| x_{0}<x_{1}<\cdots<x_{n}=b\right\}
$$

no lower bound on the partition. Clearly, T_{F} is increasing function.
Observation 4.71. If $a<b$, then

$$
T_{F}(b)=T_{F}(a)+T V_{F}([a, b])
$$

So if $T_{F}(a)<\infty$, then $T V_{F}([a, b])=T_{F}(b)-T_{F}(a)$.
Proof. If $T_{F}(a)>\infty$, then $T_{F}(b) \geq T_{F}(a)$, thus the equality holds. If $T_{F}(a)<\infty$, then note that for any partition P_{1} of $(-\infty, a]$ and P_{2} of $[a, b], P_{1} \cup P_{2}$ is a partition of $(-\infty, b]$. Hence,

$$
T_{F}(b) \geq \sum_{x_{i} \in P_{1} \cup P_{2}, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=\sum_{x_{i} \in P_{1}, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|+\sum_{x_{i} \in P_{2}, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|
$$

Since P_{1}, P_{2} are arbitrarily chosen, so

$$
T_{F}(b) \geq T_{F}(a)+T V_{F}([a, b])
$$

Conversely, for any partition P of $(-\infty, b], a \cup P$ gives partition P_{1} for $(-\infty, a]$ and P_{2} for $[a, b]$. Thus,

$$
\begin{aligned}
\sum_{x_{i} \in P, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right| & \leq \sum_{x_{i} \in a \cup P, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right| \\
& =\sum_{x_{i} \in P_{1}, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|+\sum_{x_{i} \in P_{2}, i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right| \\
& \leq T_{F}(a)+T V_{F}([a, b])
\end{aligned}
$$

Thus

$$
T_{F(b)} \leq T_{F}(a)+T V_{F}([a, b])
$$

Hence, $T_{F(b)}=T_{F}(a)+T V_{F}([a, b])$.
Example 4.72. $F(x):[0,1] \rightarrow[0,1]$ is as below. It is clearly bounded continuous function. However,

$$
T V_{F}([0,1]) \geq\left|F(1)-F\left(\frac{3}{4}\right)\right|+\left|F\left(\frac{3}{4}\right)-F\left(\frac{1}{2}\right)\right|+\cdots \geq \sum_{j=2}^{n} \frac{1}{j}=\infty
$$

Definition 4.73 (Boudned variation). Let $F: \mathbb{R} \rightarrow \mathbb{C}$ be bounded variation on \mathbb{R} if $T_{F}(+\infty):=$ $\lim _{x \rightarrow+\infty} T_{F}(X)<+\infty$. Let

$$
B V:=\{F: \mathbb{R} \rightarrow \mathbb{C}: F \text { has bounded variation }\}
$$

Let $F:[a, b] \rightarrow \mathbb{C}$ has bounded variation on the interval $[a, b]$ if $T V_{F}([a, b])<\infty$. Let

$$
B V([a, b]):=\{F: \mathbb{R} \rightarrow \mathbb{C}: F \text { has bounded variation on }[a, b]\}
$$

Observation 4.74.

(i) $B V$ and $B V([a, b])$ are vector spaces and $B V([a, b])$ can be identified with

$$
\{F \in B V: F \text { is constant function on }(-\infty, a] \text { and }[-b,+\infty) .\}
$$

Also, $B V$ can be identified with $\left\{\left.F\right|_{[a, b]} \in B V\right\} \subseteq B V([a, b])$. Thus, property holds for $B V$ also holds for $B V([a, b])$.
(ii) $F \in B V \Longrightarrow F$ is bounded.
(iii) If F is monotone and bounded, then $F \in B V$.
(iv) If $F:[a, b] \rightarrow \mathbb{C}$ is continuous and f is differentiable on (a, b) and if F^{\prime} is bounded, then by MVT, F has bounded variation.
(v) If $F \in B V$ then $F(\pm):=\lim _{x \rightarrow \pm \infty} F(x)$ exists
(vi) $T_{\lambda F}=|\lambda| T_{F}$ and $T_{F+G} \leq T_{F}+T_{G}$

Proof. For part (a), BV is closed under addition and scalar multiplication comse from triangle inequality and just pulling out scalar from the definition of the sum. Also, additive, multiplicative, and distributive axioms hold.

For part (b), if F is not bounded at x, then we can take a partition P such that $a=-M<x=b$ then $\sum_{P}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=F(x)-F(-M)=\infty$. Thus, $T_{F}(+\infty)=\infty$, contradiction.

For part (c), if F is monotone and bounded, than without loss of generality, assume F is monotone nondecreasing. Then, any partition P starting with a and ending with b gives

$$
\sum_{P}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=\sum_{P} F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a) .
$$

Thus, $T_{F}(\infty)=\lim _{n \rightarrow \infty} F(n)-F(-n)$. Since F is bounded, $\lim _{n \rightarrow \infty} F(n)<+\infty, \lim _{n \rightarrow \infty} F(-n)<+\infty$, thus their subtraction is also bounded, as desired.

For part (d), let $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ be arbitrary partition. Then, by Mean Value Theorem,

$$
\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=\left|\left(x_{i}-x_{i-1}\right) F^{\prime}\left(c_{i}\right)\right| \text { for some } c_{i} \in\left(x_{i-1}, x_{i}\right) .
$$

Thus, from the fact that $F^{\prime}<M$ for some $M \in \mathbb{R}$,

$$
\sum_{j=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\left(x_{i}-x_{i-1}\right) F_{c_{i}}^{\prime}\right| \leq M \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=M(b-a)<+\infty .
$$

Hence, F has bounded variation.
For part (e), if $\lim \inf _{x \rightarrow+\infty} F(x)<\lim \sup _{x \rightarrow+\infty} F(x)$, then F should have infinite oscillations between these value, this may lead to get a partition giving $T_{F}(\infty)=+\infty$, contradiction. Similarly, if $\lim \inf _{x \rightarrow-\infty} F(x)<\lim \sup _{x \rightarrow-\infty} F(x)$, it has also infinitely many oscillations, so $F \notin B V$.

For part (f), for any partition,

$$
\sum_{i=1}^{n}\left|\lambda F\left(x_{i}\right)-\lambda F\left(x_{i-1}\right)\right|=|\lambda| \sum_{i=1}^{n}\left|F\left(x_{i}\right)-\lambda F\left(x_{i-1}\right)\right|
$$

and

$$
\sum_{i=1}^{n}\left|G\left(F_{x_{i}}\right)+F\left(x_{i}\right)-\lambda G\left(x_{i-1}\right)+F\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|F\left(x_{i}\right)-\lambda F\left(x_{i-1}\right)\right|+\sum_{i=1}^{n}\left|G\left(x_{i}\right)-\lambda G\left(x_{i-1}\right)\right| .
$$

Lemma 4.75 (Lemma 3.26 in [1] p.102). If $F \in B V$ is a real-valued function, then $T_{F}+F, T_{F}-F$ are increasing.

Proof. Let $x<y, \epsilon>0$. Choose $x_{0}<x_{1}<\cdots<x_{n}$ such that

$$
\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \geq T_{F}(x)-\epsilon .
$$

Then,

$$
T_{F}(x)-\epsilon+|F(y)-F(x)| \leq\left(\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|\right)+|F(y)-F(x)| \leq T_{F}(y)
$$

So, $|F(y)-F(x)| \leq T_{F}(y)-T_{F}(x)+\epsilon$. By letting $\epsilon \rightarrow 0$, we have for $x<y$,

$$
\begin{gathered}
F(y)-F(x) \leq|F(y)-F(x)| \leq T_{F}(y)-T_{F}(x) \Longrightarrow\left(T_{F}-F\right)(x) \leq\left(T_{F}-F\right)(y) \\
F(x)-F(y) \leq|F(y)-F(x)| \leq T_{F}(y)-T_{F}(x) \Longrightarrow\left(T_{F}+F\right)(x) \leq\left(T_{F}+F\right)(y)
\end{gathered}
$$

as desired.
Theorem 4.76 (Theorem 3.27 part (1) in [1] p.103).
(a) $F \in B V \Longleftrightarrow R e F, I m F \in B V$
(b) Given $F: \mathbb{R} \rightarrow \mathbb{R}, F \in B V \Longleftrightarrow \exists$ bounded increasing function $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $F=f-g$.

Proof. For part (a), for any partition, note that

$$
\sum_{i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|=\sum_{i=1}^{n}\left|\operatorname{Re} F\left(x_{i}\right)-\operatorname{Re} F\left(x_{i-1}\right)\right|+\sum_{i=1}^{n}\left|\operatorname{Im} F\left(x_{i}\right)-\operatorname{Im} F\left(x_{i-1}\right)\right|
$$

Thus if $\operatorname{Re} F, \operatorname{Im} F \in B V$, then $F \in B V$. Conversely, from $R e z \leq|z|$ and $\operatorname{Im} z \leq|z|$, we know
$\sum_{i=1}^{n}\left|\operatorname{Re} F\left(x_{i}\right)-\operatorname{Re} F\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|$ and $\sum_{i=1}^{n}\left|\operatorname{Im} F\left(x_{i}\right)-\operatorname{Im} F\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|$.
This implies $F \in B V \Longrightarrow R e F, I m F \in B V$.
For part (b), take $f=\frac{1}{2}\left(T_{F}+F\right), g=\frac{1}{2}\left(T_{F}-F\right)$. Then by the lemma, F has two such increasing function. Also, they are bounded since

$$
\begin{gathered}
F(y)-F(x) \leq|F(y)-F(x)| \leq T_{F}(y)-T_{F}(x) \leq T_{F}(\infty)-T_{F}(-\infty)<\infty \\
F(x)-F(y) \leq|F(y)-F(x)| \leq T_{F}(y)-T_{F}(x) \leq T_{F}(\infty)-T_{F}(-\infty)<\infty
\end{gathered}
$$

Definition 4.77 (Jordan Decomposition of F, positive and negative variation). If $F: \mathbb{R} \rightarrow \mathbb{R}$ and $F \in B V$, the we call a representation $F=\frac{1}{2}\left(T_{F}+F\right)-\frac{1}{2}\left(T_{F}-F\right)$ be Jordan Decomposition of F. We denote

$$
F^{ \pm}=\frac{1}{2}\left(T_{F} \pm F\right)
$$

as positive and negative variation of F. In this case, we know that

$$
\frac{1}{2}\left(T_{F} \pm F\right)(x)=\sup \left\{\sum_{j=1}^{n}\left(F\left(x_{j}\right)-F\left(x_{j-1}\right)\right)^{ \pm}: x_{0}<\cdots<x_{n}=x\right\} \pm F(-\infty)
$$

where

$$
x^{+}=\max (x, 0)=\frac{1}{2}(|x|+x) \text { and } x^{-}=\max (-x, 0)=\frac{1}{2}(|x|-x)
$$

Theorem 4.78 (Theorem 3.27 part (2) in [1] p.103). Let $F \in B V$.
(c) $\forall x \in \mathbb{R}, F(x+):=\lim _{t \rightarrow x+} F(t)$ and $F(x-):=\lim _{t \rightarrow x-} F(t)$ exists. Also, $F(\pm \infty)=\lim _{t \rightarrow \pm \infty} F(t)$ exists.
(c) The set of points at which F is discontinuous is countable.
(c) Let $G(x)=F(x+)$. Then, \forall a.e. $x \in \mathbb{R}, G^{\prime}(x), F^{\prime}(x)$ exists and $G^{\prime}(x)=F^{\prime}(x)$.

Proof. For part (c), by Observation 4.74 (v), $F(\pm \infty)$ exists. Also, we know that increasing bounded realvalued function g has $\lim _{x_{n} \rightarrow \pm x \pm} g\left(x_{n}\right)$, by taking $\left.g\right|_{(a, x)}$ or $\left.g\right|_{(x, b)}$ for some $a<x<b$ and apply the Monotone convergence theorem. Thus, for any real-valued bounded variation function, it has such limits. For complex valued function, real part and imaginary part has the limit, thus the function itself also has a limit.

For part (d) and (e) follows from the increasing function with theorem 3.23 in [1][p.101], so their subtraction also has the same property.

Lemma 4.79 (Lemma 3.28 in [1] p.104). Let $F \in B V$.
(a) $T_{F}(-\infty):=\lim _{x \rightarrow-\infty} T_{F}(x)=0$
(b) If F is right continuous, then so is T_{F}.

Proof. For part (a), $0 \leq T_{F}(-\infty)$ is clear by definition and

$$
\left|T_{F}\right| \leq T_{R e F}+T_{I m F} \leq T_{R e F}^{+}+T_{R e F}^{-}+T_{I m F}^{+}+T_{I m F}^{-}
$$

So it suffices to show that the RHS goes to zero as $x \rightarrow-\infty$. Without loss of generality, assume that F is the monotone increasing bounded function. Then,

$$
T_{F}(x)=\sup _{x_{0}<x} F(x)-F\left(x_{0}\right)=F(x)-F(-\infty)
$$

So

$$
\lim _{x \rightarrow-\infty} T_{F}(x)=F(-\infty)-F(-\infty)=0
$$

For part (b), Suppose F is right continuous. Let $T=T_{F}$. Fix $x \in \mathbb{R}$, let $\alpha=T(x+)-T(x)$. We want to show $\alpha=0$ Let $\epsilon>0, \delta>0$ such that

$$
0<h<\delta \Longrightarrow|F(x+h)-F(x)|<\epsilon \text { and } T(x+h)-T(x+)<\epsilon .
$$

which can be derived from the right continuity of F and definition of $T(X+)$ and the property that T is increasing function (thus by Monotone convergence theorem). Let $x=x_{0}<x_{1}<\cdots x_{n}=x+h$ such that

$$
\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \geq \frac{1}{2}(T(x+h)-T(x)) \geq \frac{1}{2} \alpha
$$

using the definition of T as a supremum of such sequences. Then, $\left|F\left(x_{1}\right)-F\left(x_{0}\right)\right|<\epsilon$ since $x_{1}<h$, thus

$$
\sum_{j=2}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \geq \frac{1}{2} \alpha-\epsilon
$$

Hence,

$$
\frac{1}{2} \alpha-\epsilon \geq \sum_{j=2}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \leq T(x+h)-T\left(x_{1}\right) \leq T(x+h)-T(x+)<\epsilon
$$

where first inequality comes from the above inequality, the second inequality comes from the definition of T, and the third inequality comes from the property that T is increasing, and the last inequality comes from our choice of h. Hence,

$$
\frac{1}{2} \alpha<2 \epsilon \Longrightarrow \alpha<4 \epsilon
$$

By letting $\epsilon \rightarrow 0, \alpha=0$.

Definition 4.80 (Normal Bounded variation). Define Normal bounded variation as a set

$$
N B V=\{F \in B V: F \text { is right continuous and } F(-\infty)=0\}
$$

Observation 4.81.

(1) If $F \in B V$, let $G(x)=F(x+)-F(-\infty)$. Then $G \in N B V$ and $G(X)=F(x)-F(-\infty)$ except some countably many values of x.
(2) $G \in N B V$ then $(\operatorname{Re} G)^{ \pm},(\operatorname{Im} G)^{ \pm} \in N B V$.

Theorem 4.82 (Theorem 3.29 in [1] p.104). Let μ be a complex Borel measure on \mathbb{R} and let

$$
\begin{equation*}
F(x):=\mu((-\infty, X]) \tag{18}
\end{equation*}
$$

Then, $F \in N B V$. Conversely, if $F \in N B V$, then \exists ! complex Borel measure μ_{F} on \mathbb{R} such that

$$
\begin{equation*}
F(x)=\mu_{F}((-\infty, X]) \text { for all } x \in \mathbb{R} \tag{19}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|\mu_{F}\right|=\mu_{T_{F}} \tag{20}
\end{equation*}
$$

Proof. We can rewrite $\mu=\left(\mu_{1}-\mu_{2}\right)+i\left(\mu_{3}-\mu_{4}\right)$ where $\mu_{i} \mathrm{~s}$ are finite positive measure using Hanh
Decomposition. Thus, $F_{j}(x):=\mu_{j}((-\infty, x])=\left\{\begin{array}{ll}\mu_{j}((0, x])+\mu((-\infty, 0]) & \text { if } x>0 \\ 0+\mu((-\infty, 0]) & \text { if } x=0 \\ -\mu_{j}((x, 0])+\mu((-\infty, 0]) & \text { if } x<0\end{array}\right.$ increasing and
right continuous by theorem 1.16., and $F_{j}(-\infty)=0$. And $F_{j}(+\infty)=\mu_{j}(\mathbb{R})<\infty$. Therefore, by the theorem 3.27 (b) in $[1][\mathrm{p} .103] F_{1}-F_{2}, F_{3}-F_{4} \in B V$ and by 3.27 (a), $F \in B V$. And from $F(-\infty)=\left(F_{1}-F_{2}\right)(-\infty)+i\left(F_{3}-F_{4}\right)(-\infty)=0, F \in N B V$.

Conversely, if $F \in N B V$, then $R e F^{ \pm}, I m F^{ \pm} \in N B V$ by theorem 3.27 (a). And each of them is yields bounded, increasing and right continuous by the theorem 3.27 (b) and observations 4.81. Thus, by theorem 1.16 , they gives finite Lebesgue Stieljes measures, $\mu_{R e F^{ \pm}}, \mu_{I m F^{ \pm}}$. So,

$$
\mu_{F}=\mu_{R e F^{+}}-\mu_{R e F^{-}}+i\left(\mu_{I m F^{+}}-\mu_{R e F^{-}}\right)
$$

Thus, (19) holds.
To see $\left|\mu_{F}\right|=\mu_{T_{F}}$, we need several claim, as outlined in the Exercise 28. Let $G(x)=\left|\mu_{F}\right|((-\infty, x])$.
Claim 4.83. $T_{F}(x) \leq G(x)$.
Proof. For any $x \in \mathbb{R}$,

$$
\begin{aligned}
T_{F}(x) & =\sup \left\{\sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|: n \in \mathbb{N}, x_{0}<x_{1}<\cdots<x_{n}=x\right\}= \\
& =\sup \left\{\sum_{k=1}^{n}\left|\mu\left(\left(-\infty, x_{k}\right]\right)-\mu\left(\left(-\infty, x_{k-1}\right]\right)\right|: n \in \mathbb{N}, x_{0}<x_{1}<\cdots<x_{n}=x\right\} \\
& =\sup \left\{\sum_{k=1}^{n}\left|\mu\left(\left(x_{k-1}, x_{k}\right]\right)-\mu\left(\left(-\infty, x_{k-1}\right]\right)\right|: n \in \mathbb{N}, x_{0}<x_{1}<\cdots<x_{n}=x\right\} \\
& \leq \sup \left\{\sum_{k=1}^{n}\left|\mu\left(E_{k}\right)-\mu\left(\left(-\infty, x_{k-1}\right]\right)\right|: n \in \mathbb{N},\left(E_{k}\right) s \text { are disjoint sequence such that } \bigcup_{k=1}^{n}=(-\infty, x]\right\} \\
& =\left|\mu_{F}\right|((-\infty, x])=G(x)
\end{aligned}
$$

where the last equality comes from the exercise $21, \mu_{1}=|\mu|$ case.

Claim 4.84. $\left|\mu_{F}(E)\right| \leq \mu_{T_{F}}(E)$ for all $E \in \mathcal{B}_{\mathbb{R}}$.
Proof. For any interval $(a, b] \subseteq \mathbb{R}$,
$T_{F}(b)-T_{F}(a)=\sup \left\{\sum_{k=1}^{n}\left|F\left(x_{k}\right)-F\left(x_{k-1}\right)\right|: n \in \mathbb{N}, a=x_{0}<x_{1}<\cdots<x_{n}=b\right\} \Longrightarrow|F(b)-F(a)| \leq T_{F}(b)-T_{F}(a)$.
Thus,

$$
\left|\mu_{F}((a, b])\right|=\left|\mu_{F}((-\infty, b])-\mu_{F}((-\infty, a])\right|=|F(b)-F(a)| \leq T_{F}(b)-T_{F}(a)=\mu_{T_{F}}((a, b])
$$

Also, clearly,

$$
\left|\mu_{F}(\emptyset)\right|=0=\mu_{T_{F}}(\emptyset)
$$

And,

$$
\left|\mu_{F}((-\infty, x])\right|=\lim _{a \rightarrow-\infty} \mu_{F}((a, x]) \leq \lim _{a \rightarrow-\infty} \mu_{T_{F}}((a, x])=\mu_{T_{F}}((-\infty, x])
$$

Also,

$$
\left|\mu_{F}((x, \infty))\right|=\lim _{b \rightarrow \infty} \mu_{F}((x, b]) \leq \lim _{b \rightarrow \infty} \mu_{T_{F}}((x, b])=\mu((x, \infty))
$$

Now let \mathcal{A} be an algebra generated by all half (left) open intervals. Then by the above inequalities,

$$
\mathcal{A} \subseteq \mathcal{C}:=\left\{E \in \mathcal{B}_{\mathbb{R}}:\left|\mu_{F}(E)\right| \leq \mu_{T_{F}}(E)\right\}
$$

Also, for any increasing sequence $\left(E_{k}\right)_{k=1}^{\infty} \subseteq \mathcal{C}$,

$$
\left|\mu_{F}\left(\bigcup_{k=1}^{\infty} E_{k}\right)\right|=\left|\lim _{k \rightarrow \infty} \mu_{F}\left(E_{k}\right)\right|=\lim _{k \rightarrow \infty}\left|\mu_{F}\left(E_{k}\right)\right| \leq \lim _{k \rightarrow \infty} \mu_{T_{F}}\left(E_{k}\right)=\mu_{T_{F}}\left(\bigcup_{k=1}^{\infty} E_{k}\right)
$$

Thus, $\left.\bigcup_{k=1}^{\infty} E_{k}\right) \in \mathcal{C}$. Moreover, for any decreasing sequence $\left(E_{k}\right)_{k=1}^{\infty} \subseteq \mathcal{C}$,

$$
\left|\mu_{F}\left(\bigcap_{k=1}^{\infty} E_{k}\right)\right|=\left|\lim _{k \rightarrow \infty} \mu_{F}\left(E_{k}\right)\right|=\lim _{k \rightarrow \infty}\left|\mu_{F}\left(E_{k}\right)\right| \leq \lim _{k \rightarrow \infty} \mu_{T_{F}}\left(E_{k}\right)=\mu_{T_{F}}\left(\bigcap_{k=1}^{\infty} E_{k}\right)
$$

Thus, $\left.\bigcap_{k=1}^{\infty} E_{k}\right) \in \mathcal{C}$. Hence, \mathcal{C} is closed under countable increasing union and countable decreasing intersection. Thus, \mathcal{C} contains monotone class generated by \mathcal{A}, which is $\mathcal{B}_{\mathbb{R}}$, by the monotone class lemma.

Claim 4.85. If $E \in \mathcal{B}_{\mathbb{R}},\left|\mu_{F}(E)\right| \leq \mu_{T_{F}}(E)$. Hence $G \leq T_{F}$.
Proof. By the Exercise 21,

$$
\begin{aligned}
\left|\mu_{F}(E)\right| & =\sup \left\{\sum_{k=1}^{\infty}\left|\mu_{F}\left(E_{k}\right)\right|:\left(E_{k}\right)_{k=1}^{\infty} \text { is a sequence of disjoint Borel sets such that } E=\bigcup_{k=1}^{\infty} E_{k}\right\} \\
& \leq \sup \left\{\sum_{k=1}^{\infty}\left|\mu_{T_{F}}\left(E_{k}\right)\right|:\left(E_{k}\right)_{k=1}^{\infty} \text { is a sequence of disjoint Borel sets such that } E=\bigcup_{k=1}^{\infty} E_{k}\right\}=\mu_{T_{F}}(E)
\end{aligned}
$$

where the inequality comes from above claims. Thus, for any $x \in \mathbb{R}$,

$$
G(x)=\left|\mu_{F}\right|((-\infty, x]) \leq \mu_{T_{F}}((-\infty, x])=T_{F}(x) \leq G(x) \Longrightarrow G(x)=T_{F}(x)
$$

Let $\mathcal{M}:=\left\{E \in \mathcal{B}_{\mathbb{R}}:\left|\mu_{F}\right|(E)=\mu_{T_{F}}(E)\right\}$. Then, $(-\infty, x] \in \mathcal{M}$ for any $x \in \mathbb{R}$. Thus, \mathcal{M} contains $\mathcal{B}_{\mathbb{R}}$, since $((-\infty, x])_{x \in \mathbb{R}}$ generates $\mathcal{B}_{\mathbb{R}}$.

Proposition 4.86 (Proposition 3.30 in [1] p. 105). Let $F \in N B V$. Thus, $F^{\prime}(x)$ exists for m-a.e. x by the theorem 3.27 (e). Then, $F^{\prime} \in L^{1}(m)$. Let $G(x)=\int_{(-\infty, x]} F^{\prime} d m$. Then $\mu_{F}=\mu_{G}+\lambda$, where λ is complex Borel measure such that $\lambda \perp m$ and $\mu_{G} \ll m$.

Consequently, $\mu_{F} \perp m$ iff $F^{\prime}=0 m$-a.e. and $\mu_{F} \ll m$ iff $F(x)=\int_{(-\infty, x]} F^{\prime}(x) d m$ for all $x \in \mathbb{R}$.
Proof. From theorem 3.29 in [1], μ_{F} exists. And by the theorem 1.18, μ_{F} is regular. And Lebesgue-RadonNikodym theorem and Theorem 3.22 in [1][Lebesgue Differentiation Theorem] says that $\mu_{F}=\rho+\lambda$ where $\rho \ll m, \lambda \perp m$ and $d \rho=f d m$ for some $f \in L^{1}(m)$ and for m-a.e. $x \in \mathbb{R}$,

$$
f(x)=\lim _{r \rightarrow 0^{+}} \frac{\mu_{F}\left(E_{r}\right)}{m\left(E_{r}\right)} \text { for any }\left(E_{r}\right)_{r>0} \text { shrinking nicely to } x
$$

Let $E_{r}=(x, x+r]$ or $E_{r}=(x-r, x]$. Then,

$$
f(x)=\lim _{r \rightarrow 0^{+}} \frac{\mu_{F}((x, x+r])}{r}=\lim _{r \rightarrow 0^{+}} \frac{F(x+r)-F(x)}{r}
$$

and

$$
f(x)=\lim _{r \rightarrow 0^{-}} \frac{\mu_{F}((x-r, x])}{r}=\lim _{r \rightarrow 0^{-}} \frac{F(x)-F(x-r)}{r}
$$

So, $f=F^{\prime}$ a.e. Hence,

$$
\mu_{G}((a, b])=G(b)-G(a)=\int_{(a, b]} F^{\prime} d m=\int_{(a, b]} f d m=\int_{(a, b]} d \rho=\rho((a, b]) .
$$

The consequent facts are followed from the above equation.
Definition 4.87 (Absolute continuity for the function). $F: \mathbb{R} \rightarrow \mathbb{C}$ is absolutely continuous if $\forall \epsilon>$ $0, \exists \delta>0$ such that whenever $n \in \mathbb{N}$, and $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n}$ and $\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta$, then $\sum_{j=1}^{n}\left|F\left(b_{j}\right)-F\left(a_{j}\right)\right|<\epsilon$. If $F:[a . b] \rightarrow \mathbb{C}$, then we say F is absolutely continuous in $[a, b]$ when the same condition holds whenever $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n} \in[a, b]$ as well. Then, define as below;
$A C:=\{f: \mathbb{R} \rightarrow \mathbb{C}: f$ is absolutely continuous. $\}$ and $A C[a, b]:=\{f:[a, b] \rightarrow \mathbb{C}: f$ is absolutely continuous on $[a, b]\}$.
Lemma 4.88 (Lemma 3.34 in [1] p. 106). $A C[a, b] \subseteq B V[a, b]$.
Proof. Let $F \in A C[a, b], \epsilon=1$. Choose δ as in definition of AC. Let $m \in \mathbb{N}$ such that $\frac{b-a}{m}<\delta$. To show $F \in B V[a, b]$, we must show a uniform bound on $\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|$ over all partitions $a=x_{0}<x_{1}<$ $\cdots<x_{n}=b$. For any given partition P, we may take a refinements of our partition so that it contains all $a+\frac{b-a}{m} \cdot k$ for $k \in[m-1]$. Then, there exists an integer $0=p(0)<p(1)<\cdots<p(m)<=n$ such that $x_{p(k)}=a+\frac{b-a}{m} \cdot k$. Then,

$$
\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|=\sum_{k=1}^{n} \sum_{j=p(k-1)+1}^{p(k)}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|
$$

and for each k,

$$
\sum_{j=p(k-1)+1}^{p(k)}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|<\epsilon \text { since } \sum_{j=p(k-1)+1}^{p(k)}\left|x_{j}-x_{j-1}\right|=\frac{b-a}{m}<\delta \text { and absolute continuity of } f \text {. }
$$

Thus,

$$
\sum_{j=1}^{n}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right|=\sum_{k=1}^{n} \sum_{j=p(k-1)+1}^{p(k)}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| \leq m \epsilon=m<+\infty
$$

Since the given partition was arbitrary, we can conclude that

$$
T V_{F}([a, b]) \leq m<+\infty
$$

as desired.

Observation 4.89.

1. $A C \nsubseteq B V$ in general, when we think $F(x)=x$. Then $F \in A C$ is clear but it is not in $B V$ since $T_{F}(+\infty)=+\infty$.
2. $A C$ is a vector space, since it is closed under addition and scalar multiplication, and $A C$ is a subspace of a function space.
3. If F is absolutely continuous then it is uniformly continuous, by taking $N=1$.
4. If F is everywhere differentiable and F^{\prime} is bounded then $\left|F\left(b_{j}\right)-f\left(a_{j}\right)\right| \leq\left(\max \left|F^{\prime}\right|\right)\left(b_{j}-a_{j} \mid\right.$ by the Mean Value theorem, thus it is absolutely continuous by taking $\delta<\frac{\epsilon}{\max \left|F^{\prime}\right|}$.
Proposition 4.90. Let $F \in B V \cap A C$. Then, $T_{F} \in A C$.
Proof. Note that $T_{F}(b)-T_{F}(a)=T V_{F}([a, b])$. To show T_{F} is absolutely continuous, for any given ϵ, we must show $\exists \delta>0$ such that whenever $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n}$ and $\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta$ we have $\sum_{j=1}^{n} T V_{F}\left(\left[a_{j}, b_{j}\right]\right)<\epsilon$.

Since $F \in A C, \exists \delta>0$ such that

$$
\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{j=1}^{n}\left|F\left(b_{j}\right)-F\left(a_{j}\right)\right|<\frac{\epsilon}{2}
$$

For each j, choose a partition

$$
a_{j}=x_{0}^{(j)}<x_{1}^{j}<\cdots x_{k(j)}=b_{j}
$$

such that

$$
T V_{F}\left(\left(a_{j}, b_{j}\right]\right)-\frac{\epsilon}{2 n} \leq \sum_{i=1}^{k(j)}\left|F\left(x_{i}^{(j)}\right)-F\left(x_{i-1}^{(j)}\right)\right|
$$

Thus,

$$
\sum_{j=1}^{n} T V_{F}\left(\left(a_{j}, b_{j}\right]\right) \leq \frac{\epsilon}{2}+\sum_{j=1}^{n} \sum_{i=1}^{k(j)}\left|F\left(x_{i}^{(j)}\right)-F\left(x_{i-1}^{(j)}\right)\right| .
$$

Since $\sum_{j=1}^{n} \sum_{i=1}^{k(j)}\left(x_{i}^{j}-x_{i-1}^{j}\right)=\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta$ by choice of δ,

$$
\frac{\epsilon}{2} \sum_{j=1}^{n} \sum_{i=1}^{k(j)}\left|F\left(x_{i}^{(j)}\right)-F\left(x_{i-1}^{(j)}\right)\right| \leq \frac{\epsilon}{2}
$$

by absolute continuity of F. Thus,

$$
\sum_{j=1}^{n} T V_{F}\left(\left(a_{j}, b_{j}\right]\right) \leq \frac{\epsilon}{2} \sum_{j=1}^{n} \sum_{i=1}^{k(j)}\left|F\left(x_{i}^{(j)}\right)-F\left(x_{i-1}^{(j)}\right)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

as desired.
Corollary 4.91. If $F \in B V$, then $F \in A C \Longleftrightarrow(R e F)^{ \pm},(I m F)^{ \pm} \in A C$.

Proof. From left to right is clear. If $F \in A C \cap B V$, then by the triangle inequality, we can make suitable ϵ.

Proposition 4.92 (Proposition 3.32 in [1] p.105). Let $F \in N B V$. Then, $F \in A C$ iff $\mu_{F} \ll m$.
Proof. Suppose $\mu_{F} \ll m$. Then, $\left|\mu_{F}\right| \ll m$ by the Exercise 8. By theorem 3.5, $\forall \epsilon>0, \exists \delta>0$ such that $E \in \mathcal{B}_{\mathbb{R}}, m(E)<\delta \Longrightarrow\left|\mu_{F}\right|(E)<\epsilon$. If $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n}$ and if $\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta$, then

$$
m\left(\bigcup_{j=1}^{n}\left(a_{j}, b_{j}\right]\right)<\delta
$$

so

$$
\epsilon>\left|\mu_{F}\right|\left(\bigcup_{j=1}^{n}\left(a_{j}, b_{j}\right]\right)=\sum_{j=1}^{n}\left|\mu_{F}\right|\left(\left(a_{j}, b_{j}\right]\right) \geq \sum_{j=1}^{n}\left|\mu_{F}\right|\left(\left(a_{j}, b_{j}\right]\right)=\sum_{j=1}^{n}\left|F\left(b_{j}\right)-F\left(a_{j}\right)\right|
$$

So $F \in A C$.
Conversely, suppose $F \in A C$, Since $\left|\mu_{F}\right|=\mu_{T_{F}}$ by the theorem 3.29 in [1][p.104], $T_{F} \in A C$. Thus, instead of using F, we replace F with T_{F}, using its increasing property. In other words, without loss of generality, we can assume that F is increasing function.

Suppose $E \in \mathcal{B}_{\mathbb{R}}$ such that $m(E)=0$. We want to show that $\mu_{F}(E)=0$. Let $\epsilon>0$. Since $F \in A C, \exists \delta>0$ such that $a_{1}<b_{1} \leq a_{2}<b_{2} \leq \cdots \leq a_{n}<b_{n}$ and if $\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta \Longrightarrow \sum_{j=1}^{n} F\left(b_{j}\right)-F\left(a_{j}\right)<\epsilon$. Now there exists an open $U \subseteq \mathbb{R}$ such that $E \subseteq U$ and $m(U)<\delta$, from the regularity of m. We can write $U=\bigcup_{j=1}^{\infty}\left(a_{j}, b_{j}\right)$ for disjoint open intervals. Then,

$$
\mu_{F}(E) \leq \mu_{F}(U)=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \mu_{F}\left(\left(a_{j}, b_{j}\right)\right) \leq \lim _{N \rightarrow \infty} \sum_{j=1}^{N} \mu_{F}\left(\left(a_{j}, b_{j}\right]\right)=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} F\left(b_{j}-F\left(a_{j}\right)<\epsilon\right.
$$

since $\sum_{j=1}^{N}\left(b_{j}-a_{j}\right)<\delta$. So, $\mu_{F}(E)=0$. If we use T_{F} instead of F, this implies $\left|\mu_{F}\right|(E)=0 \Longrightarrow \mu_{F}(E)=$ 0 .

Corollary 4.93 (Corollary 3.33 in [1]p.105). $F \in N B V \cap A C \Longleftrightarrow \exists f \in L^{1}(m)$ such that $F(x)=$ $\int_{(-\infty, x]} f d m$ and that $F^{\prime}=f$ m-a.e.
Proof. If $F \in N B V \cap A C$, then by the proposition $3.32, \mu_{F} \ll m$, thus by the proposition $3.30, \exists f \in L^{1}(m)$ such that $F(x)=\int_{(-\infty, x]} f d m$ and that $F^{\prime}=f m$-a.e.

Conversely, if $\exists f \in L^{1}(m)$ such that $F(x)=\int_{(-\infty, x]} f d m$ and that $F^{\prime}=f m$-a.e., then $F \in N B V$ since $F(+\infty)<\infty$, and $\mu_{F} \ll m$. Thus by the proposition $3.32, F \in A C$.

Theorem 4.94 (The Fundamental Theorem of Calculus, Theorem 3.35 in [1]p.105). Let $a, b \in \mathbb{R}, a<b$. Let $F:[a, b] \rightarrow \mathbb{C}$. Then, the followings are equivalent.
(i) $F \in A C[a, b]$.
(ii) $\exists f \in L^{1}([a, b])$ such that $\left.\forall x \in(a, b]\right), F(x)=F(a)+\int_{(a, x]} f d m$.
(iii) F is differentiable m-a.e. on $[a, b], F^{\prime} \in L^{1}([a, b])$, and $\forall x \in[a, b], F(x)=F(a)+\int_{(a, x]} F d m$.

Proof. Suppose (i). Then by the lemma 3.34 in $[1][$ p.106], $F \in B V([a, b])$. Now extend F to $\hat{F}: \mathbb{R} \rightarrow \mathbb{C}$ such that

$$
\hat{F}(x)= \begin{cases}F(a)-F(a) & \text { if } x \leq a \\ F(x)-F(a) & \text { if } x \in[a, b] \\ F(b)-F(a) & \text { if } x \geq b\end{cases}
$$

Then, $\hat{F} \in N B V \cap A C$. Then, (iii) follows from the Corollary 3.33. And (iii) implies (ii).
To show that (ii) implies (i), set $f(t)=0$ for $t \notin[a, b]$ and applying corollary 3.33.

Definition 4.95 (Notation for Lebesgue-Stieltjes integrals). If $F \in N B V$, we denote $\int g d \mu_{F}$ as $\int g d F$ or $\int g(x) d F(x)$. Such integrals are called Lebesgue-Stieltjes integrals. Note that

$$
\int_{A} G d F=\int_{A} G d \mu_{F}=\int_{A} G F^{\prime} d m .
$$

If $G=\sum_{k=1}^{n} G\left(\frac{k}{n}\right) 1_{\left(\frac{k-1}{n}, \frac{k}{n}\right]}$ with $A=[0,1]$, then

$$
\int_{[0,1]} G d F=\sum_{k=1}^{\infty} G\left(\frac{k}{n}\right)\left(F\left(\frac{k}{n}\right)-F\left(\frac{k-1}{n}\right)\right)
$$

If $\mu_{F} \ll m$, then $\exists f \in L^{1}, d \mu_{F}=f d m$. Thus,

$$
\int_{(a, b]} d \mu_{F}=F(b)-F(a)=\int_{(a, b]} f d m
$$

By the Fundamental Theorem of Calculus, $F^{\prime}=f$. So,

$$
\int_{(a, b]} F d G+\int_{(a, b]} G d F=\int F G^{\prime} d m+\int G F^{\prime} d m
$$

Theorem 4.96 (Integration by parts, Theorem 3.36 in [1]p.107). Suppose $F, G \in N B V$ and G is continuous. Then, $\int_{(a, b]} F d G+\int_{(a, b]} G d F=F(b) G(b)-F(a) G(a)$.

Proof. Without loss of generality, F, G is increasing. (Otherwise use the decomposition $(\operatorname{Re} F)^{ \pm},(\operatorname{ImF})^{ \pm},(\operatorname{Re} G)^{ \pm},(\operatorname{ImG})^{ \pm}$. Then, μ_{F}, μ_{G} are positive measure. Consider a set $A:=\{(x, y): a<x \leq y \leq b\} \subseteq(a, b]^{2}$. Then

$$
\begin{aligned}
\mu_{F} \times \mu_{G}(A) & \underbrace{=}_{\text {Fubini's Thm }} \iint 1_{A}(x, y) d \mu_{F}(x) d \mu_{G}(y) \\
& =\int_{(a, b]} \int_{(a, y]} d \mu_{F}(x) d \mu_{G}(y)=\int_{(a, b]}(F(y)-F(a)) d \mu_{G}(y)=\int_{(a, b]} F d G-F(b)(G(b)-G(a))
\end{aligned}
$$

On the other hand,

$$
\mu_{F} \times \mu_{G}(A) \underbrace{=}_{\text {Fubini's Thm }} \iint 1_{A}(x, y) d \mu_{G}(y) d \mu_{F}(x)=\int_{(a, b]} \int_{(x, b]} d \mu_{G}(y) d \mu_{F}(x)
$$

Note that

$$
\lim _{t \rightarrow x-} \mu_{G}((t, b])=G(b)-G(x-)=G(b)-G(x)
$$

since G is continuous. Thus,

$$
\mu_{F} \times \mu_{G}(A)=\int_{(a, b]} \int_{(x, b]} d \mu_{G}(y) d \mu_{F}(x)=\int_{(a, b]} G(b)-G(x) d \mu_{F}(x)=G(b)(F(b)-F(a))-\int_{(a, b]} G d F
$$

Hence,

$$
\int_{(a, b]} F d G+\int_{(a, b]} G d F=G(b)(F(b)-F(a))+F(a)(G(b)-G(a))=G(b) F(b)-F(a) F(b)
$$

5 You should explain standard result part and missing part of the note. + Cardinal Arithmeitc Theorem + Thm 2.28 (b) =Exercise 2.23

References

[1] G. Folland, Real Analysis: Modern Techniques and their application. Wiley, 2nd edition 2007

