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Abstract

This note is based on the lecture of Real Variable I given by professor Ken Dykema on Spring 2017
at Texas A&M University. Much part of this note was TEX-ed after class. Every blemish on this note is
Byeongsu’s own.
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1 Selected review

1.1 Notation and ordering

N:= {1727}722{ 7_170717"'}7(@:{5:p7q€Z7Q7A0}7
R := set of real number, C = R + iR

Definition 1.1 (Relation). A relation on a set X is a subset R C X x X. (x,y) € R can be written as
zRy.

Definition 1.2 (Partial order, total order). A partial order on X is a relation R on X such that
(i) xRz,

(ii) zRy and yRx — xz =y

(i4i) xRy and yRz = xRz

A partial order R is linear or total ordering if Va,y € X, either xRy or yRx.

Example 1.3. (i) < on R is total

(i) € on P(X)={S:85C X}. This is partial order but not total order if | X| > 2.

(i4i) Lexical ordering of words is a total ordering.

Definition 1.4 (Poset). A partially ordered set or poset is (X, <) where X is a set and < is a partial
order on X.

Definition 1.5 (Maximal element). If X is a poset, there is a mazimal element z € X, such that Vy € X
and z <y, then y = z.

Now we have four basic propositions related to each other.

Lemma 1.6 (Zorn’s Lemma). Let (X, <) be a poset and suppose that every totally ordered subset L of X
has an upper bound. (i.e., VL C X, endowed with the partial ordering inherited from X is totally ordered;
namely, Yu € X such thatVt € L, t Cu.)

Then, X has a mazximal element.

Axiom 1.7 (Axiom of choice). Let X be a set and let {Xo}aen be a collection of nonempty subset of X.
Then, 3f : A — X such that Va € A, f(a) € X,.

Definition 1.8 (Well-ordering). A well-ordering on a set X is a total ordering such that every subset of
X has a smallest element.

Example 1.9. N with usual ordering is well-ordering. However, Z with usual ordering is not an well-
ordering. Nor is the usual ordering on R.

Principle 1.10 (The well-ordering principle). Every set can be endowed with a well-ordering.

Principle 1.11 (The Hausdorff Maximal Principle). Every poset has a maximal totally ordered subset E,
i.e., if AB' C X such that E C E' C X, then E’ is linearly ordered.

Theorem 1.12. Zorn’s lemma, Aziom of choice, the well-ordering principle, and the Hausdorff mazimal
principle are equivalent and independent with ZF axioms of set theory.



Proof. 1. (Haus) = (Zorn) Take a maximal linearly ordered subset E of X given by the Hausdorff
maximal principle. Then it has an upper bound z by the condition of Zorn’s lemma. Then, z € F,
otherwise F is not a maximal linearly ordered subset. Then, z is a maximal element, since if 32’ € X
such that z < 2/, then e < 2/,Ve € E, thus 2z’ € F, contradicting the maximality of E.

2. (Zorn) = (Haus) Let (P(X),C) be a collection of linearly ordered subsets of X and inclusion.
This is a poset. Also, every totally ordered subset L of P(X) has an upper bound Ujcrl. Thus, by the
Zorn’s lemma, it has a maximal element E. Note that E is linearly ordered by construction. Also, it
is maximal linearly ordered, since if there exists E’ such that E C B/ C X and E’ is linearly ordered,
then E’ € P(X), thus E is not a maximal element, contradiction.

3. (Zorn) = (Well) Let W = {(<, .E;) :<; is a partial ordering on FE;}. Then, give a partial ordering
on W as inclusion; i.e., (<; .E;) < (< .Ej) it E; C Ej, <; and <, agrees on E;, and Vx € E; \ E; and
Vy € Ej, y <; x. Then, if W C W be a totally ordered subset of W, then it has an upper bound, by
(€o0sUgew- E). Hence, by Zorn’s lemma, it has a maximal element (<, F). And E = X, otherwise,
Jr € X \ E, thus, we can have well ordering on E U {z} by extending < as y < z for all y € E,
contradicting to maximality.

4. (Well) = (AC) Let {X,}aca is a nonempty collection of nonempty sets, given the condition of
AC. Then let X = UyeaXy- By the well ordering principle, there exists an well ordering on X. Thus,
subset X, has a minimal element by the well ordering principle. Let f: A — Uyaca X by f(a) = the
minimal element of well ordering on X, . Hence, f(a) € X, by definition.

5. (AC) = (Haus) It uses transfinite induction, but I don’t understand.

1.2 Cardinality

Cardinal is the ”size” of a set.

Definition 1.13. Let X,Y be sets. Then, card(X) < card(Y) means

one—to—one

f X —— Y.
card(X) = card(Y') means

bijection

Jf: X Y.

card(X) > card(Y') means

surjection

Jf: X Y.

Theorem 1.14 (Schroder-Bernstein Theorem, Theorem 0.8 in [1] p. 7).
card(X) > card(Y) and card(X) < card(Y) = card(X) = card(Y).
Also,
card(X) < card(Y) <= card(Y) < card(X).

Proof. Suppose card(X) < card(Y'). Then, 3f : X — Y which is injective. Let zo € X and defineg:Y — X
by
“y) ify € f(X),
o) = {f (y) if y € F(X)

o otherwise.

Then g is surjective.

Conversely, if card(Y) > card(X), there exists g : Y — X which is surjective. Thus, g7!({z}) is a
nonempty by surjectivity, and disjoint with other pull back of singleton because g is a function. Thus,
3f € [Toex 9 ({z}), and it is an injection from X to Y. O



Proposition 1.15 (Proposition 0.7 in [1] p.7). For any X,Y sets, either card(X) < card(Y) or card(Y) <
card(X).

Proof. Let J be a set of all injections from subsets of X to Y. Then, Vf € J, f C X x Y. Thus J have
a poset by inclusion. Thus, every totally ordered subset of J has an upper bound derived by unioning all
members of the subset. Hence, by Zorn’s lemma, it has a maximal element f: A C X — B C Y. If both
x € X\ Aandy €Y\ B exists, we can extend f: AU{z} - BU{y} as f(z) = y, contradicting maximality.
Thus, either A = X or B =Y, this implies either card(X) < card(Y') or card(Y) < card(X). O

Definition 1.16 (Countable Set). A set X is called countable if it is either finite or card(X) = card(N).
Otherwise, it is called uncountable.

Proposition 1.17. If X, is countable for any o € A and A is also countable, then U,ca X, is countable.

Proof. Since X, is countable, 3f, : N — X, which is surjective. Thus, let f : N X A — UsecaX, by
f(n,a) = fa(n) is also surjective. And since we also have a surjective map N - N x N — N x A, done. O

Theorem 1.18. R is uncountable, and card(R) = card(P(N))
We need a lemma for showing R is uncountable.
Lemma 1.19. For any set X, card(X) < card(P(X))

proof of the lemma. f : X — P(X) by © — {x} is an injection. Thus, card(X) < card(P(X)). Also, if
g: X > P(X),thenlet Y ={z € X : 2 & g(x)}. Then, Y & g(X), otherwise 3z’ € X such that g(z') =Y,
thus absurdity comes; if ' € Y, then 2’ ¢ Y by definition of Y, otherwise if 2’ ¢ Y = g(), then x € Y by
defintion of Y. Thus, g is not a surjective. O

proof of the theorem. Let

2inea 2 b [A] =00

f:P(N) = Rby f(4) = {1 + ZnGA 27" otherwise.

Thus, f is injective. Conversely, let

log(3>-,,c427™) if A is bounded,

:P(Z) —Rb A) =
g ) v 9(4) {O otherwise.

Then g is surjective since every positive real number has a base-2 decimal expansion.
card(R) = card(P(N)) > card(N), so R is uncountable. O
Definition 1.20 (Equivalence Relation). A relation ~ on X is an equivalence relation if
(i) Vee X,z ~zx
(i) Ve,y e X,o~y = y~ux
(i) Ve, y,z€e X,x ~y,y~z = T ~2

If ~ is an equivalence relation on X, we write [x] = {y € X : & ~ y} for the equivalence relation of x € X,
and {[z] : x € X} forms a partition of X, i.e., disjoint subsets of X.

Proof. If x £~y but [z]N[y] #0, Iz € [z] N [y],z ~ 2 ~y = =z ~ y, contradiction. O



2 Measure theory

2.1 Introduction and c-algebra

Naturally, p([a, b]) = b—a, which is weight of [a, b]. However, this usual concept has defect when we integrate
by Riemann sum; not all function is integrable.

Definition 2.1. A measure on a set X assigns values pu(E) € [0, +00] to subset E C X.
Remark 2.2. Desired properties for a volume measure on R"

(1) If By, Es,--- is a sequence of (pairwise) disjoint subsets of X, then

oo

WU, Ey) = Z H(E;).

(2) If E and F CR™ are congruent by translation, then u(E) = pu(F).

(3) u([0,1]") =1
However,
Theorem 2.3. A such a volume measure defined on the set P(R™) of all subsets of R™.

Proof. 1t suffices to prove the case when n = 1. Define an equivalence relation ~on Rby x ~ y iff z ~ y € Q.
It is well defined sincez —2 =0 = s ~z,2—y€Q —= y—r€Qandr—y,y—2€Q = r—2z=
-y +y—2) e

Let D C [0,1) be a subset containing exactly one element from each equivalence class of ~ . Clearly, it
depends upon the Axiom of Choice.

Given r € QN [0,1), let

D,=((D+r)n[0,1))u((D+r—-1)N[0,1))={z+r:2eDn[0,1-r)}U{z+r—1:ze DN[1-r1)}.

Ifye (D+r)n(D+r—1),theny =x+r =z+r—1forsome x,z € D, hence, y—r =x € D,y—r+1=
z € D. However, sincex =z -1,z ~2 < y—r~y—r—+ 1.

Claim 2.4. Ifr,s € QN0,1], and r # s, then D, N Ds = (.

Proof. It y € D,.N Dy, then either y —r,y—s € Dory—r+1,y—s € D. For the first case, y —r— (y—s) =
s—r €Q, thus y —r ~ y — s. Also note that y — r # y — s since r # s. However, D has only one element
from each equivalence set, contradiction. For the second case, y —r+1—(y—s) = s—r+1 € Q, thus

y—1+ 1~ y—s. The only possible situation is y — r +1 = y — s, then r — s = 1, contradiction since
r,s €10,1). O

Claim 2.5. ZT‘GQQ[OJ) .Drr = [0, 1).

Proof. Let a € [0,1) then a belongs to some equivalence class of ~. So, 3¢ € Q such that a — ¢ € D. Thus
0<a—g<1,since D C[0,1). Since 0 <a <1,

—-1l<—-a<—q<l—-a<]l = —-1<g<1l.

If0 < ¢ <1, thena € Dy, otherwise, a € Dyy1. Inany case, a € 3, cgnp,1) Dr = [0,1). Since other direction
of inclusion is obvious, done. [



Now we can go back to the main argument. Suppose for contradiction, a countable additive volume
measure g on P(R) exists. Then,

w(D)y=p(r+DN0,1—=r)+u((r—1)+DN1—-r1)=pw(DN0,1-7)+puDN[1-7r1))=pD).

So,

1=p([0,1)) = p(UregrpyDr = > pw(Dr) =Y u(D),
reQn(o,1) N

since QN[0,1) is countable. Hence, if u(D) = 0, 1 = 0, contradiction. If (D) # 0, 1 = oo, contradiction. [

Theorem 2.6 (Banach Tarski Paradox). Letn > 3 and U,V C R™ be bounded set. Then, Ik € N, Ey,--- | Ey, Fy,---

and {E;} and {F;} are pairwise disjoint, such that U = 2521 E;,V = Z?:l F; but E; and F; are congruent
to each other for all j. A and B are congruent to each other means that we can get one from the other by a
composition of translation, rotation, and reflection.

Proof. See https://people.math.umass.edu/~weston/oldpapers/banach.pdf O
Corollary 2.7. Forn >3, Au: P(R™) — [0,400] satisfying
(1) w is finitely additive, i.e., if k € N, Ey,--- B, CR"™ are disjoint then H(U§:1Ej) = E?Zl w(E;).
(2) E,F are congruent, then u(E) = u(F).
(%) w(l0,1)") = 1.
Definition 2.8. Let X be sets, a C P(X), and a # 0. We say a is an algebra of subsets of X if
(i) neN,Ey,--- ,E, €a = Ui, Ej € a.
(ii) E€ea = E°=X\Fe€a.
We say a is a o-algebra if also belows are hold;
(i') B, Es,---€a = U2, E;€a
Observation 2.9. If a is an algebra of subsets of X, then
(1) X=FEUE°caand)=X€ca
(2) If E1, By, By, € a, then N'_ E; = (U7_ E%)° € a (De Morgan)
(3) If a is a o-algebra, then M52, E; = (Uf’;lEJC»)C € a (De Morgan)
Example 2.10. (1) a = P(X).
(2) a={0,X}.
(8) a={FE C X : either E or E° is countable }
(4) € CP(X) then we denote the o-algebra generated by ¢ as

o-alg (§) == N a,

aCP(X)
a is a o-algebra
¢Ca

e.g., if ¢ = {B} for some B C X then o-alg(§) = {0, X, B, B}.
Lemma 2.11. If £ C F < P(X), then o-alg(&) < o-alg(F).

aFk;



Proof. o-alg (F) contains &, thus it contains o-alg (&) O

(5) Let X be a topological space, e.g., X is a metric space such as R™. Let Tx be the set of all open subsets
of X. Then, Borel o-algebra of X is Bx := o-alg(Tx) And its member is called Borel sets.

Definition 2.12 (Gs-set and Fi,-set). Denote Gs-set be a countable intersection of open sets. Also, denote
F,-set be a countable union of closed sets. Similarly, let Gso-set be a countable union of Gs-set, and
F,s-set be countable intersection of F,-set.

Proposition 2.13 (Proposition 1.2 in [1]). Bgr is generated by any of the following:
(a) the open intervals; & = {(a,b) : a,b € R,a < b}

(b) the closed intervals; &2 = {[a,b] : a,b € R,a < b}

(c) the half-open intervals; & = {(a,b] : a,b € R,a < b} or &y = {[a,b) : a,b € R,a < b}
(d) the open rays; &5 = {(a,0) : a € R} or & = {(—00,a) : a € R}

(e) the closed rays; &7 = {[a,0) : a € R} or &g = {(—0,a] : a € R}

Proof. First of all, & C By since the complement of closed set is open, and &5, &g, &7, €8 € Br since they
are either open or closed sets. Also, £3,&4 are Gg-set, which is in Bg since it is closed under countable
intersections. Thus, o-alg (&) C Bg for all i =1,2,---,8

For (a), since &; C Tr, o-alg (1) € Br. To show the other direction of inclusion, it suffices to show that
Tr C o-alg (&) . Note that

U b—n,b) € g-alg (&), (a,00) = U (a,a+n) € o-alg (&1) .

Note that every open subsets of R is a countable union of disjoint open intervals, so Tg C o-alg(§1) =
Br C o-alg (&1) -

For (b), note that (a,b) = U;—,[a + n~1,b —n~!] € g-alg (&), thus & C o-alg (&) . Therefore, Br =
o-alg (&1) C o-alg (&) C By, done.

For (c), note that (a,b) = U,—,(a,b —n~'] € g-alg (&) or (a,b) = Ur—,la+n~t,b) € o-alg (&4), thus
€1 C o-alg (&) N 0-alg (€1). Therelore, Bs = o-alg (€1) C 0-alg (€) C By and By = o-alg (€1) C o-alg (€4) C
Bg, done.

For (d), note that (a,b] = (a,00) N (b,00)¢ € o-alg (&5), thus &3 C o-alg (&5), therefore Br = o-alg (£3)
o-alg (&) C Bg. Also, [a,b) = (—00,a)°N(b,00) € o-alg (&), thus &4 C o-alg (&s), therefore Bg = o-alg (£4)
o-alg (&) C Bg. done.

For (e), note that [a,b) = [a,00) N [b,00)° € o-alg (&7), thus & C o-alg (£7), therefore Br = o-alg (&)
o-alg (&7) C Bgr. Also, (a,b] = (—00,a] N (—o00,b] € o-alg(&s), thus & C o-alg(&s), therefore Bg
o-alg (3) C o-alg (&g) C Bg. done.

NN

Ooinin

Let A be a set and Va € A, let X, be a nonempty set, and let m,, be a o-algebra of subsets of X,,. Let

X =] Xo ={(@a)aca : 7a € Xa} = {f: A= | ] Xost. Va€ A, f(a) € Xo}.
acA acA

(Note that it uses the Axiom of Choice when A is infinite.) For example, if A ={1,2,--- ,n},
n
HXa:HXj:XlxX2x~-><Xn.
acA j=1

For 3 € A, we let 75 : [[,c4 Xo — X3 is the coordinate projection given by ms((Xa)aca) = Xp.



Definition 2.14. Let m, be a o-algebra on X. The product o-algebra m = @, 4 Ma is the o-algebra
of subsets of X generated by {7 ;1 (E):a € A,E € my}.

Proposition 2.15 (Proposition 1.3 in [1]). If A is countable, then m = ®qcamy s the o-algebra generated
by & = {llpca Fo: Ea € ma}.

Proof. Clearly, m C o-alg (§) since for any F' € mg,

w5 (F) =[] B«

acA
Fifa=
where F, = na 6.
X, otherwise.
But in general, [T, c4 Fa = Nacamy*(Eq) € m if A is countable. Thus, o-alg (§) C m, done. O

Proposition 2.16 (Proposition 1.4 in [1]). Suppose my = o-alg(&) for some &, C P(X,). Let m =
RaqeaMme.- Then,

1) m=o0-alg(T7) where i = {n Y (E) :a € A,E € &,}.
2) If A is countable, then m = o-alg(T2) where To = {[],ca Fa : Ea € &a}-

Proof. For (1), note that m = o-alg ({r;*(E) : « € A, E € ma}) by definition. Since Ty C &, o-alg (77) C
o-alg (£4) = My, thus, o-alg (1) C m.
To show m C o-alg (71), we must show that VF € mg, 7, (F) € o-alg(T1) . Fix a € A. Let

n={GC X,: 7, (G) € o-alg (T1)}.
Claim 2.17. n is a o-algebra on X,.
proof of the claim. If G; € n for i € N,
! (U Gn> = U 71 Gy) € o-alg (T1) = U G, €n.
n=1 n=1 n=1

Also, VG € n, m;1(Xo \ G) = X \ 7;1(G) € o-alg(P1). So X \ G € n. Thus, n is closed under countable
union and complementary. O

Now it suffices to show that m, C n, since if it is true, then for any E € m,, 7, (E) € o-alg (71), thus
m C o-alg (71) . Note that

VE €&y, €T Co-alg(T1) = Een — &, Cn,

by definition of 77, n. Thus,
me = o-alg (&) C o-alg (n) = n.

For (2), m C o-alg (72) since for any F' € mg,

w5 (F) =[] B«

acA
Fifa=
where F, = na 6.
X, otherwise.
But in general, [T, c 4 Fa = Nacamy ' (Eq) € m if A is countable. Thus, o-alg (§) C m, done. O



2.2 Measures

Definition 2.18 (Measurable space and measure). A measurable space (X, m) is a pair of nonempty set
X and o — algebra m of subsets of X. A measure on (X, m) is u: m — [0, 00| satisfying

(i) () = 0
(ii) p is countably additive, namely, if Ev, Es,--- are disjoint, then p((Use, Ei) = Y ooy p(E).
Then, we say (X, m,u) is a measure space.
Note that countably additive implies finite additive.
Definition 2.19 (Properties of a measure space). A measure space (X, m, p) is
e A probability space if u(X) = 1.
e finite if u(X) < +o0
e o-finite if 3F;, Fs, - such that X = U;il E;, u(E;) < 00,¥j € N,
e semi-finite if VE € m s.t. u(E) =00, AF € m s.t. F C E and 0 < u(F) < co.

Note that o-finite implies semifinite.
Our principal goal is to construct a nice measure space.

Example 2.20 (Examples). .

|E| if E is finite

1. Counting measure. (X,P(X),pn), u(E) = _
oo otherwise.

lifzeFE

2. Dirac mass (X,P(X),d,) for some xz € X, s.t. 0,(F) = _
0 otherwise.

lifzeFE

3. (X,m,p), p(E) = ‘
(X,m 1), p(E) {0 otherwise.

0 if E is countable

4. Let X be any uncountable set. m = {E C X : either E or E° is countable}. u(E) = )
0o otherwise.

Remark 2.21 (Counter-example). Let X be any uncountable set. m = {E C X : either E or E°¢ is
0 if E is finite
o0 otherwise.

i.e., if Ev, -+ ,E, € m are disjoint, then p(U;_, E;) = Y. iy p(E;). So it is called p is finite additive
measure.

countable}. u(E) = Then, it is not countably additive. However, 1 is finitely additive,

Theorem 2.22 (Theorem 1.8 in [1]). Let (X, m, ) be a measure space

(a) Monotonicity. If E,F € m and E C F, then u(E) < u(F).

(b) Subaddiditivity. If By, Es,--- € m,u(Uio; Ei) < ooy (E;)

(¢) Continuity from below. If By C Ey C -+, then p(Ure; Ex) = limg_ o0 p(Ex).

(d) Continuity from above (limited). If Ey O FEy D ---, and u(E;) < oo for some j € N, then
PNy Br) = limy, o0 1(By).



Proof. For (a), note that F = EU (F \ E), thus
w(F) = p(E) + p(F\ E) = p(E).

For (b), let Fy = By, Fy, = By \ (U;’;f E) . Then, F} are disjoint, and Up_, B, = UP_, Fy,. Thus,

M(UEk):M(UFk ZﬂFk SZ
k=1 k=1 k=1 =1

by monotonicity.
For (c), let Fy = Ey, F,, = E,, \ E,,_1. Then, U2, E}, = U2 | Fy, and Fj, are disjoint. Thus,

G Zqu —hm Z,qu nlLH;Qu(
k=1

For (d), we need a lemma,;

Lemma 2.23. If ECF, E,F € m, and u(F) < oo, then u(F \ E) = p(F) — u(E).

n—oo

bl
s

Fk> = lim p(FE,).

proof of the lemma. By (a), u(E) < u(F), and u(F) = p(E)+pu(F\ E). Thus, u(F)—u(E) = u(F\E). O

Without loss of generality, assume pu(FE;) < oo. Then,

p(Er) = lim p(E,) = lim p(Er\ Ep) = p (U(El\En)> =pu (El\ (ﬂ En>> = p(Er) — (ﬂ E )

n=1

where first and last equality comes from the lemma, and second equality comes from (c), and the other’s are
comes from set theoretic operation. Thus, lim, o u(Epn) = (o, En) O

n=1

Example 2.24. Suppose (R, P(R),counting measure). Then, 1((0,1)) = oo. u(NP_;(0, £)) = p(0) = 0. This
shows that (E;) < oo for some j is needed for making (d) true.

Definition 2.25 (Null set). Let (X, m, u) be a measure space. A null set is E € m such that u(E) =0. A
statement is said to hold almost everywhere, u-almost everywhere, a.e., or u—a.e. if it holds for all
x in the complement of a null set.

Example 2.26. For example, f : X — R vanishes almost everywhere means 3 a null set E s.t. f(x) =0
for all x € E°.

Definition 2.27. A measure space (X, m, ) is said to be complete if E € m,u(E) =0 and F C E =
Fem,u(F)=0.

Theorem 2.28 (Theorem 1.9 in [1]). Let (X, m,u) be a measure space and let N = {N € m : u(N) = 0}.
Letm={FEUF:Ee€m,AN € N s.t. F C N} Then, m is a o-algebra and 3! extension fi : m — [0, 00| of
w s.t. i is a measure on (X, m).

Definition 2.29. (X,m, i) is the completion of (X, mu).

Proof. Show m is a o-algebra. Let G, G, - - € m. We have G; = E;UF] for some E; € mand F; C N; € N.
Then,

oo

Yo (Un)e

Jj=1 Jj=1

F;

s

10



Note that U]oil E; € m by countable additivity of m and

oo

UFj QGNjEN,

j=1 j=1

thus (Uj‘; X Fj) € N. This implies G € .
Let G=EUF €m, where E€m, FC N €N. Since FCN, F¢=N¢U (N \ F). Thus,
G = E°NF° = E°N(N°U(N\F)) = (E°NN°) U (E°N (N \ F)).

Since E€N N¢ € m since it is o-algebra and ECN (N \ F) = E°N NN F¢ C N. Hence G° € m. Therefore, m
is a og-algebra.
Let’s define i : m — [0, 00] extending p by a(E U F) = u(E).

Claim 2.30. p is well-defined.

Proof. If Ey,Ey € m, Fy C Ny, F5 C Ny, with Ni, N, € N and E; U F| = E5 U Fy. It suffices to show that
w(E1) = u(Es). Note that

E1 CE;UF, CE;UN; = u(Er) < p(Ez) + p(N2) = p(Ey).

Similarly,
E2 Q E1 @] F1 g E1 @] N1 — /,L(EQ) S /L(E1) + N(Nl) = ,U,(El)
This implies p(E1) = p(Es). O
Thus, i extends p. Thus, (@) = () = 0. And,

Claim 2.31. [i is countably additive. Let G1,Gg,--- € m be disjoint. Write each G; = E; U F; for some
E; € m, F; C N; € N. Note that E;’s are disjoint. Let G = Us2,Gj. Then

G= G Ej U O Fj .
j=1 j=1
Since (U;i1 Ej) C (Ujoi1 Nj> eN, Gem. Thus,
MG) = p U Ej) = ZM(EJ) = 1(G;)
j=1 j=1 j=1

For uniqueness, suppose ' : m — [0,00] is a measure that extends p. It suffices to show p' = fi. Let
G e€m. Then, G=EUF for E€m, F C N € N. Then,

u(E) = p/(E) < p/(G) < W (EUN) =p(EUN) = u(E) + p(N) = p(E).

Thus, p'(G) = W(E) = i(G) = 1 = p. O

11



2.3 Outer measure

Definition 2.32 (Outer measure). An outer measure on a nonempty set X is a function p* : P(X) —
[0, 00] s.t.

(i) p(0) =
(i) Monotonicity. A C B = pu*(A) < p*(B).
(iii) Subadditivity. p* (U2, 4;) <377 n*(A;).

Proposition 2.33 (Proposition 1.10 in [1]). Let £ C P(X) s.t. 0 € £, X € & Let p: £ — [0,00] be a
function s.t. and p(0) = 0. Let p* : P(X) — [0,00] be given by

=infe > p(E;): By, By, €§AC | JE;

j=1
Then p* is an outer measure.
Proof. (i) pu*(0) =0, because § C ;2,0 = 0 < p*(0) <3272, p(0) = 0.

(i) Monotonicity If A, B € P(X), A C B, then whenever E; € { and B C 2, Ej, then

ACBCJE — A Y plE) — 1 (4) < i (B)

by taking infimum. So, u*(A4) < p*(B), by taking the infimum.

(iii) Subadditivity Suppose A1, Az, -+ € P(X). We want to show p*(Uge; Ak) < Y peq 1" (Ag). Let € > 0.
Choose Ej; 1, Ei 2, -+ €  such that

oo

oo
€
QQ Ey; and p*(Ay) SZ p(Er;) < p'(Ak) + ok
Existence of such sets is assured by the definition of infimum. Then,
o0 o0 o0 o0 o0 oo . € o0 .
A=JAaCcUUEBw = w(A) <D p(Bry) = 1w (A + % = D o ut(Ag) +e
k=1 k=1j=1 k=1 j=1 k=1 k=1

Since € was arbitrary, p*(A) < 327, p*(Ag).
O

Definition 2.34 (p*-measurable). Let pu* be an outer measure on X, and let A C X. We say A is p*-
measurable if
VEC X, u"(E)=p (ENA)+ p*(En A°).

Note that p*(FE) < p*(ENA) 4+ p*(E N A°) is true by subadditivity.

Theorem 2.35 (Caratheodory extension theorem). Let pu* be an outer measure on X. Let M be the
collection of all pu*-measurable subsets of X. Then, M is a o-algebra and the restriction of u* to M is a
complete measure.

Proof. Step by step approach.
Step I: Show @ € M. Let E C X. Then, p*(ENQ) +p*(EUD) =0+ p*(E) = p*(E).

12



Step II: Show Ae M — A°e M. If Ae M,E C X, then
5 (B OA%) + (B 0 (A = it (B0 A%) + 5 (B 1 A) = i (E)
from the p* measurability of A.
Step III: Show M is an algebra of subsets of X and p*|M is finitely additive. Let A, B € M.
(i) Show AUB € M. Let E C X. Then,

P (E) = p* (ENA)+up* (ENA°) = " (ENANB)+p* (ENANBC)+p" (ENA°NB)+u* (ENA°NDB).

since AUB = (AN B)U (AN B° U (A°N B), by subadditivity,

w*(EN(AUB)) < u*(EN(ANB))+p" (EN(ANB)+u* (EN(A°NB)) = p*(E)—p* (ENA°NB°).

Thus,
W' (E) = u* (BN (AU B)) + u*(EN (AU B)) > 1 (E),
where the last inequality also comes from the subadditivity. Thus, AU B € M.

(ii) Show if ANB =0 then u*(AUB) = p*(A) + u*(B). Assume ANB =10. Let E= AUB.
From the p*-measurability of A,

W(AUB) = (B 1 A) + (B 1 A%) = 1 (4) + i (B).
Step IV: Show M is a o-algebra, and u*|p is countable additive.

(i) Show M is a o-algebra. Let D; € M, D = U;‘;l D;. We want to show D € M. Let
A = Dy \ U;:ll D;. Then, A;, As,--- are disjoint. Let By := U;?:l A = U?:1 D;. Then,
By C By C--- and D :=J;—, Bi. Then, Vk € N, Ay, B, € M.

We will show by induction on k, that VE C X,

k
w(ENB) =3 1 (BN 4y). 1)

j=1
If k =1, then B; = Aj, thus the equation (1) hold. If K > 2, since Ay € M,
p(ENBg) =u" (ENBNAg)+ p*(EN BN Af)
Since By N Ax = Ay, B \ A = U;:ll Aj = B_1, since A;’s are disjoint. Thus,

k
W(ENB) = w (ENA) + 1 (ENBiy) = Y w'(EN 4y),

j=1
where the last equality comes from the inductive hypothesis.
Thus, for any k£ € N.
k k
1 (E) = p* (ENBY)+u* (BNBy) = 1" (ENBY+S | u* (BNA,) = u*(BND)+ S p* (BN A,),
j=1 j=1

since By, € D = Bj D D¢. Therefore, by taking limit,

p*(E) 2 (BN D)+ 3 i (BN 4y)

j=1

13



Also, since D = Ujoi1 A;, thus by countable subadditivity,
*(EN D) Z (ENAy)

So,
p(E) > p (END) + Y p*(ENAj) > p*(EN D) + p*(EN D) > p*(E).

j=1
So we have equality and D € M.

(ii) Show p*|am is countable additive. We will use the setting in (i). Suppose Dy, Dy, - - are
disjoint set in (i). Then, Vj € N, A; = D;. Take E = D above. Then,

p* (D) = p*(EN D) +Zu (ENAj)=p () +Zu Zu*(AJ)

Jj=1

*

Step V: Show p*|p is complete, ie., suppose N € M, u*(N) =0, and F C N = F € M. Let
E C X. We want to show that u*(E) = p*(ENF) + p*(ENF°). Since ENF C N,

W (ENF) < p*(N)=0
by monotonicity. So, p*(E N F) = 0. Then,
1(E) < p*(ENF) + p* (B0 F) = u*(E 0 F9) < 1 (B).
Thus p*(E) =p*(ENF)+p*(ENF°) = F e M.
O
Caratheodory extension can be used for extending algebra with premeasure to o-algebra and measure.

Definition 2.36 (Premeasure). A premeasure on a set X is pg : a — [0,+00], where a is an algebra of
subsets of X, and

1. po(0) =0
2. if Ay, Ay, --- € a, disjoint and if A = Uj’;l Aj €,

po(A) = Z fo(4;)
j=1

The motivating example is following; Let

n
Uaj,» neN,—oco<a; <b <as <by<-<ay<b, <oo
with
oo n
po | (a0 | =D (b — ay).
j=1 j=1

Since it is countably additive and monotone, p is a premeasure.

14



Theorem 2.37 (Theorem 1.13 and 1.14 in [1] p. 31). Let a be an algebra of subsets of X and let ug :

a — [0,400] be a premeasure. Let p* : P(X) — [0,400] be the outer measure constructed from po as a
proposition 1.10., i.e.,

M*(E) = inf Z/j,()(Aj) : AJ‘ ca, B C U Aj
j=1

j=1

Then,
(i) 1*la = po
(i) If A € a, A is p*-measurable.
Thus, by the Caratheodory extension theorem, (o-alg(a), 1™ |s-qig(a)) 95 a measure on o-alg(a). Also,

(i1i) If v : o-alg(a) — [0, +00] is any measure such that v|q = o, then VE € o-alg(a) ,v(E) < pu*(E) with
equality if u*(E) < oo.

(iv) If po is o-finite, then p*|,_qig(a) s the unique measure on o-alg(a) extending .

A= E, ifi=1
A; = ) otherwise.
subadditivity. To show p*(E) > po(E), let A; € a such that E < U;; A;. Let

Proof. 1. Show p*|q = po. Let Fa. For all i € N, Then, p*(E) < uo(E) by

Then, B, € a, B;’s are disjoint. Also,

GBn:Eﬂ GAj = E.
n=1

Since pg is a premeasure,

By taking the infimum on {4,}2,,
po(E) < p*(E).

2. If A€ a, A is u*-measurable. Let E C X. We must show that p*(E) > p*(E N A) + p*(E N A°).
Let € > 0, choose By, Bs,--- € a such that £ C U;‘;l Bj;, and

W(E) +e> 3 po(By).
j=1

15



By definition of p*, such Bjs exist. Then,

.U*(E)+€ > ZHO(BJ)

Il
M 1

(po(Bj NA) + po(Bj N A°)), since BjNAand BjNA¢€a.

<.
I
—

po(B; N A)+ Y po(B; N A°)
j=1

I
WK

<.
I
—

> p(ENA)+up (ENA°, since ENAC U B; N A.
j=1
By taking lim._,o on both sides, we get desired inequality.
Ifv:o-alg(a) — [0, +o0] is any measure such that v|, = g, then VE € o-alg(a),v(E) < u*(F)

with equality if p*(E) < oco. Note that u is a measure derived by caratheodory extension theorem
and p*. Let A, € a such that E C |J7, A,. We want to show that v(E) < > > | uo(A,).

By subadditivity of v,

V(E) < v U Ay) SZ ) =Y to(An) = v(E) < u(E). (2)

Let € > 0. Choose A,, € a such that E C o~ A, and p(E) +€> > 7 uo(A,). Let A=, Ay
Then, if u(F) < oo,

n(A) = p(A\ E) + p(E) = p(A\ E) = p(A) — u(E) < (Z uo(An)> —wE) <e

n=1

Also, for any n € N, v(Uj_, 4;) = po(Uj—, 4;) since Jj_, A; € a, thus by letting B, := Uj_, 4;

=v (U Bn> = lim v(B,) = lim u(B,) = u(A).

n—oo n— oo

Therefore,
n(E) < p(A) = v(A) = v(E) + v(A\ E) <v(E) + p(A\ E) <v(E) +e

where second equality comes from continuity from below w.r.t. v, and third equality comes from the
inequality (2), the last equality comes from the continuity from below w.r.t. p. Therefore, by lettign
e — 0, we have v(FE) = u(F) if u(F) < oo.

. If po is o-finite, (a) extending jip. By hypoth-
esis, 3A1, Ay, -+ € a such that X = J;°; A; with p(A;) < o0,Vi € N. Replcae A, by A, \ U;:ll Aj if
necessary, we may assume that A,s are disjoint, without loss of generality. Then, VE € o-alg (a),

:1/<GEDA,L>:§1/(EOA i (ENA,) =v(E).

where second equality comes from the countable additivity of v, third equality comes from v = y for
any measurable set having finite measure, and the last equality comes from the countable additivity of

L.
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2.4 Borel measure on the real line

Proposition 2.38 (Special case of proposition 1.7). Let £ C P(R) be the collection of all half open intervals,
closed at the right, i.e.,

E={(a,b]:a,beR,a <b}U{(—00,b]:b€R}U{(a,+0) :a € R} U{R,D}.

Let a be the set of all finite union of elements of €. Then a is an algebra of subsets of R.

If 1,1, €€ and I; N 15 # 0 or if dist(I1, Iz) := inf{|z —y| : z € 1,y € [y} =0, then I, U Iy € . Thus,
each elements of a can be written uniquely as a finite union of separated elements of €, where Iy and Iy are
separated if dist(I,I2) > 0.

Proof. We must show followings;
(i) 0 € a; it holds by definition of a.
(ii) If Ay,--- A, €0 = U7_14; € a. ; it holds by definition of a.

(iii) If A€ a = A° € a. Suppose A = U?:1 I; with Iy, 15, - - - I, € £, where they are separated. Suppose
each I; is bounded. Thus, I; = (a;, b,] for some a;,b; € R for 1 < j < n. By renumbering if necessary,
we may assume that a; < by < as < by < --- < a, < b,. Then,

A€ = (—00,a1] U (by,az] U+ U (by—1,an] U (by, ) € a.

Thus, a is an algebra. O

Notation 2.39 (Construction of Lebesgue-Stieltjes measures). Let F: R — R be an increasing (i.e. non-
decreasing) functions that is right continuous, (i.e., Va € R lim,_,,4 F(x) = F(a).) Set

F(—o00):= lim F(z) e RU{—o0}, F(c0):= wlgrolc F(z) € RU{+o0}.

Let p19 : £ — [0, 00] be
po((a,b]) = F(b) — F(a)
po((a, +00)) = F(+00) — Fla)
po((=00,b]) = F(b) — F(—00)
po(R) = F(+00) — F(—00)
1o (0) 0.

Then, we extend pg to a as follow; If A € a, then A has unique representation as A = U;Zl I; for some
separated I, -+ , I, € &, by the previous proposition. Let ug(A) := Z;’L:I po(Z;)
Proposition 2.40 (Proposition 1.15 in [1] p.33). po is a premeasure on a.
Proof. Note that po(0) = 0. We must show that if A;, Ay, --- € a are disjoint and if U;‘;l Aj € a, then

o0 oo
po(lJ A7) = mo(4;).
j=1

j=1

Without loss of generality, assume Vj € N, A; € £. Since Uj’;l Aj € a, we may write
oo n
U4, =%
j=1 k=1

17



for some separated I, Iy, - - - , I, € &, by the previous proposition. Let Fj, = {j € N: A; C I};}. It will suffice

to show that
K) = po(4;)
JEF

since po(Uj=y Aj) = X j—y #o(I). Thus we may assume that

Aj:I:(a,b]Ef,

o

1

J

and we want to show -
= Z fo(A4;)
=1

Suppose I = (a,b]. We may write A; = (a;,b;]. To show po(I) > 3272, p10(A;), it suffices to show

ZMO(AJ) < po([)

for all n € N. After renumbering, we may assume that
a<ar<b<ar<b<---<a, <b, <b.
Thus,

po(1) F(b) — F(a) > F(bn) — F(a1)

F(bn) = (F(bn—1) = F(an)) = (F(bn—2) = F(an-1)) = -~ = (F(b1) — F(az)) — F(a1)

n

= ZMO(A )
j=1

By letting n — oo, we have puo(1) > 3272 po(A;).
To show reverse direction, i.e., uo(l) < Ej 1 Ho(A;)., we need compactness argument. Let € > 0. From
the right continuity of F', we can get § > 0 such that

Y

Fla+0)—F(a)<e<e

and 6; > 0 such that

F(b; +6;) — F(by) < 55,

for each a and b; which we setup in the previous paragraph. Then,
oo
[a+6,b] C U a;,b; + 6;)

where second subset equation is derived from the assumption U;’;l A; = I. Since [a + 4, ] is closed bounded
set, thus it is compact. Therefore, ((a;,b; + @))?‘;1 has a finite subcover. So by renumbering if necessary,
we can assume that [a + §,0] C Ule(aj, bj +9;). Also, we can assume that {(a;,b; + d;}5_, is a minimal
subcover.

18



After renumbering again, we can assume

ap<a+d<b +46
a+06<ay<b+6<by+ s
a3z < by 4 09 < bz + 03

41 < b+ 60 < b1+ 841

ap < bp_1+0p_1 <b<by+0,

We can draw above inequalities in a line segment.

C )

| I
r

alr a a2 as

Thus,
F

u(I) = F(b) — F(a)

(b) —F(a+9)+e

(bp + 6, — (a+5)+e
(bp

F
F
F(by +dp) (a1)+

ININ A

F (b, + 0, +Z (b +0;) — Flaj41) —

= (F(b;j+3;) — Flay)) + e

=1

Since F(bj + 5j) < 2% + F(bj)7

< /L()(Aj) + 2e

where o is a permutation of N accounting for the reordering. Thus,

<ZMO ) + 2,

19
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and by letting € — 0,

po(T) <Y po(Ay) + 2¢.

Thus we are done if a, b are finite.
If @ = —o0, then, using the cover [—M, b], we get an inequality

Fb)—F(-M) < iuo(lj) + 2e.

Also, if b = oo, then we get inequality F(M) — F(a) << Z;il to(I;) + 2¢. In any case, by letting M — oo
and € — 0, we get desired inequality. O

Note that compactness is used to use such interlacing argument. Without compactness, it is too compli-
cated.

Theorem 2.41 (Theorem 1.16 in [1] p.36). (a) If F': R — R is nondecreasing and right continuous func-
tion, there exists unique measure pp : Pr — [0,00] such that pp((a,b]) = F(b) — F(a) for all a,b €
R,a <b.

(b) If G : R — R is also right increasing right continuous function, then ug = ur if and only if G — F = ¢
for some constant c.

(¢c) If u: Br — [0,400] is a measure such that u((a,b]) < +oo for every a,b € R with a < b, then letting

n((0,2]) x>0
F(z)=<0 z=0
—p((2,0]) 2 <0,

Then p = pp.
(d) (c*) If p: Br — [0,k] for some k > 0 is a finite measure, then = pe where G(x) = p((—oo, z]).
For example, pup((a,b]) = F(b) — F(a) = u((0,0]) + 1((a,0]) if a < 0,b > 0.

Proof. Take the premeasure g constructed in the proposition 1.15 on A which is an algebra generated by
the half open interval (h-interval). Use the general construction of an outer measure from the proposition
1.10. Use the Caratheodory’s extension theorem (1.11) and proposition 1.13 and theorem 1.14 to conclude
that 11| 5_aig(4) is a measure extending po.

For (b), if G — F = ¢, then trivially holds since ug((a,b]) = G(b) — G(a) = F(b) — F(a) = pr((a,]).
Conversely, if uc = pr, then G(b) — F(b) = G(a) — F(a) for any a, b, thus, G — F = ¢ for some constant.

For (c), and (c*), it is derived from the uniqueness of y as a extension of g, since both has the same
premeasure and both are finite measure. O

We call pp in (a) the Lebesgue Stieltjes measure associated to F. Recall that the Caratheodory’s
extension theorem actually gives us a complete measure on the o-algebra of all p*-measurable sets. We let
M denote this o-algebra (possibly larger than Bg) and we denote also by pur : Mp — [0, 00] the measure
constructed on Mp. (And call also this the Lebesgue Stieltjes measure associated to F.

Example 2.42 (Special Cases).

1. F(x) = x. Then pr((a,b]) = b—a. Then up is called the Lebesgue measure. We write L = Mp
called the set of Lebesgue measurable sets. We may write m = up.
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. 1
2. Fix v € R. Let F(t) = 0 z.ft<:c Then p((a,b]) = ifa € (a,b) and Mp = P(R) and
1 ift>=x. 0 o.w.
1 ] E
ur(E) = {0 ifwe This pp = 0, 15 called Dirac Mass.
0.W.

Remark 2.43. For any Lebesgue Stieltjes measure,

pr({a)) = lim pe((e — 8.2)) = F(z) — im Pl —8) = F(x) - Fz-).
right cts

2.5 Regularity Properties
Now fix increasing right continuous function F, let M = Mp, p = up.

Lemma 2.44 (Lemma 1.17 in [1], p.35). For any E € M,

o0

pe =mi{Y_ pl(aj,b)) = aj,b; € Rya; < by, B C | J(ay,05)}.
j=1

j=1

Proof. We know that LHS < RH S since

wkE) <o U(%‘vbﬂ = > nlag,by).

=1
monotonicity subadditivity 7=

For LHS > RHS, if u(E) = +00, then there is nothing to show. Thus, assume that u(F) < 4+00. Let € > 0.
By construction, 34; € A such that £ C U;‘;l Aj and p(E)+e€> Z;; w(A;), from subadditivity on RHS.
Without loss of generality, we can assume that A; = (¢;, d;] for ¢j,d; € R,¢; < dj. Choose bj > d; such that

€

F(bj) < F(d]) +

3
Then,
(e dy) < (e, by]) = Flby) = Fleg) < Fd;) = Fley) + 5 = plleg, di]) + 35 = n(A)) + 55
Thus,
W(E) +e2 Y (A = 3 (ullesby) - 5)
Hence, - 0:_1
HE) + 26> 3 (ul(es b))

Since £ C U;‘;l(cj, b;), we can take infimum on both sides to conclude that
oo (o)
w(E) +2¢ > inf{d  u((aj,b))) : aj,b; € Rya; < by, B C | J(a5,0))}.
j=1 j=1
By letting ¢ — 0, we get desired inequality. O
Theorem 2.45 (Theorem 1.18 in [1] p.36). If E € M, then

p(E) =inf{u(U) : U is open in R, E C U} (3)
p(E) = sup{p(K) : K is compact in R, K C E}. (4)
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Proof. For (3), < is clear by the monotonicity of u. For >, if u(E) = +o0, there is nothing to show. Assume
#(E) < +o0. By the Lemma 1.17, given € > 0, 3a; < b; such that E C (J;Z, (a;,b;) and

oo

M(E)+6>ZM((ajabj)) = U (a;,65)

subadditivity Jj=1
Since U;’;l(aj, b;) is open set containing F, we can take infimum on both sides, to get
w(E) +e>inf{u(U) : U is open in R, E C U}.

By letting € — 0, we have the desired inequality.

For (4), also > is clear by the monotonicity. To show <, assume first that E is bounded, say E C
[—r,r].r > 0. So, u(E) < u([-r,r]) < +o00. Then E is closed and bounded thus E is compact and u(E) <
+o00. Thus,

w(E\ E) = p(E) — p(E) < +oo.

By (3), 3U which is open in R such that £\ E C U and u(U) < u(E \ E) + €. Let
K=E\UCEC]|[-nr]
Then K is also closed and bounded, thus K is compact. Also, K C E '\ (E \ E) = F and

p(K) = w(E\U) = w(E\(ENU)) = u(E) = w(ENU) > p(E) — u(U) > p(E) — (W(E\ E) +¢) = p(E) —e.
Hence,
u(K) = u(B) - ¢

By taking supremum on both sides,

w(E) —e < sup{u(K) : K is compact and K C E}.
Letting € — 0, we get < inequality of (4). O
Corollary 2.46. Take general E € M. Then,

u(E) = sup{u(EN[-n,n]) : n € N}
= sup{sup{px : K is compact and K C EN[—n,n]}}
neN

= sup{u(K) : K is compact and K C E}.

Proof. When E is bounded, everything is clear. If F is not bounded, then first two equality is clear. And
the last equality is also clear since K in the left side is contained in the rightside, and vice versa, from the
Heine-Borel theorem that any compact set in R is bounded. O

Lemma 2.47. If E € M, then Ve > 0,3V an open subset of R such that E C V,u(V \ E) <e.

Proof. If 1(E) < 400, then p(V\ E) = (V) — u(E) and we find V' using theorem 1.18. If u(FE) = +oo, then
we can write £ = |J,,c,(EN(n,n+1]). For each n € Z, we find V,, is open in R such that EN[n,n+1] C V,,
and p(V, \ (EN(n,n+1])) < 557.

3l
Let V.=, .V then V is open in R, thus

p(V\E) = p ((U) \E> =u (U(Vn\E)> <Y u(Va\B) <Y p(Va\(EN(n,n+1]) <> ﬁ = 3e.
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Theorem 2.48 (Theorem 1.19 in [1]p. 36). Let E CR. Then, the following are equivalent.
1. Ee M.
2. E=V\N for some Gsset V and N € M such that u(N) = 0.
3. E=H\N for some F,set H and N € M such that u(N) = 0.

Note that Gs set is a set of countable intersection of open sets and F, set is a set of countable union of
closed sets.

Proof. (i) = (i) and (#i1) = (i) are clear. To show (i) = (ii), by the previous lemma, ¥Yn € N,3V,,,
which is open in R such that £ C V,, and pu(V,, \ E) < % Replacing V,, by NZ_,V,, if necessary, we may
without loss of generality assume V; D Vo D --- D E. Let V = ﬂflo:l V,. Then, V € Gsg and V O E. Let
N =V \ E. Then, E =V \ N and

pw(N) < p(Va \ E) < —,Vn e N.

1
n
Hence pu(N) =0.

To see (i) = (iii), let E € M. By (ii), B =V \ N, where V € G5, N € M such that u(N) = 0. Thus,

E=(VNN®)*=V°UN
and V¢ € F,, since the complement of G set is F, set. O

Corollary 2.49. If L € M such that u(L) = 0. Then, 3 a Gs-set V € Bg such that L C E and u(V) = 0.
Thus, the Lebesque Stieltjes measure is the completion of Br. (Every union of borel set with a null set is
Lebesgue Stieltjes measurable and every null set in Lebesgue Stieltjes measurable set is contained in a set of
null sets in Br.) Thus p is the completion of u|p, -

Proof. Tt is just direct application of the theorem. O

From this fact we can use the notation
L := Mg where F(z) =x,m = up.

Theorem 2.50 (Theorem 1.21in [1] p.37). IfE € L, and s,r € R, then s+E,rE € L and m(s+E) = m(E),
m(rE) = |rlm(E).

Proof. Since A is invariant under translation and dilations, so does Bgr. Since m(E) = m(E + s) and
m(rE) = |rm(FE) for any finite unions of intervals E, which implies m|4 has a translation invariant and
dilation invariant as a premeasure. Thus, by the theorem 1.14, these property holds for Bg. Now for any
E € £ with m(F) = 0, 3F € Bg such that m(F) =0 with E C F, then

m(E+s) <m(F+s)=m(F)=0and m(rE)=|rlm(E) <|rim(F)=0 = m(E+s)=0=m(rE).

Since every measurable set in £ can be represented as union of Fj,set and a null set, and measures of these
two sets are invariant under dilation and translation, we can conclude that every measure of measurable set
is invariant under dilation and translation. O

2.6 Revisit Cardinal Numbers.

Definition 2.51 (Cardinal Numbers). Two sets A and B have the same size if 3f : A — B that is one-
to-one and onto B. There is a class of sets, i.e., a collection that is too big to be a set, called cardinal
numbers. The Cardinality of a set A is the unique cardinal number that has the same size as A.

Remark 2.52. For ezample, 0 = 0,1 = {0},2 = {0,{0}},--- ,Ng = Ry, called aleph zero.
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Definition 2.53. If k and A are cardinal numbers, we write k < X\ if for sets A and B having cardinalities

Kk and X\ respectively, 3 a one-to-one function f: A — B.
Theorem 2.54 (Schroder-Bernstein Theorem). If kK < X and A < k, then K = A

Proof. Already proved above.

Proposition 2.55 (Proposition 0.7 in [1] p.7). For any X,Y sets, either card(X) < card(Y) or card(Y)

card(X).
Proof. Already proved above.
Definition 2.56 (Cardinal Arithmetic). Suppose card(A) = k,card(B) = X. Then,
K4 X :=card(AUB), k- X\ = card(A x B),k* = card(A”)
where \J implies the disjoint union of two sets, and AP := {f : B — A}.
Thus, card(24) = card(P(A)) = 2~.
Theorem 2.57. If k, A are infinite cardinals, then
K+ A =max(k,A) =Kk A

Also, for any cardinals K, \, u,
(W) = (59,

Proof. Incomplete.
Theorem 2.58 (Cantor). If k is any cardinal then k < 2% but k # 2.
Proof. Let A be a set with card(A) = k. Then there exists a one-to-one function

1 ifz=a

0 otherwise.

f:A—>2Abyal—>fa(a:)={

Thus, x < 2%. Suppose for x = 2%. Then, there exists a bijection g : A — 24 = {0,1}4 . Let

F:AxA—{0,1} with F(a1,a2) = (g(a1))(az).

Let ¢ : A — {0,1} be defined by
¢(a) # F(a,a) for all a € A.

O
<

O

Then, ¢ € {0,1}4 = g(A), thus Ja € A such that g(a) = ¢. Then, ¢(a) = g(a)(a) = F(a,a), contradiction.

Theorem 2.59. card(R) = 2% = card(P(N)), and this give [0,1] to its decimal expansions.

Proof. 1t is already proved in theorem 1.18.

O

O

Theorem 2.60 (Theorem 1.21 in [1] p. 37, revisited). If E € L = Mp, F(z) =x, m = up then Vr,s € R,

s+EeL andrE € L, and m(s + E) = m(E) and m(rE) = |r|m(E).
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Proof. Let B' = {E € Bg : s+ E € Br}. Then B’ is a sub o-algebra of Bg with (a,b) € B’ for all a,b € R,
with a < b. Thus, B’ = Bg. Let B = {E € Bg : m(s+ E) = m(FE)}. Then B” is a sub o-algebra of Bg since

"> {(a,b):a,b € R,a < b},
hence for all E € Bg, m(E) = inf{m(U) : U open in R, E C U} implies
m(s+ FE) =inf{m(s+U) : E CU,U is open in R} = inf{m(U) : E CU,U is open in R} = m(FE).
Now let E € L. Then, 3F € Br, N’ € Bg such that m(B’) =0 and E = FUN for some N C N’. Therefore,
m(s+E)=m(s+ FUs+ N)=m(s+ F)+m(s+ N) <m(F)+m(N') =m(F) =m(E).
So s+ E € L and m(s + E) = m(FE). By the similar argument, m(rE) = |r|m(E). O

Remark 2.61. A totally ordered set (2, <) is well-ordered if every nonempty subset of Q has a minimal
element. Let Q be an well-ordered set. For x € §, let

Po={yeQ:y<zandy#zx},
Let ~
U={xeQ: P, is uncountable}.
IfU =10, let Q = Q. Otherwise, let z = min(U), which exists by the well-ordering property of Q. Then, let
Q={zcQ:z<z}=P,
Then, Q is uncountable since z € U and Q) = P,. Moreover, Yx € Q, P, is countable since z is the least
element in U. Also, by restricting < to Q) gives an well-ordering on Q.
Proposition 2.62. Fvery countable subset of  has an upper bound.

Proof. Suppose E C € is countable. Suppose for contradiction, F has no upper bound. Then, Vy € Q,3e € E
such that e £ y, i.e., y < e, from the total ordering. Thus, y € P, Q@ = |, P.. However, P, is countable,
and countable union of countable sets is also countable. Thus, §2 is countable, contradiction. O

Proposition 2.63. If Q' is any uncountable set endowed with a well-ordering <’ having the property that
Vee Y, {yeQ 1y < z,x+#y} is countable, then (U, <’) is order isomorphic to (2, <), i.e., there exsits
a bijection function preserving order.

Proof. Tt is standard Zorn’s lemma argument. Let A = {P, : 3 sub-order isomophism P, — Q}. Then, every
chain of A has maximal element by the total-ordering. Hence, A has the maximal element by the Zorn’s
lemma. Since for all y € €', P, has sub-order isomorphism with ) using bijection of N. Thus, its maximal
element must contain every Py, which is €' itself. O

Definition 2.64 (Hereditary). Given H C Q, we say H is hereditary if x € Hy e Q, y<xz = y € H.
Let

@ :={¢: H— H':H is a hereditary subset of Q, H' is a hereditary subset of Q', ¢ is an order-isomorphism}.

We order @ by defining ¢1 < ¢ if ¢po extends ¢p1. This is a partial ordering, so Zorn’s lemma says that if
@ is not empty and every totally ordered subset of @ has an upper bound, then @ has a maximal element.

Proof. Note that @ is not empty since the map {min(Q)} — {min()} € . Also, if {¢ : A € A} isa
totally ordered subset of @), we can construct an upper bound of the subset as
o U dom(¢y) — U range(py) by ¢(x) = ¢x(x) since for some A,z € dom(¢py).
AEA AEA

Then, ¢ is order-isomorphism and |J, ¢, dom(éx), U cp Tange(¢n) are hereditary in 2, Q' respectively. Thus,
¢ is in @ and it is an upper bound of {¢) : A € A} .
Hence, by the Zorn’s Lemma, there exists a maximal element of @), say . O
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Proposition 2.65. 1 is a surjective order-isomorphism, i.e., dom () = Q,range(y)) = .

Proof. Suppose for contradiction, let dom(v) # Q. Then, dom(¢) < P, for some « since dom(%)) is heredi-
tary. Without loss of generality, such « is minimal; i.e., there is no y such that y < z, y # x but dom(y)) C P,.
This is possible since €2 is totally ordered set. Then, P, is countable by the construction of 2. So range(y)
is countable, which implies range(v) C .

Let y = min(Q" \ range(y)). Then, dom(v) U{x} is also hereditary by choice of z, as is range(y) U {y}.
Let ¢ : dom () U {z} — range(p) U {y} be

) = {w(a) ifa#zx

y if a =z.

Then, ¢ € o, v < ¥, 1 # 1, thus 9 is not a maximal element, contradiction. O

Definition 2.66 (Ordinal). Let (2, <) constructed in the above is the first uncountable ordinal. Then,
0 :=min(Q), 1 := min(Q2\ {0}),2 = min(Q\ {0,1}), - ,w = min(Q \ Np),w+ 1 = min(2\ (No U{w})),--- .
Thus, countable ordinals are

0,1,2,--- ,w,w+1Lw+2,--,2w,2w+1,--- 3w,3w+1, -, w>,w?>+1,--,
The first uncountable cardinal is card(f2), denoted card(2) = R.

Remark 2.67 (Continuum Hypothesis). a; = ¢ = 2%,

Example 2.68 (Transfinite recursion). Let’s construct o-alg(§) for some & C P(X). We will construct R,
for every a € Q to show that | J,cq Ra = 0-alg(§) . Let Ry = EU{0}. If a € Q has an immediate predecessor
b, i.e., if a is a successor ordinal, i.e., if b = max({x € Q : x < a} exists, then we let R, be a set of all
countable union and complements of such union of elements from Ry. If a is not a successor ordinal, then
we let R, = U R

reQx<a VT

Claim 2.69. {J,.q Ra = 0-alg(§).

Proof. < is clear from the construction. More correctly, it follows by the transfinite induction on W that
Ra C o-alg (&) ,Va € Q. Indeed, Ry C o-alg (£). If a € Q and if R, € og-alg () for all x < a, then we must
shown that R, C o-alg (§). If a = b+ 1, then R, C o-alg (Ry) C o-alg (£) by the inductive hypothesis. If a
is not a successor ordinal, then R, = |J, ., Rz C o-alg (&), by the inductive hypothesis that for each 2 < a,
R, Co-alg(§).

For >, we must show that R := UaeQ R, is o-algebra. If F € R, for some a € (2, then E¢ € R, by
the construction of R,. Suppose Ej, Ea,--- € R. Let a(j) € Q such that E; € R, for all j € N. By
the proposition, {a(j)}jen has an upper bound b € Q. Thus, Vk € N, Ej, C Uj’;l Raiy € Rp. And by
construction, Jy—; Ex € Ryt1 = Upey Ex € R.

Thus, R is o-algebra. O

Proposition 2.70. Suppose & C P(X) is countably infinite. Then, card(c-alg(§)) = c.

Proof. We have o-alg (() §) = U,cq Ra, where 0 is the first uncountable ordinal. Then, by our construction,
card(Ry) = card( U {0}) = No.

Claim 2.71. Ya > 0, card(R,) = c.

Proof. By the transfinite induction, we assume that the assertion holds for all & € Q,a < 8 € Q. And show
it holds for 8. Note that
card(Ry) < card(P(€)) = 2% = c.
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1. Case 1: B € Q is B = Py + 1. Then, Ry consists of all countable union of sets from Rg,, and their
complement B, so

¢ =2% < card(Rg) < card(RE‘o) = 0 = (2%0)Ro — gNoNo — oo —
2. Case 2: 5 €Q is not a successor ordinal. Then,

Rs = U Ro and card(Rg) < Ng-c=c¢

a<f
ae)

Note that {a €  : « < S} is countable, by construction of .

O
By the claim,
card(o-alg (€)) = card (U Ra> <cardQ-c=¥;-c<cét=c.
a€e)
O
Corollary 2.72. card(Bgr) = c
Proof. {(a,b) : a,b € Q} generates Bg as a o-algebra. O

Definition 2.73 (The Cantor Set). Let Co = [0,1]. C1 = Co\ (3,2) = [0,3] U [2,1], and Cy = Cy \
((3.2)U(%, %)), and so on. Now let C = (\;°, Cy. Then C is totally disconnected, i.e., no two points are
connected by the line segment. Howewver, it is still uncountable.

;11 ;—j for a; € {0,1,2}, and these expansions are unique

n € Ng when z will has two such expansions

Elements of [0, 1] have base 3 expansions z =

except when x = 7,

aj = 0Vj > pora; =2Vj <p.

And we choose the expansion tha avoids having any a; = 1 if possible. Actually,
C={ze0,1]:2= Zlg—j for some a; € {0,2}}.
]:

Then we have a bijection 6 : C — {0, 2}". Thus, card(C) = c
Lemma 2.74. m(C) = 0.

Proof.
) ) 2 n
(€)= Jim m(@) = Jim (3) =0
by the continuity from above. O

Proposition 2.75. card(L) = 2¢.
Proof. Note that P(C) C £ C P(R) and card(P(C)) = 2¢ = card(P(R)) gives the desired result. O
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3 Integration

3.1 Measurable function

Definition 3.1 (Measurable function). Let (X, m) and (Y,n) are measurable spaces and let f : X =Y. f
is measurable or (m,n)-measurable if VE € m, f~Y(E) € m.

Observation 3.2. If also (Z,a) is a measurable space and if g :' Y — Z is (n,a)-measurable, then go f :
X — Z is (m, a)-measurable.

This is because every inverse image of a-measurable set is n-measurable, and its inverse image of f is
also m-measurable.

Proposition 3.3 (Proposition 2.1 in [1] p.43). If n = o-alg(§), then f : X = Y is (m,n)-measurable iff
VE €&, f7YE) em.

Proof. If f is (m,n)-measurable, then trivially f~1(E) € m for all E € £ C o-alg ().

IfVE €& f7YE) em,let A={E CY : fY(E) € m}. Then, £ C A. Tt suffices to show that
o-alg (€) € A. Note that A is closed under complement since f~}(E¢) = X — f~Y(E) = f~1(E)¢ for any
E € A. Also, 0 € A since f~1(0)) = ) € m. Finally, A is closed under countable union since

2=

Hence, A is a o-algebra, containing &. Thus, o-alg (§) C A, hence f is (m,n)-measurable. O

&h
ﬁcg

Corollary 3.4 (Corollary 2.2 in [1] p.44). If X andY are topological spaces and if f : X =Y is continuous
function, then f is (Bx, By )-measurable.

Proof. Note that
By =oc-alg({V CY :Visopen}),Bx =o-alg ({U C X : U is open}),
and V is open in Y implies f (V) is open. Thus, by the above proposition, f is (Bx, By )-measurable. [J

Remark 3.5 (Convention). If (X, m) is a measurable space and if f : X = R (or f : X — C), then we will
say f is measurable or m-measurable if it is (m, Br)-measurable (or (m, By )-measurable).

Observation 3.6. If f : R — R and g : R — R are both L-measurable, i.e., Lebesgue measurable, then by
the convention, f is (L, Br)-measurable, thus g o f need not be L-measurable.

Proposition 3.7 (Proposition 2.3 in [1] p. 44). Given (X, m) and f : X — R, the followings are equivalent.
(i) f is m-measurable
(ii) Ya € R, f~1((—o00,a)) € m.

(iii) Va € R, f~1((—o00,a]) € m.

(iv) Vb € R, f~1((b,00)) €

H

[b,00)) €

Proof. Note that (i) = (i1), (44), (iv), (v), since the given sets are all Borel set. Conversely, from the
proposition 1.2, we know that the given sets can generates the Borel o-algebra, therefore from the proposition
2.1, we can concluded that f is m-measurable. O

(v) Vb ER, f~
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Definition 3.8 (o-algebra generated by {fo}aca). Let X be a set. Fix a set A and Vo € A, fix (Yo, mq)
a measurable space. Suppose fo : X — Y, is a function. Then, o-algebra generated by {f,}aca is
o-alg ({fa_l(E) ra€AFE e ma}) . This is the smallest o-algebra of subsets of X making all the functions
fo measurable.

For example, let Y =[], 4 Yo and let 7, : Y — Y. Denote the a-th coordinate projection, then the
product o-algebra is ® e AT, which is the o-algebra generated by (74 )aca- (See definition 2.14 of this note.)

Lemma 3.9. Let A be a set and Vo € A, let (Yo, na) be a measurable space. Let Z be a set, and let
fa: Z = Yy be a function for each a € A. Let n C P(Z) be the o-algebra generated by (fo)aca. Let (X, m)
be a measurable space. Let g : X — Z be a function.

Then, g is (m,n)-measurable iff Vo € A, fo 0 g is (m,ny)-measurable.

Proof. To show if part, note that n is generated by {f;*(E) : « € A, E € ny}. Thus, for g to be (m,n)-
measurable, it suffices to show that Vo € A,VE € ny, g7 1(f71(E)) € m. And it is true, since for any E € n,,
[ Y(E) € n by definition, and g~ (F) € m for any F € n. Let F = f,!(E) and we're done.

To see only if part, suppose g is (m,n)-measurable. Then, by definition of n, f, is (n,n,) measurable
for each o € A. Thus, f, o g is (m,ny)-measurable; done. O

Proposition 3.10 (Proposition 2.4 in [1] p.44). Let (X, m) and Vo € A, (Yo, nqa) be measurable spaces. Let
Y =]],caYa andn = ®qcang. Let g: X =Y. Then, g is (m,n) measurable if and only if Vo € A, myo0g :
X =Y, is (m,ny)-measurable.

Proof. Just special case of the above lemma. O

Remark 3.11 (Recall a product of metric space). A metric space is (X,d) where d is a metric on X.
And U C X is called open if Vo € U, Je > 0 such that B.(X):={y € X : d(z,y) <e} CU.
If (X1,d1),- -, (Xn,dn) are metric spaces, then we equip X = H?zl X, with the product metric e.g.,

d(oo)((xj)?:h (yj)?:l) = lrg]aéb dj ($j7 yj)?

which is equivalent to any of

d(p)((xj)j 1 y] ] 1 Zd x]ayj

Definition 3.12 (Separability). A metric space (X,d) is separable if there exists a countable subset D C X
that is dense in X.

Proposition 3.13 (Proposition 1.5 in [1] p.23). Let (X;,d;), 1 < j < n be metric space and let X =
H;l:l X be equipped with d(>). Then ®y_1Bx; C Bx. If (X1,d1),- - (Xn, d,) are all separable, then we get
" Bx, = Bx.
—1bx; X

Proof. By definition of product o-algebra, ®@7_,Bx, = o-alg ({W{l(U) :1<j5<n,U isopen in Xj}) . since
each 7; is continuous from X to X, each 7r;1(U) is open, so 7~} (U) € Bx. Suppose Vj € [n], X, has a
countable dense set D;. Then, D = H?Zl Dj is dense in X, and D is countable. Hence X has countable
dense subset D. And we note the standard result;

Remark 3.14 (Standard result). For D, which is countable dense in X, every open set in X is the union
of a subfamily of {Bi(z) : x € D,l € N}, where By :={y € X : d(z,y) < 1}

Proof. See the topology stuff and prove it. O
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Now we want to prove ;‘ZIBX]. D Bx. Let U Ce X be open. It suffices to show that U € ®§L=1BXJ..
Since U is countable union of sets of Bi(z),z € D, it suffices to show that each Bi(x) € ®]_,Bx,. We

choose d = d(*), defined above. Then, Bi(z) = IT- Bi(z;) € @ Bx;. O
Corollary 3.15 (Corollary 1.6 in [1] p.23 and more.). B¢ = Bg: = Br @ Br. Brn = ®7_1Br.

Corollary 3.16 (Corollary of proposition 2.4 in [1]). If (X, m) is a measurable space and f : X — C, then
f is (m, Bc)-measurable iff Ref, Imf are (m, Br)-measurable.

Proof. From the above corollary, B¢ = Bre = Br ® Bg. O

Proposition 3.17 (Proposition 2.6 in [1] p.45). If f,g: X — C are m-measurable, then f + g, fg are also
m-measurable.

Proof. Let H: X = Cx C be H(z) = (f(x),g(z)). Then, H is (by proposition 2.4 of the [1]) (m, Bc ® Bc)-
measurable. Let ¢ : C x C — C be ¢(z,w) = z+w and ¢ : C x C = C be ¢(z,w) = zw. Then, ¢,¢

are continuous, thus, they are (Bgcz, Bc)-measurable. Thus, ¢ o H = f 4+ g and ¢ o H = fg are (m, Bc)-
measurable. O

Remark 3.18. Consider R = [—o0, 00]. We topologize it by making an order preserving bijection [—o00, 00] —
[-1,1] into a homeomorphism. If (X,m) is a measurable space and f : X — [—oo0,+00| we say f is m-
mesaurable if it is (m, Bg)-measurable.

Lemma 3.19. Let f : X — [—o00, 00 is m-measurable iff Va € R, f~1((a, +a]) € m.
Proof. We proved it in the proposition 2.3 in [1]. O

Proposition 3.20 (Proposition 2.7 in [1] p. 45). Suppose f; : X — [—00,0],j € N is m-measurable. Then,

g1 = sup fj, go = mf f],gg = lim sup fjg94 = lim sup f;
jeN

]*)OO

are measurable.

Proof.
o
a,+o0]) = U (a,+o0]) € m
Jj=1
since
sup f;(z) > a <= 3j € N such that f;(z) > a.
JEN
So g1 is m-measurable. Since go = —sup,;cn(—f;(z)), s0 g2 is also m-measurable. And note that

— inf = inf
gs = inf sup f;(x) = if hn(z),

neN i>n

where h,(z) = sup;s,, f;. Note that h,(z) is also m-measurable, since it is also supremum of countably
many functions up to renumbering. Hence, g3 is m-measurable. Similarly,

g4 = Sup 1nf fj( x)
neNk

is also m-measurable. O

Corollary 3.21 (Corollary 2.8 in [1] p.46). If f,g: X — [—00, 00] are m-measurable, then max(f, g)(z) :=
max(f(x),g(z)) and min(f, g)(z) := min(f(z), g(x)) are m-measurable.

Proof. Let fi = f, fn = g for any n > 2, then max(f, g)(z) = sup,,cy fn, min(f, g)(z) = infpen fn, thus they
are m-measurable. O
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Corollary 3.22 (Corollary 2.9 in [1] p.46). If f; : X — [—o0,00| is m-measurable, and if f(z) :=
lim; o fj(z) exists for all x, then f(x) is m-measurable. If we replace [—o0o, 00| to C, the statement still
holds.

Proof. If f(z) := lim;_, fj(z) exists for all x, then f(z) = limsup,_,, fj(z) = liminf; , f;(z), thus it
is m-measurable by the proposition 2.7. Also, in case of C, we know that f(x) := lim;_,o f;(z) exists iff
Ref(z) :=lim;_, Ref;(x) exists and I'mf(x) := lim;_,o, Imf;(z) exists, from the corollary 2.5 in [1]. Thus,
we know Ref and Imf are m-measurable by the statement for the case [—o00, 0], which we just proved.
Thus, f = Ref 4+ ilmf is also m-measurable, from proposition 2.6. O

Definition 3.23 (Characteristic function and Simple function). Let X be a set and E C X, then the
1 ifxeFE

0 otherwise.
form f = 2?21 ajlg; for somen € N and some aj € C and E; C X.

characteristic function of E is 1g(x) := A simple function on X is a function of the

Observation 3.24. Let f : X — C is a simple function iff im(f) is a finite set. Suppose {z1, -+ ,zn} =
im(f). Then,
f= Z %l
j=1

where E; = f~1({z;}). We call the above representation as the standard form of the simple function f.

Definition 3.25 (Positive and negative part, polar decomposition). If f : X — R, we define the positive
and negative parts of f to be

fH(z) = max(f(x),0), [~ () = max(—f(x),0).

Then f = ft — f~, and |f| = f* + f~. Thus, if f is measurable, then f*,f~ are measurable by the
corollary 2.8, thus | f| is measurable by the proposition 2.6. Conversely, if f+ and f~ are measurable, then
by proposition 2.6, f is measurable. Also, if f: X — C, we have a polar decomposition:

Eifz#£0

0 otherwise.

[ = (sgnf)|fl, where sgn(z) = {

Again, if [ is measurable, then so are |f| by the proposition 2.6. And note that if U C C is open, then
sgn~Y(U) is open or a form V U {0}, where V is also open, thus V U {0} is a Borel measurable set. Thus,
sgn(z) is Borel measurable by proposition 2.1. Thus, sgn(f) is measurable.

Remark 3.26. If f, g are simple, then so are f+ g and fg, since their image is also finitely many, therefore
we can represent it as the standard form.

Observation 3.27. If (X, m) is measurable space and if f = 27:1 zjlp; is a simple function in standard
form, then f is m-measurable iff Vj, E; € m.

Proof. Note every inverse image is the union of some £j’s, therefore, f is measurable iff F;’s are in m. [
Theorem 3.28 (Theorem 2.10 in [1] p.47). Let (X, m) be a measurable space.

(a) Let f : X — [0,00] be m-measurable. Then, 3 a sequence (¢,)5; of m-measurable simple functions
such that o1 < ¢o < --- < f and ¢, — f pointwise with uniform convergence on subsets of X where f
is bounded.

() If f: X - R or f: X — C is m-measurable, then 3 a sequence (¢,)°, of m-measurable simple
functions such that |¢1| < |pa| < -+ < |f], on — [ pointwise with uniform convergence on subsets of X
where [ is bounded.
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Proof of (a). Let E™ = fH[5RE, &) for all k € [27]. Let F(™) = f=1([2", +00]). Let

22n

k-1 .
¢n = Z 27“1E,in) + 2 1F(n).
k=1

See below picture for understanding the ¢,.

Thus, ¢, < ¢p41 since the latter is cut more finer than the former one, and the value of function is always
greater then or equal to that of the former. Also, ¢,, < f since it is defined to have a minimum value of each
inverse image of intervals, which f has a value.

IfY C X and f(Y) C [0,2P], then Vz € Y,Vn > p,

1
£@) = 6n(a)] < o
Thus, f, uniformly converge to f on any subset Y of X, which f is bounded. O

Proof of (b). Suppose f: X — R. Let ( Sf))oo and ( 1(1—))00 be approximating sequences for f and f_

n=1 n=1

obtained from part (a). Then, Vn € N,w,(f)w,(f) = 0. Thus, we know |f| = f+ + f— and ff— = 0. Hence,
[Ynl =95 + 900

has the desired properties.
If f: X — C, then letting (¢,)52; and (p,)52; be the approximating sequence of Ref and I'mf. Then,
On = Y + ip, have the desired properties. O

Definition 3.29 (Almost everywhere). If P(x) is a property that depends on x € X, and if (X, M, p) is a
measure space, we say P holds p-almost everywhere or p-a.e. if it holds for all x € E for some E € m
such that u(E°) = 0.

Lemma 3.30. Suppose (X, m,u) is a complete measure space, E € m, B C X such that BAE € m, where
A is symmetric difference. Suppose W(BAE) = 0. Then, B € m.

Proof. By the completeness of u, E\ B and B\ E € m since they are subset of BAE. Thus,
B=(BNE)U(B\FE)=(E\(F\B)U(B\E)ecm.
O

Proposition 3.31 (Proposition 2.11 in [1] p.47). Let (X, m,u) be a complete measure space and suppose
(Y,n) is a measurable space.

(a) If f,g: X =Y, f is measurable, and f = g p-a.e., then g is measurable.

(b) Suppose fj: X — C (orR) and f : X — C (orR) such that f; — f p-a.e. andVj € N, f; is measurable,
then f is measurable.

Note that a.e. implies there exists E € m such that pu(E°) = 0 and Vz € E, (a) f(z) = g(z) or (b)
lim; o0 fj(2) = f(2).
Proof. For (a), Let E be as described. Let A € n. It suffices to show that g=(A) € m. But g7 (A)Af~1(A) C
E¢, and we know p(E¢) = 0. Thus, g~ *(A)Af~1(A) € m from the completeness of u1, and (g~ (A)Af~1(A)) =
0. However, f~1(A) € m. By the above lemma, g~1(A4) € m.

For (b), let fj = f;1g and f = fl1p where E is described above. Then, f’j = f; a.e. and f=fae. and
lim; o0 fj = f. By part (a), ¥j € N, fj is measurable. By proposition 2.7, f is measurable. By part (a) fis
measurable. O
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Proposition 3.32 (Proposition 2.12 in [1] p.48). Let (X,m,u) and let (X,m, i) be its completion. If
f:X — C (or R) is m-measurable, then there exists g : X — C (or R) such that g is m-measurable and

f=g9 fi-a.e.

Proof. Using the theorem 2.10, there exists a sequence (¢,,)52; of simple m-measurable functions, ¢, : X —
C (or R) such that ¢,, — f pointwisely. Writing

k(n)

Z Z; )lE(n)

in standard form, where zj ) € C, E ) € . Since m is the completion of m, we have Ej(n) F™uy A (n)

for some F( ") € m and A(”) C N(") where ,u(N(")) =0, N(n) em. Let N =, U N(n) € m. Then
uw(N) = 0. Let
k(n)

Yn = Pplne = Z ) | Ine.
E

1, 18 an m-measurable simple functions and v, — f - 1y pointwise. By proposition 2.7, g := f - 1yec is
m-measurable and g = f m-a.e. Since N is still null set with respect to i, g = f fi-a.e. O

3.2 Integration of Nonnegative Functions

Definition 3.33 (Integration). Fiz a measure space (X, m,u). Let ¢ : X — [0,4+00) be a measurable simple
function. In standard form
¢ = Z Cj ]-Ej ’
j=1

where E1,--- , E, € m are disjoint, and c; > 0.
We define the integral of ¢ with respect to u to be

[ o = chu € [0, +00].

If A € m, we define

/A sdul= [ 6+ 1adn): =S euy(B; U A).

j=1

Other notation for integral is as below;

Join= [ o[ otwrauto) = [ o

such notations depends on the context.

Proposition 3.34 (Proposition 2.13 in [1] p.49). Let ¢,¢ : X — [0, +00] be measurable simple functions.
(a) If ¢ >0, then [cp =c [ ¢.

) [o+d=[o+ [¢

(c) If o <, then [¢ < [

(d) The map m > A [, du is a measure.
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Proof. For (a), if = 377, ¢;1p; as a standard form, then

/C¢ = éCCjM(Ej) = Cécju(Ej) = C/¢-

For (b), (c), write ¢ = 377 a;jlp;,¢ = 37" bjlp; as a standard form. Then, use

n,m n,m
¢: E alejﬂFj7¢: E bleiﬁFj'
,J (]

Then,

n,m

/¢> + = (ai+b)u(E; N Fy) =Y ay(E; N Fy) +
i i

n,m

iju(Eij) =/¢+/¢.

And, if ¢ <4, then for each (4, 7) € [n] x [m], a; < b;, thus

/¢ = Zam(Ei NE;) < iju(Ei Nry) = /1/1-
1,5 ,J
For (d), let
v(A) = /Agzﬁd,u = /gblAd,u = ;%N(Ez‘ NnA).

Clearly, v() = 0. Let Ay, As,--- € m be disjoint sets, and let A = [J;2, A;. It suffices to show that v(A) =
> =1 v(Aj). We have

v(A) = Zai,u(EiﬂA)
i=1

= > ad_u(ENA))

i=1 =1

as desired. 0

Remark 3.35 (Remark in class). If ¢ = Z;”:l cjlg; for c; >0, R; € m is not necessarily disjoint, then by

the linearlity properties,
m

/¢du = ;CjM(Rj)-

Remark 3.36 (Remark by Byeongsu Yu). Acutally, in this case, since we deal with [0, +00], we don’t have to
worry about the condition of interchanging two sums. However, for future reference, I leave some proposition
which may be useful.
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Proposition 3.37 (Condition of finite and infinite sum). Let I be non-empty and finite, and suppose that
for each x € I the series ZZO:O fa,y converges. Then the series ZZO:O > wer fey also converges, and we have

Zifw = izfmy

zel y=0 y=0zxzel

Proof. We have

Z i foy = Z (nlggo i fm,y) (by definition)
y=0

xzel y=0 xel

n
nh_)néo <Z Z fxy> (since addition is continuous)

zel y=0

nlgr;o <Z Z fmy> (interchanging finite sums)

y=0zxzel

o0

2D feu 0

n=0gzxecl

O

The proof shows that the result holds in any abelian [topological group][1] (or even semigroup), the mini-
mum structure needed to talk about infinite series. (For instance, this means that you can use it in topological
vector spaces without having to resort to vector-valued integration.)

We cannot omit the assumption that for each x € I the series ZZC:O fzy converges, as illustrated by the
following example.

Example 3.38. Let I :={—1,1}. For allz € I and y € N we define f,, = -y. Now we have

oo oo

ZZfT,y :Z(fy“i’y) :20:07
y=0

y=0zxel y=0

whereas

Ziff”’y: (i—y> + <§y> = —00 + 00,

zel y=0 y=0
which is undefined.

Definition 3.39 (L' and integration on measurable function). Let
LT :={f:X = [0,+00] : f is m-measurable}.

For f € L™, we define
[ fdn=sup [ 6du 62 X — 0. 403],0 < 1.

Observation 3.40. (1) If ¢ : X — [0,+0o0) is a simple measurable function, then ¢ € Lt, and

new definition old definition
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(2) If f,ge LT, f <g = [ [ < [g, since we are taking supremum of a subset.
(3) If fe L*,c>0, thencf € LT and [cf =c [ f.

Remark 3.41 (Remark for MCT). Note that if f1 < fo < ---, then liminf f,, = limsup f,, pointwisely, since
monotonic sequence converges in the extended real line. (If it is bounded, then the Monotone Convergence
Theorem of the Real number assures such convergence. If it is not bounded, then liminf f,, = oo, otherwise it
is bounded, contradiction. Since f; can be a constant function, this can be applied to the increasing sequence
of the real number. Therefore, limits in the condition of Theorem 2.1/ are well-defined.

Theorem 3.42 (Theorem 2.14 in [1] p.50, Monotone Convergence Theorem (MCT)). Let ()22, be a
sequence in LT, with fi < fo <---. Let

f(.’E) = lim fn(x) = sup fn(x) € [07"_00}

n—oo neN

Then,
feLt

/fdu = lim /fndu = Sup/fndu-
n—oo neN
Proof. By the Corollary 2.9, f is measurable, thus f € L*. Since f,, < f,Vn € N,

/fng/f,vneN e /fznlggo/fndu.

Let ¢ : X — [0, +00] be a simple measurable function such that ¢ < f. Let 0 < @ < 1, and define

Eui={o € X fulx) > ag(a)}.

and

Since f, & f, En, 7, ie.,

since f, < fr41 for any n € N. Since

for all z € X, we have

oo
U= o -

Since A — [, ¢dp is a measure by the theorem 2.13 (d), we have

/qﬁdu: lim/ odp
n—oo E”

by continuity from below. However,

a/Enqbdu:/EnacﬁduS/Enfnduﬁ/fndw

a/qﬁd,uz nli_{rgooz/E odp < nli_)ngo/fndw

Thus,

Let a — 1, thus

/ g < lim / fod.
n—oo
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Take the supremum of all ¢, we get
[ ran< i [ g
n— oo

Thus

lim /fndu= /fdu=/ lim f,du.
n—00 n—oo
O

Remark 3.43 (Consequence of MCT). Given f € L%, from the theorem 2.10, ()52, a sequence of
measurable simple functions such that 0 < ¢1 < o < -+ < f such that lim, . ¢, = f pointwise. By the
MCT, ffd:u = hmn—)oofd)ndlu

Example 3.44 (MCT needs "M’ for monotonic). Let (R,Bg,m). Define ¢n :=mn-1¢ 1y. Then, ¢p — 0

pointwise. However,
[oudn=14 [oau=o.

since ¢, — 0 is not monotonic convergent.

Theorem 3.45 (Theorem 2.15 in [1] p.51). Let f,, € LT, for alln € N. Let f =3 >, fn. Then, f € LT
since each partial sum is measurable, and limit of measurable function is also measurable, by the Corollary
2.9 in [1].

Also, [ fdp= 3272, [ fadp.

Proof. Step 1: Show [ fi+ fadu = [ fidu+ [ fadu. Let

1< < < fu
Y1 < << fy

be simple measurable functions with ¢,, — f1,%, — f2. Then, (¢, +,)52 is an increasing sequence
of measurable simple functions converging to f; + f2. So,

[+ pan L Jrwnan = m([ou+ [ = [ndu+ [ g

(MCT Theorem (MCT)
2.13(b)

Step 2: Use induction on N. If it holds for N — 1 and 2, such that N — 1 > 2, then

/ifn=/<<§fn>+fN> = /(En%/m = ZN:/fndu

inductive inductive n=1
hypothesis hypothesis
for 2 for N—1

Step 3: Note that

/iﬁ/nﬁ%iﬁ = nlgngoé/fndu.

i=1 (MCT)

Proposition 3.46 (Proposition 2.16 in [1] p.51). Let f € L™, then

/f:0<:>f:()a.e.
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Proof. Suppose f =0 a.e.. If ¢ : X — [0, +00) is simple and ¢ = 0 a.e., then in standard form,

n
6=> cilp,
j=1

and ¢; # 0, thus u(E;) = 0 for each j € [n]. Thus,

/d) = iCjM(Ej) =0.

Then now take the simple function ¢ : X — [0, 400) such that ¢ < f. Then, ) = 0 a.e., since f =0 is a.e.
and ¢ < f. So, [¢ = 0 as shown above. Thus

/f:zsup{/wm/):X—) [0,+oo),wissimple,w<f} =0
To show the converse, let E,, = f~!([1,+00]). Then,

1 1
OS*1E”§f$O/*1En§/f=0,
n n

for all n € N. Thus,

1
~H(En) =0 = u(En) =0,

for all n. However, let £ :=J~, E,, = f1((0,+0oc]). Then,

p(E) < > uE,) = 0.

=1
subadditivity of u "=

Therefore, f =0 a.e. O

Corollary 3.47 (Corollary 2.17 in [1] p.51, The almost everywhere MCT). Suppose f, € LT for alln € N,
and f € L. Suppose that for almost every z € X,

fi(z) < fo(x) <o (5)
and

Jim fr(z) = f(2) (6)
Then,

b [ 1 [

Proof. By hypothesis, 3F € m s.t. p(E) = 0 and Vz € E€, the equation (3) and (4) holds. Then,
fnlge ' flge pointwisely. Thus, by the Monotone Convergence Theorem,

n— oo

However,

Theorem 2.15

/fn:/(fnlEc+fn1E) = /fnlEc+ /fnlE :/fnlE“ (7)
——

=0 by Proposition 2.16
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And similarly,

/f:/(flEC+f1E /flEL L]:l_}i :/flEC (8)

Theorem 2.15
=0 by Proposition 2.16

nlgn;o/fn :nlgrolo/fnlEc :/flEC =/f,

as desired. O]

Thus,

Proposition 3.48 (Proposition 2.18 in [1] p.52, Fatou’s Lemma). Let (f,,)22, be any sequence in L. Then,

n—00

/ lim inf f, <lim 1nf fn-

Before proving this, note the natural example;

Example 3.49 (Natural Example). Let f, =n- Lo,1y,Vn € N, and let yp = m, the Lebesgue measure. Then,
liminf, . fn = 0. However, ffn =1 for any n € N. Thus,

n— 00

/hm inf f,,=0<1=1Iim mf fn-

Proof of the Fatou’s Lemma. Let gy = inf, >y f,. Then,

91 < g2 <

and define
f= hm gr = khm 1nf fn = sup H;f fn=1lm inf f,.

—oon> k—o0 N> n—00

[ r=pim [ o

< < i
gk < fn :/gk,ég/fn.

= su <su mf/ N lim inf/n.
/ka;f/gk k>€" f n—00 4

(MCT) — deﬁmtlon

By the Monotone convergence theorem,
However, Vn > k,

Thus

O
Corollary 3.50 (Corollary 2.19 in [1] p.52). If f, € LT for (n>1) and f € L and if f, — f a.e., then
/f <lim inf I
n—oo

Proof. If f,, — f everywhere, then apply the Fatou’s lemma. In general, use the same method as a proof
of the almost everywhere MCT. Let E € m such that u(E) = 0, and Vo € E°, f,(z) — f(x) pointwisely.
Then, f,1g. — f1gc pointwisely. Thus, by the Fatou’s lemma,

n—oo

Also, we already know that [ f, = [ f,lge for any n € N by the equation (5) and [ f = [ flge by the

equation (6). Thus,
/f:/flEc <lim inf /fnlEc = lim inf /fn7
n—oo n—oo
as desired. O
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Observation 3.51 (Proposition 2.20 in [1] p.52). If f € LT, [ f < +o0, then p({z : f(z) = +o0}) =0, and
{z: f(x) > 0} is o-finite.

Proof. Suppose p({x : f(x) = +o0}) > 0. Then,

too> [ 12 /{ e d ekt @) = $ooh) =,

/ fs/f<m
{zm>f(z)>L1}

. Thus, p({z : n > f(z) > 1}) < co. Let E,, = {z : n > f(z) > 1} and F,, = E,, \ (U}7]'E;) . for any
n € N, and let Fy = {z : f(x) = +o0}. Then, F,’s are disjoint and ngl F, = Ey for any N € N, thus
U.—y = {z: f(z) > 0}. Thus,

{z:f(x) >0}NF, <F, = p{z: f(x) >0}NE,) <ulF,) <occ.

contradiction. Also, note that

Thus, {z : f(x) > 0} is o-finite. O

3.3 Integration of complex functions

Definition 3.52 (Integrability of extended real-valued function). Let f : X — R be in LT. We have
fr = max(f,0) and f_ = max(—f,0). Thus, by the Corollary 2.8 in [1], f, f- are in LT. And note that
f=/Ff+—[f-, and |f| = f+ + f—. We say [ is integrable if [ |f| < +oo, and then we can define

[r=[r- 1

Proposition 3.53 (Proposition 2.21 in [1] p.53). The set of integrable (thus measurable) real-valued function
on X is a real vector space, on which integration (f — [ f) is a linear functional.

Proof. For the first assertion, let f,g : X — R be integrable. Let a € R. Note that + defined for function
already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with
field multiplication and distibutivity. Also, 1 € R satisfies 1- f = f. Therefore, it suffices to show that f + g

and af are integrable, and [af=a [ f, [f+g=[f+[g
Note that
ofl =lallsl = [lafI= [lalifi =lal [ 171 <

thus af is integrable. Also,
Jisa = [ureisl= [11+ [l <+,
~—
triangle ineq.

thus f 4+ g is also integrable.
If a > 0, then (af)s+ = afs and (af)_ = af_, thus

o= o[z ([ [r) s

Theorem 2.15

If a <0, then (af)y = —af_,(af)— = —afs, so

Jar=[ar = [ag=a [ fo-a [ 1 =a[ 1.~ [1)=a [+
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Let h=f+g. Then, hy —h_ = f, — f_ + g+g—, thus

hy+f-+g-=h_+fi+9+ = /h++f,+g,=/h,+f++g+

Thus, by the theorem 2.15,
Jror [rs[a=[ns [ros foo = [nm [n= [ro= [ 14 o [o= [ 1+ [0

Definition 3.54 (Integrable in complex valued function). Let f : X — C be a measurable function. We say
[ is integrable if [ |f| < co. Note that

[fI < [Ref[+ [Imf| <2|f].

So f is integrable iff Ref and Imf are integrable. We define

[ = [ressi [1mr

Proposition 3.55. The set of complex valued integrable function is a complex vector space and integration
(i.e. f [ f)is a linear functional.

Proof. For the first assertion, let f,g : X — R be integrable. Let a € C. Note that + defined for function
already satisfies associativity and commutativity, and the scalar multiplication satisfies compatibility with
field multiplication and distibutivity. Also, 1 € C satisfies 1- f = f. Therefore, it suffices to show that f + g

and af are integrable, and [af=a [ f, [f+g=[f+[g

Note that
ofl =lallsl = [lafi= [lalifi=lal [ 171 < .
thus af is integrable. Also,

Jisea = [urvisl= [11+ [l <+,

triangle ineq.

thus f 4 g is also integrable.
If a =b+ic, then af = bRef — cImf +i(bImf + cRef) Then,

[

/(bRef—cImf) —l—i/(b]mf—i—cRef)

\:/
Def.
= / ef—c/Imf+z</Imf+c/Ref)
Thm 2.21 in [1]

= ( Ref +1 Imf>+cz(/Ref—|—Z/Imf) /f
Also,
/f+g = /(Ref+ilmf+Reg+ilmg) /Ref+z/]mf+/Reg+z/Img—/f+/

Def. Thm 221111

Thus, integration is also a linear functional. O
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Notation 3.56 (L' space). L' or L'(i) denotes
L' = LY(u) := {f : X = C: f is measurable and integrable}.

Also,
Li(p) :={f: X = R: f is measurable and integrable}.

Proposition 3.57 (Proposition 2.22 in [1] p.53). If f € L*, then | [ f| < [|f].

Proof. Case 1: when Imf =0 everywhere. Then,

Vf"/f+/f—‘ﬁ/|f+l+'/f_‘/f++/f_/f++f—/f|

Case 2: when [Imf =0. Then,
< Ref| < .
= 1/| efl _/‘f|

TERIESES

Case 3: General Cases. Note that [ f = e |[ f| for some 6, since it is just complex number. Thus,

et g = ¢ Then, [o=e[1=1[n>0
/g:/Reg+z‘/Im9~
iAo

Definition 3.58. If we have f € L' and if E € m, then define fEf = fflE

However, we know that

By case 2,

Recall the proposition 2.16 in [1] that if h € LT, then [h=0 <= h =0 a.e.
Proposition 3.59 (Proposition 2.23 in [1] p.54). Let f,g € L*. Then, TFAE.

1 [pf=[gg for all E € m.

2. [If —gl=0.

3. f=g ae

Proof. (it) <= (4ii): Since |f—g| € LT, by the proposition 2.16 in [1], [ |f—g| = 0 if and only if | f—g| = 0
a.e. Also, |f —g| =0 a.e. if and only if f = g a.e.

(#91) = (i): Note that
[Eff[Eg ’/(fg)lE = /\ffglz(l
Thm 2.22

= (i1): Assume it was not true that f = g a.e. Then it suffices to find E € m such that

;ng. Let h = f —g. Then,
/Ef_/Eg:/Eh.
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By hypothesis, it is not true that h = Oa.e., and we seek E such that [  h # 0. Without loss of generality, h
is real valued. Also, without loss of generality, it is not true that hy =0 a.e. Let E = h=1((0,+00)). Then,

u(E) > 0. So,
[on=[wr=[w >0
E E

by the converse statement of proposition 2.16. If h is general complex valued function, then h = Rehy —
Reh_ 4+ iImhy — iImh_, and at least one of terms of h is nonzero a.e. by the assumption. Say Reh is
nonzero a.e. Then, let E = Reh,((0,00)). So,

/h:/h+:/h+>o,
E B

by the converse statement of proposition 2.16. O

Definition 3.60 (Pseudometric on L'). Let p: L' x L*(u) — [0,+00) by p(f,9) = [ |f — g|. Then, by the

proposition 2.28 in [1], p(f,g) =0 < [ =g a.e. Also, p(g,f) = p(f,g) and p(f,h) < p(f,9) + p(g,h).
Thus, p is pseudo-metric on L'. We introduce the equivalence relation

f~g = f=gae

Using this, we can redefine
L' :=L'"p) :={f: X — C: f is measurable and /|f| < Foo}/ ~.

Then p becomes a metric on L'(u), the L'-metric.

Remark 3.61 (Abuse of notation). By (standard) abuse of notation, we continue to write f € L' rather
than [f] € L'.

Notation 3.62. If ji is the completion of j1, then we have the natural identification of L*(u) = L' (ji), since
by the proposition 2.12, if f : X — C is fi-measurable, then there exists g : X — C a p-measurable function
such that f = g a.e.

Theorem 3.63 (Theorem 2.24 in [1] p.54, Dominated Convergence Theorem). Let (f,)52; be a sequence
in L'. Suppose 1) f, — f a.e., 2) 3g € Lt such that [ g < 400 and 8) Vn € N,|f,| < g a.e.
Then f € L' and [ f =limp—oo [ fo-

Proof. By redefining on a null set using the proposition 2.12, we may, without loss of generality, assure that
fn — [ pointwise. And, Vn € N, |f,,| < g holds everywhere. Thus, f is measurable by the theorem 2.11 (b).
Moreover, |f| < g, and since g is integrable,

/|f|<+oo — felLl

By considering the real and imaginary parts, we may without loss of generality assume that each f, is
real-valued. We have
—9<fn<y.

Thus,
g+ faeL™.

So,
Jor[1=[wrn=[tmrry < tmit [o+h) = [ortmnt [

Fatou’s Lemma
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Thus, [ f <liminf, , [ fn. Replacing f,, by —fn, we get

—inff:/—f S lminf (—/fn> :—limnsglo)o/fn.

Fatou’s Lemma

Thus, limsup,, . [ fn < [ f. Thus, limit exists and

dm 1= s
O

Theorem 3.64 (Theorem 2.27 in [1] p.56). Fiz a measure space (X, m, ). Suppose f:Xx(e,d) - C
satisfies Vt € (¢, d), x — f(z,t) is integrable, i.e., x — f(zx,t) € L*(u). Let F(t) := [ f(x,t)dp(z).

(a) If 3g € L* such that
1) Va, 9, | f(z,1)] < g()

and
2) for fized ty € (c, d),Vm,tlim flz,t) = f(x,to) (continuity w.r.tt)
oo

then limy — toF'(t) = F(to).
(b) If 3g € L' and if

0 .
1) Va, Vt, E(x, t) exists,
and o
9 [F )| <ot
then

1) F'(to) exists and 2) F'(ty) = / %(x,t)d,u(x).

Proof. Note that the conditions of (a) satisfies the DCT’s condition. Let {t,} be a sequence in (c,d)
converging to tg. Then,

lim F(t) = lm [ o, t)du(z) = / limf(e,t,)du(x) = / Foto)du(z) = Flty).
(DCT)
For the part (b), let ¢, be a sequence in (¢, d) \ {to} such that ¢, — to. Then,
fim F) = Flto) _ /fx tt _f(m ) fu(a).

n—o00 tn, — to n— 00 tO)
By the Mean Value Theorem, Vz, Vn, 3t* € (¢, d) such that W a (m t*). Thus,
f(z,t,) — f(z,to) af .
< t < .
ot =] O (o.10)| < gto)

Therefore, for all z and for each n € N, M satisfies each condition of DCT. Thus,

i =)y [ LG D) gy [ i ST ) — [ St

n— oo tn — tO (DO n—00 tn, — to

Thus, since t,, was arbitrary,

P(t) = i D= EO) [ )

as desired. O
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Remark 3.65 (Recall of Riemann Integral). Let [a,b] be a compact interval. By a partition of [a,b] we
shall mean a finite sequence P = {t;}{ such that

a=ty<ti <---<t,=b.

Let f be an arbitrary bounded real-valued function on [a,b]. For each partition P we define

Spf = ZM ti—1),spf = ng -

where M;,m; are supremum and infimum of f on [t;_1,t;]. Then define

=inf Spf, lg sup spf,
P P

where the infimum and supremum are taken over all partitions P. If I? = li’“ there common value s
Riemann inegral f: f(z)dz and f is called Riemann integrable.

Theorem 3.66 (Theorem 2.28 in [1] p.57). (a) If f : [a,b] — R is Riemann integrable then f € L'(m),
where m is Lebesque measure, and fab ftydt = f[a p fdm.

(b) f is Riemann integrable if and only if {x € [a,b] : f is discontinuous at x} has Lebesque measure zero.

Proof. Suppose that f is Riemann integrable. For each partition P, let

Gp = ZMjl(tj—htj]7gP = ijl(ta‘—htﬂ'
j=1 j=1
Thus, Spf = [Gpdm and spf = [ gpdm. Then, since f is Riemann integrable, there exists {P;}7,, a
sequence of partitions such that Py C Py and Sp, f — f; fand spf — f; f as k — oco. Now note that

Gp, > GPkJrl > fand gp, < 9Peyy < f

Thus, it is monotonic and bounded, thus converge by the Monotone Convergence theorem. Hence, we can
define
G := lim Gp,,g:= lim gp,.
k— o0 k— o0

Then, by definition,
g f<G.

Thus, since G p, is bounded by Gp,, and gp, is bounded by f, we can apply the Dominated Convergence
theorem to conclude that
G, g are integrable

and
b
= lim | G = hm S =
by oo Pk Pkf R , ., fv
(DCT) Riemann
integrable
b
= hm lim S = .
/ gp, Jim pf j f
(DCT) Def. Riemann
integrable
Thus,

/(G—g)dsz = G=gae = G=fae

Prop 2.16
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Note that G is the limit of a sequence of simple function, by Proposition 2.11 (b), G is measurable. Also,
since m is complete measure, thus by Proposition 2.11 (a), f is measurable. Thus,

/ Gdm = / I
[a,b] frorn f=g a.e.
Hence (a) is proved. O

Remark 3.67 (Remarks in book). 1. the tmporper Riemann integral can be also viewed as Lebesgue in-
tegral, using DCT.

2. Lebesque integral gives more powerful convergence theorem.

3. Lebesque integral is applied wider class of functions; this gives a complete metric for some important
function spaces. For example, L' (u) is complete, and it can be seen when we deal with Thm 2.25 which
is disquised form of theorem 5.1.

Now, fix (X, m, )

Theorem 3.68 (Theorem 2.25 in [1] p.55). If {fn}52, is a sequence in L' and Yo", [|fn| < +o0, then
S0 | fn converges a.e. to a function f € L', and ff Yoo [ fa

Proof. Note that > | |fn]: X — [0, 4+00] is measurable and

/Z|fn Z/\fn < @

leen condition

by theorem 2.15. Thus, Y07 | |f,| € L', thus it is finite on a set of full measure. Since

S E <D Il
n=1 n=1

Zf;l fn converges almost everywhere. Therefore, we can define

Note that f is measurable since it is limit of sequence of measurable function. Since VN € N,

N N o]
D Sl €Dl €D ISl € LY
n=1

n=1 n=1
we can apply the Dominated Convergence Theorem to conclude that f € L' and
N N
[r=fum>sn o g [Sn o 3 [n-3[n

n=1  (DCT)

Theorem 3.69 (Completeness of L'). L!(u) is complete with respect to p(f,g) = [ |f — gldp.
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Proof. Let (f,,)22, be a Cauchy sequence in L'. Let (f,,)?, be a subseqeunce such that

Vk € va(fnkvfnk+1> < Q_k'
Now we want to define

f = fn1 + Z(fnk+1 - fnk)
k=1

We have . N
/|fn1|+2/|fnk+1_fnk|</|fn1|+22_k<oo_
k=1 k=1

Thus, by the theorem 2.5, fn, + > 5= (fn,sy — fn,) converges a.e. to a function in L'. Say that function f.
Then,

P
f\:’/plggo (fm + Z (fnk+1 - f”k)) = phj{}o f"ﬂ-*-l'

a.e. k=1
Hence,
p(f7fnp+1) = /‘f_fnp+1‘d/j’
[e’e} D
= /‘f’ﬂl + Z(fnk+1 - fnp+1) - (fnl + Z(fnk+1 - fnp+1>)|d/'6
k=1 k=1
= /‘ Z (fmc+1 _f’ﬂk)l
k=p+1
< / Z ‘fnk+1 - f’ﬂk|
k=p+1
g Z /‘f’l’bk+1_fnk|
Thm 2.25 k=p+1
%)
= Z p(fnk+17f7lk)
k=p+1
00
< 227k=27p—>0asp—>oo.
k=p+1
Thus, fn, — f € L' in a metric p. O

Corollary 3.70 (Corollary of the proof). If f, — f in L'-metric, p, then 3 a subsegeunce (fn, )52, such
that f,, — f a.e. as k — oo.

Proposition 3.71 (Proposition 1.20 in [1] p. 37, Exercise 1.26). Let p be a Lebesgue-Stieltjes measure, i.e.,
u((a,b]) = G(b) — G(a) for some G : R — R, nondecreasing right continuous function, and let E € m,,, a
Borel o-algebra with respect to p, such that u(E) < +o00, € > 0. Then, IF C R such that F is a finite union
of bounded open intervals such that u(EAF) < e.

Proof. We proved theorem 1.18, i.e., 3U C R such that U is open and £ C U and u(U) < p(E) + 5. We
have U = U]oi1 I; for disjoint open intervals (or empty sets) I;. Thus,

p(0) = > ().
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Let NV € N such that N

> ally) > u) - 5.

j=1
If I; is unbounded, then 3 a bounded open interval I ]’ C I; such that

u(1}) > ply) — <.

8
If I; is bounded, take [} = I;. Let F' = U]  I}. Then, F' C U, and
€ € € €
M(F)>M(U)—Z—§—§ M(U)—§

Note that since p is arbitrary measure and pu(U) < oo, this measure gives finite value for unbounded interval
conatined in U. Thus the above inequality is derived.
Thus,
EAF=(E\F)U(F\E)C(U\F)U(U\E),
therefore,
W(EAF) < (U \ F) + p(U\ E) < < +

= €.

DO ™
N

O

Theorem 3.72 (Theorem 2.26 in [1] p.55, Approximation of f € L'). Let (X, m, ) be a measure space and
let f € L'(u), € > 0. Then, 3 a simple function ¢ € L' (u) such that

15 = dldu <.

If v is a Lebesgue Stieltjes measure, then ¢ can be taken of the form ¢ = 2?21 ajlp; where By, .-, E,
are bounded open intervals in R. Moreover, 3 a continuous function g : R — R with bounded supports, such

that [ |f — gldp < e.

Proof. Suppose p is any measure. By theorem 2.10, 3 a sequence (¢,,)22; of simple functions such that
¢, — f pointwise and

[p1] <[] <o+ <]
Thus, |¢, — f| — 0 pointwisely and |¢,, — f| < 2|f|. Therefore, by the Dominated Convergence Theorem,

nl;n;O/m—ﬂdu,: /nlgn;o|fn—f|du:/0du:o.
DCT

Now suppose u is Lebesgue Stieltjes measure. Note that we can represent

NTL
= E Oélej
Jj=1

for some disjoint intervals F; € m and a; # 0 for any j € N. Also, we know that u(EAF) = [|1g \ 15|

for any E,F € m. Thus for ¢,, each 1g, can be approximated by 1p, with u(E;AF};) < 12J ¢, where Fj is

finite union of bounded open intervals. Define ¢/, := Zjvz”l a;jlp,. Then,

Nn
Jio-di= [[Sostin 1) = [Slaslin 1] = Yoo [1s, -
J=1 Trianlge Ineq.  J=1 Thm 2.13 j=1
Nn N, c
:ZO[],[L(EJAFJ) = 227 < €.
Jj=1 Def. of pu(E;AF;) =1
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Thus, we can approximate f by ¢'(n), since [ |f —¢L| < [|f —¢|+ [ |¢ — ¢'| < 2¢ for suitable n.

To find a continuous function, it suffices to approximate simple functions ¢,,, which means that it will
suffices to approximate 1(, ;) for some a,b € R since by the argument every simple function is consists of
1(q,p) for some a,b € R. Thus, construct a continuous function gs as follow for some § > 0;

£=atd ifxe(a—96,a+ 0]

1 ifxe(a+d,b—90]
9s = z—b—§

% ifxe(b—4,b+9)

0 otherwise.

It looks like below picture;

--0- @ -0 - - - - - - - - - -0- -
a—d0aa+0d b—3dbb+9
Thus,
/|1(a7b) —gsldp < pla —0,a+6) + pu(b—35,b+9) = 0as § — 0.
Thus, use this approximation to approximate the simple functions. O

3.4 Modes of Convergence

Definition 3.73 (Modes of Convergence). Fiz (X, m,u) and let fr, : X = C forn €N, and f: X — C be
measurable function. We say that f, converges to f (asn — co)

e uniformly;
Ve > 0,IN € N s.t. Ve € X,¥n > N, |f(x) — fu(z)] <e.

e pointwise;
Ve > 0,Vx € X,3IN € N s.t. ¥n > N, |f(x) — fu(x)] <e.

e almost everywhere; 3F € m such that u(E) =0 and
Ve > 0,Vz € E°,IN € N s.t. Vn > N, |f(z) — fo(x)] <€
e in measure;
Ve > 0,IN € N s.t. Vn > N, |u({z € X : |fu(z) — f(x)] > €})] <,

which is equivalent to say that

Ve >0, lim p({a € X :|fule) = f(2)| 2 e}) = 0.

e in L';
Ve > 0,3IN € N s.t. VnzN,/\fn—f\duge

which is equivalent to say that

i, [ 142 = fldu=0.
n— oo
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e almost uniformly;

V6 > 0,3E € m with u(E) < 0, s.t. Ve > 0,IAN € N s.t. Vo € X,¥n > N, |1gc f(2) — 1ge fn(z)] <€

which is equivalent to say that Y6 > 0,3FE € m such that u(E) < § and 1gef, converges uniformly to
1ch.

Also, we say a sequence of measurable function (f,)$2, is Cauchy in measure if
Ve > 0, u({z : |fn(z) = fm(2)] > €}) = 0 as m,n — oo,

i.e., IM € N such that Yn,m > M, u({z : |fa(z) — fm(x)] > €}) < e. Clearly, if (f,) converges in measure,
then it is Cauchy in measure.

We can describe the relationship between modes of convergence as below.

xCE1l

For subseq. Thm2.30
Figure 1: Modes of Convergence; Red represents counterexample. Green represents with some condition.
Blue represents implying.

Now we can deal with the counter examples in the above complete digraph. For all example, we assume
that (R, £, m), Lebesgue measure space.
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Prop 2.29

MEUITIOP, M FEX

. 1}\8‘\3"

[\

AN

For subseq. Thm2.30

Figure 2: Modes of Convergence without counter example. Green represents with some condition. Blue
represents implying. Non-edge implies there exists counter example.

Example 3.74 (CE1). Let

1
fn= —Lon-

Then, f, — 0 uniformly (therefore almost uniformly), but f, /4 0 in L', since Vn € N, [ |f,| = 1.

Example 3.75 (CE2). Let

1
fn = gl(n,n-&-l)'

Then, f, — 0 pointwisely, but f, /4 0 in L', since Vn € N, [ |f,| = 1. Also, u({z : |fa@)—oj>23) =1 for
allmn € N. Hence, f, /~ 0 in measure. Also, f, # 0 almost uniformly since for § =€ < 1, every E with
w(E) <6, ECN[n,n+1] # 0, thus it gives
|falge(z)|=1>€atxz € n,n+1]NE"
Example 3.76 (CE3). Let
fr=mnlo,1;

Then, f, — 0 almost uniformly and a.e. (except { 0}), but f, /0 in L', since V¥n € N, [ |f,| = 1. Also,
fn # 0 pointwisely since f,(0) =1 for any n € N.
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Also note that f, # 0 uniformly or pointwisely since f,(0) =1 for any n € N.
Example 3.77 (CE4). Let

Ji=Tpa, f2 =117, f3 =1,

Nl

and in general,

fnzl[ i1 where n = 2% 4+ j with 0 < j < 2%,

2%’ 2k
Then, f, — 0in L'. Also, for any € > 0, we set N € N such that % < €, therefore,
1
p{z eR:|fn(x) =0 >€}) < N <e.

Hence f, — 0 in measure. However, Yz € [0,1], (fn(2))S, diverges. Hence, f, # 0 a.e., thus not
pointwisely. (thus not uniformly.)

Example 3.78 (CE5). Let

2% +nx
f7l: -
n
Then, for any fired v € R, and € > 0,
22
|fr(z) — 2| =]—] = 0 as n — oo.
n

Thus, f, — x pointwisely (hence a.e.). However, if x is not fized, then for any n € N, there exists ¢ € R

such that x > n, hence
2 2

x n
—z|=|—|2|—|=|n| >
) =l = 1 2 15| = ol > e

Thus it does not uniformly converge.

Example 3.79 (CE6). Let
fn= nl[o,n%]

Then, f, — 0 in LY, but f, / 0 not almost uniformly, since for any &, we have E = [0, ﬁ] with ﬁ < 4,
such that for any n > N,
[1gefn, — 0] =n for x € E°NJ0,4d].

Hence it is not uniformly convergent or almost uniformly convergent.
Now we can deal with blue lines and green lines.
Proposition 3.80 (Proposition 2.29 in [1] p.61). If f, — f in L' then f, — f in measure.

Proof. Let By e = {x : |fn(x) — f(x)] > €}. We must show that Ve > 0, u(E,, ) — 0. However,

/ o — fldp > n(Bn ).

Thus, by the sandwich lemma with L! convergence, we can conclude that pu(E, ) — 0 as n — oo. O

Theorem 3.81 (Revised Theorem 2.30 in [1] p.61). Suppose (f)2; is Cauchy in measure. Then, 3 a
subsequence (fn, )72 that converges almost uniformly to some measurable function f : X — C. Moreover,
fn — f in measure and if h : X — C is measurable and f, — h in measure, then h = f a.e.

Note that the above theorem is more powerful than that in Folland, since almost uniform convergence
implies a.e. convergence.
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Proof. Given j > 1, let N; be s.t. for any n,m > IVj,
p{a s | fulx) = fm(2)] > 277}) <277
Let ny <nz <--- be a sequence in N such that Vj € N, n; > N;. Write g; = f,,,. Let

Ej = {z:|g;(@) — gjr1(x)] = 277},

Then, p(E;) <277 Now let Fy, = U]Oik E;. Then,

p(FR) <D p(Ey) <2k
=k

Thus, if x € FY, then for any I} > lp > k,

l271 lzfl
9 (2) = g ()| < 7 gi@) — g () < D277 <2t 9)
Triangle ineq.j:llJrl Jj=bh

This implies (g;)52, is Cauchy for all z € F.
Now let F' = ;2 Fi.. Then, u(F) = 0 and Yz € F*, (g;(x))32, is Cauchy as a sequence of C. Thus, we
can well define f(z) such that

fla) = lim; o gj(z) ifze Ij"c
0 otherwise.
Claim 3.82. g; — f almost uniformly.
Proof of the claim. From the equation (9), we can get Vo € F¢,VI > k,
f(z) = gil)] < 2

by taking Iz — oo in the equation (9). Thus, g;1re — flrg uniformly, and from the fact that p(Fy) < 21—k
for any k € N, we can conclude that g; — f almost uniformly. O

Claim 3.83. f,, — f in measure.

Proof of the claim. Define

G(n) =@ : |fa(@)=f (@) 2 €}, G1(n,5) i= {@: |ful@) = g5(@)] = 5}, and Gaj) i= {w : lg(2) — ()] =

NN e
[NCNNeY

Then, from the trianlge inequality, Vj € N,
G(n) € Gi(n,j) UG2(j). = n(G(n)) < u(Gi(n, j)) + m(G2(5))-

Now it suffices to show that lim, . #(G(n)) = 0. Let § > 0. Since f,, is Cauchy in measure, for some
5 < 0,3N € N such that Vn > N, which implies n; > N, therefore

u(G1(n,3) = p{ < [fale) = g () > S} < 5 <8,

Since g; converges in measure to f, for some § < 4§, 3J € N such that Vj > J,
€ €

1)) = tgi(x) — > 1) <= .

n(G2(5)) u({w |9 () = f(@)] = 2}) <5 <9

Thus, take j such that n(j) > N and j > J, and take n such that n > N. Then, u(G(n)) < 24, as
desired. O
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Claim 3.84. if h: X — C is measurable and f,, — h in measure, then h = f a.e.

Proof of the claim. If f,, — h in measure, then define

H = Az |f(z) —g(z)| = €}, Hi(n) := {33 |f (@) = fo(z)] =

Then, for all n € N,

}, and Hy(n) := {x N fnlz) — h(z)| >

b

l\D\m
[NCN e

H C Hy(n)U Hy(n) = p(H) < p(Hi(n)) + p(Hz(n)).
Since f,, — f in measure and f, — h in measure, u(Hi(n)) + pu(Hz(n)) — 0 as n — oo. Thus, by the
sandwich lemma, p(H) — 0 as n — oo. This implies f(z) = g(z) when z € H¢, thus f = g a.e. O
[

Corollary 3.85 (Corollary 2.32 in [1] p.62). If f,, — f in L*, then there exists a subseqeunce (fn;)52; such
that fn, — f a.e.

Proof. By theorem 2.29, f, — f in measure, and by theorem 2.30, there exists a subseqeunce (fy, );‘;1 such
that f,, — f almost uniformly, which implies f,, — f a.e. [

Also note that [1] doesn’t have 2.31 Statement. Weird.

Theorem 3.86 (Egoroff’s theorem, Theorem 2.33 in [1] p.62). Suppose pu(X) < 400 and (f, : X — C)22,
be a sequence of measurable functions such that f, — f a.e. Then, f, — f almost uniformly, i.e., ¥§ > 0,
3F € m such that u(E) < ¢ and fulge — flge uniformly.

Proof. Let A € m satisfy pu(A) =0 and Vo € A°, f,(x) = f(z) pointwisely. Let

En(k){xeX:EpZnWith |fp(z) — flz)| > ]1}

Then,
E, (k) 2 Epya(k) 2 -

and

1 C A

ﬂ E, (k) ={z € X : for infinitely many p € N, |f,(z) — f(z)| >

n=1

| =

Thus, p(N,~; En(k)) = 0. Since X is finite measure space, by continuity from above of y,
Jim p(En(k)) = 0.

Thus, given § > 0, Vk € N, Iny, such that
(B, (k) < 627

Let Es = Upe; En, (k). Then,

w(Es) Si <5§:2*k:6.
k=1 k=1

Claim 3.87. f,1ge — flge uniformly.
Proof of the claim. If x € E§ then x € E,, (k)° for any k € N, thus Vp > ny,

o)~ @] < 1.

as desired. O
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Homework 3.88 (Exercise 34 in [1] p.63). Suppose |f,| < g € L* and f, — f in measure. Then,
(a) [f=1limy o0 [ fn

(b) fn— fin L%

Proof. 1. [f=lim, e [ fn

Proof. Suppose that f,, is real valued function first. Then, by the exercise 33’s argument, there exists
a subsequence of f;,, say fnjk which converges to f pointwisely almost everywhere. Since fnjk € L! for
any k € N, and dominated by g, thus by the Dominated Convergence Theorem, f € L*.

Now note that g — f, > 0 and g+ f,, > 0 from the given condition that |f,| < g. Also,g—f, > g—f
in measure, since for any e,

freXilg—fo—(g—Plzd={eeX:l[fa-flZcd={weX:lg+fu—(g+ ] = ).

Thus, by the exercise 33, we have two inequalities such that
/9+f§ liminf, o [ 9+ fn =/g+lim inf /fn
n—oo
/g—fS liminf, o0 [ g — fn =/g—lim sup /fn.

n— oo

Thus,
i swp [ £, < [ <t it [,
n— 00 n—0o0

implies lim,, o f exists and lim,, oo fr = f f. It is actually the same argument of proving Dominated
Convergence Theorem, when sequence coverges in measure.

For the case of f is complex function, then f, = Ref, + iImf,, thus [ Ref = lim, . [ Ref, and
JImf =1lim, . [ Imf,. Therefore,

/f:/Reeri/Imf:nleréo/(Refn+iImfn):nlgrrgo/fn,

as desired. 0
2. f, — f in L .

Proof. First of all, |f, — f| — 0 in measure, since

{2 € X :|[fule) ~ f@)]| 0] = ¢} = {w € X : |fula) — f(2)] = ¢},

for any e. Also, since f,; — f pointwisely a.e. and |f"jk| < g for any k € N, thus |f| < g. Hence,
|fn — fI < |fal +|f|l < 2g € Lt. Thus, by the part (a),

o~ o=t f -1

Thus, by the definition of L' convergence, f, — f in L!. O
O

Homework 3.89 (Exercise 39 in [1] p.63). If f, = f almost uniformly, then f, — f in a.e. and in measure.
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Proof. f, — f almost uniformly implies that Vd > 0,3EF € m such that u(E) < ¢ and 1gef, converges
uniformly to 1zef. Thus, let § = L and E,, is corresponding set satisfying the condition of almost uniformly
convergence. Then, let E = (7 En Then,

ﬁ <7Vn€N

therefore p((\,—; En) = 0 but 1gef, converges uniformly to 1gef. Since uniform convergence implies
pointwise convergence, we can conclude that f, — f a.e. except E, which is null set.
Also, for any € > 0, we know that there exists N € N such that Vn > N,

Bu2{z € BS: |ful) — f(z)] = €} =0,
Thus,
{ze X |fulz) - f@)] 2 €} C B, = p({z € X :|ful2) — f(2)] = €}) < u(Ey) <

)

S

for any n > N. Thus take n such that ¢ > %, then we can conclude that for any m > n,

< €.

3=

<

bl € X+ |fn(a) — F(@)] 2 ) < plBn) <

Thus, f, — f in measure. O

3.5 Product Measures
Let (X, m,u) and (Y, n,v) be measure spaces. Recall that
Definition 3.90. m®n is the o-algebra of subsets of X XY generated by {AxY : Ae m}U{X xB: B € n}.

Definition 3.91 (Rectangle). A (measurable) rectangle in X xY is Ax B for A€ m,B €n. Leta be
the algebra of sets consisting of finite disjoint unions of measurable rectangles.

Check that a is an algebra. Recall that a is an algebra of subsets of X if
(i) neNEy,-+- By €a = Uj_Ej €a.
(ii) F€a = E°=X\Ee€a

Note that
(AxB)N(ExF)=(ANE)x (BNF).

So, for disjoint union of (A; x B;)i-; and (E; x F})jL,,

i=1 j=1 i=15=1
and (A; N Ej) x (B; N Fj)s are disjoint. So a is closed under taking intersection. From the fact that
(Ax B)°=(A°x B°)U (A x B°)U (A° x B),

we know that

<0(AZ X BJ) = ﬁ(Al X Bi)c ca

i=1

thus a is closed under complement.
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For (i), let n € N, Ey,--- , E, € a. Then, define Fy, = Ej \ ﬂ;:ll E; € a. Then, each Fj are disjoint,

hence . N
U U L Ea,
k=1 k=1
as desired. O
Our goal is to find a measure on m ® n such that

A X B u(A)u(B).

We would like to define 7 : a — [0, +oc] such that w(J!, A; x B;) = Y, w(A;)u(B;) for (finite) disjoint
family of rectangles A; x B;.

Claim 3.92. Let 7 : a — [0,+00] by m(U;_, Ai x B;) = >0, p(A)p(B;) for (finite) disjoint family of
rectangles A; x B;. Then, 7 is well-defined.

Proof. Let R € a. Then R = |J;_, A; x B; for some finite disjoint family rectangles, by construction of a.
Then,

Lra) = Y 1ay@) * 1B,(a):
i=1

Thus,

> nar(B) = Y- [1amdate) [ 15.0dvw) / [ tacotnmdu@avty) = [ [t dutz)avty).
i=1 i=1
It means that any finite family of disjoint rectangles representing R, 7 gives the same value. Thus, we can

conclude that 7 doesn’t depends on a rectangle, which means 7 is well-defined function from a — [0, 4+00]. O

Claim 3.93. 7 is a premeasure.

Proof. Suppose R € a such that R = U;ozl Sy for some S, € a. We want to show that

= Z 7(Sp)
p=1
Note that

x,y) = Z s, (z,y).

Thus, let f, = 22:1 s, (z,y). Then, lim, o0 frn = 1r(x,y) and f, < fnq1 for any n € N. Thus, we can
apply the Monotone Convergence Theorem. Hence,

w(r) = [ ([ 1ntenauto)) avt) = [ (/le e, y)dula )du V/Z (/15 @miuta) ) vt
MCT
And we need a lemma that each ([ 1, (x,y)du(z)) is measurable by dv(y).
Lemma 3.94. If S € a, then y — ([ 1s(z,y)du(z)) is v-measurable function.
Proof of the Lemma. If S = A x B, then
i -0 5250

In general, if S € a, by the proposition 2.6 stating that sum of measurable function is also measurable, the
given function is measurable. O
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Thus let gn( )= Zp 1 (f s, (z y)du(w)) Then by the Lemma, g, is v-measurable, and lim,, o g, =
Yoo ([ 1s, (z,y)dp(x)) and gn(y) < gnt1(y) for any n € N. Thus, we can apply the Monotone Convergence

Theorem, hence,
Z/(/ls (z,y)du(z )dl/ :Zﬂ
p=1

MCT/Z(/LS Iyd'u( ) MCTP 1

as required. Since 7(()) = 0 clearly, thus 7 is a premeasure on a. O
Claim 3.95. m ® n = c-alg(a)
Proof. Apply the Proposition 1.3 in [1][p.23]. O

Claim 3.96. There exists a measure i X v on m @ n that extends w. If u and v are o-finite, then w is also
o-finite, thus u X v is the unique measure on m @ n satisfying A X B +— p(A) - u(B) for any A € m,B € n.

Proof. Apply the theorem 1.14 in [1][p.31]. O
Thus, pu x V(A x B) = u(A) X v(B) for any A € m, B € n.
Definition 3.97. We call u x v obtained by the above claim is the product measure of u and v.

Definition 3.98. Let E € m ® n. Then we denote E, be z-section and EY be y-section of E as below;
Forze X,E, :={yeY:(z,y) € E} and Forye X,EY :={zx € X : (x,y) € E}.
Also, given f: X xY — S, for any set S, we define its x-section and y-sections by
Forz e X, fo(y) : X = S by fa(y) := f(z,y) and Fory € X, f/(x) : Y = 5 by f*(z) := f(x,y).
Theorem 3.99 (Proposition 2.34 in [1] p.65). (i) If E € m®mn, thenVz € X, E, € n andVy € Y,EY € m

(ii) If (S,8) is any measurable space and if f : X xY — S is (m ® n,S)-measurable function, then
Vo € X, fr is (n,S)-measurable and Yy € Y, f¥ is (m,S)-measurable.

Proof. Let
R={ECXxY:Vze X,E, €enandVy € Y,EY € m}.

Since VA € m, B € n,

B ifzeA
0 ifzgA

A ifyeB

(AXB)”C:{ 0 ifyeB

and (A x B)Y :{

Thus, in any case, (A x B), € n,(A x B)Y € m. Thus, A X B € R. Then, it suffices to show that R is
o-algebra; if we show this, then m ® n C R since m x n € R, thus the statement holds.
Let E € R. Then,

(B ={y: (x,9) € B} ={y: (z,y) € E} ={y: (v,y) € B} = (Ex)" €n

(E)Y ={z:(z,y) e B} ={z: (z,y) € E} ={z: (z,y) e E}* = (EY)  em
Thus, E¢ € R. Also, let Ey, Es, -+ € R which is disjoint sequence. Then, we want to show E := ] - | E, €
R. Note that

E,={y:(z,y) € UE” = U{y:(m,y)eEn}: U(En)wEn
Ey,={xz:(z,y) € UE"}: U{x:(%y)eEn}: U(En)yem
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Thus R is a o-algebra. Hence the statement holds as mentioned above.
For (ii), suppose f: X x Y — S is (m ® n,S)-measurable function. Let z € X, G € S. Then it suffices
to show that f1(G) € n and (f¥)"1(G) € m. Note that

NG ={y: folz,y) € Gy ={y: (z,9) € FTH@)} = (D))

(fH7HG) ={a: fUay) € Gy ={a: (z,y) € FTHG)} = (f1(G))

Since f is (m ® n,S)-measurable, f~1(G) € m ® n and by part (i), (f~1(G))z € n and (f~1(G))Y € m.
Thus, the conclusion holds. O

Definition 3.100. A monotone class on X is a subset C of P(X) that is closed under taking
e countable increasing unions, i.e., if there exist Ey,Es,--- € C with Ey C Eo C -+ then |, E,, €C.

e countable decreasing intersections, i.e., if there exist Fy,FEs,--- € C with By 2 Ey D --- then
No—y En €C.

Remark 3.101. (i) Every o-algebra is a monotone class.
(ii) If A is a set and VA € A, Cx € P(X) is a monotone class, then (5, Cx is a monotone class.

(i1i) Given F C P(X),3 the smallest monotone class on X containing F. This is called the monotone
class generated by F.

Proof. For (ii), note that if E,--- is countable increasing sequence (or decreasing sequence) in [, Ca,
then they are an countable increasing sequence in each Cy, thus their union (or intersection) is in each Cj,
hence the union (or intersection) is in (), Ca.

For (iii), just define A = (\pceC. Then by part (ii), it is also a monotone class, and it is the smallest
one. O

Lemma 3.102 (The monotone class lemma, theorem 2.35 in [1] p.66). If a is an algebra of subsets of X,
and C be a monotone class generated by a, then C = o-alg(a) .

Proof. By definition of o-algebra, C C g-alg (a) is clear. To show reversed inclusion, it suffices to show that
C is a o-algebra.
Given F C X, let
C(EyY={FeC:F\EeC,E\FeC,EnF ecC}.

Claim 3.103. C(F) is a monotone class.
Proof of the claim. If F; € C(E) with F; C Fj; for all j € N, then let F := U;’il F;. We want to show
F € C(F) to show that C(F) satisfies closed under countable increasing union. Note that
F\E=|J(F;\E)and E\F = [(E\F}), and ENF = | J(ENF}).
Jj=1 j=1 j=1
Since F; \ E and E N F; are countable increasing in C since F; € C(E) for all j € N, its union is in C. Also,
since E \ F} is countable decreasing in C since F; € C(E) for all j € N, its intersection is in C. Thus,
F\E=|JF\E€Cand E\F=()E\F,e€C, and ENF=|]EnF;ecC.
j=1 j=1 j=1

Thus, C(E) satisfies countable increasing union condition.
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Similarly, let F; € C(E) with Fj 2 Fjy4 for all j € N, then let ' := (]2, F;. We want to show F € C(E)
to show that C(F) satisfies closed under countable decreasing intersection. Note that

F\E= ﬁ(Fj\E) and E\ F = D(E\Fj), and ENF = ﬁ(Eij).

Since F; \ E and E N F} are countable decreasing in C since F; € C(E) for all j € N, its intersection is in C.
Also, since E \ F; is countable increasing in C since F; € C(E) for all j € N, its union is in C. Thus,

F\E=(\(F;\E)eCand E\F = | J(E\F;)€C, and ENF = [|(ENF;) €C.
j=1 j=1 j=1
Thus, C(E) also satisfies countable decreasing intersection condition. Hence it is a monotone class. O

Claim 3.104. Let E,F C X, then F € C(E) < FE € C(F)

Proof of the claim.

Fe(C(E) < F\EeC,E\Fe(C,and ENFeC < EcC(F).

Claim 3.105. If B € a then C C C(B).

Proof of the claim. Since C(B) is a monotone class by claim 3.103, it suffices to show that a C C(B). Let
A € a then since a is an algebra,
A\B,B\A,AnBeaCC.

Thus, A € C(B) by construction of C(B). Since A was arbitrarily chosen, C C C(B). O
Claim 3.106. For all E € C,C =C(E).

Proof of the claim. By construction of C(E), C 2 C(E). To show the other direction, it suffices to show that
a C C(E), then the monotone class generated by a, which is C is contained in C(E).
Let B € a. By the claim 3.105,
EecCCcC(B).

Then by the claim 3.104,
EcC(B) = BeC(E).

Since B was arbitrarily chosen, a C C(F), as desired. O
Claim 3.107. C is an algebra.

Proof of the claim. Let E, F € C. Then, by the claim 3.106, E € C = C(F'). Thus, E\F, F\E, and ENF € C.
Since X € a C C, we have E° € C, by taking ' = X. Thus, FUF = (E°N F°) € C for any E, F € C, since
E¢ € C = C(F°) by the claim 3.106. Thus C closed under complements and finite union and intersection,
thus it is an algebra. O

Claim 3.108. C is a o-algebra.
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Proof of the claim. If E1, FEy,--- € C, then Vn € N, let
G, = U E]‘ eC
j=1

since C is an algebra. Since C is also a monotone class, and G,, forms a countable increasing sequence,

O - e
j=1 n=1
O
O

Theorem 3.109 (Theorem 2.36 in [1] p.66). Suppose (X, m,u)and(Y,n,v) are o-finite. Let E € m @ n.
Then the functions x — v(Ey),y — p(EY) are measurable and

[ Ednte) = v(E) = [ uEniviy).

Proof. Suppose u(X) < +oo and v(Y) < +00. Let D be the set of all E € m ® n such that the conclusion
holds.

Claim 3.110. I[f A€ m and B € n, then E=AXx B € D.

Proof of the claim. Note that

0 ifxgA
B ifzeA

0 ifyegB

Em:={y:(w7y)€E}={ A ifyeB.

and EY :={z : (z,vy) GE}:{

Thus,

0 ifyg B

W(A) ifyeB = u(A)1p(y).

_Jo ifrgA yy
v(E,) = {V(B) Fred— v(B)1a(z) and p(EY) = {

Thus, x — v(E,) = v(B)1a(x) is clearly y-measurable and y — pu(EY) = u(A)1p(y) is v-measurable. Hence,

[ Ednta) = vBIA) = o x v(E) = (Bu4) = [ (i)
Hence FE € D. O]
Claim 3.111. If E = U?:l A; X B; is a finite disjoint union where A; € m, B; € n, then E € D.

Proof. Note that

0 iftrgUl A

) ify U, Bi

Ez:{y:(ay)eE}{ A, ifyeB,

and EY := {x: (z,y) GE}{

o ifed Ul A < _ )0 ify¢ UL, Bi < _
v(Ex) = {V(Bi) toea = v (Blae) ed u(EY) = {m A) ityen, =2 HANEW.
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Thus, z — v(E,) = Y.;_, v(B;)1a,(2) is clearly y-measurable since it is a simple fuction, and by the same
reason, y — p(EY) = 3" | u(A;)1p,(y) is v-measurable. Hence,

/ L)dp(z) = zn:y = uxv(E) = gy /M(Ey)dz/(y).

Hence F € D. O
Claim 3.112. D is a monotone class.

Proof. Suppose E,, € D with E,, C E, 1 for each n € N, and let E := UZO=1 FE,,. Then,

Ey,={y:(z,y) € E} = U{y(x,y) € En} = U(En)r
EY={x:(x,y) € B} = | J{z: (w,y) € B} = | (B.).

By continuity from below, we know that

(En):c> = V(E ) and nlggoﬂ( (U ) =V Ey)

nll)n;o V((En)a) =v <

1C3

Thus ¢ — v(E,) and y — p(EY) is the limit of measurable functions, therefore by the corollary 2.9, it is
measurable.

Also, let f,, = v((E,)s) and g, = p((E;)Y). Then, f, < fot1,9n < gny1 for any n € N, since
E,, C E,11. And as shown above,

lim f, = lim v((E,).) =v(E;) and hm gn = lim p((E,)Y) = p(EY).

n—oo n—oo n—roo

Thus we can apply the Monotone Convergence Theorem on the sequence of f,, and g,. Thus,

/V(Em)du(x)‘ = lim [ u((En)e)du(e) = lim pxv(Ey) = nx v(E)
MCT E,eD,NneN continuity from below
and
Y — s Yy o . -
/M(E Jav(y) = lim [ p((Ep)?dv(y) = lim pxv(Ey,) = nx v(E)
MCT E,eDNneN continuity from below
Thus, E € D.
Conversely, suppose F,, € D with E,, D E, 1 for each n € N, and let E := ﬂflo:l FE,. Then,
E, = {y Hx,y) € E} = ﬂ{y H(x,y) € En} = ﬂ(En)o:
n=1 n=1
o) o)
EY={x:(v,y) € B} = [{z: (x,y) € En} = [ | (En)".
n=1 n=1

By continuity from above, we know that

lim v((E,).) =v (

n— 00

18

(En)m> =v(E,) and lim pu((En)Y) = p <ﬂ (En)y) = v(EY).

n— oo
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Thus z — v(E,) and y — p(EY) is the limit of measurable functions, therefore by the corollary 2.9, it is
measurable.

Since u,v are finite measures, the function x — v((E1):),y — wu(EY) is integrable. Since v((E,);) <
v((E1)z), w(EY) < u(EY) for any n € N, we can apply the Dominated Convergence Theorem. Thus,

/V(Em)du(w), = Jim [ v((En)o)dp(z) = lim pxv(En) = nx v(E)
DCT E,€D,VneN continuity from above
and
Y — 3 Yy _ . o
[uEav) =t [u(Eya) o lmaxonB) 2 % v(E)
DCT E,eD,VneN continuity from above
Thus, £ € D. Hence, D is a monotone class. O

Let a be a set of finite disjoint unions of measurable rectangles. Then by the argument in [1] p.64 with
the Proposition 1.7 in [1]m a is an algebra. By claim 3.111, a C D. And since D is a monotone class by the
claim 3.112, by the monotone class lemma,

m®n = o-alg (a) C D.

Thus every statement holds for any set in m ® n.

Now suppose i and v are o-finite measure. Take Ay C A2 - X, such that A,, € m and U 1A, =X,
and p(A,) < +oo, Vn € N,. Similarly, take By C By C --- C Y such that B, € n,|J._, B, = Y and
v(A,) < 400, Vn € N.

Now fix n € N. Let i, 7 are measures on (X, m) and (Y,n) such that

n=1

i(C) := w(C N Ap),v(D) = v(D N By),
for C € m, D € n. Then these v, i are finite measures, thus the statement holds as shown above.
Claim 3.113. VF e m®@n, 4 x 7(F) = p x v(F N (4, x By)
Proof. Let A € m, B € n. Then, by construction,
gEx(Ax B)=p(A)v(B)=puANA,v(BNB,) =v(AXx BNA, X By).

Let F € m®n. Then, since m®n is o-algebra generated by measurable rectangles in mxn, F' = Ujoil CijxD;
for some disjoint C; € m, D; € n for any j € N. Then,

Exo(F)=pxv U(ijDj = Zﬁxﬂ(cjxDj)
Jj=1 Ctbl additivity =1
:Z,uxv(ijDjﬂAan) = U C; xD;jNA, xB,)
Jj=1 Ctbl additivity j=1
=uxXv UC’jan ﬂAann)_uxyFﬁA x By)
as desired. O

Claim 3.114. Vf € LT (X, m), [ f(z)di(z) = [ f(x)1a, (x)du(z). Similarly, Vf € LY (Y,n), [ f(z)dv(z) =
[ (@)1, (z)dv(z).
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Proof. Tt is just machinery argument; let f be a simple function, then f = Z?Zl
C; € m for all j € [k], and C;’s are disjoint. Then,

k
/f(x)dﬂ Za]/lc 7Zaju ZaJuC’ﬁA Zaj/lcle /f )4, du(x
j=1

Prop 2.13 j=1 Jj=1 Prop 2.13

a;jlc, for some k € N,

as desired. Now let f be any measurable function. Then, by Theorem 2.10 (a) in [1], there exists a sequence
of simple functions such that 0 < ¢; < ¢ < --- < f and ¢; — f pointwisely as j — oo. Then, since this
sequence is also in LT we can apply the Monotonce Convergence Theorem to conclude that

[ t@dato) = [ tim oydnte) = Jim [ o(wdnto) = i [ 6514, (@)duta = = [ P @t

since ¢;14, — fla, pointwisely and ¢;14, < ¢;14,. Hence, the first statement holds for any f € Lt (X, m)
For the second statement, it is the same argument just when we change p to v and A, to B,. Hence I
omit. O

Since each v and ji are finite measure, by the case just proved, z — v(E,) and y — [ju(EY) are
measurable, and

[ aEdnta) = ax o) = [o(E7)a0 (10)
for any F € m ® n. However, note that
V(Eg) = v(E;NB,) = v((ENA,XBy,),) when z € A, and i(EY) = p(EyNAy) = p((ENA,xBy)Y) when y € B,

since

{y:(z,y) e B,y € B,} ifzeA, E.NB, ifzcA,
0 1fy¢Bn{@ if 2 ¢ A,

(Eﬂ(AnxBn))z:{y:(m,y)eEﬁ(Aann)}:{(Z) if““":{w g An

(EN(A, x Bp))Y ={x: (z,y) € EN(A, X By)} = {{x (e,y) €E,x€ A} ifye B, E*nA, ifyeB,
Thus,
V(ENAnx By)) = La, (2)(BaNBy) = p(Ea) L, (2) and p((BNAxB,)Y) = 1p, ()w(ENA,) = p(E") 1, (3).

Thus, since z — 7(E,) and y — [ i(EY) are measurable, by the proposition 2.6, z — v(E;)14, (z) and
y — a(EY)1p, (y) are measurable. Thus,

/V((EﬁAann)w)d,u(x) :/D(Ex)lA”du(x) = /D(Em)dﬂ(x)\:’/ﬁxf/(E) = uxv(ENA,xBy).

Claim 3.114 (10) Claim 3.113
and
Y — | a(EY — H(EY\dp — XD —
/,u((EﬁAann) )dv(x) —/,u(E g, dv(y) = /Z/(E Ydo(y) = pxv(E) = uxv(ENA,xBp).
Claim 3.114 (10) Claim 3.113

Now let n — oo. Then, ENA,, X B, is increasing and F = U:io:l EN(A, x By), thus by continuity from
below,

v(EN (A, x Bp)) <v(EN(Ant1 X Bpt)) (11)
and
uxv(E)= lim pxv(ENA, x B,) (12)
n—roo
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Also note that (EN A, X By)s C(ENAys1 X Bpy1), and E, = U, (EN (Apg1 X Bpg1)),. Thus, as
a function, v ((E N A,, x B,),)the condition of the Monotone convergence theorem. Thus, x — v(E;)du(x)
is measurable by the Corollary 2.9. and

lim [ v(ENA, X By).)du(x) \:/J/V(EJdu(a:) (13)

n— 00
MCT

Similarly, note that (ENA,, x B,)¥ C (EN Ay41 X Byg1)? and EY = J0—; (EN (Ant1 X Byy1))?. Thus,
as a function, p((EN A, x B,)Y) satisfies the condition of the Monotone convergence theorem. Thus,
y — p(EY)dv(y) is measurable by the Corollary 2.9. and

i [ (B0 Ay x Ba)") dv(y) = [ w(E")dvly). (14)

n—oo
MCT
From (11), (12), (13), and (14) we show that

wWENA, xB,) M uxv(E)

and
/ V(BN Ay % By)o)du(z) / v(Ey)du(x) and / W(E N Ay x By)Y)du(y) / H(E)du(y).

And since
v((ENA, X Bp)g)du(x) = n(ENA, X By) = /u((Eﬂ A, X Bp)Y)dv(y)

for each n € N, we can conclude that

[ vEdute) = px v(E) = [ uEiviy).

as desired. O

Theorem 3.115 (Tonelli’s Theorem, Theorem 2.37(a) in [1] p.67). Let (X, m,u) and (Y,n,v) be o-finite
measure spaces. Let f € LT(X x Y, m ®n) and

x) :/fx(y)dl/(y) € [0,00] and h(y /f’/ )du(x) € [0, 00].

Then, g € LT (X,m),h € L*(Y,n), and

[ st@iduta) = [ bwavty) = [ et x v € 0.0

Note that f;, f¥ are measurable by theorem 2.34 in [1].

Proof. If E € m®mn, let f =1g Then
By theorem 2.36 in [1], ¢ and h are measurable and

/g(x)du(x):(,uxu /fduxy (1 x V) /h duly

By linearlity and using the proposition 2.13 in [1], the conclusion holds for every simple function with f > 0.

65



Now let f € L*(m ®mn). Then by theorem 2.10, there exists a sequence of simple functions ¢, such that
0< ¢ <o <--- < fst. ¢ — f pointwise.

Fix ¢ € X. Then, (¢), (y) < (¢n+1), (v) and (¢,). — fo pointwise. Thus, we can apply the Monotone
convergence theorem to conclude that

tim ([ (6), ( / fudv = g(z

n—oo

Now let g, := [ (¢n), (y)dv(y). Then since ¢,, < ¢p41 for any n € N, g,, < g,,41, and by the above equation,
gn — g pointwise. Thus,

Jin [ g.@)duta) = [ g(@)dnto)
MCT
Also, the lefthandside of above equation is

i [ gu(oute) < tim [ ([ @ i) duto) =t [ oo n)dux v)on)

n—00 M~~~ n—r00
Def.

where the last equality comes from the fact we proved that Tonelli’s theorem holds for simple function. Thus,
we can conclude that

i [ 6o y)dle x v)(ew) = [ gla)duta)

n—oo

And the lefthandside with the MCT gives the conclusion that
[ s@utz) = tim_ [ oo <)) = [ Fax o) (15)
MCT

Similarly, fix y € Y. Then, (¢,)" (z) < (¢ns1)? (x) and (¢,)¥ — fY pointwise. Thus, we can apply the
Monotone convergence theorem to conclude that

im [ (6n)" ( / Yy = hiz

n—roo

Now let h,, = [(¢,)" (x)dpu(z). Then since ¢, < ¢pqq for any n € N, hy, < hy,4q, and by the above
equation, h,, — g pointwise. Thus,

lim [ ha(y)dv(y) = / 9(y)dv(y).

n—o00
MCT

Also, the lefthandside of above equation is

n—oo n—oo
Def.

i [ (v i [ ([ @) @duto) ) o) = i [ 6,000 % 0)w.0)

where the last equality comes from the fact we proved that Tonelli’s theorem holds for simple function. Thus,
we can conclude that

i [ 6, p)dex v)(o0) = [ B)iv)

n— oo

And the lefthandside with the MCT gives the conclusion that

[ v = i [ ontegdtux iz = [ s, (16)

MCT
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Hence, by (15) and (16), we can conclude that
[ ot@duta) = [ i) = [ nwaviy)

Theorem 3.116 (Fubini’s theorem, theorem 2.37(b) in [1] p.67). Let (X, m,u) and (Y,n,v) be o-finite
measure spaces. Let f € LY(X xY,m®n) Then f, € L'(v) for a.e. x € X, and f¥ inL'(u) for a.e. y €Y.
Consider the almost everywhere defined functions

/fw )du(y /f:vydu ) and h(y /fy )dpu(x /fmydu

Then, g € L*(n),h € L*(v), and

[ s@anta) = [ 5wt x v = [ vty
/</f(z,y)du(y)) /f:vy (uxv)(z,y) /(/fzydu > v (y).

Proof. If f > 0 then f € L™, thus by Tonelli’s theorem, g and h are defined everywhere, taking values in
[0, +00]. Also, since f € L', thus by tonelli’s theorem

/gu:/huz/fd(uxy)<oo

holds. From this result, with the proposition 2.20, we can conclude that g(z) < oo a.e. and h < +o0 a.e.
Thus we proved Fubini’s theorem when f € L* N L*.
Now assume f € Lk (u x v), means that range of f is R. Then,

f=Ffy—f-for fy,f- >0and |f|= fi + f-.

Since fy, f_ € L' N LT, Fubini’s theorem holds for each f, and f_.
Note that

O

i.e.,

Jo=(f+)e = (f-)z and ¥ = (f4)Y = (f-)",
and by Fubini’s theorem in case of fi, f—, (f1)z, (f=)s € L'(v) for a.e.x and (f1)Y, (f-)Y € L*(u) for a.e.

y. Thus,
— [ fotv = [(erutv = [(£2).a

o) = [ Frau= [ (rordn— [ (-

and by Fubini’s theorem in case of fy,f, [(f+)e, [(f-)sdv € L'(v) and (fy)¥, (f-)Y € L'(w). Thus,
g € L*(n),h € L'(v). Also, by Fubini’s theorem in case of f, f_ we know

[er = [(rudv = [ fedtuxw) = [ rauxn) = [(orau= [
Thus,

[ot@uta) = [(tadv— [ (1o = [ pedtue)= [ fduxw) = [(rordn- [(5du= [ vy,
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And by proposition 2.13 in [1],

[ ey = [ fduxo) = [(1e = i) = [ fagusn)
[ot@duta) = [ i) = [ naviy)

as desired. Thus we can say that Fubini’s theorem holds for any function having codomain R.
Now let f € L'. Then f = Ref +ilmf, and each Ref,Imf € LL(u x v). Thus, Fubini’s theorem holds
for Ref and I'mf. Now note that

Hence, (Ref)., (Imf), € L*(v) a.e. y and (Ref)Y, (Imf)Y € L*(u) a.e. x, thus for almost every z,

’/fwdu _ /(Ref)mdu—ki/(lmf)xdu < /(Ref)wdu

and for almost every y,

Thus, we have

< 00,

+| [mp).an

[ ] = | [eryani [amppa <| [repyan + | [ampyan < .

Hence f, € L'(v) for a.e. y and f¥ € L(p) for ae. x.
Also,

@) = [ oo = [(Befivsi [tmp)iv and hiy) = [ frau= [ Resyansi [amiyan

By Fubini’s theorem on real function, [(Ref),dv, [(Imf),dv € L*(n) and [(Ref)vdu, [(Imf)Ydu € L*(v)
we can conclude that

/ gdp| = / / (Ref)advdy + i / / (Im f)advdy| < / / (Ref)pdvdy| + / / (Im f)advdy| < oo
/ hdu| = / / (Ref)Vdudy + i / / (Imf)dpdv| < / / (Ref)vdpdy| + / / (Im f) dpdv| < o0

Thus g € L' (u), h € L'(v).
And since Fubini’s theorem holds for Ref, Imf,

/gdu //Ref dydu—i—z//fmf )edvdy = /Refd,uxu —l—z/]mfd,uxz/ /fduxu

/hdzx—//Refydudy+z//Imfydudu—/Refduxu +z/[mfdu><u /fd,uxz/
Thus,
[odu= [ satuxv)= [ nav.

as desired. Thus Fubini’s theorem holds for any function in L (u x v). O

and
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Corollary 3.117 (Typical Application; Change of order). Given f: X xY — C, if |f| € L*, then

/(/fxydu ) /(/fxydz/ )()

Proof. First we have to show

/(/Ifxy |dp(x ) v(y) < oo or /</|f(x7y)|du(y)>u(x)<oo.

Then, since |f| € LT (X x Y,m ® n), by Tonelli’s theorem,

[ (J v ) art = [ 17000 = ( [15600100) nte) <

thus f € L'(u x v). Then by the Fubini’s theorem, we can conclude that

J ([ st f = ([ e mn) e

3.6 The n-Dimensional Lebesgue Integral

Fix n > 2. Let m™ denotes the completion of m x m X --- x m on Bgr ® Bgr ® - - - ® Bg, i.e., the completion
of LRLR®---® L. Note that the completion is not the same as LR LR --- ® L.

Proposition 3.118. LRLR--- @ L C L™

Proof. It suffices to show that there exists a set in £” but not in LI LR --- QL. Forn=2,let E € LR L,
A C R such that A € £ and = € R. Now, let

Fi=(E\ ({2} x R) U ({z} x 4).

Then, m?(FAE) = 0. By completeness of £, FAE € £2, which implies F \ E € £? since it is subset of
FAE, thus F=F\EUEFE € L%

However, F,, = A by the Proposition 2.34. If ' € L ® L then F, = A € L, contradiction. Thus,
Fel’\L®L. O

Theorem 3.119 (Theorem 2.40 in [1] p.70. Approximation of sets.). (a)

m™(E) = inf{m"(U) : U open in R",E CU} =sup{m"(K): K C E,K compact }.

(b)) E= Ay UN; = Ay \ Ny where Ay is Fy set in R™, and Ay is Gs set in R™, and Ny, Na are null sets.

¢) If m(E) < oo, for any € > 0 there exists a finite collection (R;)N_, of disjoint rectangles whose sides are
J7j=1
intervals such that m(EA l;\f:1 Rj) <e.

Proof. Let E € L™. Note that m™ induces outer measure on R™ with respect to an algebra x™L. Thus, by
definition of outer measure, we have disjoint sequence of measurable rectangles T, 75, - € LX L X --- X L
such that

EC U T; and for some ¢ > 0,m" (U Ti) <m"(E)+e
i=1 =

(Note that E = E' U F for some E’ in Bgn and F C N,N € Bgn. Thus, we can choose such T; using
E C E'UN € Bgnr.) For each j, by applying theorem 1.18 for each side of the rectangle T; with ¢ =
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(55w iR Ezm((Tv) )) we get a rectangle U; having each side as union of disjoint open intervals such that
=1 Jlzy

U; D T and for each k € [n],

m((Uj)ay,) < m((T))ay + €,
thus

Now let U = J;2, U; then U is open and
m"(U) < Z m"(U;) < Z m"(T;) + e <m"(E) + 2e.
n=1 n=1

Since e was arbitrarily chosen, m(E) = inf{m(U) : U D E,U is open.} The second one and part (b) follows
from the exact same argument in Theorem 1.18 and 1.19 in [1][p.36-37].

For part (c), if m™(E) < oo, then m"™(U;) < oo. Note that ecach side of U; consists of countable
open intervals, thus, numbering each disjoint intervals of each sides of U; and let Vj; be rectangle gen-
erated by subunion of intervals of U; in each section from number 1 interval to number k interval. Then,
limy, oo m™(Vj 1) = m™(U;) Thus, 3N; such that

Yk > Nj,m™(V; ) > m"(U;) — €277,

Then let V; = V; n,. Then since m™(U;Z,, U;) — 0asn — oo, there exists N' € N such that m™ (U= y,, Uj) <
€. Thus,

0o N oo
w2\ J vy = U\ v +mi( | U <2e.
j=N j=1 j=N+1

and
o0

N
m (| JVvi )\ By <m"(( UE | \B) <e
j=1 j=1
which is derived from the construction of U;. Thus V := Uj\]:l V; gives
m"(EAV) = 2¢ + ¢ = 3e,
as desired for (c). O
Theorem 3.120 (Theorem 2.41 in citefo p. 71, Approximation in L'.). If f € L'(m™) and € > 0, then

(a) 3 a simple function ¢ = 2?21 ajlg, where each R; is a product of bounded intervals, such that
/|f—¢|dm” <e.
(b) 3 a continuous function g : R™ — C of bounded supports such that

/|f—g|dm”<e.
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Proof. By the argument in Thoerem 2.26, approximate f by a simple function, and approximate each
preimage in the simple function using Theorem 2.40(c), and change those preimage to the approximated
rectangle. Now, by using the argument in 2.26(b), get a continuous function. O

Theorem 3.121 (Theorem 2.42 in [1] p. 72, Translation invariant of m™.). If a € R"™, letting 7(x) = z + a.
Then

(a) E€L" = 7,(E) € L7, and m(r,(E)) = m(E).

(b) If f : R" — C is Lebesque measurable, then so is f o .
(c) If f € L+ (m™) then [ f o rudm™ = [ fdm"

(d) If f € L*(m™) then f o7, € L*(m™).

Proof. Since 7, and 7_, are continuous, 7,(F) € Bgn if E € B+ R". If E € x"Bg, then

m” (ra(E)) = [ m(ra, ()
i=1

If E€ L" then E=FE UF where E', N € Bg» and F C N and m™(N) = 0. Thus,
m"(1a(E)) = m" (ra(E" U F)) = m"(1(E") U ta(F)) = m"(1a(E")) + m"(7a(F)) = m" (E) + m" (1o (F))
and since 7, (F) C 7,(N) and m™(74(N)) = m™(N) = 0, m"(7,(F)) = 0. Thus,
m™(1a(E)) = m"(E') + m" (74(F)) = m"(E') = m"(E).

Thus part (a) is proved.

For part (b), let E € Be. Then, f~1(E) € L™, thus 7, ' (f~}(E)) = 7—o(f~}(E)) € L™ by part (a). Hence
(fo1a) YH(E) € L™, thus f o7, is also Lebesgue measurable.

For part (c), the statement holds when f = 1g, since then f o7, = 1, (g), hence

[ fam = m() = miru(E) = [ 1w = [ 1o mgdm.

Thus, by linearlity the statement holds for any simple function. And by Theorem 2.41, any Lebesgue
measurable function can be approximated by the sequence of simple functions, thus using the Monotone
Convergence Theorem, we can conclude that the result holds for any measurable functions. Thus (d) also
follows from the result of (c). O

Definition 3.122 (Cube, Jordan Content, etc.). Define cube in R™ is a Cartesian product of n closed
intervals whose side lengths are all equal. For k € 7, let Qi be the collection of cubes whose side length is
27F and whose vertices are in the lattice (27%Z)". Note that any two cubes in Qy, have disjoint interiors,
and that the cube in Q41 are obtained from the cubes in Qy by bisecting the sides.

If E C R™, we define the inner and outer approximations to E by the grid of cubes Qy to be

A k) = J{Q e Qr:QC B} AE k) = J{QeQr:QNE#0}
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Then since cubes are disjoint, and have measure 2~ so
m(A(E k) = {Q€Qx:QCE} - 27" m(A(E, k) = {Q € Qv : QNE # 0} - 27",

Also, A(E, k) increase with k while A(E, k) decrease when k increase, since each cube in Qy, is a union of
cubes in Qr+1. And since they are boudned, so the limits

K(E) := kli_)rglo m(A(E, k)) R(E) := lim m(A(E,k))

k—o0

exists. They are called inner and outer content of E. if they are equal, then the common value k(E) is
called the Jordan Content of E.

Note that Jordan content is meaningful only when E is bounded; otherwise x(E) = oo.

Lemma 3.123 (Lemma 2.43 in [1] p.72). Let

A(E,k) and A(E ﬁ

1 k=1

CS

A(E)
k

Then, by definition of inner and outer approximation,
A(E) C EC A(E),
and A(E) and A are Borel sets, and
K(E) = m(A(E)) and &(E) = m(A(E)).

Thus, the jordan content of E exists if and only if m(A(E) \ A(E)) = 0, which implies k(E) = m(E).

Then, if U C R™ is open, then U = A(U). Moreover, U is a countable union of cubes with disjoint
interiors.
Proof. Since we know A(U) C U, it suffices to show that A(U) DU. Let x € U, and é = inf{|ly—z|:y € U}.
Then, since U is open set, § > 0. So, if there exists a cube Q € Q}, containing x, then Vy € Q, |y—=z| < 27%\/n,
thus Q c U iff 27%\/n < 6. Since 27%,/n — 0 as k — oo, we can take a large enough k, such that k£ > log %,
to get @ C U. Then, x € A(U, k) C A(U). Since x was arbitrary, U C A(U), as desired.

For the second statement, we can rewrite A(U) as below;

oo

AU) = U (U k)\ AUk —1)).

Since closure of A(U, k) \ A(U,k — 1) is disjoint union of cubes in @y and A(U,0) is a countable union of
cubes, so does A(U) and by construction their interiors are pairwise disjoint. O

Remark 3.124. The above lemma implies that Lebesque measure of any open set is equal to its inner

content. Also, it implies that Lebesque measure of any compact set is equal to its outer content.

Proof. First statement is just result of the lemma. For the second statement, let ' C R™ be compact. Let
Q" = {z : max|z;| < 2M}, a rectangle centered at the origin, whose interior int(Qo) contains F. If Q € Qy
such that Q C Qp, then either QN F £ or Q C (Qo \ F), thus

m(A(F, k)) + m(A(Qo \ F\ k) = m(Qo).

Letting k — 0o, we get
R(F) + £(Qo \ F)) = m(Qo).
Note that Qg \ F is the union of oepn set int(Qo) \ F and the boundary of o, which has the content zero.
Thus,
£(Qo \ F) = K(intQo \ F') = m(Qo \ F)

where the last equality comes from the lemma 2.43. Hence,we have desired result. O
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Theorem 3.125 (Theorem 2.44 in [1] p.73). Let T € GL(n,R)

(a) E€ L™ = T(E) e L" and m(T(E)) = | det(T)|m(E).

(b)) fe LT (L") = foT e L(L") and [ fdm™ =|detT| [ f o Tdm™
(¢) fe LML) = foT e LM m")

To prove this result, we use the fact from the linear algebra that every T' € GL(n,R) can be written as
the product of finitely many transformations of three elementary types, such that

Tl(l'la"' sy Lgy e ,ZZ?n) = (zla"' y CTjy - o amn) (8#0)7
TQ(l‘l,"' s Ljy ot ,l‘n) = (xla"' 7xj+cxk;"' axn) (k.#]%
T3(.’IJ1,"' s Lgyrr 3 Tgy o 7xn) = (:Eh'" s Lyt 3 Tgy o ,{L’n) (k#])

Also note that every T € GL(n,R) is continuous.

Proof. If f is Borel measurable, then f o T is also Borel measurable since T is continuous.

Also, for T3, |det T3| = |—1| = 1, and part (a),(b) and (c) holds because T3 is just interchange of variables
and Tonelli theorem gives part (a) and (b) and Fubini theorem gives part (¢). (Note that part (a) is a special
case of part (b) when f = 1g for some borel set E.) For Ts, using Tonelli’s theorem (for (a),(b)) or Fubini’s
theorem (for (c)) we integrate first with respect to ;, and by theorem 1.21 in [1], we know that

/f(t+a)dt:/f(t)dt

for one variable integration. Thus, this gives the same integration, i.e.,

/fdm":/fonm”:|detT2|/fonm".

where the last equality holds since det To = 1. Thus (a),(b), and (c¢) holds for T5. For Ti, using Tonelli’s
theorem (for (a),(b)) or Fubini’s theorem (for (c)) we integrate first with respect to «;, and by theorem 1.21

in [1], we know that
[ setide =1 [ sy

for one variable integration. Thus, this gives

/fdm":|c|/f0Tdm”:|detT1|/fOTdm",

since | det Th| = |¢].
Now if T, S € GL(n,R) are matrices which the theorem holds for, then

/fdx:|detT|/f0de:|detT||detS|/(fOT)OSd:v:|detTOS|/fO(TOS)d:U,

this implies that this thoerem holds for T'0S, too. Since every matrix in GL(n,R) is generated by composition
of Th,T5, and T3, the theorem holds for every matrix in GL(n,R).

For f is Lebesgue measurable, then for any Borel set £ € R*, f~}(E) = F U N where F is Borel
measurable and N is a null set with respect to Lebesgue measure. Since Lebesgue measure is completion of
Borel measure, thus there is a Borel measurable set N’ such that N U N" and m(N) = 0. Hence,

m(T~HN)) <m(T"YN")) = |det T"'m(N') =0 = T~ '(N) is Lebesgue measurable.
(a)

Thus, T-1(E) and T~!(N) are Lebesgue measurable, this implies (f o T')~! is Lebesgue measurable. Thus
the above argument can be applied for any Lebesgue measurable sets. O
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Corollary 3.126 (Corollary 2.46 in [1] p.74). m™ is invariant under rotation.

Proof. If T is a rotation, then TT* = I, which implies (detT)? =1 = |detT| = 1. Note that T* is the
transpose of T. O

Let Q C R™ be open. Let g: Q — R™ be C!. Then, g(z) := (g1(x), g2(2), -+ ,gn(x)). Let’s denote
9gi

@)
Ox; 1<i<n,1<j<n

SUSTL L) >

(D9 =)o) = (

Definition 3.127 (Diffeomorphism). The above g is called Diffeomorphism if D,(x) is invertible for all
x € Q and g is injective, i.e., 1-1.

If g is a diffeomorphism, then by the inverse function theorem, g=! is in C!, and that D,(g7!) =
(Dg_l(x)g)_l for all z € g(Q). Also, for any T' € GL(n,R), D,T o g = T D,g; this can be obtained by using
the result of elementary matrices.

Theorem 3.128 (Theorem 2.47 in [1] p.74). Suppose Q C R™ and g : Q@ — R"™ is C' diffeomorphism.
1. If f : () — R™ is m™-measurable and f € L', then fog is m™-measurable. If f >0 or f € L', then

[t = [ o) det(Dy (el
g() Q

2. IfECQand E € L™, then G(E) € L™ and m(G(E)) = [, | det D,g|dx.
Before solving this, we need a notation for co norm.

Definition 3.129 (co-norm). For any z € R™ or T = (T;;) € GL(n,R), we set
el = g o] and 71 = o S I,
i=

Then, | Tx|| < ||T||||lz]] and {x : ||x — a|| < h} is the cube of side length 2h centered at a.

Proof. Tt suffices to show that Borel measurable functions and Borel measurable sets. If this holds for Borel
measurable sets and functions, then we can extend this for the case of Lebesgue measurable function and
sets using F = BUN for E € L™, B € B",N € L™ with m(N) = 0.

Let @ C 2 be a cube say Q = {x : || — a|| < h} for some a € Q and h > 0. By the mean value theorem,

(@)~ 9@ = S (o, — ) (72)w

j=1

for some y in a line segment from = to a. Thus, for any x € @,

_ - 9gi —~ ( 9gi -
loto) — el = e 33" —a) (52 ) | ¢ < 415" (52 0 < b e >

j=1

< h max {Dy,g} < hsup || Dyg||
1<i<n ) yeQ

since h > (z; — a;) for any j € [n] and each 77, ‘(% (yi)| is less than Dy, g by definition of norm.
J

Thus, ¢(Q) is contained in a rectangle with side length hsupyeQ |Dygll . Therefore, g(@) is contained in
sup,cq [Dygll - 1(Q), where I is an identity matrix in GL(n,R). Hence,

m(9(Q)) < m(sup [|Dyg| - 1(Q)) = (sup [Dygl))"m(Q).
veQ Thm 2.44(a) "€
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Since g was arbitrary, for any T' € GL(n,R), we can apply the same argument of 7! o g, thus we have

m(g(Q)) = | det T|m(T og(Q)) < |det T)| (sup | Dy (T~ ||) ) < |detT| (sup T~ 1Dng) Q).
2.44(a) yeQ

Since g is C''-Diffeomorphism, D, g and (D,g)~! is continuous with respect to y. Thus for any € > 0,35 > 0
so that if [ly — 2[| <6,
[(D=9)"' Dyg||" <1+

Thus, let @1, - Qxn be subdivided disjoint cubes of @ such that its side length is less than ¢ and whose
center is z1, - - - xy respectively. Then,

N N n N
)) < Zm(g(Qj ) < Z|detDw g| (SUP H z; 9 y9H> Qg) 1 +e€ Z|detDzJ9|m(Q1)
j=1

j=1 Jj=1

And the last sum (1 +¢) ijl | det Dy, glm(Q) is integral of (14¢) Zj\;l |det D;,g|1q,. Therefore, it tends
to go |det D,g| as § — 0 (Why??? I don’t understand.). Thus, letting § — 0 and € — 0, we find that

1me»sLMMwax

Now we claim that this estimate hold with @ is replaced by any Borel set in 2. Let U C € is open. Then
by Lemma 2.43 U = |J;° Q; where Q; are cubes with disjoint interiors. Since the boundary of the cubes
have Lebesgue measure 0, we hvae

U)) < ) < det D, gldx = det D_gldx.
»_;mmm_;éjegx Am gldz

Moreover, if E C Q is any Borel set of finite measure, by theorem 2.40 there is a decreasing sequence of
U; C Q of finite measure such that £ C (jZ, U; and m((N;2, U;) \ E) = 0. Thus, by the Dominated
Convergence Theorem,

m(g(E))<m|g ﬂUj :limm(g(Uj))glim/ | det D, gldx = /|detDmg|dx.
= Ui per” F

Finally, since m is o-finite, from the above equation we can draw the conclusion that

m(g(E))S[E|detng\dx

for any borel set, using continuity from below and Monotone Convergence Theorem.
If f=3,_10a;1a; is a nonnegative simple function on g(Q2), we have

/g(Q)f(x)dx = i:v;ajm(Aj) < éaj/

) | det Dy gldx = /f o g(x)|detD,g|dx.
g4y

Theorem 2.10 and the monotone convergence theorem implies that
/ fl@)dx < / fog(x)|det D g|dx
9(€) Q

for any nonnegative measurable f. But the same reasoning applies with ¢ replaced by ¢~ !, thus

/ fog(x)|det Dyg|ldx < / fogog t(z)|det Dg-1(5)9|| det Dpg t|dx = f(z)dx.

Q 9(9) 9(9)

Thus it establishes (a) for f > 0 and the case f € L' follows immediately. And (b) is the case when
f = 14(g), thus the proof is complete. O
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3.7 Integration in Polar Coordinates

It is omitted in the class.

4 Signed Measures and Differentiation

4.1 Signed Measures
Definition 4.1 (Signed measure). A signed measure on (X, M) is v: M — [—o0, +0o0] satisfying

(1) v(0) =0
(i) At most one of +00,—00 is in the range of 7.
(iii) If Eq, Es,--- € M are disjoint, then v (U;; Ej) =2, v(Ey)).
Remark 4.2.
{measures} C { signed measures}.
Let us denote a measure as positive measure.

Example 4.3 (Example of signed measure). Firstly, pi, pe are positive measures, at least one of which is
finite, then v := uy — ps is a signed measure on (X, M).

Neat, if [ is extended p-integrable, i.e., at least one of [ fTdu or [ f~du is finite, and f : X —
[—00, 0] is measurable with respect to a positive measure p, then v(E) := fE fdu is a signed measure. Note
that f* = min(f,0), f~ = — max(0, — f).

Proposition 4.4 (Proposition 3.1. in [1] p.86).
E,) =lim, o v(Ey).

1. If (En)S2, is an increasing sequence in M, then v(U,—,

2. If (E,)S%, is an decreasing sequence in M and if v(Ey) is finite, then v((No—, En) = limy, 00 V(Ey,).

n=1

Proof. For the first one, let F, = E, \ U, ! E;. Then, Fy,s are disjoint and Ujo1 B = B, = Uj—, Fy for
any n € N. Thus, by the property (iii) of a 51gned measure,

oo

Jim v(E,) = Y vE) = v [ UF ) =v L:JE

iii) J=1 (111) Jj=1

For the second one, if (E,)22; is a decreasing sequence, then

n=1
() En=E1\ (El\ ﬂEn>,
n=1 n=1

and By \ (,—, En and (.2, E, are disjoint. Thus,

() (e o)

o0 o0 o0
=v(E)) —v <E1 \ ﬂ En> from disjointness of E; \ ﬂ E,, and ﬂ E,

n=1

v(Ey) —v < (U )) from De Morgan’s Law

I/(El)l/<

n=1 n=1

(@

(E1n Efl)) from Distribution law of ZF axiom
1
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And since (E; \ F,)22, is an increasing sequence, we can use the part (a). Thus,

n—roo

v <ﬁ En> =v(Ey) —v <D (E1 N Eﬁ)) = v(Ey) — nh_{rgo v(E1\ E,) =v(Ey) —v(Ey) + lim v(Ey,).

n=1 n=1 part (a)

Thus, v ((,—; En) = lim, o v(E,,), as desired. O

Definition 4.5 (Positive, negative and null set). Let v be a signed measure on (X, M) and let E € M. We
say E is

e Positive if VF e M,F CE = v(F)>0.

e Negatvie if VF e M,FCE — v(F)<0.

e Null set if VF e M,F CE = v(F)=0.
Lemma 4.6 (Lemma 3.2 in [1] p.86).
(a) Every measurable subset of a positive set is a positive set.
(b) Every countable union of positive sets is a positive set.

Proof. For (a), let E be a positive set and F' be a subset of E. Since every subset of F' is also a subset of E,
thus it has positive measure, therefore F' is also a positive set.

For (b), suppose E1,--- € M are positive sets. Let E = UZO:1 E,. It suffices to show that F is positive.
Replacing F,, by F, \Z;ll FE if necessary, we may assume that F1,--- are disjoint without loss of generality.

Then, let F* C E. Then,
v(F)=v (U FﬂEn> => v(FNE,) >0,
n=1 n=1

where first inequality comes from E = |J;, E,, and the second equality comes from disjointness of F' N E,,
inherited from E,s, jand the last inequality comes from the fact that F' N E, s are positive sets since each of
them is a subset of FE,, respectively. Thus, E is a positive set. O

Theorem 4.7 (The Hanh Decomposition Theorem, Theorem 3.3 in [1] p.86). Let v be a signed measure
on (X, M). Then 3 a positive set P € M such that N = X \ P is negative. We call X = PUN o Hanh
decomposition for v. And this decomposition is unique up to symmetric difference of null set; if there
exists another P',N' C X such that PP UN’' = X and P’" NN’ = () and P’ is positive and N’ is negative,
then PAP' = NAN' is a null set.

Proof. Without loss of generality, let v : M — [—00, +00). Let r = sup{v(P) : P € M, P is positive}. Since
0 € {v(P): P € M, P is positive}, r is well-defined, thus we have a sequence of positive sets P,, such that
lim,, 0 v(P,) =1. Let P =J,—; P,. Then by the lemma, P is a positive set, thus

r>v(P)=v(P,)+v(P\P,)
and since v(P \ B,) > 0 since P\ P, is a subset of a positive set P,
r > v(P) > v(P,).

By letting n — oo, we have v(P) =r. Let N = X \ P.
Claim 4.8. If EinM,E C N, and E is positive, then E is a null set.
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Proof. Let E’ be a measurable subset of E. Then,
v(PUE') =v(P)+v(E) =r+v(E)

and P U FE is positive. However, by choice of r, v(E’) < 0. Since E’ is positive, v(E’) > 0. Thus, v(E') =0
Since E’ was arbitrarily chosen, F is a null set. O

Claim 4.9. If Ac¢ M, AC N and v(A) >0, then 3B € M, B C A such that v(B) > v(A).

Proof. We used r < +00 since v(P) = r € [0,+00). Suppose A is not a null set. Then by claim 1, A is not
positive. Thus, 3C' € M, C C A such that v(C) < 0. Let B = A\ C. Then, v(B) = v(A)—v(C) > v(4). O

Claim 4.10. N is negative.

Proof. Suppose for contradiction that N is not a negative set. Then dAy := A € M, A C N such that
v(A) > 0. By claim 2, 34; € M, A; C A, such that v(A4) > v(A). Let n; € N be the least number such that
JA; C Ap with v(A41) > v(Ao) + n—ll Likewise, let no € N be the least number such that 34, € M, Ay C Ay

with v(A2) > v(41) + n% We can continue in this manner, thus we get
AQ DA DA D --- and0<1/(A0) <I/(A1) < e
and integers ny,no, - - € N such that Vj € N. Let E = ()2 A,. Then, by the Proposition 3.1.(b) in [1],

v(E) = lim v(A4,) € (0,+00)

n—oo
since v(A4,,) € (0,+00) for all n € N, by assumption that the range of v doesn’t contain +oco. However,
JERES I
k) > o
j=1

By letting k — oo, the left hand side goes to v(E), and the right hand side goes to Zj’;l nl—] + v(Ap). Thus,

1
Z— +00 = nj; — 00 as j — oo.
el

Note that £ C N and v(E) > 0. Thus, by claim 2, 3B C E such that v(B) > v(E). Let m € N such that
v(B) > v(E) 4+ L. Let j € N such that n; > m. Since n; — 0o as j — oo, such j exists. Then,

1 1
B Q E Q Aj—l and Z/(B) Z V(E) + — Z V(Aj_l) + —_—,
m m

and this contradicts the minimality of n;, which is chosen by the least one. Thus /N should be a negative
set. O

To show uniqueness, let P, N, P, N’ are given in the problem. Note that P\ P = N’\ N is both positive
and negative, thus it is a null set. By the same argument, P’ \ P = N \ N’ is null. Hence,

PAP' = (P'\P)U(P\P)=(N\N)U(N'\N)=NAN'
is a union of null sets, thus it is null. O]

Definition 4.11 (Mutually singular). Let u and v be signed measure on (X, M). We say that u and v are
mutually singular and write
wlv

,when X =EUF,ENF =0,E,F € M such that E is null for u and F is null for v.
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Theorem 4.12 (The Jordan Decomposition Theorem, Theorem 3.4 in [1] p. 87). Let v be a signed measure
on (X, M). Then 3! positive measures vt and v~ such that v=v" —v~, and vt L v~.

Proof. Let X = PUN be a Hanh decomposition for v. Let v*(A) = v(AN P),v_(A) = —v(AN N). So
v, v~ are also positive measure. Clearly, v = vt — v~ since v(A) = v(ANP)+v(ANN) = vt (A) —v~ (A),
and v~ (P)=v(PNN)=0,vT(N)=v(PNN)=0. Thus, P is null for v~ and N is null for v7.

To see uniqueness, suppose v = u* — p~ for some positive measures u* and p~ with g™ L u~. There
exists E,FF € M such that EUF = X,ENF = and E is p™-null set, and F is g~ -null set. Then, E is
v-negative, and F is v-positive, so X = F'U FE is a Hanh decomposition for ». By the Hanh decomposition
theorem, FAP = EAN is v-nul, so VA € M,

AN (FAP) = (AN F)A(AN P)
is v-null. Thus,

W (A) = pH(A) = pH(ANE) = it (ANF) = i (ANF) — g~ (AN F) = (AN F) = u(AN P) = v+ (A),.
Soput =vt thus p= =v—. O

Definition 4.13 (Positive Variation, Total variation). We call v+ the positive variations of v and v~
the negative variations of v. The total variation of v is a measure |v| :=vT + v,

Definition 4.14 (Finite, o-finite signed measure). A signed measure v is finite iff |v| is a finite (positive)
measure. Also, a signed measure v is o-finite iff |v| is a o-finite (positive) measure.

Observation 4.15. The followings are equivalent.
(i) v is finite
(i) v: M — (—o0,+00)
(iti) vT and v= are finite.
Proof. Suppose (i). Then, |v|(X) =vT(P)+ v~ (N) < oo, thus
—0 <V (N)<vH(E)—v (E)=v(E)=vT(E)—v (E) <vT(P) < x.

Hence, (ii) holds. Also, if (ii) holds, then v (X) = v (P) < co and v~ (X) = v~ (N) < oo, thus they are
finite measure. If (iii) holds, then, |v| = v+ + v~ is finite positive measure, thus p is finite. O

Definition 4.16 (L' of a signed measure). Let L'(v) := L'(|v|). Hence for any f € L'(v), [ fdv =
[ favt — [ fdv~ < .

Example 4.17.

Some examples, and Push forward m L (3, A0, ) where m is the Lebesgue measure, and &, is a Dirac
measure at t, € R, and A\, € R for any n € N. Note that Dirac measure
gives 1 and 0 only.

Some exbmples, bnd Push forwbrd m? be the Lebesgue measure on R?, and D = {(x,z) : * € R}. Then,
m2(D) = 0. Let u(A) := m({x : (z,x) € A}). Then, u L m?. Note that
this = i,m s called push-forward of m where:: R — D.

If f : X = Y is measurable and if o is a measure on X, then f.o is a measure on'Y given by f.o(E) =

o(f(E)).
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Proof. To see that m?(D) = 0, start with Dy, = {(z, ) : |z| < k}. By rotating this D, m?(D) = m?({(x,0) :
lz| < k}). Now let Ay, = {(z,y) : |z| < k,|y| < L}. Then, A, ;s are decreasing sequence with m?(A, ;) =
%. And {(,0) : |z| <k} C A, for any n € N. Thus,

0 <m?(Dg) =m*({(2,0) : |z < 1}) <m*(Ap) = %

for all n € N. Thus, by letting n — oo, m?(Dy) = 0. From the fact that Dys are increasing seqeunce, using
continuity from below

m?(D) = m? (D Dk> = lim m*(D,) = 0.

n—oo
k=1
Hence, since i(A) C D, for any A € M,
u(A) = m?(i(A)) < m*(D) =0
Since 1 is zero mesure, we can conclude that pu 1 m?2. O

Definition 4.18 (Absolute continuity). Let v be a signed measure and p be a positive measure on (X, M).
We say v is absolutely continuous with respect to pu or

v
ifVE € M, u(E) =0 = v(FE) =0, equivalently, if E is a p-null set, then E is a v-null set.
Observation 4.19 (Exercise 3.8, proved in the Homework). v < p <= v < pandv™ < pu

Example 4.20. Fiz p. Choose [T, f~ € LT (n) with [ ftdu < +oo or [ f~du < +oo. Then, without loss
of generality, up to p-null sets, either f*: X — [0,4+00) or f~ : X — [0,+00). Let f:= f* — f~ and let
V(E) = [, fdu= [y fTdu— [ f~du. Then, v is a signed measure and v < pu.

Proof. From countable additivity of integration, and by construction avoiding co, v is a signed measure.
Also, for any p-null set E, v(E) = || g fdp = 0, by approximating the integral using simple functions. Hence,
v U =

Observation 4.21. Ifv L p and v < pu, then v =0

Proof. From v L p, there exists E,F € M such that FEUF = X, ENF =0 and E is p null set and F is v
null set. Also, since v < p, for any subset B C E, v(B) = 0 from the fact u(B) = 0. Thus for any A € M,

v(A)=v(ANE)+v(ANF)=0+0=0.
O

Theorem 4.22 (Theorem 3.5 in [1] p.89). Let u be a positive measure and let v be a finite signed measure
on (X, M). Then,

v<p <= (Ve,30 >0 such that E € M, u(E) <0 = [v|(E) <e€)--- (%)

Proof. Without loss of generality, let v = |v| be a positive measure. Then, if (*) holds, let E € M with
#(E) =0. Then by (), v(E) < € for all €, thus v(E) = 0. Hence v < p.

Conversely, to prove by contrapositive statement, assume (x) fails. Then, Je > 0 such that Vé > 0,
JE € M such that u( ) < ¢ but v(E) > e. Choose E,, € M such that u(E,) < 27" with v(E,) > €. Let
G :=limsup,,_,o En = (Nhey Upey En, and let Fy, :=J,—, E,,. Then (F),)5, is a decreasing sequence, thus

n=1
o0

H( < 12 Fk Z ,u n Z 27" = 27k+1-
k=1
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By letting k — oo, u(G) = 0. However,
v(Fy) > v(Ey) > €,

and v is finite, this gives us to continuity from above, thus we have

v(G) = lim v(Fy) > e,

k—o0

thus v £ p.
For the case when v is finite signed measure, this follows from the Exercise 8 that v <« p <— |v| < p. O

Corollary 4.23 (Corollary 3.6 in [1] p.89). If f € L*(u), for every e > 0, there exists § > 0 such that
| [ fdu| < € whenever p(E) < 6.

Proof. Since f is extended p-integrable real-valued function, v(E) := [  Jdu is a finite signed measure and
v < p. Thus, by the theorem, the statement holds. If f is complex valued function, apply the theorem on
Ref and Imf, and take such ds for Ref and I'mf using 5. O

Lemma 4.24 (Lemma 3.7 in [1] p.89). If v and p are finite positive measure on (X, M), then either v L u
or 3¢ > 0,3E € M such that v > e on E, i.e.,

VAe MJACE = v(A) > eu(4).

Proof. Suppose v and p are positive measures. Then, given n € N, consider the signed measure v — %u
and let X = P, UN,, be Hanh decomposition for v — L. Let P = (J;, P, and N = (), N,,. Then,
PUN=X,PNnN =0, and Vn € N, from the fact that N C N,,,

1 1
(V= —p)(N) <0 = 0 < v(N) < —p(N).
So letting n — oo, ¥(N) = 0 Hence N is null set for v. If u(P) =0, then p L v. If u(P) > 0, then since

w(P) <S> u(Py), there exists n € N such that u(P,) > 0. Take E = P,. Suppose A € M, A C E. Since
P, is positive for v — %u, we have

—_

(= Ti)(A) 20 = v(A)> Lp(A).

Thus, v > %u on F. O

Note that Folland says he proved the Lemma 3.7 in general case. However, this proof require that (at
least) v should be finite positive measure. Thus I limited the condition for the lemma. This limited version
is enough for proving Radon-Nikodym theorem.

Theorem 4.25 (The Lebesgue-Radon-Nikodym Theorem, 3.8 in [1] p.90). Let u be a o-finite measure and
v be a o-finite signed measure on (X, M). Then, 3! pair of o-finite signed measure (A, p) on (X, M) such
that

v=A+pand A L p and p < p.

Moreover, 3 an extended p-integrable function f: X — R such that dp = fdu

Definition 4.26 (Extended p-integrable function, revisited). A p-measurable function f : X — R or
f: X — [-00,00] is extended p-integrable function if letting f* = min(f,0), f~ = —max(0, —f). so
that f = f+ — f~, then either [ ftdu or [ f~du is finite. and f: X — [—00,00] is measurable with respect
to a positive measure i, then v(E) := fE fdu is a signed measure.

Then, v(E) := fE dp defines a signed measure v < p and we write dv = fdu or f = g—z.

Proof of the theorem. Without loss of generality, assume v is a positive measure.
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(i) Case I : v is a positive finite measure. Let

F:={f:X —[0,00] : fis measurable and VE € ./\/l,/ fdu <v(E)}
E
={f:X —[0,00] : 3 a measure o s.t. d\ =dv — fdu is a positive measure.}

Thus if F is nonempty, then for any f € F we can write dv = d\ + du for some positive measure .
(Note that 0 € F, thus F is nonempty.

Claim 4.27. If f,g € F then h := max(f,g) € F

Proof. Let h = max(f,g), A:={x € X : f(x) > g(x)}. Then for any £ € M,

/ hdu = / hdp + / hdy = fdu+ / gdp < v(ENA)+v(E\A) =v(E).
E ENA E\A ENA E\A ~

f.9eF
Let r = sup{ [ fdu : f € F}. Then, r < v(X) < +o0, from finiteness of v. O
Claim 4.28. There exists f € F such that [ fdu=r.

Proof. Choose f, € F such that r = lim, o f frndp. Let g, = max(f1, -, fn). Then, by the previous

claim, g, € F. And g1 < g2 < ---. Also,
[ oudn= [ fudn.

r= lim f, < lim /gnd,ugr = lim [ g,du=r.
n—oo

n— oo n—roo

Thus,

Let f =lim,_ g, pointwisely. Then, f: X — [0, +oc] Then, by the Monotone convergence theorem,

/fdu: lim /gndp:r.
n—oo

To see f € F, note that for any E € M,

[ fau=tim [ gudn < v(E).
E n—oo E
Thus f € F, hence done. O

The f obtained by above claim is f : X — [0, 00]. Since f € L'(u), this implies f~1({oo}) is p-null set.
Thus, by redefining f on f~!({oo}), for example, Vo € f~1({oo}), f(2) := 0, we have f : X — [0, 00).
Similarly, we define the measure p by p(E) := fE fdu, thus dp = fdu, and let A = v — p. Note that A
is a positive measure, since we just take f such that integration with f on any measurable set is less
than v-measure of the set.

Claim 4.29. X\ L pu.

Proof. Suppose not. Then by the lemma 3.7, de > 0, 3F € M such that
w(F)>0and A > euon F.

This implies
f+elpeF
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since VE € M,

/E(f+e1p)du:/5fdu+eu(FﬁE):p(E)+6u(FﬂE):p(E\F)+(p+eu)(EﬂF)

< p(E\F)+(p+N(ENF) = p(E\ F) + (ENF)
<v(E\F)+v(ENF) = u(E).

where first inequality comes from v > ey on F' and the last inequality comes from p+ A = v. However,

[t +etnidu= [ fdu+en(r) =+ cutr) > v
contradicting to the maximality of 7. O

Thus p < p, v L p, and v = XA+ p, and dp = fdp is constructed.
(ii) Case II: General case. If p is o-finite measure and v is o-finite signed measure on (X, M), let
Ey, Es,--- € M be disjoint such that

U E, =X and Vn € N, u(E,) < 400, and |[v|(E,) < +oo.
n=1

Perform the construction for each pair (p,, v,) when
pn(Er) = p(ANE,) and v,(A) :==v(AN E,).
Then, define

A= Z)\nap: anvf = an
n=1 n=1 n=1

This works since E,s are disjoint.

To see uniqueness, if v =A+p=XN+p, A Ly, N Ly, and p < p, p' < p, then A — X = p’ — p, and
A=XN Ly, p —p<p Thus,
A=N=0=p"—p,

as desired.

Definition 4.30 (Lebesgue Decomposition).

(1) For v, in the theorem, such v = A+ p, A\ L u,p < p is called the Lebesgue decomposition of v
with respect to p.

(2) If v <€ p, then p = v, thus 3 extended p-integrable function f such that dv = fdu. This f is called the
Radon-Nikodym derivative of v with respect to u. And we write

f= % so that dv = (3:) dpu.

Note that % is unique up to redefinements of p-null sets, as we constructed above.
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Observation 4.31. If on (X, M), v1,vs are o-finite signed measure and p is o-finite (positive) measure,
and
v L vy L 1

and if either vy,vy : M — (—o00, +00], then vy + Vo is a o-finite signed measure, vy + vy < . And

=i i () [ (5)- [ (22)

Thus, 7(1(”;:”2) dyl +9 dyz

Proof. Since vq,vs are o-finite measure, |v1|, |vo| are o-finite measure. Hence, there exists Ey,---, and
Fy,--- such that |2, B, = X = U2, F; and |11|(E;) < oo, |v2|(Fi) < co. Let G” = E; N F;. Then, for a
bijection between N? and N, we can regard (G;;) = (G;), and

(1 + 12)(G;) < vy (Ek) + va(Fyr) < oo for some k, k' € N,
also (J;o; G; = X. Hence (1 + 1) is o-finite. And if E € M with p(E) = 0, then
(1 +12)(E) =1 (E)+12(E)=0+0=0.
Thus, 11 + vo < . The rest is obvious from calculation. O

Proposition 4.32 (Proposition 3.9 in [1] p.91). Suppose on (X, M) p and X\ are o-finite measure, v is a
o-finite signed measure and v < p and p <K .

(a) If g € L' (v) then gd” € L'(p) and [gdv = [g (g—;) du. Furthermore, if g € LT (M) and v is a positive
measure, then d” >0 and [ gdv = fg( )d,u

(b) (Chain rule) From given condition, v < \ and
dv dA dp
(22 A-
dx (du> <dA) for -a.c.

Proof. Using the Jordan Decomposition, v = v — v~. We may without loss of generality assume that v is
a positive measure. Suppose g = 1 for some F € M. Then,

/1Edu =v(E) = Z:du /lE <Z;> du.

So the given integration holds when g = 1 case. Since E was arbitrary and integration is linear functional,
the integration formula holds for any simple function. Now let g € L*T(M). Then by theorem 2.10, there
exists a sequence (¢,,)22 ; of simple functions,

P1 <2<, Pp > g,
Thus, by the Monotone Convergence theorem,

fovoc i foi o fon (&) oz f ()

MCT MCT

If v is positive, then After redefining p-null set of g—”’s domain, it is positive.

If g € L' (v), then g = g* — g~ for g*, g~ € LY (M)N L' (v). Thus,

dv dv
dv= [ gtdv— | g dv = +—_—d:/—d.
/gv /gv /91/ /(g g)duu e
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For part (b) with positive measure v, let E € M. Then,

/—d)\
Jo () () oo () ()= f o

where the last equality comes from the fact that 1g <g—) >0and [g ( ) d\ = [ gdp when we replace v
with ¢ and g with A in the part (a). Also,

dv
/gdu /1E dp = *du—V(E),

where the last eqaulity comes from the definition of Radon-Nikodym derivative. Thus, by summing these

calculation,
dv du
foimn o= [(5) (&) »

which implies % = (g—;) (d)\) A-a.e. O

whereas

Corollary 4.33 (Corollary 3.10 in citefo, p.91). If p and A are o-finite measure and p <€ A\, A < p, then
(%) ({‘%) =1 p-a.e. and v-a.e.
m

Example 4.34 (Nonexample: Dirac d-function). Let p be Lebesque measure and v the point of mass at 0
on (R, Br). Then, v L p. Thus there is no Radon-Nikodym Derivative, even if Dirac 0-function behave like
Radon-Nikodym derivative. (Actually, it is not the function.)

Proposition 4.35 (Proposition 3.11 in [1] p.91). If p1,- - , pn are positive measures on (X, M) there is a
. n
measure p such that p; < p for all j, namely, p =73 5_; jij.

Proof. Since each p; is positive, u(E) =0 = u;(F) =0. for all : € N. O

4.2 Complex Measures

Definition 4.36 (Complex Measure). A complex measure on (X, M) isv: M — C such that
(1) v(0) =0
(ii) If En, Es, - -+ € M are disjoint, then v(lJ; = 1)*E; = Z;‘;l v(E;)

where the series converges absolutely.

Observation 4.37. If v is a C-measure and v,(E) = Rev(E),v;(E) = Imv(E), then v, and v; are signed
measure, and each omits £oo. So, vy, v; : M — [—k, k] for some k € N. Thus, sup{|v(E)|: E € M} < cc.

Proof. This follows from that series converges absolutely. So a positive measure is a complex measure only
if it is finite. Or if u is positive measure and f € L'(u), then fdu is a positive measure. O

Definition 4.38 (Mutual singularity, absolute continuity for complex measure). If v is a complex measure
and p is a signed measure, then v L u means v, L p and v; L p. If v and p are both complex measure then
v 1 pumeansv L u. andv L p;. If v is a complex measure and \ is a positive measure, then v < \ means
v, K\ and v; < .
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Theorem 4.39 (Complex version of the Lebesgue-Radon-Nikodym theorem, 3.12 in [1] p. 93). Let v be a
complex measure, i be a o-finite positive measures on (X, M). Then, 3! complex measure \, p such that

v=A+p,ALpu and p < p.
Also, 3f € L'(u) such that dp = fdu, where f is unique up to redefining of a p-null set.

Proof. By applying the Lebesgue-Radon-Nikodym theorem on v, and v;, we have A;, A\, and p;, p, and f,., f;
which satisfy the desired properties. Then let A = \. + i\, p = pr +ip;, and f = f. +if;. Then desired
property still holds. Also, uniqueness is derived from the each v; and v,. O

Proposition 4.40 (Lemma for defining Total variation of a complex measure). Let v be a complex measure

on (X, M). Then, 3 a finite measure pu such that v < p and letting f = g—l’: so that dv = fdu. Thus, by the
dv

complex version of Radon-Nikodym theorem(3.12) there exists f = . 50 that dv = fdu.

If also 1 is a finite measure and dv = f'dy’ then |f|dp = |f'|dy’.
Proof. Let u = |v;| + |v;| Then, v < p. Let p = p+ p/. Then, p < p, ' < p. Thus, p = (j—’;) dp, ' =
(‘fi—"p’) dp. By the chain rule,

du’ d
P dp = 'y’ = dv = fdp = = dp.
P P

Thus,
dy’ du
"= dp =vf-—dp.
f ap vf %
Then, by the uniqueness of the Radon-Nikodym derivative, we have
dy’ d
’d—/; = fd—'l; for p-a.e.
Thus,

P10 o e, = |fldps = |1
dp dp
O

Definition 4.41 (Total variation for complex measure). Given a compler measure v, its total variation is
the finite positive measures |v| defined by

div| = |fl|dp,

as in the previous proposition.

Observation 4.42. If v is a finite signed (real-valued) measure with Jordan decomposition v = vt — v~
then we already defined
Vg :=vT + v~

Let’s check that our new definition agrees with original one, i.e., |v| = vt +v~. Note that vT + v~ is a
finite measure and v < v + v~ and letting X = PU N be a Hanh decomposition for v. So, we know

vi(E)=v(ENP) and v (E) = —v(ENN).
Thus,
I/(E) = \/E(].p — 1N)d(V+ + 1/7) — dv=1p — 1Nd|’/|]R~

By definition,
dv| =[1p — In|dlv|r = d|v[r

since |1p — 1n| =1x = 1. So |v| = |v|g, as desired.
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Definition 4.43 (L', L* for complex measure). For a complex measure v, L*(v) := L'(v,) N L' (v;) and for

h e LY(v),
/hduz/hdvr—l—i/hdui.

Proposition 4.44 (Proposition 3.13 in [1] p. 94). Let v be a complex measure on (X, M). Then,
(¢) VE € M, [v(E)| < |[v|(E)

(b) v<|v| and % has absolute value 1 v-a.e.

[ savi < [1s1ap.

Proof. Let dv = fdu,d|v| = |f|dp be as in definition of |v|. Then,

(¢c) L'(v) = L (|v]) and Vf € L (v),

uwwﬁém4s/uwzww»

This proves (a) and show that v < |v|. For part (b), note that

v

f“i:d”::(ﬂﬂ

) vl = il

Thus, h|f| = f p-a.e. However, {z : |f|(z) = 0} is |v|-null set since |v| = |f|du. Thus, |h| =1, |v|-a.e.
For the part (c), Suppose v be a complex measure on (X, M). We want to show that L'(v) = L(|v|),
and if f € L'(v), then | [ fdv| < [|f|d|v|. Before start the proof, we need a lemma.

Lemma 4.45. L'(v) = L'(|v]).

Proof of the Lemma. For any simple function f = Z?:l ajla; with A; € M,

/fd|'/\ =Y ailvl(A) =Y art(A) + Y ar(4)) = /fd'/+ +/fdlf-
j=1 j=1 j=1

Thus for any f € L'(v) = L*(v") N L1 (v7),

Jinant < [1siar+ [1ga <o

Since f was arbitrarily chosen, L!(v) C L'(|v|). Conversely, if f € L'(|v|), then

/|f\d|u|:/|f|du++/fdu‘ <00 — /|f|du+<ooand /fdu_ < 00,

thus f € L'(v*) N LY (v~) = L1(v). Hence L*(v) = L(|v|) O
From the definition of complex measure space and the lemma,
LMw) = LA v,) 0 L () = LY (lv]) 0 L2 ().

Let p := |vp| + |v;| Then, since each v, and v; are finite measure, so does u. And also v, < pand v; € p
by construction. Thus, by the Lebesgue-Radon-Nikodym theorem (Theorem 3.8), we have a p-integrable
function g, : X — R and g; : X — R such that

vr = grdp and v; = gidp.
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Thus, for any E € M,

V(E):/dl/:/dzxr—&-i/dui:/gr—l—igidu.
E E E E

Let g := ¢, + ig;- Then, by the uniqueness of Radon-Nikodym derivative from theorem 3.8, d|v| =
lgldw, d|vr| = |gr|dp, and d|v;| = |g;|dp. Also, the triangle inequality gives |g,| < |g| and |g;| < |g|, thus

v, |(E /|ur|—/ |gr|du</ lgldp = v|(E)
vil(E /|uz|—/ |gz|du</ lgldp = v](E)

Thus, v, < |v|,v; < |v|, therefore by the Lebesgue-Radon-Nikodym theorem, there exists |v|-integrable
function h,., h; such that v, = h,.|v|,v; = h;|v|. Thus, for any E € M,

E):/ hT+ihid|u\:/(hr+ihi)|g|du,
E E

Let h := h, + ih;. Since v(E) = [}, gdp, this implies
g = h|g| for p-a.e.

And since |v| < p, this implies g = h|g| |v|-a.e. Now let E = g~({0}). Since g is |v| measurable, E is |v|

measurable, therefore
E)=/ \glduz/ Odp = 0.
E E

Thus, g # 0 |v|-a.e., this implies |h| = 1 |v]-a.e. Also, triangle inequality implies |h,.| < |h] = 1 and
|hil < |h| = 1.
To show the inequality, let f € L'(v) = LY(|v]). Then,
by the Lemma

[ 1s1dwil = [ 1£1ltela 2 / ] < oo

since |h|

[1idil = [ 1f1ibsid s / fldiv] < oc

since

Thus, f € LY(|ve]) N LY (|vi]) = LY (v,.) N LY (v;). Conversely, if f € L*(|v]) N LY(|vi]), then

/ Fldlv] = / flidpy] = / (Il + ihaldl] < / | Fllhrldl] + / Fllkaldv] = / Fldin] + / Fldl] < oo

Thus, f € LN(|v]) = L'(v).
Also, note that for f € L*(v) = L*(|v]),

’/fdu’ - ’/fdvr-Fidei - ‘/f(hr—i-z’hi)dw < [1s10h, +inldpl = [ 171

as desired. O

- ‘/fhrd|z/| +ifhid|

Proposition 4.46 (Proposition 3.14 in [1] p.94). If v1 and vo are complex measures on (X, M), then
lv1 +va| < va] + |va

Proof. By the proposition 4.40, we can write v; = f;du for j = 1,2 and some p-integrable function f;. Then
dlvy +ve| = |f1 + faldpu < |fildp + | foldp = d|vi| + d|va|.
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4.3 Differentiation on Euclidean Space
On R, take dv = fdm, where dm is the Lebesgue measure, with f € L'(m). Let
v((0,t])) t>0
F(t):=X0 t=0.
—u([t,0]) t<0

Does this function F' differentiable? If it is differentiable, we should show that

.
F — F — — —r r m .
lim (to+7) (to — 1) — lim v((to — ryto + 7)) ~ lim f[to Lol () dm(y) A (to).

™0 2r ™0 m((to —ryto+1r] ™0 m([to —r,to + 7]

To show this, fix n € N and let m denote the Lebesgue measure on R™.

Definition 4.47 (Locally integrable). f : R™ — C is locally integrable if [,. |f(z)|dm(z) < 400 for all
bounded measureable set K C R™. It is enough to take K = B(r,x) where

B(r,z) ={y e R": |y —z| <7}
Let L}

loc

Remark 4.48 (Notation). For f € L} (R"),z € R",r >0, let
1

m(B(r)) /B@n,r) fw)dy.

denote the set of locally integrable functions f on R™.

Arf(z) =

”A” means average.

(1) E € R™ is measurable, then m(rE) = r"m(E) by the theorem 2.44 in [1][p.73].

(2) m(B(r,z)) = m(B(r,0)) = %55 where

1-3-5---(2k —1)
2k

(1 + k) :k:!,l“(k:—i—%) _ Jr

Definition 4.49 (Jointly continuous). A function g(a,b) is jointly continuous iff g(a,b) — g(x,y) when
a—xandb—y.

Lemma 4.50 (Lemma 3.16 in [1]p.96). If f € L} (R"), then A, f(z) is jointly continuous in r > 0 and
zeR”

Proof. This is equivalent to showing (r,z) — fB(T_z)f(y)dm(y) is jointly continuous. Let r, — r > 0,
xp, — x. Then, for some large enough &, |15(,, 2,)f| < [1B(r,,z)f|- Thus, by the DCT,

kli{r;o/lBUk’xk)fdm = /1B(r,r)fdm
DCT

O

Definition 4.51 (Hardy Littlewood Maximal Function). If f € L} (R") then the Hardy-littlewood
maximal function of f is

(Hf)(z) = sup Al fl(z).
Thus,
(Hf)H((t,00)) = [ J (A £) (¢t 00)).

r>0

and this set is open by the lemma 3.16 since A,.(f) is continuous on any t € R™.
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Theorem 4.52 (The Hardy-Littlewood maximal theorem, 1930, 3.17 in [1] p.96). 3C > 0 depnding on n
such that Vf € L*(m),Va > 0,

m({z: Hf(z) > a}) < g/|f|dm.

Or since ||f|l, = [ |fldm, we can restate it as

m({z: Hf(z) > a}) < —||fl;-

el

To see this, we need a technical lemma, 3.15 in [1].

Lemma 4.53 (Lemma 3.15 in [1], p.96). Let C be a collection of open balls in R"™ and let u = Jgce B. If
t <m(U), there exists a disjoint sequence By, -- By € C such that 25:1 m(B;) > 37"t

Proof. By theorem 2.40 in [1], there exists a compact set K C U such that ¢ < m(K). Since K is compact
and C is a cover of K it has a finite subcover, say £q := {A1,---, A4} Let By € £ be a ball with maximal
radius. Let Lo := {A € L1 : AN By = 0}. If L¢ is empty, then stop. Otherwise, take By € L5 such that
Bs has the maximal radius in Lo, and let L3 := {A € L5 : AN (B; U By) = 0}. Continue this process until
we stop. (Since £; has finitely many balls, this process must stop at some point.) Say Lr11 = (. Then,
{B1,--- By} are chosen ball which are pairwise disjoint. Then, VA € £q \ {Bi1,--- Bk}, AN B, for some
p € [k]. Now let
p:;r}eli[il]{AmBl #@ cAe Ll \{Bl,---Bk},Bl S {Bl,-~- ,Bk}}.

Then, AN(ByU---UB, 1) = 0. Thus, A € L}, thus A has a radius less than B, hence A C B, where B,
is a ball concentric with B, whose radius is three times that of B,. Since A was arbitrary, every element in

L1\ {Bi,- - B} is contained in one of B; and each B, is contained in B;. Thus,
k k ' k
K C B, — t<m(K)<3" m(B;) = — < m(B;).
Us () <33 () = g < 3o m(s)

O

Proof of the Mazimal theorem. Let E, = {x : Hf(x) > a}. If © € E,, let r, > 0 such that A, |f|(z) > «.
Thus,
E, C U B(ry,x).
r€E,
Therefore, if ¢ < m(E,), then by the lemma 3.15 in [1], there exists x1, - ,z; € E, such that B; :=
B(ry,;,x;)s are disjoint and Zle m(Bj) > 37 "t. Since each x; € E,, this implies

1 1
7/ |fldm > o = —/ | fldm > m(Bj) for each j.
m(B;) B, @ JB,
Thus,
a 1 ¢ 1 1 1
SRENUTIES DY [ am =2 [ mam < [ igiam =2 figiam
Thus,

t<3—/|f|dm
a

and by taking supremum on ¢, we can conclude that

3n
m(E) < 2 [ 17idm.
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Actually, Stein and Stromberg (1983) gives that C' = O(nlogn) result. Now we will prove that lim,~ 0 A, f(y) =
f(z) for "most” z. But for particular z, lim,~ o A, f (y) need not exists. For example, let f = > | 1 2

[2771271,2*” 1°
If = 2= then A f(0) > 3. Ifr = 2-7"~1 then

4 f(o) B 2—7L2 _ 2—%2—1 N i 2—k2 _ 2—k2—1 2—n2 _ 2—n2—1 _ 2—n2—1 B 1
" - 2.2 n? W 2 2-n* = 2.92-m*  4.9-n*-1 4’
However, if r = 277°=1 then
2—(n—i—1)2 _ 2—(n+1)2—1 0 2—k2 _ 2—k2—1 2—(11-‘,—1)2 o
A, f(0) = o—nZ—1 + Z 5 g1 < P 272" 5 0asn — oo.
k=n-+2

So limsup, o Arf(0) > } but liminf, o A, f(0) = 0, therefore limit doesn’t exists.

Theorem 4.54 (Differntiation Theorem Version 1. 3.18 in [1] p.97). If f € L} (R™) then lim, ,o+ A, f(z) =
f(z) for a.e. x € R™.

Proof. It will suffices to show that VN € N, lim,_,o+ A, f(z) = f(x) for a.e. © € B(N,0), However, since we
are interested in local points near  with small radius r, thus when we set r < 1, then

Arf(r) = Ar(flawvo))-

Thus we may assume that f € L!
By the theorem 2.41, 3¢ : R™ — C continuous and compactly supported function, such that || f — g||; <e.

Claim 4.55. lim,_,o+ A,g(z) = g(x) for any x € R"

Proof of the claim. Since g is continuous, Vo € R™ and V§ > 0, 3r > 0 such that |g(y) — g(z)| < § whenever
ly — x| < r. Thus,

(s 5m(B(r,m)):
/| o)~ >>‘<m(3(m)) 5

Thus A,g(x) = g(x) as r — 0. O

1Arg(x) — g(z)| =

Now, note that

lim A, f(z) = f(z) for a.e. z € R® <= lim sup |A, f(z) — f(z)] =0 for a.e. z € R"

r—0t rs0+
< inf sup |A,f(z)— f(x)] =0 for a.e. z € R"
6>00<r<s
Thus,
inf sup |A,f(z)— f(x < lim sup |A,f(x) — A,g(z
int sup |4,7(z) = () sup |4, f(x) = Arg(a)

Triangle ineq.

+lim sup |A,g(z) — g(z)|

r—0+

+ lim sup |g(z) — f(z)]

r—0+

For the first term,

lim sup |A,f(z) — Arg(z)] =

r—0t

1 1
B o 00 000 < s [ 15) — gtwlay

=A|f—gl(z) <H(f — g)(x).
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And limsup,_, o+ |Arg(z) — g(z)| = 0 by the above claim. Thus,

lim Sup. |Arf(2) — f(2)| < H(f — 9)() +|f — gl(=).
To show this, let
a>0,E, :={x€R":lim sup |A,f(x) — f(z)| > a}

r—0+

Then,
FE, C F% U G%

when
Fo:={xeR":H(f —g)(z) > a},Gy :={x e R" : |f — g| > a}.
However, by the Hardy Littlewood Maximal Theorem,

m(Fg) <

wie| Q

y Mgl 2

2Ce
|f—gll; < — and m(Gg
o o

2

Thus,

<20—|—1

m(E,) < e—0ase—0.

Therefore,
Vr € R" Ei, lim A, = .
T € \,jgl 1, lim A, f(2) = f(z)
This implies that
lim A, f(x) = f(z) for a.e. z.

r—0+
So, the theorem 3.18 implies that

r—0t m(B(r, z))

1
lim —— — f(x))dm =0 for a.e.x.
/B ) = F@)my

However, even this is true when we change f(y) — f(z) to | f(y) — f(2)].

Definition 4.56 (Lebesgue set of f). For f € L{ (R"), the Lebesgue set of f is

loc

Ly o e lim —s | W = S@ldm(y) =0}

r—0t+ m(B(r,z))

Theorem 4.57 (Theorem 3.20 in [1] p.98). If f € L} (R™) Then m(Ls)¢) =0

loc

Proof. For z € C, let f,(x) = |f(z) — 2| and apply the theorem 3.18 in [1]. Then, 3E, C R™ such that
m(E,) =0 and Vz € ES,

) ! = T)—z
e ) o 1)~ 21 ) = 11@) =,

Now let D be a countable dense subset of C, and let £ = {J,., E.. Then, m(E) = 0, since it is countable
union of null sets. Let z € E°, € > 0, and let z € D such that |z — f(z)| < e. This choice is possible since D
is countable dense. Then,

Yy € R™,|f(y) — f(2)] <e+|f(y) — |
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Since = € EY,

. 1 . 1
lim sup ) /BW) 7(v) = J(@)ldm{y) < e+lim sup e

— e+ |f(x) — 2| < 2

/ () — zldm(y)
B(r,z)

where the equality comes from the fact that z € E¢, and the last inequality comes from our choice of z as
|z — f(x)| < e Thus by letting e — 0, x € L§. O

Definition 4.58 (Shrink Nicely ). A family (E,),>o of subsets of R™ shrink nicely to = € R" if
(i) Vr > 0,E, C B(r,z).
(i) 3a >0, s.t. Yr > 0,m(E,) < am(B(r,z)).
Example 4.59 (Example of a family shrinking nicely). Let E, = 2+ B(%,(5,0,---,0)) on R™. Then, since
the farthest point of E,. from x is (%, 0,---,0), E. C B(r,z) and
m(E,) = V(g) = Cr"3" > 47" (Cr") = 4~ "m(B(r, ).

Thus (Ey)r>o shrinks nicely to x.

Proposition 4.60 (The Lebesgue Differentiation Theorem, 3.21 in [1], p.98). If f € L} (R"), z € Ly, and
if (Ey)r>0 is a family shrinking nicely to x, then

lim |f(y) = f(x)|dm(y) = 0.

r—0+t E,

Proof. From shirinking nicely to x property

1 1
) Jy, 0~ @l < s [ 1) - f@amy)
and m fB(m) |f(y) — f(z)ldm(y) — 0 as r — 07 since = € Ly. .

Definition 4.61 (Regular Borel measure). A Borel measure v on R™ is regular if
(i) v(K) < oo for all compact subset K C R"™
(ii) VE € Bgn, v(E) = inf{v(U) : U is open,U CR", E C U}.
If v is signed or complex Borel measure, then v is regular if |v| is reqular.
Proposition 4.62. If v is reqular, then VE € B(R™),
v(E) =sup{v(K): K CR", K is compact, K C E}.

Proof. Without loss of generality, let E be bounded, such that E C B(N,0). Let F' = B(N,0) \ E. Let
€ > 0. Then, by the regularity, 3U C R” open, such that F' C U, such that

v(U) < v(F)+e.

Let K = B(N,0)\ U C E. Then,

V(E\ K) <v(E) —v(K) =v(E) = (v(B(N —¢€0) —v(U))
<v(E)—v(B(N —¢€0)+v(F)+e
=v(B(N,0)) —v(B(N —¢,0)) + ¢

C(e)

|
[0}

where C(e) is just polynomial of e. Thus, letting ¢ — 0, v(E \ K) — 0. Hence the desired conclusion
holds. O
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Theorem 4.63 (Theorem 2.40, Dr. Dykema’s proof). Lebesque measure m on R™ is regular.

Proof. The case n = 1 is done by theorem 1.18. on [1][p.36]. For n > 1, condition (i) is clear. For (ii), let
E € Bgn. If m(E) = 400, then it is okay, since R™ covers E. If m(F) < +oo, then from definition of product
measure, for any fixed € > 0, 3k € N with By, .-, By C R™ such that

k k
Vj S [k],Bj = Aj,l X Aj,g X oo X Aj,'ru where Aj,i € Br and E C U B] and m(E) +e> Zm(Bj)
j=1

j=1
By the regularity of Lebesgue measure on R, for any § > 0, 3 open V; ; C R such that
Aj,i - ijﬂ' and m(VN) -0 < m(AN-).
Let V; :=[]—, V;i. Then, V; O B; and V; is open. By choosing § smaller, we can have
€
m(V;) = < m(B;).
Then, let U = (J}_, U;. Then E C U, and m(U) — e < 35 m(B;). O

Proposition 4.64 (Lemma for theorem 3.22 in [1] p.99). Let f € LT(R"). Let dv = fdm. Then, v is
reqular iff f € L} (R™).

loc

Proof. 1f v is regular, then v(B(R,0)) < +00, so flgmzgy € LY(R™). Thus, f € L (R™).

Conversely, if f € LL (R™). Then, for v and K C R™ where K is compact set, there exists N € N such

loc
that K C B(N,0), thus v(K) < v(B(N,0)) = [ flp,0dm < oo, thus condition (i) of regularity holds.

To show condition (ii), suppose FE € Bg~ is bounded. (If it is not bounded, then take U = R™.) Let € > 0,
we want to find U C R™ which is open and E C U, and v(E) 4+ € > v(U). Suppose E C B(R,0). Note that
f1B(r0) € L'(R™). Then by applying Corollary 3.6 in [1][p.89] to f1p(g,o); for any € > 0 there exists § > 0
such that VF' € Brn with m(F) < 0,

le(Rmdm < €.
F

By regularity of Lebesgue measure, 3U C R™ which is open and E C U and m(U \ E) < e. Thus,
/ flproydm < e <= / fdm <e <= v(UNB(R,0)\ E) < e.
U\E U\ENB(R,0)

Since U N B(R,0) is open set, we are done. O

Lemma 4.65. Let \, i be positive Borel measure on R™. Then, u+ X\ is reqular if and only if p and X\ are
reqular.

Proof. For condition (i), if i+ A is regular, then any K C R™ with compactness, u(K) < (u+ A)(K) < o
and A(K) < (4 A)(K) < o0, thus (i) holds for p and X. Conversely, if p and X is regular, then (4 A)(K) =
w(K) + MK) < +o0.

For condition (ii), suppose p + A is regular. Then, for any E € Bg» 3U C R™ which is open, E C U and

(L+NU) < (p+N(E)+e = 0<puU) —pu(E)+AXU) = ANE) <e
From U D E, we know 0 < u(U) — u(E) and 0 < \(U) — A(E). Thus,
0< u(U)—pu(E)<eand 0 < A(U) — A\(E) <e

Since € was arbitrary, we have desired result. Conversely, if ;1 and A are regular, then for any ¢ > 0, Uy, U,
open sets containing E and
w(Uy) < p(E) + € and A(Uz) < M(E) +e.
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Then, U = U; N U, is also open, since it is finite intersection, and £ C U. Thus,
w(U) < w(E)+e and AU) < ME)+e = 0 < p(U)+AU)—p(E)—A(E) <e = 0 < (u+X)(U)—(p+N)(E) < e
Thus, by letting ¢ — 0, we have desired result. O

Theorem 4.66 (Theorem 3.22 in [1], p.99). Let v be a signed or complex Borel measure on R™ that is
regular. Let

dv =d\+ fdm
(where dp = fdm) be the Lebesgue-Radon-Nikodym decomposition. (So A L m). Then for m-a.e. x € R™,

im vEr)
™0 m(E;y)

= f(z)

for every family (E,).~o that shrink nicely to x.

Proof. Note that v — A\ = p = fdm is regular by the proposition 4.64, f € Ll _(R™). By the Lebesgue
Differentiation theorem,

E
p((E)) = 7/ fdm — 0 as r — 0 for a.e.x and (E;),~¢ shrinking nicely to z.
E.

So it remains to show that for almost every z,

A(Er)
m(E,)

— 0 as r \ 0 for every (E,),>o shrinking nicely to z.

Since shrinking nicely to x implies that F, C B(r,z) and that Ja > 0 such that Vr,m(E,) > am(B(r, x)),

Er) | o PE) _ [A(B(r,z))
E)| = m(B,) = am(B(ra))

‘ m

where first equality comes from |A(E,)| < |A|(E,) and the last equality comes from E, C B(r,z) and
m(E,) > am(B(r,z)). Thus, it suffices to show that for a.e. z,

m P(B(r,2)) _ 0. (17)

r—0 am(B(r, x))
Note that |A| L m. Thus, 3A € Bgn such that |A\|(A) = 0 =m(A°). Let
(A(B(r, 2)) Ly

Fy, = Al — 5 > |
ki=fre lmfi% am(B(r,x)) “ %

It will suffices to show that m(F})) = 0. Since then (17) will holds for all z € A\ U,—, F) and

(o)) @) e

Let € > 0. We have |A|(F)) < |A|(4) = 0 By the regularity of |A| which is from definition of regularity of
signed measure, 3U, open in R™ such that Fy, C U and |A\|(U) < e. Given x € F}, 3r, > 0 such that

N(B(u2) 1

m(Bro2) & and B(ry,x) C U
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. Let V:=U,cp, B(rz, ). Then Fy C V C U. Then by the covering lemma 3.15 in [1][p.95], 3z1, -+ ,z, €
F}, such that B(ry,,21), -, B(rs, ,x,) are disjoint and

n

> m(Bra,, ;) = 37 "m(V).

j=1
Then, . .
37 m(V) <D mi(B(ra,, 25) <k Y IN(B(re,z;)) < K(V) < K(U) < ke.
j=1 j=1
So,
m(Fy) <m(V) <3"ke
By € — 0, we has m(F)) = 0 as desired. O

4.4 Functions of Bounded Variation

Suppose G : R — R is increasing right continuous function. Then, the Lebesgue-Stieltjes measure p¢g is
determined by

pa([a, b)) = G(b) - G(a).

Then, pg is regular, as proved in theorem 1.18.

Theorem 4.67 (Theorem 3.23 in [1]p.101). Let F': R — R be increasing function. let G(z) = F(z+) :=
lim;_,,+ F(t) = infys, F(t). Then,

(a) The set of points at which F is discontinuous is at most countable.
(b) F and G are differentiable almost everywhere, and F' = G' m-a.e.
This may be related Qualifier exam... But not sure.

Proof. For (a), let
Eny:={x € (—N,N: F(z+) # F(z—)},

where F(z—) := limy_,— F(t) = sup,., F'(t). Since
Y (F(a+) = F(z=)) < F(N) = F(=N) < s,

zeFEN

This implies Ey must be countable set; otherwise the sum should be infinity, contradiction. Hence,
Un—1 En ={z € R: F(z+) # F(z—)} is also countable.

For part (b), note that G is increasing and right continuous, and G(x) = F(z) except © € E :={z € R:
F(z+) # F(xz—)}. Moreover,

pa((z,z + h)) ifh>0

Glath) - G) {ug((erh,x]) ifh<0’
where pg is a Lebesgue Stieltjes measure with respect to G. By theorem 1.18, ug is regular. So, from
Radon-Nikodym decomposition dug = d\ + fdm, f € L _(R). Also note that ((x, + h])p>o shrinks nicely
to x, since (x,z 4+ h] C B(z,h) and m(z,z 4+ h] = h > 2h = 2m(B(h,z)). Thus, by the theorem 3.22, for
m-a.e. r € R,

Glz+h) — G@)  pal(w,o+h])

h  m((x,z + h))

— f(x) as h 0.
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Also, ((x — h,x])p>0 shrinks nicely to x, by the similar argument. Thus, by the theorem 3.22, for m-a.e.
z € R,
Gx) =G —h) _ po((x—h x])
= h ™\, 0.
h ml(z ) @ AN

Thus, for m-a.e. x € R, G and F are differentiable. And from part (a), F(x) # G(z) is countable. Now it
suffices to show that if z € R and F(z) = G(z) and G'(z) exists, then F'(z) = G'(z).

For some fixedz € R, suppose F(z) = G(z) and G'(x) exists, then F'(z) = G'(z).Let 0 < o < 1. For
h >0,

Glx+ah)=F(xz+ah)+) < F(z+h) < F((x+h)+)=G(z + h)
where the first inequality comes from F' is an increasing function. Thus,
Gz +ah) < F(x+h) < G(x+ h).

Then, we can modify this inequality as below;

Gx+ah)—Gx) Gx+ah)—G(x) F(zx+h)—F(x)

- = <
ah h - h

By letting h — 0, we have

G(z + h) — G(z)

<

F(z+h)— F(x) F(z+h)— F(x)

aG'(z) < lim g{fo Y < lim }Slli‘% h < G'(z).
. . F(z+h)—F(x) : / :
By letting o — 1, we can conclude that lim,_,o+ ————— exists and equal to G'(x), as desired.

Using the almost same argument, we have
G(z —ah) = F((x — ah)+) > F(x — h) > F((x — h)+) = G(x — h)
where the first inequality comes from F' is an increasing function. Thus,
G(z —ah) > F(x —h) > G(x — h).

Then, we can modify this inequality as below;

G(x—ah)—G(x) Gx—ah)—Gx) F(x—h)—F(x) G(x—h)—Gx)
o = < <
a—h —h —h —h
By letting h — 0, we have
aG'(z) < lim inf Fle—h) - Flz) < lim sup Fle—h) - F(z) < G'(x).
RN\0 —h AN —h

By letting o — 1, we can conclude that lim,_,q+ w exists and equal to G’(z), as desired. Thus we

can conclude that F’(z) exists and F'(z) = G'(x). O

Remark 4.68 (Notation). Let v be a o-finite (positive, signed, or complex) Borel measure v on R™. Write
v= A+ p when p << m and X\ L m using the Radon-Nikodym theorem. Write
Vgc. =P

for the absolutely continuous part of v. An atom of v is a singleton {z} such that v({x}) # 0. The atomic
part of v is

Vatomic > v({z})6s.

{z:{z} is an atom}
Note that
‘Va,tomic‘ < |)\|a and Vs.c. := A— Vatomic-

Then, vs .. L m, and we call vy .. the singular part of v. Thus we have

V =Vgc. + Vs.c. + Vatomic-
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Example 4.69 (Revisit Cantor set). Let C € [0,1] be the Cantor set. Then in the chapter 1 we know that

(o)

C = {x c0,1]:3a;)2, € {0,2}" such that x = z; 3—?}
J:
Also, we can represetn [0,1] as
_ . oo N _ el
0,1] = {t € [0,1] : 3(b;)2, € {0, 1} such that t = z; TEE
J:

Thus, the map
aj

. o0 o0 aj/2
f:C—=10,1] by 237HZ >
j=1 j=1
3

is well-defined, increasing, and onto map. (But not injective since f(g) =3 = f(8).) We can extend f to
G :[0,1] — [0,1] by letting G be constant on each of disjoint interval I appearing in [0,1]\ C. Such G is
called Cantor-Lebesgue Function and G is increasing and onto. Thus, G is continuous, since increasing
onto function is continuous. Hence,

pa(C°) =0,

Since C¢ are union of intervals where each interval is preimage of constant of G. So, ug L m. Howewver,
since G is continuous, it doesn’t have any jump discontinuous; so there are no atoms. Thus, ug is singular
continuous.

Also note that G'(x) =0 for m-a.e. i.e., except a points in C.

Definition 4.70 (Total Variation). Let F': R — C. The total variation of F on [a,b] is

TVg([a,b]) == sup{z |F(z;) — F(zj—1)|ta=20 <21 <3 < --- < &, = b} € [0, +00].
j=1

Also,
Tr(b) := TVp((—00,b]) = sup{Y_ |F(x;) = F(z;-1)|zo < @1 < - <z = b},

j=1
no lower bound on the partition. Clearly, Tr is increasing function.

Observation 4.71. Ifa < b, then
TF(b) = Tp(a) + TVF([Q, b])

So if Tr(a) < oo, then TVg([a,b]) = Tr(b) — Tr(a).

Proof. If Tr(a) > oo, then Tr(b) > Tr(a), thus the equality holds. If Tr(a) < oo, then note that for any
partition P; of (—oo,a] and P, of [a,b], Py U P, is a partition of (—oo, b]. Hence,

Tp(b)> Y. |F@)—Fri)l= > [F@)—Flri)l+ > [Fla:)— Flaia)l.
r;EPLUPyi=1 z; €Py,i=1 x;€Psi=1

Since P;, P, are arbitrarily chosen, so

Tr(b) > Tr(a) + TV ([a,b]).
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Conversely, for any partition P of (—o0o,b], a U P gives partition P; for (—oo,a] and P, for [a,b]. Thus,

n n
> IF() - Fzim)l < > [F(wi) — Flzio))|
x;, €EPji=1 r;EaUPi=1
= > |F@)-Fl@)l+ Y |F(@)— F(zio)|
x; €Py,i=1 x; €Pa,i=1

< Tp(a) + TVr([a,b)).

Thus
TF(b) < TF(G) + T‘/F([CL7 b])

Hence, Ty = Tr(a) + TVEr([a, b]). O

Example 4.72. F(z) : [0,1] — [0,1] is as below. It is clearly bounded continuous function. However,
3 3 1 1
TVR([0.1) 2 [F(1) = PO +FC) = F()l 402 30 % = o
j=2

Y

11 1
13 2

Definition 4.73 (Boudned variation). Let F : R — C be bounded variation on R if Tp(400) :=
limg 400 Tr(X) < +00. Let

BV :={F:R — C: F has bounded variation}.
Let F : [a,b] — C has bounded variation on the interval [a,b] if TVr([a,b]) < co. Let
BV ([a,b]) :={F : R — C: F has bounded variation on [a,b]}.
Observation 4.74.
(i) BV and BV ([a,b]) are vector spaces and BV ([a,b]) can be identified with
{F € BV : F is constant function on (—oo,a] and [—b,+00).}

Also, BV can be identified with {F|j,5 € BV} C BV ([a,b]). Thus, property holds for BV also holds
for BV ([a,b]).

(ii) F € BV = F is bounded.
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(iii) If F' is monotone and bounded, then F € BV .

(i) If F : [a,b] — C is continuous and f is differentiable on (a,b) and if F' is bounded, then by MVT, F
has bounded variation.

(v) If F € BV then F(%) :=lim, 100 F(x) exists
(’U’L) Thr = |)\|TF and Trpyg <Tr+T1g

Proof. For part (a), BV is closed under addition and scalar multiplication comse from triangle inequality
and just pulling out scalar from the definition of the sum. Also, additive, multiplicative, and distributive
axioms hold.

For part (b), if F' is not bounded at x, then we can take a partition P such that a = —M < x = b then
YplF(z) — F(zi—1)| = F(z) — F(—M) = co. Thus, Tr(400) = 0o, contradiction.

For part (c), if F' is monotone and bounded, than without loss of generality, assume F is monotone
nondecreasing. Then, any partition P starting with ¢ and ending with b gives

S IF(x) = Fzia)| = Y F(xi) — F(zi—1) = F(b) — F(a).
P P

Thus, Tr(c0) = limy,— s F(n) — F(—n). Since F is bounded, lim, o F(n) < 400, lim,— oo F(—n) < 400,
thus their subtraction is also bounded, as desired.
For part (d),let P:a=x9 < 1 < --- < x, = b be arbitrary partition. Then, by Mean Value Theorem,

|F(x;) — F(zi—1)| = |(x; — i—1)F'(¢;)| for some ¢; € (x;—1, ;).
Thus, from the fact that I/ < M for some M € R,
> |F(x) - x11|—Z| x“F'|<MZ (z; —xi_1) = M(b—a) < +o0.
Jj=1 i=1

Hence, F' has bounded variation.

For part (e), if liminf, .4 F(x) < limsup,_, . F(z), then F should have infinite oscillations be-
tween these value, this may lead to get a partition giving Tr(oco) = 400, contradiction. Similarly, if
liminf, , o F(z) < limsup,_, . F(z), it has also infinitely many oscillations, so F' ¢ BV.

For part (f), for any partition,

Z [AF(2;) = AF(2i-1)] = [l Z [F(x;) = AF(wi-1)|

and

n

D IG(Fe) + F(w:) = AG(wi1) + F(ai1)| <D |F () = AF(zi-1)| + Y |Glas) = AG(xi-1)]-
=1

i=1 i=1
O

Lemma 4.75 (Lemma 3.26 in [1] p.102). If F € BV s a real-valued function, then Tp + F,Tp — F are
mcereasing.

Proof. Let x < y,e > 0. Choose xg < x1 < -+ < x, such that

Y|P ;) = Flaj—1)| > Tr(z) -«
j=1
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Then,

Tr(x) — e+ [F(y) — F(z)| < ZIF(%)*F(%—OI +[F(y) = F(o)] < Tr(y)-

<IF(y) = F(@)| < Tr(y) = Tr(z) = (Tr — F)(z) < (Tr = F)(y)
F(z) = F(y) <|F(y) = F(o)| < Tr(y) = Tr(x) = (Tr + F)(z) < (Tr + F)(y),

as desired. O
Theorem 4.76 (Theorem 3.27 part (1) in [1] p.103).
(a) F € BV < ReF,ImF € BV
(b) Given F:R - R, F € BV <= 3 bounded increasing function f,g: R — R such that F = f — g.
Proof. For part (a), for any partition, note that

> IF(2:) = Fzio1)| = Y |ReF(2;) — ReF(w;1)| + Y [ImF (i) — ImF (z;_1)|.

i= i= i=1
Thus if ReF,ImF € BV, then F € BV. Conversely, from Rez < |z| and Imz < |z|, we know

n

Z |ReF (z;)— ReF(x;—1)| < Z (x;)— F(x;—1)| and Z [ImF (z;)—ImF(z;—1)| < Z |F(z;)—F(zi—1)]-

i=1 i=1

This implies F € BV = ReF,ImF € BV.
For part (b), take f = 1(Tr + F), g = 2(Tr — F). Then by the lemma, F has two such increasing
function. Also, they are bounded since

[F(y) = F(2)| < Tr(y) — Tr(x) < Tr(o0) = Tr(—00) < 0.

Fly) — F(z) < |F(y) = F(x)| < Tp(y) — Te(x) < Tp(oo) — Tr(—o0) <00
<

O

Definition 4.77 (Jordan Decomposition of F', positive and negative variation). If F: R = R and F € BV,
the we call a representation F = %(TF +F) - %(TF — F) be Jordan Decomposition of F. We denote

1
F* = 5(TF + F),
as positive and negative variation of F. In this case, we know that

1
2(TF:I:F —bup{z Flz; 1) :z9 < <ap =2} 4 F(—0)

where

1 1
T = max(z,0) = §(|x\ +z) and x~ = max(—=x,0) = §(|x\ — )
Theorem 4.78 (Theorem 3.27 part (2) in [1] p.103). Let F' € BV.

(¢) Yo € R, F(z+) := limy_ oy F(t) and F(x—) = limy_,,_ F(t) exists. Also, F(£oo) = limy_, 1 F(?)
exists.
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(¢) The set of points at which F is discontinuous is countable.
(c) Let G(z) = F(xz+). Then, ¥V a.e. x € R, G'(x), F'(x) exists and G'(x) = F'(x).

Proof. For part (c), by Observation 4.74 (v), F(£o0o) exists. Also, we know that increasing bounded real-
valued function g has limg, 1.+ g(2,), by taking gl..) or gl for some a < 2 < b and apply the
Monotone convergence theorem. Thus, for any real-valued bounded variation function, it has such limits.
For complex valued function, real part and imaginary part has the limit, thus the function itself also has a
limit.

For part (d) and (e) follows from the increasing function with theorem 3.23 in [1][p.101], so their sub-
traction also has the same property. O

Lemma 4.79 (Lemma 3.28 in [1] p.104). Let F € BV.
(a) Tp(—o00) :=limy, o Tr(z) =0
(b) If F is right continuous, then so is Tp.

Proof. For part (a), 0 < Tr(—00) is clear by definition and
|TF‘ < TREF + TImF < TgeF + TlgeF + TItnF + TfmF

So it suffices to show that the RHS goes to zero as x — —oo. Without loss of generality, assume that F' is
the monotone increasing bounded function. Then,
Tr(x) = sup F(z) — F(xg) = F(x) — F(—00).
ro<xT

So
lim Tp(z) = F(—c0) — F(—o00) = 0.

r—r—00

For part (b), Suppose F is right continuous. Let T = Tr. Fix € R, let o = T(z+) — T(x). We want
to show a = 0 Let € > 0,6 > 0 such that

O0<h<d = |Flx+h)—F(z)] <eand T(x + h) —T(x+) < e.
which can be derived from the right continuity of F' and definition of T(X+) and the property that T is

increasing function (thus by Monotone convergence theorem). Let © = zg < 1 < -2, = x + h such that

(T(z+h) =T(z)) >

a,

N =
N | =

> IF(x) = F(z1)| =
j=1
using the definition of T' as a supremum of such sequences. Then, |F(z1) — F(z¢)| < € since 21 < h, thus
. 1
D F(x)) = Fa;-1)| > Ja—e
j=2

Hence,
—a—€> Z|F(xj)—F(xj_1)| <T(x+h)—T(x1) <T(x+h)—T(x+) <€
j=2
where first inequality comes from the above inequality, the second inequality comes from the definition of T,

and the third inequality comes from the property that T is increasing, and the last inequality comes from
our choice of h. Hence,

1
§OL<2€:> a < 4e.

By letting ¢ — 0, a = 0. O

102



Definition 4.80 (Normal Bounded variation). Define Normal bounded variation as a set
NBV = {F € BV : F is right continuous and F(—oc0) = 0}.
Observation 4.81.

(1) If F € BV, let G(z) = F(z+) — F(—o0). Then G € NBV and G(X) = F(x) — F(—00) except some
countably many values of x.

(2) G € NBV then (ReG)*, (ImG)* € NBV.
Theorem 4.82 (Theorem 3.29 in [1] p.104). Let u be a complex Borel measure on R and let
F(z) = p((=00, X]). (18)

Then, F € NBV. Conversely, if FF € NBV, then 3! complex Borel measure ugp on R such that

F(z) = pup((—o0, X]) for all x € R. (19)
Moreover,
lnr| = pry. (20)
Proof. We can rewrite u = (u1 — po) + i(us — pa) where ;s are finite positive measure using Hanh
1 ((0, 2]) + p((=00,0])  if 2 >0
Decomposition. Thus, F;(z) := p;((—o0,z]) = ¢ 0+ p((—o0,0]) if x = 0 is increasing and

15 (2, 0)) + pu((—00,0])  if & <0
right continuous by theorem 1.16., and Fj(—oc0) = 0. And Fj(+00) = p;(R) < oo. Therefore, by
the theorem 3.27 (b) in [1][p. 103] Fy — F2,F3 — Fy € BV and by 3.27 (a), F € BV. And from
F(—OO) = (Fl — FQ)(—OO) + Z<F3 — F4)(—OO> =0, Fe NBV.

Conversely, if ' € NBV, then ReF*, ImF* ¢ NBV by theorem 3.27 (a). And each of them is yields
bounded, increasing and right continuous by the theorem 3.27 (b) and observations 4.81. Thus, by theorem
1.16, they gives finite Lebesgue Stieljes measures, prept, fhrmpt- S0,

WF = fiRep+ — HRer— T+ 1(limp+ — Rep-)

Thus, (19) holds.
To see |up| = prp, we need several claim, as outlined in the Exercise 28. Let G(x) = |ur|((—o0, z]).

Claim 4.83. Tr(z) < G(z).

Proof. For any = € R,

Tp(z) = SUP{Z |F(zg) — Fzp—1)| :n €Nyzg <21 <+ <zp =2} =
k=1
= sup{ > _ (=00, zx]) — p((—o0,2x—1])| : n € N,mg < 11 < -+ < &, =z}
k=1

= sup{z lp((@p—1,2k]) — p((—o0,zp—1]) i n € Nyzg <21 < -+ <@ =}
k=1

< sup{z |u(Ex) — (=00, zk-1])| : n € N, (Ey)s are disjoint sequence such that U = (—o0,z]}
k=1 k=1
= |url((—00,2]) = G().

where the last equality comes from the exercise 21, u; = |p| case. O
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Claim 4.84. |ur(E)| < pr.(E) for all E € Bg.

Proof. For any interval (a,b] C R,
Tr(b)—Tr(a) = sup{z |F(zk)—F(zk-1):neNa=ag<a; < <z =b} = |F()—F(a)] <Tr(b)—Tr(a).
k=1

Thus,

[nr((a,0])] = |pp((=00,b]) — pr((—o0,a])| = |F(b) — F(a)| < Tr(b) — Tr(a) = pry((a,b]).
Also, clearly,
lnr ()] =0 = pr,. (0).
And

)

lnp((—00,2])| = Tim pp((a,z]) < lim pr((a,2]) = pr ((—00, 2]).

Also,
up((z,00))| = lim pp((z,0]) < lim pre((2,0]) = p((@, 00))-

Now let A be an algebra generated by all half (left) open intervals. Then by the above inequalities,
ACC:={E€Bp:|ur(E)| < pr.(E)}.
Also, for any increasing sequence (Ej)72, C C,
I/uv(kL_J1 Ep)| = | lim pup(Ey)| = lim |pp(Ey)| < lim pr, (By) = MTF(kL_Jl Ey).

Thus, Uz, Ex) € C. Moreover, for any decreasing sequence (Ej)7; C C,

DL
DL

E).

lpr([ ] Ex)l =1 lim pr(Ey)| = lim |pp(Ey)| < lm pr, (Ex) = prg
k—oo k—o0 k— o0

k=1 k

1

Thus, ﬂ;ozl Ey) € C. Hence, C is closed under countable increasing union and countable decreasing inter-
section. Thus, C contains monotone class generated by A, which is Bg, by the monotone class lemma. [

Claim 4.85. If E € By, |ur(E)| < pr.(E). Hence G < Tp.

Proof. By the Exercise 21,

lurp(E)| = sup{z lur(Er)| : (Fr)ie; is a sequence of disjoint Borel sets such that E = U E;}
k=1

k=1
(o) o0

< sup{z lpry (Br)| : (Br)ie, is a sequence of disjoint Borel sets such that F = U Ev} = pr. (E).
k=1 k=1

where the inequality comes from above claims. Thus, for any = € R,
G(x) = |pp|((=o0, z]) < prp ((—00,2]) = Tr(z) < G(z) = G(z) = Tr(x).

Let M :={F € Bg : |ur|(E) = pr,.(E)}. Then, (—oo,z] € M for any x € R. Thus, M contains Bg, since
((—o0, z])zer generates Bg. O

O

104



Proposition 4.86 (Proposition 3.30 in [1] p. 105). Let F' € NBV. Thus, F'(z) exists for m-a.e. x by the
theorem 3.27 (e). Then, F' € L'(m). Let G(x) = J(sowy F'dm. Then up = g + A, where X is complex
Borel measure such that A L m and ug < m.

Consequently, ugp L m iff F' =0 m-a.e. and up < m iff F(x) = f(ioo 2l F'(x)dm for all x € R.

Proof. From theorem 3.29 in [1], up exists. And by the theorem 1.18, up is regular. And Lebesgue-Radon-
Nikodym theorem and Theorem 3.22 in [1][Lebesgue Differentiation Theorem]| says that pup = p + A where
p<m, A Lmand dp= fdm for some f € L*(m) and for m-a.e. v € R,

E, - .
f(z) = T]Lr& l;f:((E,n)) for any (E,),>o shrinking nicely to z.

Let E, = (z,x +r] or E,. = (z —r,z]. Then,

= i =1
flo) = lim == A "
and P
() = Tim pe(@—ral) . Fx) - F@-r)
r—0— r r—0— r

So, f = F’ a.e. Hence,
pol(a.t) = Go) - G = [ Fam= [ fim= [ dp=p((a),
(a,b] (a,b] (a,b]

The consequent facts are followed from the above equation. O

Definition 4.87 (Absolute continuity for the function). F' : R — C is absolutely continuous if Ve >
0,36 > 0 such that whenever n € N, and a1 < by < ag < by <--- < a, < b, and Z?:l(bj —aj) < 4, then
> [F(bj) = F(aj)| < e If F: [a.b] — C, then we say F' is absolutely continuous in [a,b] when the
same condition holds whenever ay, -+ ,an,b1, -+ ,b, € [a,b] as well. Then, define as below;

AC :={f:R — C: f is absolutely continuous.} and ACa,b] :={f : [a,b] = C: f is absolutely continuous on [a,b]}.
Lemma 4.88 (Lemma 3.34 in [1] p. 106). ACfa,b] C BV]a,b].

Proof. Let F € ACla,b], e = 1. Choose ¢ as in definition of AC. Let m € N such that l’_?“ < 6. To show
F € BVla,b], we must show a uniform bound on 377, [F(z;) — F(x;-1)| over all partitions a = z¢ < 1 <
- < xp, = b. For any given partition P, we may take a refinements of our partition so that it contains all

a+ =2k for k € [m — 1]. Then, there exists an integer 0 = p(0) < p(1) < -+ < p(m) <= n such that
P(k) =a + m k. Then
n p(k)
D) = Flaj \—Z > \F(xj)—F(ivjfl)l
j=1 k=1 j=p(k—1)+

and for each k,

p(k) p(k)
b—
Z |F(xj) — F(xj_1)| < € since Z |z; —xj_1| = 2~ % 5 and absolute continuity of f.
j=p(h- 141 j=p(k— 141 "
Thus,
n n p(k)
MoIF() = Fla )l =Y Y |F(x) = F(z;-1)| <me=m < +o0.
j=1 k=1j=p(k—1)+1
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Since the given partition was arbitrary, we can conclude that

TVEg([a,b]) <m < +o0,
as desired. O]
Observation 4.89.

1. AC € BV in general, when we think F(x) = x. Then F € AC is clear but it is not in BV since
Tp(+00) = +00.

2. AC is a vector space, since it is closed under addition and scalar multiplication, and AC is a subspace
of a function space.

3. If F' is absolutely continuous then it is uniformly continuous, by taking N = 1.

4. If F is everywhere differentiable and F' is bounded then |F(b;) — f(a;)| < (max |F'|)(b; — a;| by the
Mean Value theorem, thus it is absolutely continuous by taking § < m

Proposition 4.90. Let F € BV NAC. Then, Tr € AC.

Proof. Note that Tr(b) — Tr(a) = TVr([a,b]). To show T is absolutely continuous, for any given e, we
must show 39 > 0 such that whenever a1 < b1 < ag < by <---<a, < b, and Z?Zl(bj —a;) < ¢ we have
> i1 TVe(lag, b)) < e

Since F' € AC, 3§ > 0 such that

For each j, choose a partition
aj; = x(()]) <z < C Ty = by

such that
€ X (4) (4)
TVi((ay b)) ~ o < S 1FG) — Flal)).
i=1
Thus,
n c n k(j) ) .
> TVe((a b)) < 5+ DD IFE) = Fey).
j=1 j=1i=1
Since >0, SO (el — 2l ) = > j=1(bj — a;) < & by choice of 4,
]2 0 0y < €
iz ‘F(xzj ) F(mzj—l)| < 57
j=11:i=1
by absolute continuity of F'. Thus,
- e o ) ; € €
D TVel(aj b)) < 5 3 Y |IF@) ~Fla)l < 5+ 5 =¢
j=1 j=1i=1
as desired. O]

Corollary 4.91. If F € BV, then F € AC <= (ReF)*, (ImF)* ¢ AC.
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Proof. From left to right is clear. If FF € AC' N BV, then by the triangle inequality, we can make suitable
€. O

Proposition 4.92 (Proposition 3.32 in [1] p.105). Let F € NBV. Then, F € AC iff pp < m.

Proof. Suppose pp < m. Then, |ur| < m by the Exercise 8. By theorem 3.5, Ve > 0, 3§ > 0 such that
E € Br,m(E) <§ = |pr|(E) <e Ifay <b <ay <by <---<a, <b, and if 37, (bj — a;) < 4, then

m | | J(a;,05] | <4,
j=1

SO

n n
€>|NF| U a’J? Z|,UF| ajv Z|[LF| ajv Z )‘

So F € AC.

Conversely, suppose F' € AC, Since |ur| = pr. by the theorem 3.29 in [1][p.104], Tp € AC. Thus,
instead of using F', we replace F' with T, using its increasing property. In other words, without loss of
generality, we can assume that F' is increasing function.

Suppose E € Bg such that m(F) = 0. We want to show that ur(FE) = 0. Let € > 0. Since F € AC,3§ > 0
such that a1 < by < as < by < --- < a, < b, and if Z?Zl(bj —aj) <0 = Z?Zl F(b;) — F(aj) < e.
Now there exists an open U C R such that E C U and m(U) < §, from the regularity of m. We can write
U= U]oil(aj, b;) for disjoint open intervals. Then,

since Z;-V:l(bj —a;) < 6. S0, up(E) = 0. If we use Tr instead of F, this implies |up|(E) =0 = pup(E)

Corollary 4.93 (Corollary 3.33 in [1]p.105). F € NBV N AC <= 3f € L'(m) such that F(x)
f(—oo o) fdm and that F' = f m-a.e.

Proof. If F € NBV N AC, then by the proposition 3.32, ur < m, thus by the proposition 3.30, 3f € L'(m)

such that F(z f( so.z) dm and that F' = f m-a.e.
Convcrsoly, if 3f € Ll( ) such that F(z f( sz fdm and that F' = f m-a.e., then F € NBV since
F(4+00) < 00, and ppr < m. Thus by the proposmon 3.32, F e AC. O

Theorem 4.94 (The Fundamental Theorem of Calculus, Theorem 3.35 in [1]p.105). Let a,b € R,a < b. Let
F :[a,b] = C. Then, the followings are equivalent.

(i) F € ACla,b].
(ii) 3f € L*([a,b]) such that Vz € (a,b]), F(z) = F(a) + f(a,ﬂc] fdm.
(iii) F is differentiable m-a.e. on [a,b], F' € L'([a,b]), and Vx € [a,b], F(z) = F(a) + f(a’x] Fdm

Proof. Suppose (i). Then by the lemma 3.34 in [1][p.106], F € BV ([a, b]). Now extend F to F': R — C such
that
F(a)—F(a) ifz<a

F(z) = F(z) — F(a) ifz € [a,b]
F(b) —F(a) ifz>0.

Then, ' € NBV N AC. Then, (iii) follows from the Corollary 3.33. And (i7i) implies (ii).
To show that (i¢) implies (¢), set f(t) =0 for t & [a, b] and applying corollary 3.33. O
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Deﬁnition 4.95 (Notation for Lebesgue-Stieltjes integrals). If F € NBV, we denote [ gdur as [ gdF or
Jg(z . Such integrals are called Lebesgue-Stieltjes integrals. Note that

/ GdF = / Gdurp = / GF'dm.
A A A

IfG=30_ G(E) ks &) with A= [0,1], then

GdF — ZG ~pEty),

[0,1] n

If up < m, then 3f € L', dup = fdm. Thus,

dur = F(b) — F(a) = fdm.
(a,b] (a,b]

By the Fundamental Theorem of Calculus, F' = f. So,

/ FdG—I—/ GdF:/FGldm-l-/GF/dm.
(a,b] (a,b]

Theorem 4.96 (Integration by parts, Theorem 3.36 in [1]p.107). Suppose F,G € NBV and G is continuous.

Then, f(a’b] FdG + f(a’b] GdF = F(b)G(b) — F(a)G(a).

Proof. Without loss of generality, F, G is increasing. (Otherwise use the decomposition (ReF)*, (ImF)*, (ReG)
Then, ur, uc are positive measure. Consider a set A := {(z,y) : a < x <y < b} C (a,b]?. Then

wr X pa(A) //1A z,y)dpur(r)dpc(y)

Fubnn s Thm

- / [ dur@dnct) = [ (F) - Fla)duaw) = [ FdG - FR)GE) - Ga).
a,b] J (a,y] (a,b] (a,b]

On the other hand,

pr X pg(A) = //1A($7y)duc Ydpr(x /(b/( bdﬂc y)dpp(x)

Fubini’s Thm

Note that
Jim pg((t,4) = GO) - Gla—) = Gb) - G(x)

since G is continuous. Thus,
X p(A /( | / Ay (y)dyup () = /( | G0) = Gle)inr(x) = GO(FE) ~ F@) - | car
a,b] J (z,b)
Hence,

» FG + | | GdF = G(b)(F(b) — F(a)) + F(a)(G(b) — G(a)) = G(b)F(b) — F(a)F(b).
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5 You should explain standard result part and missing part of the
note.4+Cardinal Arithmeitc Theorem + Thm 2.28 (b) =Exercise
2.23
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