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Abstract

We describe an involution on a set of sequences associated with lattice paths with
north or east steps constrained to lie between two arbitrary boundaries. This involution
yields recursions (from which determinantal formulas can be derived) for the number
and area enumerator of such paths. An analogous involution can be defined for parking
functions with arbitrary lower and upper bounds. From this involution, we obtained
determinantal formulas for the number and sum enumerator of such parking functions.
For parking functions, there is an alternate combinatorial inclusion-exclusion approach.
The recursions also yield Appell relations. In certain special cases, these Appell relations
can be converted into rational or algebraic generating functions.

4The third author was supported in part by NSF grant #DMS-0245526.
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1 Introduction

Let x be a positive integer and (x0, x1, x2, . . . , xn−1) be a non-decreasing sequence of non-
negative integers with xn−1 < x. We can associate with the sequence a lattice path in the
plane going from the origin (0, 0) to the point (x− 1, n) with unit north and east steps as
follows: for i = 0, 1, . . . , n − 1, the right-most point with y-coordinate equal to i is (xi, i).
Put another way, the path associated with (x0, x1, x2, . . . , xn−1) is the path with x0 east
steps, one north step, x1−x0 east steps, one north step, x2−x1 east steps, one north step,
and so on.

Let r and s be non-decreasing sequences with non-negative integer terms r0, r1, r2, . . .
and s0, s1, s2, . . . , thought of as left and right boundaries. An (r, s)-lattice path of length n
is defined to be a non-decreasing sequence (x0, x1, . . . , xn−1) such that ri ≤ xi and xi < si.
We denote by Pathn(r; s) (respectively, LPn(r, s)) the set (respectively, the number) of all
(r, s)-lattice paths of length n.

Parking functions are rearrangements of lattice paths. An (r, s)-parking function of

length n is a sequence (x0, x1, . . . , xn−1) of positive integers such that its rearrangement
(x(0), x(1), . . . , x(n−1)) into a non-decreasing sequence satisfies the inequalities

ri ≤ x(i) and x(i) < si.

When r equals 1, the sequence with all terms equal to 1, and s is the sequence 2, 3, . . . , (r, s)-
parking functions are, up to a shift in indexing, “ordinary” parking functions, as defined
in [1]. We shall denote the set (respectively, the number) of all (r, s)-parking functions of
length n by Parkn(r; s) (respectively, Pn(r, s)).

Parking functions and lattice paths have very similar enumeration theories. We shall
make this expectation precise by showing that the basic enumeration formulas for parking
functions and lattice paths are “equivalent” under the substitution of a binomial coefficient
for a power, (c.f. Eqns. (2.5) and (2.8)). Analogous or equivalent probability formulas for
real or integer random variables have been derived and studied, by Steck, Niederhausen,
Pitman, and others [7, 8, 9, 12, 13]. These formulas partly inspired our work.

We begin by showing that a certain set constructed from lattice paths has an involution.
This involution implies a recursion which yields a triangular system of linear equations.
Solving this equation gives us determinantal formulas for the number and area enumerators
of (r, s)-lattice paths. The involution and determinantal formulas have analogs for (r, s)-
parking functions. For parking functions, there is an alternate inclusion-exclusion approach.

What kind of generating functions do these determinantal formulas yield? We show
how Appell relations can be easily obtained from any triangular system of linear equations.
Usually, these Appell relations cannot be converted to generating functions.
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Our exposition is deliberately elementary and focused on combinatorial arguments which
allow a uniform derivation of counting and area enumerator formulas for lattice paths and
parking functions. The theory of biorthogonal polynomials developed for (1, s)-parking
functions in [2]) can be extended to general (r, s)-parking functions. In addition, a lattice-
path theory can be obtained by replacing the differential operator with a difference operator.
In such an intensively cultivated area as lattice-path counting, it is difficult to reference all
earlier work. We have restrict our citation to papers which are directly relevant.

2 Combinatorial decompositions and bijections

We shall use the following notation. If x is a real number, then x+ = max{0, x}. If y and x
are integers, then [y, x) is the half-open interval {y, y + 1, y + 2, . . . , x − 2, x − 1} if y < x,
and the empty set otherwise. If H is a set of integers, then

(H
m

)

is the set of all m-subsets
of H or, equivalently, all length-m (strictly) increasing sequences with terms in H.

Let r and s be given left and right boundaries. Let

A =

n
⋃

i=0

Pathi(r; s)×

(

[rn−1, si)

n− i

)

. (2.1)

Put another way, A is the set of all pairs (x, i) where x is a sequence of non-negative
integers with terms x0, x1, . . . , xn−1 such that the initial segment x0, x1, . . . , xi−1 of length
i is an (r, s)-lattice path of length i and the final segment xi, xi+1, . . . , xn−1 is an increasing
sequence all of whose terms lie in [rn−1, si). Note that we are not assuming that the initial
segment is an (r, s)-lattice path of maximum length. Let A0 be the subset of A consisting
of those pairs (x, i) with i even and A1 be the complement of A0, the subset of pairs (x, i)
with i odd.

Theorem 2.1 Let n ≥ 1. Then there is an bijection from A to itself sending A0 to A1 and

A1 to A0.

If x is a finite sequence, let m(x) be the maximum max{x0, x1, . . . , xn−1} of all its terms.
If the sequence x occurs as the first component of a pair (x, i) in A, then either

xi−1 > xn−1, xn−1 6= m(x), and xi−1 = m(x), (2.2)

or

xi−1 ≤ xn−1 and xn−1 = m(x). (2.3)
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Let A′
0 (respectively A′

1) be the subset of pairs in A0 (respectively A1) satisfying Condition
(2.2) and let A′′

0 and A′′
1 be their complementary subsets in A0 and A1.

Let σ : A → A be the function defined in the following way.

• If (x, i) is in A′
0 or A′

1, then

σ(x, i) = ((x0, x1, . . . , xi−2, xi, xi+1, . . . , xn−1, xi−1), i− 1),

that is, σ decreases i by 1 (changing its parity) and moves xi−1 to the end of the entire
sequence. Since

rn−1 ≤ xi < xi+1 < . . . < xn−1 < xi−1 < si−1,

(xi, xi+1, . . . , xn−1, xi−1) an increasing sequence with all its terms in [rn−1, si−1).

• If (x, i) is in A′′
0 or A′′

1,

σ(x, i) = ((x0, x1, . . . , xi−2, xi−1, xn−1, xi, xi+1, . . . , xn−2), i + 1),

that is, σ increases i by 1 and moves xn−1 to the end of the initial lattice path. Since
xn−1 < si, the initial segment (x0, x1, . . . , xi−1, xn−1) is an (r, s)-lattice path of length i+1.
Moreover,

rn−1 ≤ xi < xi+1 < . . . < xn−2 < si ≤ si+1,

(xi, xi+1, . . . , xn−2) an increasing sequence with all its terms in [rn−1, si+1).

It is routine to check that σ2 is the identity function, that is, σ is an involution, and

σ(A′
0) = A′′

1, σ(A′
1) = A′′

0, σ(A′′
0) = A′

1, σ(A′′
1) = A′

0.

Thus completes the proof of the theorem.

Because involutions are bijections, |A1| = |A0|. Hence, by Definition (2.1), if n ≥ 1,

∑

i even

(

(si − rn−1)+
n− i

)

LPi(r, s) =
∑

i odd

(

(si − rn−1)+
n− i

)

LPi(r; s).

We conclude that

n
∑

i=0

(−1)i
(

(si − rn−1)+
n− i

)

LPi(r, s) = δn,0. (2.4)

The equations (2.4) for n, n− 1, . . . , 0 form an upper triangular system of linear equations
with (−1)iLPi(r, s) as the unknowns. Solving this by Cramer’s rule, we conclude that
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LPn(r, s) equals

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

(s0−r0)+
1

) (

(s0−r1)+
2

) (

(s0−r2)+
3

)

. . .
(

(s0−rn−2)+
n−1

) (

(s0−rn−1)+
n

)

1
((s1−r1)+

1

) ((s1−r2)+
2

)

. . .
((s1−rn−2)+

n−2

) ((s1−rn−1)+
n−1

)

0 1
(

(s2−r2)+
1

)

. . .
(

(s2−rn−2)+
n−3

) (

(s2−rn−1)+
n−2

)

...
...

...
. . .

...
...

0 0 0 . . . 1
(

(sn−1−rn−1)+
1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.5)

A version of this determinantal formula was obtained by Steck [12, 13] earlier. In addition,
Eqn (2.4) was obtained also earlier (in a different way) by Mohanty (Eqn (2.37) in [6]).

The combinatorial involution also yields weighted enumeration formulas. Let H be a set
of sequences of length n. The area or sum enumerator Area(q;H) of H is the polynomial
in the variable q defined by

Area(q;H) =
∑

(x0,x1,...,xn−1)∈H

qx0+x1+···+xn−1

We define Arean(q; r; s) to be the area enumerator of Pathn(r; s).

Using the known result that

Area(q;

(

[y, x)

n

)

) = qny+(n

2)
(

x− y

n

)

q

= qny+(n

2
) (1− qx−y)(1− qx−y−1) · · · (1− qx−y−n+1)

(1− qn)(1− qn−1) · · · (1− q)

(where
(

x−y
n

)

q
is a q-binomial coefficient) and proceeding as earlier, we obtain

Arean(q; r; s) = det

[

qrj(j−i+1)+(j−i+1

2 )
(

(si − rj)+
j − i + 1

)

q

]

0≤i,j≤n−1

.

In other words, the area enumerator of Pathn(r; s) equals the determinant obtained from
determinant (2.5) by the substitutions

(

(si − rj)+
j − i + 1

)

←− qrj(j−i+1)+(j−i+1

2 )
(

(si − rj)+
j − i + 1

)

q

.

Finally, we observe that the involution yield recursions for the moments of areas of lattice
paths. It is possible to get formulas for such moments. For an indication of how this can
be done, see [3, 4].
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There is an analog of Theorem 2.1 for parking functions. For given boundaries r and
s, let Q be the set of all pairs (x, J) where x is a sequence of non-negative integers with
terms x0, x1, . . . , xn−1 and J is a subset of the index set {0, 1, . . . , n − 1} such that the
subsequence (xj : j ∈ J) is an (r, s)-parking function of length |J | and all the terms of the
complementary subsequence (xj : j 6∈ J) lie in [rn−1, s|J |). That is,

Q =
⋃

J :J⊆{0,1,2,...,n−1}

ParkJ(r; s)×
∏

j 6∈J

[rn−1, s|J |), (2.6)

where ParkJ(r; s) is the set of all (r, s)-parking functions of length i indexed by J and
∏

j 6∈J [rn−1, s|J |) is the set of all sequences indexed by the complement {0, 1, 2, . . . , n− 1}\J
with terms in [rn−1, s|J |).

If x is a sequence, let k be the largest index such that xk equals the maximum m(x).
Let

Q′
0 = {(x, J) : |J | is even and k ∈ J},

Q′′
0 = {(x, J) : |J | is even and k 6∈ J}.

Define Q′
1 and Q′′

1 similarly. Finally, define the function τ : Q → Q as follows:

τ(x, J) =

{

(x, J \ {k}) if (x, i) ∈ Q′
0 ∪ Q

′
1

(x, J ∪ {k}) if (x, i) ∈ Q′′
0 ∪ Q

′′
1

.

It is easy to check that τ is an involution on Q sending Q′
0 to Q′′

1 , Q
′
1 to Q′′

0 , Q
′′
0 to Q′

1, and
Q′′

1 to Q′
0.

The involution τ implies the following identity:

n
∑

i=0

(−1)i
(

n

i

)

(si − rn−1)
n−i
+ Pi(r, s) = δn,0. (2.7)

We conclude that

Pn(r; s) = n! det

[

(si − rj)
j−i+1
+

(j − i + 1)!

]

0≤i,j≤n−1

, (2.8)

where, by convention, the i, j-th entry is 0 if j − i + 1 < 0. Once again, a version of this
determinantal formula was obtained earlier by Steck [12, 13]. Using the fact that the sum
enumerator of [y, x)m equals [qy(x− y)q,+]m, where (n)q,+ equals 1 + q + q2 + · · ·+ qn−1 if
n > 0 and equals 0 otherwise, we obtain

Sumn(q; r; s) = n! det

[

[qrj(si − rj)q,+]j−i+1

(j − i + 1)!

]

0≤i,j≤n−1

.

Again, the i, j-th entry in the determinant is 0 if j − i + 1 < 0.

6



3 An inclusion-exclusion approach

Another way to prove the recursion (2.7) and its sum enumerator analog is to use inclusion-
exclusion. This approach works only for parking functions.

Let w(x, J) be a weight function defined from Q to a ring which depends only on the
sequence x. If R ⊆ Q, then we define w(R) to be the sum

∑

(x,J)∈R

w(x, J).

For a fixed subset J in the index set {0, 1, . . . , n− 1}, let Q(J) be the subset of pairs (x, J)
in Q with second component equal to J. The sets Q(J) partition Q. The other natural way
of partitioning Q is to fix the sequence x. For a fixed sequence x, let T (x) be the collection
of subsets K in {0, 1, 2, . . . , n−1} such that (x,K) is in Q. For example, if the left boundary
be 1, 1, 1, 1, . . . and the right boundary be 2, 3, 4, 5, . . . (so that we are considering the case
of ordinary parking functions), then

T (1, 3, 3, 3) = ∅,

T (1, 2, 2, 3) = {{0, 1}, {0, 2}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {0, 1, 2, 3}},

T (1, 2, 3, 4) = {{0, 1, 2}, {0, 1, 2, 3}}.

Theorem 3.1 Let n ≥ 1. Then,

∑

J⊆{0,1,...,n−1}

(−1)|J |w(Q(J)) = 0.

We begin the proof of theorem 3.1 by observing that

∑

J⊆{0,1,...,n−1}

(−1)|J |w(Q(J)) =
∑

(x,J)∈Q

(−1)|J |w(x, J)

=
∑

x





∑

K⊆T (x)

(−1)|K|



 w(x, J).

Thus, to prove Theorem 3.1, it suffices to show that

∑

K⊆T (x)

(−1)|K| = 0. (3.1)
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Lemma 3.2 Let x be a fixed sequence and T (x) be the collection of all subsets K in the

index set {0, 1, 2, . . . , n − 1} such that (x,K) is in Q. Then T (x) is a filter in the Boolean

algebra 2{0,1,...,n−1} of all subsets of {0, 1, . . . , n − 1}. In particular, T (x) is non-empty if

and only if x is an (r, s)-parking function.

Proof. Suppose J ∈ T (x). Since [rn−1, s|J |) ⊆ [rn−1, si) for i ≥ |J | and [rn−1, s|J |) ⊆
[rn−1, sk) for k ≥ |J |, any subset in the complement of J can be added to J to obtain a
subset in T (x). �

Although T may not be an interval of the Boolean algebra, it satisfies similar regularity
properties.

Lemma 3.3 Suppose that T (x) is non-empty. Let J1, J2, . . . , Jr be the minimal subsets in

T (x).

1. |Ji| < n.

2. |J1| = |J2| = . . . = |Jr|.

3. J1 ∪ J2 ∪ . . . ∪ Jr 6= {0, 1, 2, . . . , n− 1}.

Proof. By Lemma 3.2, x is a (r, s)-parking function. If xk is a term equal to the maximum
max{x0, x1, . . . , xn−1}, then xk ∈ [rn−1, sn−1). Hence, {0, 1, . . . , n − 1}\{k} is in T (x) and
{0, 1, . . . , n − 1} is not minimal.

Next, suppose that k = |J1| < |J2| = l. Since J1 ∈ T (x), at least n − k terms are in
[rn−1, sk). Consider the (r, s)-parking function (xj : j ∈ J2). Since |J2| > k, at least one of its
term xi in [rn−1, sk) which is contained in [rn−1, sl−1). Hence, the subsequence (xj : J2\{i})
is an (r, s)-parking function, and the terms xi and xj, j 6∈ J2 are all in [rn−1, sl−1). We
conclude that J2 is not minimal, a contradiction.

We may now assume that |J1| = |J2| = . . . = |Jr| = k. Suppose that J1 ∪ J2 ∪ . . .∪ Jr =
{0, 1, 2, . . . , n−1}. Then every term xj in x is in some (r, s)-parking function of length k; in
particular, for all j, xj < sk−1. Consider an index i in J1 but not in J2. Then i ∈ [rn−1, sk−1).
We conclude that J1\{i} is in T (x), contradicting the hypothesis that J1 is minimal. This
completes the proof of the lemma. �

If h is a function defined from the Boolean algebra 2{0,1,...,n−1} to a ring, then, by an
inclusion-exclusion argument, the sum of h(K) over all subsets K in a filter can be written as
the alternating sum of sums of h(K), where K ranges over principal filters. Specifically, let
F(J1, J2, . . . , Jr) be the filter with minimal subsets J1, J2, . . . , Jr. Then F(J1, J2, . . . , Jr) =
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F(J1)∪F(J2)∪ . . .∪F(Jr) and F(J1 ∪ J2 ∪ . . .∪ Jr) = F(J1)∩F(J2)∩ . . .∩F(Jr). Then,
by inclusion-exclusion,

∑

K∈F(J1,J2,...,Jr)

h(K) =
∑

{k1,k2,...,kl}⊆{1,2,...,r}

(−1)l





∑

K∈F(Jk1
∪Jk2

∪...∪Jkl
)

h(K)



 .

The proof can now be completed by setting h(K) = (−1)|K| and observing that for a
principal filter F ,

∑

K∈F(−1)|K| equals 0 except in the case when F = {{0, 1, 2, . . . , n−1}}.

4 Appell relations and generating functions

We begin with an elementary lemma relating solutions of systems of linear equations and
Appell relations. Our assumption that the system is triangular is not the most general
possible.

Lemma 4.1 Suppose that gn is a solution to the triangular system

b0,0g0 = a0

b1,1g1 + b1,0g0 = a1

b2,2g2 + b2,1g1 + b2,0g0 = a2

...

bm,mgm + bm,m−1gm−1 + bm,m−2gm−2 + · · ·+ bm,1g1 + bm,0g0 = am

...

Then, as formal power series in the variable t,

∞
∑

m=0

gmtmΦm(t) = Ψ(t), (4.1)

where

Ψ(t) =

∞
∑

k=0

akt
k

and

Φm(t) =

∞
∑

k=0

bm+k,mtk.
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To prove the lemma, multiply the mth equation by tm and sum the columns.

How useful Appell relations are depends on how simple (or, subjectively, how familiar)
the formal power series Φm(t) and Ψ(t) are.

Our first example concerns (0, s)-lattice paths, where 0 is the sequence of all zeroes.
Then

Φm(t) = (−1)m
∞
∑

k=0

(

sm

k

)

tk (4.2)

= (−1)m(1 + t)sm . (4.3)

Hence,
∞
∑

m=0

(−1)mLPm(0, s)tm(1 + t)sm = 1.

For area enumerators, the functions Φm(t) is given by Eqn (4.2), with the binomial coefficient
(

sm

k

)

replaced by q(
k

2)
(

sm

k

)

q
. However, there seems to be no closed form for Φm(t) in this

case. Similar formulas can be derived for (1, s)-parking functions (see [2]).

In the case where s is an arithmetic progression (a + id)∞i=0,

∞
∑

m=0

LPm(0, (a + id))[−t(1 + t)d]m =
1

(1 + t)a
.

and hence,
∞

∑

m=0

LPm(0, (a + id))um =
1

(1 + t)a
.

where t satisfies polynomial equation t(1 + t)d + u = 0. We conclude that the ordinary
generating function of LPm(0, (a + id)) is an algebraic function. The stronger result, that
the generating function of LPm(0, s) is algebraic if s is periodic, was proved by de Mier and
Noy [5].

Another case where the Appell relation can be simplified is when the left boundary
(a + id)∞i=0 and the right boundary (b + id)∞i=0 are arithmetic progressions with the same
difference d and a < b. In this case,

∞
∑

m=0

LPm((a + id), (b + id))tm =
1

p(t)
,

where

p(t) =

⌊(b−a+d)/d⌋
∑

k=0

(

b− a + d− kd

k

)

tk. (4.4)

10



Similarly, the generating function of Aream((a + id), (b + id)) equals 1/pq(t), where pq(t)
is obtained from p(t) in Eqn (4.4) by replacing the binomial coefficients by a product of
q-binomial coefficients and a power of q. Since a formal power series

∑∞
m=0 amtm is rational

if and only if for some finite index M, the series
∑∞

m=M amtm is rational, we conclude
that if r and s are arithmetic progressions with the same common difference after a finite
number of terms, then the ordinary generating functions of LPm(r, s) and Aream(r, s) are
rational functions. An analogous result holds for (r, s)-parking functions. Motivated by the
algebraic result of de Mier and Noy, we conjecture that the generating function of LPm(r, s)
is algebraic if pair (r, s) is “periodic”, that is, there exist finite sequences a and b of the
same length and positive integer d such that r is the concatenation of a, a + d, a + 2d, . . .
and s is the concatenation of b, b + d, b + 2d, . . . .
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(1997).

9. E.J.G. Pitman, Simple proofs of Steck’s determinantal expressions for probabilities in
the Kolmogorov and Smirnov tests. Bull. Austral. Math. Soc., 7(1972), 227–232.

11



10. J. Pitman, R.P. Stanley, A polytope related to empirical distributions, plane trees,
parking functions, and the associahedron, Discrete Comput. Geom. 27(2002), no.4, 603–
634.

11. R.P. Stanley, Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.

12. G.P. Steck, The Smirnov two sample tests as rank tests, Ann. Math. Statist., 40 (1969)
1449–1466.

13. G.P. Steck. Rectangle probabilities for uniform order statistics and the probability that
the empirical distribution function lies between two distribution functions, Ann. Math.
Statist., 42 (1971), 1–11.

12


