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1 Introduction

Many problems in enumerative combinatorics can be expressed in probabilistic terms by consid-
ering random combinatorial objects with uniform distribution. Often this probabilistic approach
furnishes a convenient format for the discussion, and enables us to use the effective methods of
asymptotic analysis. In this paper we consider an enumerative problem of particle allocations. The
problem can be stated as follows. Given integers m > n. Allocate m particles in n distinct boxes.
Let x; be the number of particles in the i-th box. An allocation is said to be good if 1 +...+x; > 1
for all 1 < ¢ < n. We are interested in the number of good allocations F'(n,m), or equivalently,
the probability f(n,m) = F(n,m)/n™ that a random allocation with uniform distribution is good,
and the behavior of f(n,m) when m is a function of n.

This problem is related to the classical enumeration of parking functions. A parking function of
length n is a sequence (a1, as, ..., a,) of positive integers such that its non-decreasing rearrangement,
b1 <bg <--- < b, satisfies b; < foralli=1,2,...,n. It is well known that the number of parking
functions of length n is (n + 1)"~!. In fact, for m = n the number of good allocations F(n,n) is
the same as the number of parking functions of length n, (c.f. Theorem 1). Using this fact, in
section 2 we give an exact formula of F(n,m) as a summation. If m = ¢n for a fixed ¢ > 1, then
the probability f(n,m) = F(n,m)/n™ approaches to a positive limit h(¢), which depends only on
t with ~(0) = 0 and lim;—. h(t) = 1. Moving to asymptotics, we have f(n,m) ~ 2(m —n)/n if
n'/? < (m —n) < n, (c.f. section 3).

In a general particle allocation problem, the distribution of the occupancy of the boxes can

be represented as a conditional distribution of independent random variables conditioned on their
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sum being fixed, [4]. Such a representation allows one to explore the combinatorial problems by
powerful techniques in probabilistic analysis on independent random variables. For the uniform
random allocation, the corresponding random variables have Poisson distributions. In section 4
and 5, We reveal such a correspondence by relating our enumeration to the theory of branching
processes. Branching process is a mathematical description of the growth of a population for which
the individual produces offsprings according to stochastic laws. For m = tn we show that the limit
of the particle-allocation problem is the branching process with a Poisson offspring distribution
with mean ¢, and the probability of good allocations goes to the probability of survival in the
branching process. Moreover, this approximation extends to asymptotic level: Denote by T the
total number of the population in the branching process with the offspring distribution Po(1 + ¢).
As ¢ — 0T, the probability 709 > N is asymptotically 2¢, provided that N > e~ 2. This matches

the asymptotic result of f(n,m) in section 3.

2 Enumeration for the particle allocation

In this section we give the exact formula for the good particle allocations in terms of a summa-

tion.
Lemma 1 The number of good allocation of n particles in n bozes is (n -+ 1)"~L.

Proof. For an allocation of n particles in n boxes, let a; be the place of the i-th particle, and let
by < by < --- < b, be the non-decreasing rearrangement of (ap,as,...,a,). Then (aj,as,...,a,)
is a good allocation if and only if b; < ¢ for ¢« = 1,2,...,n. That is, (a1, a2,...,a,) is a parking
function. Hence the number of good allocations is the same as the number of parking functions of

length n, which is (n + 1)L, O

Theorem 2 Let m > n. The number of good allocations of m particles in n boxes is given by the
following formula
n m
F(n,m) =n" — ; <z 7_n1>”‘2<n —)mH T = ; @)( + 1) -G )"
Proof. For convenience, we say an allocation of m = n + r particles in n boxes is bad if it is not
good, and denote the number of bad allocations by B(n,m). We enumerate B(n,m). Let BAD;

be the number of bad allocations in which 7 is the smallest number such that 1 + ...+ z; <. In



any such allocation,

1 > 1,
r1+x2 > 2,
...... >
ri+ro+...+x;m1 > i—1,
1 +204+...+x; < 1

This implies 1 +x9 + ... +x;_1 = 7 — 1 and x; = 0. So this allocation can be decomposed into
two parts: The first part is an good allocation of ¢ — 1 particles in the first ¢ — 1 boxes. The ith
box is empty. And the second part is a random allocation of the other m — ¢ + 1 particles in the
last N — ¢ boxes.

By Lemma 1,
BAD, = ( m1> ii—2(n _ i)m—i—H’

and
— R m -4 —2 _ aym+1—:
B(n,m) = ;_1 BAD; ZE_I (z B 1)2 (n—1) ,

which proved the first equation of Theorem 2. The second equation follows from Abel identity

N

N
ez +y+ Na)¥ = Z (k>(x + ka) Ly + (N — k)a)NF,
k=0
with the substitution N =m,z =a=1and y=n—m — 1. O

Next we consider the ratio f(n,m) = F(n,m)/n™, that is, the probability that a random

allocation is good. For the case m = tn, (t > 1), we have the following limit result.

Theorem 3 Fix t > 1 and let m = tn. Then the probability f(n,tn) that a random allocation is

good goes to a positive constant 1—s/t, where s is the unique solution in (0, 1) satisfying se * = te™".

In particular, 1 —s/t =0 ift=1, and 1 — s/t — 1 if t — oo.

Proof. It is equivalent to show that

B(n,t
lim b(n,tn) := lim M =2
n—oo n—o0o ntmn t

i From the proof of Theorem 2,

n

b(n,tn) = Z Bﬁfz — Zn: (tn)i1 ‘ii_Q '(1 _ i)tm—l—i_ (1)

i=1 i=1




We approximate (tn);_1/n’"! by ¢!, and (1 — £)"*+1% by e~* then the right-hand side of (1)

becomes

As n — o0, this summation goes to

1—2

v i1 —ti _ 1 —t
Z(i—l)!t e = tR(te )

=1

where R(z) = > "2, izlmi is the exponential generating function for labeled rooted trees, whose
radius of convergence is 1/e. It is well-known that R(x) is the inverse function of y = ze™*, (e.g.,
[7][Sect.5.3]). Hence

R(te™?) s
t

where se * =te ' and 0 < s < 1.
To show that s/t is the limit of b(n,tn), it is sufficient to show that the error between b(n,tn)

and s/t goes to 0 as n goes to infinity. Fix A such that 1 < A < n!/2. Let b; = BAD;/n'™. Then

the error between b(n,tn) and s/t is the sum of following three terms

A n
I = b(n,tn) — > b= Y b,
i=1 i>A
A A 21—2
_ o i—1 —ti
L = ) b Z(i,l)l €
=1 =1
< gt
I — 1—1 _—t1
3 Z(Z‘_l)l
FEDY
For I, since i < n,
(t’I’L)Z',l i—1 1 i — 2
. =t (1)1 — — 1-—
DL )1 ) (1 ),
where
i—2 j i—2 i i—2 j ;2 ;2
1 1—=)= log(l——)=— o )< —=—(1 1)).
oa [101 -5 = Sotou(t = ) = =3 (i + gz ) < g1 +000)

Similarly, since t > 1,

n

< P R < o7
e J— _ _ [ _ « .. e — _— —
*p ! 2n  2n  6n?2  12n3 *p ! on n

(1— i)t”“—i = exp ((tn+ 1—14)( o i + .. .))



Hence for A <1i <n,
b< 1 i -+ 2401))) <
e S T o R ™ 0 (i

By Stirling’s formula,

for some constant C' > 0.
For Iy, from the above calculation, we note that for 1 <i < A,
(tn)i-1 i
o =t ep (g (1+o(1)) )

and

t.2 . . ) t.2 .2
exp <-m’ - %(1 + 0(1))) = (1= Lytn < (1= Lytntimi <oy (—ti - % + %) .

Hence for 1 <i < A,

and

Z.i72 ) Z'2 1 7:7:72 .
b; < tLexp <—tz’ ——(t+ - — 2)) < — t= 1 exp(—ti).

i 1)

Let k =t + 1. Note that

i2 ik
— k=i —
o™ Z(Qn) < 1€,
where € = Ak/2n = o(n~/?), we have
0 -2 00 -2
) Y ) o ‘Sl — 32‘
I, < fi—le—ti _ =1 i(t+e)
‘2|—;(¢1)1 ¢ ;(il)! ¢ ="

Here s1, so are real numbers in (0, 1) satisfying sje 5! = te™! and sqe™%2 = te™ !¢, Since y = xe™?

is a continuous function, |s; — sa| < C’e for some constant C’. This proves |I2| = o(1).

The term I3 can be treated similarly as I;.

oo (=92 > 1—t\i IESAPY
i S e (te ™)
I3 = - tlet = <C =o(1).
=3 55 e <ty
This finishes the proof. O



3 The asymptotic formula for the good allocations

;From Theorem 3, we see that lim,_, f(n,tn) approaches 0 as t goes to 17. More precisely, if
t =1+¢, then 1 —s/t = 2¢+o0(e) as ¢ — 0T. In this section we discuss the asymptotics of f(n,tn)

for t — 1.

Theorem 4 Assume r = r(n) is a function of n such that \/n < r(n) < n, and m = n+ r(n).

Then the good probability f(n,m) is asymptotically 2r/n.
Proof. Again, we use the formula b(n, m) and prove

b(n,m) = Z ( " )f’?(n — ) =1 2—7;" +o(=).

; 1 —1
=1

As before, let

=2 (m)i_q i _
b = S (1= =)
Y —1)! pit ( n)
Then
. . .2 .3
N o i i
i2 i3
= x|~ g g -
G e N G e N G e
n 2n2 3n3
ri ri? i3 rit
== e _——— — — — — —
*P 2n2  3n3  4nt
.2 .3 .4 .5 .
i i i i
B S A T A R A IR e |
o Tt oot T (n)>’
and
(m)i—1 r r—1 r—i+42
- = (1+—-)(1 Ll —
Wit~ e Do T e T2
i—2 - Y A3
— e a g (=5 (=3 )
n 2n2 3n3
7=0
i~ —d2/2 (i — 12 —ri?+3/3 36 —1) - 3r2-i2/2+rid —it/4 j
— e (i—Dr—d/2 (G—Dr ;“2 i’/ _'_T(Z ) —3r 13/ ri° —i*/ —...—I—O(i)
n 2n 3n n
- (i—1r (GE—1r2 (-1
B exp( n o2 3w
IR it @ +ri2+ri3+ri4+ +O(i+r2i2)
2n  6n2  12n3  20n* 2n?2  3n3  4nt n n3’)’



Thus

where the last equation holds for ¢ < n.

Taking

Then A < n. We have
A 2 2 2

1 T T . T
Db~ ) Ty o <_ﬁ+2_n?_z(1+2_n?))

i=1 i=1

Fix n and r, the sum in the right hand side goes to

r2

e—r/n+r2/2n2R(e—(1+m)) — 6—r/n+r2/2n2 .5

where s € (0,1) satisfying se™ = e ) Assume s = 1 — 6. It is easy to compute that

d =1~ 4 o(%). Thus

—r/ntr?/am? o T T 2:1f% T
e s=( n—i—o(n)) n—l—o(n).

To prove that f(n,r) ~ 2r/n, it is sufficient to check that the error is o(r/n), where the error

is the sum of three terms Jp, Jo and J3.

— _ ’I“_ —(I+5)i
/1 exp( n 2n2> ; (i — 1)!6 i
A T r2 it ( )
J _ _ - 1-‘1‘:‘12 Z_b
N ()
Jgo= =) b
i=\

Let a = r%/2n?.

1. Error J;. By the Stirling formula, we have

42 (14a)i X e—ia e—aA
- e— a)t ~ S C ,
— (i—1)! gz 2mi VA

where the constant C' = 2/v/2w. Since A > n?/r?, Jy is o(r/n).



2. From the computation at the beginning of the proof,

A 2y om 2
) —r/n+r?/2n —(14a(1—¢))i
2 hi<e 2T |
A 2 /9,2 A ii—2
S —r/n+r?/2n —(1+a(1l+e€))i
A
where € = 0(1). Thus
T ()i _ N~ (1ra(iee)
| 2| < , e Attt - e VAT = g — go.
;(21)! ;(21)!
where s1 ~ 1 —+/1 —er/n, and sy ~ 1 — /1 + er/n. Therefore
|| < (V1+e—V1 —e)Z ~e- L :0(1).
n n n
3. We rewrite |J3| as
n n—A>\
SV S
i=A j=1
where b,_; can be expressed as
b b — (m)r (n)j+1 (1 B i)n—j n jT+j+1 (3)
n—j J nr nj+1 n (n _])2 (7' +] T 1)'
Analysis:
(m)p  mm-—-1 n+l
nn n n " n
1 2 T
- 1+90+9...a+Z
a+hoed D
B - (i 2P )
- o —~'n  2m*  3n®
r2 3 ré o r
- eXp(%_W+W_W+”'+O(5)> @
Similarly,
(n)j+1 1 2 j
, - 1-1-5...0-1<
Wit~ a-ha- e
J -2 3
i i i
- P <_ ;(E * 2n? * 3n3 * )>
2 3 4
_ S A J
- P < 2n  6n2 12n3 ”+O(n)> (5)



and

\
S |<.

2 3 4
— . ) J J
n—j _ iyl I
) exp<]+2n+6 st >

Thus

for a constant C' > 0.
We estimate |.J5] in three intervals.
Interval 1. 1 <j <0.1r.

In this interval,

(m)r 2 jr+j+1 2 72

h; <
I n" n(r+j+1)!

where ej/(r +j+ 1) < 1/2. Thus
0.1

Interval 2. 0.1r < j < 100r.

SIM
l\:JIr—~

Let j = tr, where 0.1 <t < 100. Then

1 2 1 et 1 72
h.N_eftrJrr /2n r(1+t):—ex r4—)(1 —
Ton V277 (1 +t)(1+t) ny/2mr(1 +t) p( 2n)(
For 0.1 <t <100, we have
(1 = )" < exp )
1+t 2(1+1¢)”
Thus
r2
r
hj < )
>oms X mens g
0.1<t<100 0. 1<t<100
2 100 2
L L exp(L)/ emr/2atygy  TI0C Ty
ny/r 2n n \/r 2n 202

Since the term 7(r/2n — 1/202) — —oc, the last term in the above is o(r/n).
Interval 3. 100r <j<n — A\

In this interval we have

Vi ertit+l 1 =G40
?

. < +—
(r+j+1! 2r(r +j+1) J

9

(5 ep(5) S (5F < (S = ol2) = ofr /).

_)(1+t)r‘



where

r+1 : A
14— y=(r i+l e — 4+ ... 40 ,
(14 ; ) exp [ —r 2j+6j2 12j3+ +0(=)

<Ll =

Since 57 > 100r,

b < n o r2 r3 n r4 r2 n r3 r4 N
) exp | — — —— S T o)
IS 2t a1 o P\2n 602 " 1203 2j 652 1253
for some constant C7 > 0.
For 100r < j <mn, k> 3,
phtl |i _i| _ r2(n —j) rk1 1 (nF=t 4+ nk=25 4 .. R
k(k+1)'j% nk nj () Tk(k+1) nk-1
2 .
r(n—7j), 1 k—1
< -
nj (100)
Thus
r2 r3 n r4 r2 n r3 r4 n < r2 r2 n 1 (7“2 7“2) 1(7“2 7‘2)
2n  6n2  12n3 27 652 1253 2n 25 997 n 4 5 n’
Therefore
b < n C . (7"2 7“2)

] . . X )

T n— )22+ +1 P 475
and ,

=7 H 0 Vi

Let j = tn, where t ranges from 0 to 1 — A/n, then the above sum is asymptotically

C P2 1R 1 ex —’"—2t
et [ @)

)/\/_ Substitute by x = 1/v/t, we have

Let h(t) = exp(—

4nt
2
h(t) = k(x) ===z G‘Xp(—ng)
1.2,,,2 7“2
F(a) = (1 - 20 exp(—Ta?)

The maximal of k(z) is achieved at z = v/2n/r < 1, that is, at ¢ > 1. It implies that h(?) is

an increasing function in the interval (0, 1). Therefore the integral

C r2 /1_2 1 exp(—f—;t)d
( t

\/— exp(4n) 1 — t)2 \/E

C 2 1-\/n 1
< T eXp(E)(h(t”t:l—/\/n)/o 1— t>2dt
N C’\/_e =

10



for some constant C’ > 0.
Substituting by A = 20"—2 In ﬁ, we obtain the bound
T n

Cymt ___ Cr i, 1

20n2 ln(%)emn(%) 20 v ln(%)

= o(%).

T
n

This finishes the proof. O

4 Branching processes with Poisson offspring distribution

The particle allocations may be approximated by a branching process. A branching process
is a mathematical description of the growth of a population for which each individual produces
offsprings according to stochastic laws [2]. Imagine that we are in a unisexual universe and we
start with a single organism. Imagine that this organism has a number of children given by a
given random variable Z. These children then themselves have children, the number again being
determined by Z. These grandchildren then have children, etc. As Z = 0 will have nonzero
probability, there will be some chance that the line dies out entirely. We want to study the total
number of organisms in this process, with particular eye to whether or not the process continues
forever. For mathematical formulation, we use an equivalent description in terms of queueing
theory, which is due to Kendall [3]. Let Zi, Zs,... be independent random variables, each with

distribution Z. Define a random walk ) = Yj, Y7,... by the recursion

Yo = 1,

Y, = Yia+27,—1, (8)

and let T" be the least ¢ for which Y; = 0. If no such ¢ exists, we say that T = 400, in which case
we also say the random walk ) escapes. The Y; and Z; mirror the branching process as follows.
We view all organisms as living or dead. Initially there is one live organism and no dead ones. At
each time unit we select one of the live organisms, it has Z; children, and then it dies. The number
Y; of live organisms at time 7 is then given by the recursion. The process stops when Y; = 0. T
represents the total number of of organisms, including the original, in this process.

Let ¢ = E[Z]. A basic result about branching processes (e.g., [2]) states that if ¢ < 1 the process
dies out with probability one. If, however, ¢ > 1, then there is a nontrivial probability a € (0, 1)
that the process goes on forever, where o can be computed as 1 — x, and z is the unique fixed point

in (0,1) of the probability generating function P(z) =Y 2, 2 Pr[Z = i].

11



The relation between the particle allocation problem and the branching processes can be de-
scribed as follows. In the particle allocation, if m = n + r particles are allocated in n boxes inde-
pendently and uniformly, and z; is the number of particles in the i-th box, then x; has the binomial
distribution bin(m, 1), which can be approximated by the Poisson distribution Po(2) = Po(t)
in the case m = tn. The condition that x1 + z9 + --- + x; > i for all 7 then corresponds to the
condition that Y; > 0 for all <. Thus the probability for a random allocation to be good is roughly

the probability of escape of a random walk (8) with Z = Po(t). Precisely, we have

Theorem 5 If m = tn for a fized t > 1, then the probability of good allocation f(n,m) converges
to the escaping probability Pr[T" = +o0] of the random walk Y defined by (8) with Z = Po(t).

Proof. In Theorem 3 we showed that the limit of f(n,tn)is 1 —$. For Z = Po(t) the probability
generating function of Z is P(x) = e~*(1=%)_ It is easy to check that the unique fixed point of P(z)
in (0,1) is s/t, where s < 1 and se™® = te~t. The theorem then follows from the basic result of
branching processes. O

The proof of the basic result of branching processes, which uses the probability generating
functions, appears in many textbooks on probability theory, (e.g., [2]). However, here we want to
outline another proof with Z = Po(t). This proof not only yields the escaping probability, but also
gives the estimation of Pr[T" > N], which will used in the next section.

First, we need a lemma on the Chernoff bound of Poisson distributions, which can be found,

e.g., in [1][Appen.A.1.15].
Lemma 6 Let P have Poisson distribution with mean p. For e > 0,

PP <p(l—¢)] < e €H2

PP > p(1+6)] < [es(1 4670+ "

Another proof of Theorem 5. We just need to show that the probability of extinction for Y
with Z = Po(t) is s/t. Set a new random walk R = Ry, Ry, ..., as

Ry =

—_

Ri1+7;—1, if Ri_q > 0,
0, if Ri_; = 0.

R, =

Note that T' < +oo for Y if and only if R; = 0 for some .

12



First, find A > 0 with E[e *Z D] = 1. It is easily computed that \ is given implicitly by the

formula

(9)

Claim 1. E[e=%] = ™ for all n.
We prove by induction on n. For n = 0 it is immediate. Assume it holds for n — 1, i.e.,

Ele=?in-1] = ¢=*. We prove it for n. Note that

Ele M) = Pr[R,_1 = 0]+ > Pr[Ry_y = i]E[e A+ 1))
1>0

since R, =0if R,—1 =0,and R, =i+ (Z, — 1) if R,—_1 =i > 0. But

E[ef)\(i+(anl))] — efAiE[ef)\(anl)] — 67/\1'

SO

Ele M =Pr[Ry_1 =01+ ) Pr[Ry_y =ile ¥ = Ele M1 =¢
>0
as desired. This proves Claim 1.

Now we have
e =Pr[R, =01+ » Pr[R, =ile™™. (10)

Claim 2.
lim Y " Pr[R, =ile ™ =0.

i>0
It suffices to show
nan;o Z Pr[Y;, =ile M =0
>0
as this is bigger. Note E[Y,] =1+ (t —1)n. We split the sum into intervals 0 < i < (¢t —1)n/2 and

i > (t—1)n/2. When i > (t — 1)n/2 we have e~ < e~ Mt=Dn/2 ¢

Z Pr[Y, = ile™ < e AE=Dn/2 — (1),
i>(t—1)n/2

When 0 < i < (t — 1)n/2 we bound e~ by 1, so

Yoo PrYy=ileM< Y PrY, =i <PrfY, < (¢ 1)n/2).
0<i<(t—1)n/2 0<i<(t—1)n/2

13



(=12

Here Y,, is 1 — n + Po(tn). By Lemma 6 Pr[Y, < (t — 1)n/2] < e” s ", which goes to zero as
n — 00.

As n — oo, Pr(R, = 0) — Pr(T < +oc). Therefore Pr(T < +oc) = e . Finally we check that

“AA—t _ po—t.

it is the same solution as s/t: Let y = te=*. Then (9) implies y = t —\. So ye ¥ = te e

It verifies y = s. O

REMARK.

1. One generalization of the above proof is, suppose instead of starting with Yy = 1 we started

with Yy = a. Then we would still have E[eM%] = E[e~*%-1] for all t. In this case E[e”M¢] =

oA,

2. This method applies to the random walk ) with any offspring distribution Z provided that

E[Z] > 1 and var(Z) exists. The first condition is necessary to guarantee that
Ele M7 =1

has a positive solution A. The second is a sufficient condition for lim, .. > ;.o Pr[R, =

ile™ =0, (e.g., by Chebyshev’s inequality). Under these assumption, we always get

Pr[T < +oc] = e~

5 Asymptotics of Branching processes

In the previous section, we see that the particle allocation can be approximated by a branching
process with Poisson offspring distribution. It is natural to extend such an approximation to the
asymptotics of Pr[T' > N] for branching processes. Explicitly, we have the following theorem, which

can be viewed as the counterpart of Theorem (4).
Theorem 7 Consider the random walk Y(€) = YO(E),Yl(ﬁ), ... defined by the recursion
WO OOz

where ZEE), ée),... are independent random wvariables each with distribution Z(€) ~ Po(1 + ¢),

(e>0). Let T be the least t for which Y;<E> =0. Then

Pr(T > N) ~ 2¢ for N> e 2

14



Denote by Ay the probability of 79 > N, and by Ay; the conditional probability Pr(7(¢) >
NV =i).

Lemma 8 Fiz N, An; is a non-decreasing function in .

Proof. We prove by induction on N. Let p; = Pr[Z =i]. For N =1, Ajp =0<1=A;; =

Ayp=---= Ay} ="---. The lemma is true. Assume the lemma holds for N =n — 1. For N = n,

Ani = Pr[T >n|y(© =)

= Y PiT >y =) PrlZ =i — j + 1]

i+1
= Z An—l,j PI‘[ZZ =1 + 1 —]]

i+1
= E Anfl,jpz#lfj-

=1

Similarly, we have
142

Apit1 = ZAn 1,j * Pit2—j-
Thus
Apiv1 —Api = ij(Anfl,z#ij — Ay 1ig1-j) | FPis1ldn112>0
§=0

as desired. O
Proof of Theorem 7. It is clear that

Ay =Y Pr(yy) = i) Ay,

>0

As in the proof of Theorem 5, taking A so that
Ele M7 ] =1,

then
A AN + ZPI‘[Y]E;) = Z']ANJ'G_M.
>0
Note that A = 2e + o(e) as e — 07.

We show that if N > ¢=2, the sum ) Pr[Y]Sf) = i]Ane~ is o(A). Let K = Ne. We have

>0

Z Pr]Y, i|An e~ N < eT 25 Z PrY(6 i|An; <e” A:o(A).
i>eN/2 i>eN/2

15



For the other half of the summation, note that YJS,E) has distribution 1 — N 4+ Po(N (1 +€)). Again
applying Lemma 6, we have Pr[Y]Sf) < eN/2] < e N/ = ¢ K/8 Thus

Yo Py =ijane™ < Y Py = iJAn; < Ay g PrlYy) < eN/2) < e EKBAN .
i<eN/2 i<eN/2
As Ay ; increases along 7,
Ay > Y PV =iAy; > Ay ey PrYy) > eN/2] > Ay enjp(1—e 5% = Ay onys(1-0(1)).

i>eN/2
Combining the above inequalities,
ST Prfyy = iAne ™ < e KBAL+o(1)) = o(Ax).
i<eN/2

It follows

eA=1— Ay + O(AN),

and hence Ay ~ 1 — e ~ 2e. O
Remark. Theorem 7 implies that if the random walk ) survives up to time N, where N > ¢ 2,

then almost surely it will survive for ever. In other words,
Pr(T=oco|T > N)~1 for N>e 2 (11)

The above proof is a probabilistic argument. On the other hand, for the branching process
with a Poisson offspring distribution, we can compute the exact value of Pr[T" = k] by enumerative

techniques.

Lemma 9 For the random walk Y with the offspring distribution Po(1), let TO) be the least t
for which YZ-(O) =0. Then

Pr[TO = k] = kk' e ",

Proof. Take any choice of 71, Z5 ..., Z; that gives 7O = k, we have

k 1 k
e 1
Pr(Z = 21,70 = 20, Zp = ) = | | (Z.'> =e "] —
i ; :

Therefore




where the z1, zo,. .., z; are non-negative integers such that z; +---+z; >ifori=1,2,...,k — 1.
Note that this sum enumerates the number of trees on the set {1,2,...,k}: Given any labeled
tree on {1,2,...,k}, fix 1 to be the root. Then z1, 29, ..., 2 is the degree sequence of this labeled
rooted tree under the breadth-first search. (For details on breadth-first search, please see [5].) A
well-known theorem of Cayley states that the number of such trees on a given k-set is k¥~2. Thus

k.lc—2e—lc kk—l

Pr[T©® = k] = = -k,
1 H=t— = ¢
O
Corollary 10 For the random walk Y©
Pr(T® > N) ~ 2 N2
V2
Proof.
(0) ) A Z 3/2 1/2
Pr(T%" > N) = e - —Nﬁ .
| o /9
k>N et 2 k>N 2m
O

Lemma 11 For the random walk Y€ with the offspring distribution Po(1+e), let T be the least
t for which Y;(E) = 0. Then
k—1

Pr[T() = k] = %eik*ke(l +e)f L

Proof. For any choice of Z1, Zs, ..., Z; that gives T = [,

Pr[T9\Zy = 21,2y = 20,..., Z1, = ]

k z
= H e_(1+6)u

z;!
i=1 v

k
1
— o—(Hok(q 17T 2
e (1+¢) iI;[lZi!
= e MU+ IPr(Ty =k|Z) = 21, 2o = 20,.... Z)y = z1,).

By Lemma 9,

k—1

Pr[1©) = k] = e % (1 + )1 Pr[1®) = ] = K

o e—k—ke(1+€)k—1

Using Lemma 11, we can improve the result in Theorem 7.
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Theorem 12 For the random walk Y with the offspring distribution Po(1 + €), we have
Pr[T(e) > NJ| ~ 2¢ if and only if N> e 2

Proof. The sufficient part is proved in Theorem 7. For the other direction, let ¢ = 1 + €. By the

Stirling formula,

o0 00 =1
SoPrO =i = 3 ettt
i=N+1 i=N+1 v

o

- el
~ § : eftztzfll .
i=N+1 iV 2mi

1 i (te €)!
21 . i3/2

i=N—+1

Let 5 =tec. Note that 3= (14+¢e)e c=1— % +0(e?) < 1. Then

3 %<BN S i N N2,
7

i=N+1 i=N+1
and
00 IBZ 2N IBZ 2N 1
S O S S S oneamas Ly
i=N+1 ¢ i=N+1 ¢ i=N+1 \/5

If N = ce™? for some constant ¢, then

2
N € 2 _c
IB ~ (1 — §)CE ~ e 2,
Thus there exists constant ¢1,co > 0 such that
o0 i
cre < Z 372 < Cg€.
i=N+1
This proves for } . v Pr[T() = 4] = o(e), it is necessary that N > ¢ 2. O

Comparing Theorem 7 with Theorem 4, one notes that Theorem 5 actually suggests that
Pr[T(© > N|Y]£;) = Ne| ~ 2¢ for N > €72, We prove that this is indeed true in the branch-

ing process with Poisson offspring distributions.

Theorem 13 In the random walk YO, let Ay be the probability Pr[T©) > NJ, and An; be the
conditional probability Pr[T©) > N|Y,§€) =1i|. Then

Anne=Pr[TO > NY) =Ne~ 2 for N> 2,
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Proof. The key point of the proof is the observation that Ay; depends only on N and i, but
independent of the choice of e. The reason is, for any choice of Z;, Zo, . .., Zy that leads to T\®) = N,
the conditional probability

N o —ttF .
_ _ R NP =5  (N+i—1)!
Prii =z ty =z Iy = Yy =1 = e NENN+=1/(N +i—1)1  NN+—1]]z!

which is independent of the choice of e.

For the upper bound on Ay ye, from the proof of Theorem 7 we have

2€ ~ 6_/\ ~ AN,

=S P9 =iJAn; = Anweas PV = Ne(1 - 6)).
>0

for any small § > 0. Applying Lemma 6, we have
262N

Pr[V{Y < Ne(1—6)] <e 270,
Hence for any e,d, there is a small & > 0 such that AN Ne(1-8) < 2¢(1 + ') when N > eps™2.
Let €1 = €(1 —9), then Ay e, < 2e1(1+96")/(1 —9). Since d, &' can be arbitrarily small, we have
AN Ne < 26e1(140(1)) for N > ¢ 2

The lower bound now uses the upper bound. We have already seen 2e ~ > . An; Pr[Y, ]S,E) = 1.

We prove that for any 6 > 0, Ay ne > (2 —d)e for N > €2, The proof is by the method of
contradiction. Assume Ay nye < (2 — d)e for some fixed §, 0 < 6 < 2. Take a > 1 such that
a(2 —9) < 2. Let € = aer. Then Aneo = Ane < (2 —06)e = (2 — §)ae;. In the random walk with
parameter ¢, we have

S PrYyY = AN < Anweaa PrYyY < Nea] < (2 - 68)aer.

i<Neia

We continue estimating the contribution of Pr[Y]Sfl) = 1]Ap,; for larger i. For alNe; < i < 2Ney,

2Ney
Z PrlYy =i]An; < Anane, Pr[Yjs,el) > Neja] <2- 2e1e Callten)N
>N aeq

where ¢, = (14+7)In(1++)—~ and v = (a—1)e1 /(1+€1). The last inequality in the above formula

is by the Chernoff bound of Poisson distribution, (c.f. Lemma 6). In general, for k& > 2,

(k+1)N61
S° Py = i)An, < 20k + Der Pr{Y, (Y > kNey] < 2(k + 1)ege ey,
i>kNep

where ¢ = (1 4 v,) In(1 + v%) — % and v, = (k — D)er /(1 + €1).
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Since

V24 ify < 1,
v/4 ity > 1.

(14+y)In(1+v)—~v >

we have

(k—1)2e2
e—Ck(1+en)N < max(e—’YE(l-i‘fl)N/‘l’ 6_'Yk(1+61)N/4) — max(e A0 N’e

(k—1)e
— Ny

Now it is easy to check that the integrals

oo Ne? . oo .
/ (k + 1)~ T F=1% g / (k + 1)e= "D

both are o(1) as Ne — oco. Hence Ay =Y, Pr(YJS,q) =1)ApN,; < (2 —d)aer + o(e1), contradicting
the fact that Pr[T() > N] ~ 2¢; if N > ;2
Therefore An ne > (2 —0)e for all § > 0. Combining with Ay ne < 2€(1 4 0o(1)) we proved the

theorem. O
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