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a b s t r a c t

Bivariate Gončarov polynomials are a basis of the solutions of the bivariate Gončarov
Interpolation Problem in numerical analysis. A sequence of bivariate Gončarov polynomials
is determined by a set of nodes Z = {(xi,j, yi,j) ∈ R2

} and is an affine sequence if Z
is an affine transformation of the lattice grid N2, i.e., (xi,j, yi,j)T = A(i, j)T + (c1, c2)T
for some 2 × 2 matrix A and constants c1, c2. In this paper we prove that a sequence of
bivariateGončarovpolynomials is of binomial type if andonly if it is an affine sequencewith
c1 = c2 = 0. Such polynomials form a higher-dimensional analog of the Abel polynomial
An(x; a) = x(x − an)n−1. We present explicit formulas for a general sequence of bivariate
affine Gončarov polynomials and its exponential generating function, and use the algebraic
properties of Gončarov polynomials to give some new two-dimensional generalizations of
Abel identities.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Gončarov Interpolation is a problem in numerical analysis which asks for a polynomial of degree n whose ith derivative
at point ai equals a prefixed value bi, for i = 0, 1, . . . , n. The sequence of Gončarov polynomials forms a basis
of the solutions of Gončarov Interpolation. Explicitly, given a sequence of real numbers a0, a1, . . . , an, the Gončarov
polynomial gn(x; a0, . . . , an−1) is defined by the biorthogonality relation:

ε(ai)Dign(x; a0, a1, . . . , an−1) = n!δi,n
where D is the differential operator, and ε(a) is evaluation at a. A special case of this is Abel interpolation, where the point
ai = ai for a fixed constant a. In this case, the Gončarov polynomial gn(x; 0, a, 2a, . . . , (n−1)a) is called the Abel polynomial
and denoted by An(x; a), which has the explicit formula An(x; a) = x(x − an)n−1. Abel polynomials are named after the
Norwegian mathematician Niels Henrik Abel, and are closely related to counting of labeled trees and parking functions,
(e.g. [1,12,22]).

A basic property for a sequence of Abel polynomials is that it is of binomial type, where a sequence p0(x), p1(x), . . . of
polynomials is of binomial type if and only if

pm(x + y) =

m
i=0


m
i


pi(x)pm−i(y).

The theory of polynomials of binomial type plays a fundamental role in umbral calculus, or finite operator calculus, an area of
algebraic combinatorics pioneered by Rota and Mullin [13] and further developed by Rota and many others, for example, in
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[2,3,5,14,19–21], to list a few. Umbral calculus studies combinatorial problems by means of linear functionals on spaces of
polynomials, and exhibits fascinating relationships between the formal power seriesmethods of combinatorics, the calculus
of finite differences, and the theory of special polynomials and identities. Polynomials of binomial type also occur naturally
in the enumeration of binomial posets, and are related to graph colorings and acyclic orientations [23–25].

For multivariate polynomials, there is an analogous notion of polynomial sequences of binomial type, for which the
explicit definition is given in Section 2. The basic theory of polynomial sequences of binomial type in several variables and
their roles in multivariate umbral calculus was developed by Parrish [15]. Garsia and Joni [6,9] showed that this theory
offers a natural setting for the study of compositional inverses of formal power series, and used higher dimensional versions
of the Lagrange inversion theorem to derive certain new Steffensen-type formulas. Multivariate umbral calculus and its
applications to linear recurrences are studied by Niederhausen [14].

The multivariate Gončarov polynomials were investigated by Khare, Lorentz and Yan in [11] as a basis of solutions
for the multivariate Gončarov Interpolation. In the current paper we are concerned about the bivariate case unless
otherwise stated. Bivariate Gončarov polynomials are related to pairs of integer sequences whose order statistics are
bounded by certain weights along lattice paths in N2. To state the definition, let Z be a set of nodes in R2, that is, Z =
zi,j = (xi,j, yi,j) ∈ R2

| 0 ≤ i, 0 ≤ j

, and let

Π2
m,n =


m
i=0

n
j=0

ci,jxiyj | ci,j ∈ R


be the space of bivariate polynomials of coordinate degree (m, n). The bivariate Gončarov polynomial gm,n((x, y); Z) is the
unique polynomial in Π2

m,n satisfying

∂ i+j

∂xi∂yj
gm,n(zi,j) = m!n! δi,mδj,n (1)

for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Clearly gm,n((x, y); Z) depends only on the nodes Zm,n = {zi,j ∈ Z | 0 ≤ i ≤ m, 0 ≤

j ≤ n}. Many algebraic and combinatorial properties of gm,n((x, y); Z) are given in [11]. In particular, gm,n((x, y); Z) can be
characterized by the following linear recursion

xmyn =

m
i=0

n
j=0


m
i


n
j


xm−i
i,j yn−j

i,j gi,j((x, y); Z), (2)

and the Appell relation

esx+ty
=

∞
m=0

∞
n=0

gm,n((x, y); Z)
smexm,ns

m!

tneym,nt

n!
. (3)

Our first objective is to characterize bivariate Gončarov polynomials of binomial type, which would give a 2-dimensional
generalization of the classical Abel polynomials. In Section 2 we present a necessary and sufficient condition: a sequence
of bivariate Gončarov polynomials is of binomial type if and only if the set of nodes Z is a linear transformation of the
standard lattice grid N2. We call such Gončarov polynomials linear Gončarov polynomials. In general, if Z is an affine
transformation of N2, the corresponding Gončarov polynomials are called affine Gončarov polynomials. In Section 3 we
calculate the compositional inverses of the functions appearing in the Appell relations of linear Gončarov polynomials. This
allows us to transform the Appell relation into an exponential generating function for a sequence of linear/affine Gončarov
polynomials. Section 4 contains explicit formulas for affine Gončarov polynomials. In the bivariate case the formula is
complete. We also present some examples in the trivariate case. In the last section, we use the algebraic equations of
Gončarov polynomials to derive various combinatorial identities in double summations, which offer a new family of 2-
dimensional generalizations of Riordan’s Abel identities [18].

We remark that in the literature, there are various generalizations of Abel polynomials, starting from Hurwitz’s
multinomial extensions [7] in 1902. The Abel–Hurwitz identities are further investigated by many researchers, including
Riordan [18], Françon [4], Pitman [16,17], Kelmans and Postnikov [10], and are related to random mappings, subsets,
forests, and forest volumes. There were also precedents of Abel polynomials deriving from finite differences. See [8] for
a historical overview. Our generalization as linear Gončarov polynomials is a totally different approach which provides a
new perspective to the subject. Our results are complementary to the existing research on Abel polynomials and reveal
connections between combinatorics, polynomial systems, and interpolation theory.

2. Gončarov polynomials of binomial type

We adopt Parrish’s definition of multivariate polynomials of binomial type [15].
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Definition 1. Let pm,n(x, y) ∈ Πm,n be a sequence of bivariate polynomials satisfying
(a) the degree of pm,n is m + n.
(b) p0,0(x, y) = 1 and {p0,0(x, y), p0,1(x, y), p1,0(x, y)} span the set of linear polynomials
Then the sequence {pm,n(x, y) | 0 ≤ m, 0 ≤ n} is of binomial type if it satisfies

pm,n(x + a, y + b) =

m
i=0

n
j=0


m
i


n
j


pi,j(x, y)pm−i,n−j(a, b)

for allm, n ∈ N and a, b ∈ R.

The main result of this section is a characterization of sequences of Gončarov polynomials that are of binomial type.

Definition 2. We say that a sequence of Gončarov polynomials determined by the set of node Z is affine if Z is an affine
transformation of the lattice grid B = {(i, j) | i, j ∈ N}. In other words, there exists a 2× 2 matrix A and vector C = (c1, c2)T
such that

xi,j
yi,j


= A


i
j


+


c1
c2


.

In this case, we will simply say that Z = AB + C . In particular when C = 0⃗, we say that the corresponding sequence of
Gončarov polynomials gm,n((x, y); AB) is linear.

Theorem 2.1. A sequence of Gončarov polynomials gm,n((x, y); Z) is of binomial type if and only if the sequence is linear. In
particular, if A = (ai,j)2×2, the Appell relation becomes

esx+ty
=

∞
m=0

∞
n=0

gm,n((x, y); Z)
sme(a1,1m+a1,2n)s

m!

tne(a2,1m+a2,2n)t

n!
. (4)

The proof of Theorem 2.1 uses a result of Parrish, who characterized sequences of multinomial polynomials of binomial
type by their exponential generating functions.

Definition 3. Two formal power series f1(x, y) and f2(x, y) are said to be an admissible pair if and only if

1. f1(0, 0) = 0 and f2(0, 0) = 0,
2. The Jacobian

J[f1, f2](x, y) = det


∂ f1(x, y)

∂x
∂ f1(x, y)

∂y
∂ f2(x, y)

∂x
∂ f2(x, y)

∂y


does not vanish at (x, y) = (0, 0).

Theorem 2.2 (Parrish [15]). A sequence of bivariate polynomials {pm,n(x, y) | 0 ≤ m, 0 ≤ n} is of binomial type if and only if
there exists an admissible pair of formal power series f1(x, y) and f2(x, y) such that

∞
m=0

∞
n=0

pm,n(x, y)
sm

m!

tn

n!
= exf1(s,t)+yf2(s,t).

In fact, Parrish showed that the analogous formula holds in any dimension [15, Theorem 1.1].
We shall also use the following well-known result which can be found in [6] or [14]. This result implies that the set of

all admissible pairs of formal power series form a group under composition. This group is called the umbral group and was
studied extensively in [15].

Proposition 2.3. If f1(s, t) and f2(s, t) is an admissible pair of formal power series in two variables, then there exists a unique
admissible pair of formal power series h1(s, t), h2(s, t), the compositional inverse, such that

f1(h1(s, t), h2(s, t)) = s, f2(h1(s, t), h2(s, t)) = t.

If (h1, h2) is inverse to (f1, f2), then (f1, f2) is also inverse to (h1, h2).
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Proof of Theorem 2.1. We will use Theorem 2.2 and the Appell relation characterization (3) for Gončarov polynomials.

Necessity: Let now the sequence of Gončarov polynomials gm,n((x, y); Z) be of binomial type. This is equivalent to the
existence of an admissible pair of formal power series f1(x, y) and f2(x, y) such that

∞
m=0

∞
n=0

gm,n((x, y); Z)
sm

m!

tn

n!
= exf1(s,t)+yf2(s,t). (5)

Using the compositional inverse h1(s, t) and h2(s, t) of the pair (f1(s, t), f2(s, t)), we can write this expansion as

∞
m=0

∞
n=0

gm,n((x, y); Z)
h1(s, t)m

m!

h2(s, t)n

n!
= exs+yt . (6)

Comparing this with the Appell relation and using the uniqueness of the coefficients, we have for allm and n,

h1(s, t)mh2(s, t)n = smexm,nstneym,nt .

Taking the same equation withm + 1 replacingm and dividing, we have

h1(s, t) = se(xm+1,n−xm,n)se(ym+1,n−ym,n)t ,

which holds for allm and n. It follows that xm+1,n−xm,n is a constant independent ofm and n and so is ym+1,n−ym,n. Similarly,
by incrementing n by 1, we obtain that xm,n+1 − xm,n and ym,n+1 − ym,n are constants independent ofm and n.

Let c1, c2, c3 and c4 be these constants. By repeating the above first by decreasingm to zero and then decreasing n to zero,
we obtain that

xm,n = mc1 + nc3 + x0,0, ym,n = mc2 + nc4 + y0,0.

Comparing the (m, n) = (0, 0) terms of the two representations, we get

s0ex0,0st0ey0,0t = h1(s, t)0h2(s, t)0,

or equivalently,

ex0,0sey0,0t = 1.

This can only hold for all s and t if x0,0 = 0 and y0,0 = 0. So (xm,n, ym,n)
T

= A(m, n)T with

A =


c1 c3
c2 c4


.

Sufficiency: Conversely, if a sequence of Gončarov polynomials gm,n((x, y); Z) is linear with Z = AB for a 2 × 2-matrix A,
then xm,n = a1,1m + a1,2n and ym,n = a2,1m + a2,2n, where the ai,j are the entries of the matrix A.

The Appell relation (3) becomes

esx+ty
=

∞
m=0

∞
n=0

gm,n((x, y); Z)
sme(a1,1m+a1,2n)s

m!

tne(a2,1m+a2,2n)t

n!
. (7)

Note that

sme(a1,1m+a1,2n)stne(a2,1m+a2,2n)t = (sea1,1s+a2,1t)m(tea1,2s+a2,2t)n.

Taking

h1(s, t) = sea1,1s+a2,1t , h2(s, t) = tea1,2s+a2,2t , (8)

the sequence of polynomials satisfies Eq. (6).
We check that the pair (h1, h2) of (8) is admissible. Clearly h1(0, 0) = h2(0, 0) = 0 and since ∂h1

∂s (0, 0) = 1, ∂h1
∂t (0, 0) = 0,

∂h2
∂s (0, 0) = 0 and ∂h1

∂t (0, 0) = 1, the Jacobian is 1. Thus by Theorem 2.2 (h1, h2) has a compositional inverse (f1, f2) which
is also admissible. Substituting s = f1(s, t) and t = f2(s, t) into (6) we get Eq. (5), and hence this sequence of Gončarov
polynomials is of binomial type. �

Remark. The proof of Theorem2.1 can be easily extended to any dimension. In particular, a sequence of univariate Gončarov
polynomials is of binomial type if and only if it is a sequence of Abel polynomials, i.e., an = an for a constant a, and
gn(x; a0, . . . , an−1) = An(x; a).
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3. Exponential generating functions

In this section we give an explicit formula for the exponential generating function of a sequence of bivariate affine
Gončarov polynomials. That is, we will find functions f1 and f2 for which

∞
m=0

∞
n=0

gm,n((x, y); Z)
sm

m!

tn

n!
= exf1(s,t)+yf2(s,t) (9)

when Z = AB + C . We will deal with the linear case first.

Theorem 3.1. Let A = (ai,j) be a 2 × 2 matrix and Z = AB. Then we have

f1(s, t) =

∞
m=1

(−a1,1)m−1m
m−1

m!
sm +

∞
m=1

∞
n=1

(−a2,1m)
(−xm,n)

m−1

m!

(−ym,n)
n−1

n!
smtn

and

f2(s, t) =

∞
n=1

(−a2,2)n−1 n
n−1

n!
tn +

∞
m=1

∞
n=1

(−a1,2n)
(−xm,n)

m−1

m!

(−ym,n)
n−1

n!
smtn,

where xm,n = a1,1m + a1,2n and ym,n = a2,1m + a2,2n.

Let h1 and h2 be the admissible pair of formal power series defined by

h1(s, t) = sea1,1s+a2,1t , h2(s, t) = tea1,2s+a2,2t . (10)

Then the formal power series (f1(s, t), f2(s, t)) in Eq. (9) are the compositional inverse for (h1(s, t), h2(s, t)). To compute
themwe use the Lagrange–Good inversion formula in the following version, which was proved by Joni [9, Theorem 3.2]. An
explicit statement and applications to linear recursions are presented by Niederhausen [14, Theorem 1.3.2].

Theorem 3.2 (Lagrange–Good inversion formula). Let (h1(s, t), h2(s, t)) be a multi-series with compositional inverse
(f1(s, t), f2(s, t)). If we can write

h1(s, t) = s/φ1(s, t) and h2(s, t) = t/φ2(s, t),

where φ1(s, t) and φ2(s, t) are formal power series with φ1(0, 0) ≠ 0 and φ2(0, 0) ≠ 0, then

[smtn]

f1(s, t)kf2(s, t)ℓ


= [sm−ktn−ℓ

]

φ1(s, t)m+1φ2(s, t)n+1

|J[h1, h2](s, t)|


(11)

for all m, n, k, ℓ ∈ N. In (11) J[h1, h2] is the Jacobian of h1 and h2, and [smtn]f is the coefficient of the term xmyn in the expansion
of f .

Proof of Theorem 3.1. With the functions (h1, h2) given in (10), we set

φ1(s, t) = e−(a1,1s+a2,1t), φ2(s, t) = e−(a1,2s+a2,2t).

Clearly φ1(s, t) and φ2(s, t) are formal power series with φ1(0, 0) = φ2(0, 0) = 1, and such that

h1(s, t) =
s

φ1(s, t)
, h2(s, t) =

t
φ2(s, t)

.

Applying Theorem 3.2 with k = 1 and ℓ = 0, we get that the compositional inverse (f1, f2) of the pair (h1, h2) satisfies

[smtn](f1(s, t)) = [sm−1tn](φ1(s, t)m+1φ2(s, t)n+1J[h1, h2](s, t))

for all m, n ∈ N. In the following we compute f1(s, t) in detail. The computation of f2(s, t) is similar with Eq. (11) at k = 0
and ℓ = 1.

For our choice of h1 and h2,

J[h1, h2](s, t) = ea1,1s+a2,1tea1,2s+a2,2t

1 + a1,1s + a2,2t + det(A)st


.

So

φ1(s, t)m+1φ2(s, t)n+1J[h1, h2](s, t) = e−xm,ns−ym,nt

1 + a1,1s + a2,2t + det(A)st


.

Now use that [sit j](u(s)v(t)) = [si](u(s))[t j](v(t)) and linearity to obtain

[smtn]f1(s, t) = det(A)[sm−1
](se−xm,ns)[tn](te−ym,nt) + a1,1[sm−1

](se−xm,ns)[tn](e−ym,nt)

+ a2,2[sm−1
](e−xm,ns)[tn](te−ym,nt) + [sm−1

](e−xm,ns)[tn](e−ym,nt).
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In evaluating the above formula, we consider the following four cases.
Case 1:m = 0, n ≥ 0. Since the functions φ1(s, t), φ2(s, t) and J[h1, h2](s, t) are formal power series in s, t , there is no term
with s−1. Hence [s0tn](f1(s, t)) = 0 for all n ≥ 0.
Case 2: n = 0,m ≥ 1. Using [t0](tg(t)) = 0 for any formal power series g and xm,0 = a1,1m, we get

[smt0](f1(s, t)) = a1,1[sm−1
](se−xm,0s) + [sm−1

](e−xm,0s) = (−a1,1)m−1m
m−1

m!
.

Case 3:m = 1, n ≥ 1. Using [s0](sg(s)) = 0 for any formal power series g , we get

[s1tn]f1(s, t) = a2,2[tn](te−y1,nt) + [tn](e−y1,nt) = −a2,1
(−y1,n)n−1

n!
.

Case 4:m ≥ 2 and n ≥ 1. Now we have

[smtn]f1(s, t) = det(A)[sm−2
](e−xm,ns)[tn−1

](e−ym,nt) + a1,1[sm−2
](e−xm,ns)[tn](e−ym,nt)

+ a2,2[sm−1
](e−xm,ns)[tn−1

](e−ym,nt) + [sm−1
](e−xm,ns)[tn](e−ym,nt)

= det(A)
(−xm,n)

m−2

(m − 2)!
(−ym,n)

n

(n − 1)!
+ a1,1

(−xm,n)
m−2

(m − 2)!
(−ym,n)

n

n!

+ a2,2
(−xm,n)

m−1

(m − 1)!
(−ym,n)

n

(n − 1)!
+

(−xm,n)
m−1

(m − 1)!
(−ym,n)

n

n!

=
(−xm,n)

m−2

(m − 1)!
(−ym,n)

n−1

n!
·{(m − 1)n det(A) − (m − 1)a1,1ym,n − na2,2xm,n +m,n ym,n}.

The quantity in brackets { } simplifies to a2,1xm,n, so that

[smtn]f1(s, t) = (−a2,1)
(−xm,n)

m−1

(m − 1)!
(−ym,n)

n−1

n!
form ≥ 2 and n ≥ 1.

Putting everything together, we have

f1(s, t) =

∞
m=1

(−a1,1)m−1m
m−1

m!
sm +

∞
n=1

(−a2,1)
(−y1,n)n−1

n!
stn

+

∞
m=2

∞
n=1

(−a2,1m)
(−xm,n)

m−1

m!

(−ym,n)
n−1

n!
smtn

where xm,n = a1,1m + a1,2n and ym,n = a2,1m + a2,2n. Note that the second sum is just the m = 1 term of the following
double sum, so

f1(s, t) =

∞
m=1

(−a1,1)m−1m
m−1

m!
sm +

∞
m=1

∞
n=1

(−a2,1m)
(−xm,n)

m−1

m!

(−ym,n)
n−1

n!
smtn.

The formula of f2(s, t) is obtained similarly. �

Note that if the grid of nodes is a rectangular one, i.e., if A is a diagonal matrix with a2,1 = a1,2 = 0, then f1(s, t) = f1(s, 0)
and f2(s, t) = f2(0, t) are univariate inverses of h1(s, 0) = sea1,1s, respectively h2(0, t) = tea2,2t . In that case f1(s, t) =

(1/a1,1)W (a1,1s) and f2(s, t) = (1/a2,2)W (a2,2t), where W (s) is the well-known LambertW -function

W (s) =

∞
n=1

(−n)n−1

n!
sn.

Using the shift invariant formula of Gončarov polynomials in [11, Theorem 3.8],
gm,n((x + c1, y + c2); Z + (c1, c2)) = gm,n((x, y); Z),

we obtain the exponential generating function for a sequence of affine Gončarov polynomials.

Corollary 3.3. When Z = AB+C where C = (c1, c2)T , the exponential generating function for the affine Gončarov polynomials is
∞

m=0

∞
n=0

gm,n((x, y); Z)
sm

m!

tn

n!
= e(x−c1)f1(s,t)+(y−c2)f2(s,t),

where f1(s, t) and f2(s, t) are given in Theorem 3.1.
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4. Closed formula for affine Gončarov polynomials

Recall that a univariate Gončarov polynomial is affine if and only if the nodes form an arithmetic progression. In this
case gn(x; a, a + b, a + 2b, . . . , a + (n − 1)b) = (x − a)(x − a − nb)n−1 is the shifted Abel polynomials An(x − a; b). In
this section we present the explicit formula for the affine Gončarov polynomials in two variables, and some special cases
in three variables. Again we start with the linear case. The formula was first conjectured based on explicit calculation with
small indices, and then verified in the following theorem.

Theorem 4.1. Let m, n ∈ N, A = (ai,j) be a 2 × 2 matrix and Z = AB be a set of interpolation nodes. Then the linear bivariate
Gončarov polynomials with the set of nodes Z are given by

gm,n((x, y); Z) = (x − xm,n)
m−1(y − ym,n)

n−1 (x − x0,n)(y − ym,0) − x0,nym,0

, (12)

where xi,j = a1,1i + a1,2j, yi,j = a2,1i + a2,2j for all i, j ∈ N.

Proof. Denote by Gm,n(x, y) the right-hand side of (12). We use the defining interpolation equations (1) for Gončarov
polynomials and check that for 0 ≤ i ≤ m and 0 ≤ j ≤ n

∂ i+j

∂xi∂yj
Gm,n(xi,j, yi,j) = m!n!δi,mδj,n. (13)

It is easy to compute that

∂ i

∂xi
(x − xm,n)

m−1(x − x0,n) =


m! if i = m,

(m − 1)i−1(x − xm,n)
m−1−i(mx − (m − i)x0,n − ixm,n) if i < m,

where for a nonnegative integer k the symbol (x)k is the lower factorial (x)k = x(x − 1)(x − 2) · · · (x − k + 1). For
x = xi,j = a1,1i + a1,2j,

∂ i

∂xi
(x − xm,n)

m−1(x − x0,n)

x=xi,j

=


m! if i = m,

(m − 1)i−1(xi,j − xm,n)
m−1−i

· a1,2m(j − n) if i < m.
(14)

Similarly, for y = yi,j = a2,1i + a2,2j,

∂ j

∂ ji
(y − ym,n)

n−1(y − ym,0)


y=yi,j

=


n! if j = n,
(n − 1)j−1(yi,j − ym,n)

n−1−j
· a2,1n(i − m) if j < n. (15)

Using (14) and (15) we see immediately that

∂m+n

∂xm∂yn
Gm,n(x, y) = m!n! ∀(x, y)

and

∂ i+j

∂xi∂yj
Gm,n(x, y) = 0

if i = m and j < n, or i < m and j = n. Finally when 0 ≤ i < m and 0 ≤ j < n, we have

∂ i+j

∂xi∂yj
Gm,n(x, y)


(x,y)=(xi,j,yi,j)

= (m − 1)i−1(n − 1)j−1(xi,j − xm,n)
m−1−i(yi,j − ym,n)

n−1−j

{a1,2a2,1mn(m − i)(n − j) − (m − i)(n − j)x0,nym,0}.

The term in the { } vanishes since x0,n = a1,2n and ym,0 = a2,1m. �

Remark. When A is a diagonal matrix, i.e., a1,2 = a2,1 = 0, gm,n((x, y); AB) is a product of two univariate Abel polynomials
in the variables x and y. Precisely,

gm,n((x, y), AB) = Am(x; a1,1)An(y; a2,2).

When a1,2 = 0 but a2,1 ≠ 0, gm,n((x, y); AB) can also be factored into a product of an Abel polynomial in x and a shifted Abel
polynomial in y, as

gm,n((x, y), AB) = Am(x; a1,1)An(y − a2,1m; a2,2).

A similar equation holds for the case a1,2 ≠ 0 but a2,1 = 0. In general, linear Gončarov polynomials cannot be factored as a
product of univariate polynomials of x and y. Hence (12) offers a new generalization of the classical Abel polynomials.
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The shift invariant formula leads to the closed formula for affine Gončarov polynomials in two variables.

Corollary 4.2. Let Z = AB + C where A is a 2 × 2 matrix and C = (c1, c2)T , Then the affine bivariate Gončarov polynomials
with the node-set Z are given by

gm,n((x, y); Z) = (x − xm,n)
m−1(y − ym,n)

n−1 (x − x0,n)(y − ym,0) − (x0,n − x0,0)(ym,0 − y0,0)


where xi,j = a1,1i + a1,2j + c1, yi,j = a2,1i + a2,2j + c2 for all i, j ∈ N.

In Section 2 we have shown that a sequence of Gončarov polynomials is of binomial type if and only if it is linear. This
assertion is true in any dimension. However, we do not have a complete description for linear Gončarov polynomials in
general dimensions, except for some special cases with three variables, which are given below. To simplify notations, we
will write xi,j,k as xijk, and so on.

Theorem 4.3. Let m, n, p be nonnegative integers, A = (ai,k) be a 3 × 3-matrix and the set of nodes Z be given by Z =

{(xijk, yijk, zijk)T = A(i, j, k)T | 0 ≤ i, 0 ≤ j, 0 ≤ k}.
If one of the conditions

1. a1,3 = a2,1 = a3,2 = 0
2. a1,2 = a2,3 = a3,1 = 0
3. a1,2 = a1,3 = 0 and a2,3a3,2 = 0
4. a2,1 = a2,3 = 0 and a1,3a3,1 = 0
5. a3,1 = a3,2 = 0 and a1,2a2,1 = 0

holds, then

gm,n,p((x, y, z); Z) = (x − xmnp)
m−1(y − ymnp)

n−1(z − zmnp)
p−1

{(x − x0np)(y − ym0p)(z − zmn0) + x0npym0pzmn0} (16)

is the trivariate linear Gončarov polynomial with the node-set Z.

Theorem 4.3 is proved by using the interpolation definition for Gončarov polynomials [11] and verifying that the function
gm,n,p((x, y, z); Z) defined by (16) satisfies the equations

∂ i+j+k

∂xi∂yj∂zk
gm,n,p((xijk, yijk, zijk)) = m!n!p!δi,mδj,nδk,p. (17)

for 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ p.
We remark that the possible choices of the matrix A allow placing the nodes of interpolation on a plane or a line, (i.e., A

is degenerate). If A is diagonal, gm,n,p((x, y, z); AB) is the product of three univariate Abel polynomials in the variables x, y
and z. In the cases 3, 4, and 5 above, gm,n,p((x, y, z); AB) can be factored into three univariate polynomials, one is an Abel
polynomial and two are shifted Abel polynomials.

Again using the shift invariance of Gončarov polynomials, we have

Corollary 4.4. Let Z = AB+C where A is a 3×3matrix and C = (c1, c2, c3)T . If one of the five conditions in Theorem 4.3 holds,
then the affine bivariate Gončarov polynomials for interpolation at the nodes Z are given by

gm,n,p((x, y, z); Z) = (x − xmnp)
m−1(y − ymnp)

n−1(z − zmnp)
p−1

{(x − x0np)(y − ym0p)(z − zmn0) + (x0np − x000)(ym0p − y000)(zmn0 − z000)},

where (xijk, yijk, zijk)T = A(i, j, k)T + (c1, c2, c3)T for all i, j, k ∈ N.

5. Two-dimensional Abel identities

In his monograph Combinatorial Identities, John Riordan studied a class of sums defined by

An(x, y; p, q) =

n
k=0


n
k


(x + k)k−p(y + n − k)n−k+q,

and gave explicit formulas for many An(x, y; p, q)’s with small values of (p, q). Riordan’s results were summarized in [18,
Section 1.5] and named Abel identities, since the instance with p = −1, q = 0 is Abel’s celebrated generalization of the
binomial theorem:

x−1(x + y + na)n =

n
k=0


n
k


(x + ka)k−1(y + (n − k)a)n−k.
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In this section we use the bivariate affine Gončarov polynomials to derive combinatorial identities in double summations,
which can be viewed as a two-dimensional generalization of Abel identities. Explicitly, we consider the double summation

Am,n


s t x y
α β γ δ


=

m
i=0

n
j=0


m
i


n
j


(s + j)m−i+α(t + i)n−j+β(x + (n − j))i+γ (y + (m − i))j+δ. (18)

We will present explicit formulas for the case α = β = γ = δ = 0 and the case that exactly one of α, β, γ , δ is −1 and
others are 0. These formulas reduce the double summations of (18) into single summations, which can be computed out at
certain specializations.

First we list some basic properties of the sum Am,n.

5.1. Basic properties of Am,n

Initial values.

A0,0


s t x y
α β γ δ


= sαtβxγ yδ,

A1,0


s t x y
α β γ δ


= sαtβxγ yδ


s

1 +

1
y

δ

+ x

1 +

1
t

β


,

and

A0,1


s t x y
α β γ δ


= sαtβxγ yδ


t

1 +

1
x

γ

+ y

1 +

1
s

α
.

Symmetry. Replacing i with m − i and j with n − j yields that

Am,n


s t x y
α β γ δ


= Am,n


x y s t
γ δ α β


Recurrence. Using Pascal’s identity

m
i


=


m − 1

i


+


m − 1
i − 1


,

we have

Am,n


s t x y
α β γ δ


= Am−1,n


s t x y + 1

α + 1 β γ δ


+ Am−1,n


s t + 1 x y
α β γ + 1 δ


. (19)

Similarly,

Am,n


s t x y
α β γ δ


= Am,n−1


s t x + 1 y
α β + 1 γ δ


+ Am,n−1


s + 1 t x y

α β γ δ + 1


. (20)

On the other hand,

Am,n


s t x y
α β γ δ


=

(m,n)
(i,j)=(0,0)


m
i


n
j


(s + j)(s + j)m−i−1+α(t + i)n−j+β(x + n − j)i+γ (y + m − i)j+δ

= sAm,n


s t x y

α − 1 β γ δ


+n

(m,n−1)
(i,j)=(0,0)


m
i


n − 1
j − 1


(s + j)m−i−1+α(t + i)n−j+β(x + n − j)i+γ (y + m − i)j+δ

= sAm,n


s t x y

α − 1 β γ δ


+ nAm,n−1


s + 1 t x y
α − 1 β γ δ + 1


. (21)

Analogously, expanding other factors leads to

Am,n


s t x y
α β γ δ


= xAm,n


s t x y
α β γ − 1 δ


+ nAm,n−1


s t x + 1 y
α β + 1 γ − 1 δ


(22)

Am,n


s t x y
α β γ δ


= tAm,n


s t x y
α β − 1 γ δ


+ mAm−1,n


s t + 1 x y
α β − 1 γ + 1 δ


(23)

Am,n


s t x y
α β γ δ


= yAm,n


s t x y
α β γ δ − 1


+ mAm,n−1


s t x y + 1

α + 1 β γ δ − 1


. (24)
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Remark. Sometimes one is interested in the following summation with parameters b and c:

Am,n


s t x y
α β γ δ

; b, c


=

m
i=0

n
j=0


m
i


n
j


(s + bj)m−i+α(t + ci)n−j+β(x + (n − j)b)i+γ (y + (m − i)c)j+δ.

Such a summation can be obtained by the equation

Am,n


sb tc xb yc
α β γ δ

; b, c


= bm+α+γ cn+β+δAm,n


s t x y
α β γ δ


.

5.2. Formula for the case α = β = γ = δ = 0

We use the linear recursion (2) for bivariate Gončarov polynomials. Let Z = {(xi,j, yi,j : i ≥ 0, j ≥ 0} be given by
xi,j
yi,j


=


s
t


+


0 1
1 0


i
j


.

Using Corollary 4.2 and replacing xwith x + s, ywith y + t , we derive from (2) the identity

(x + s)m(y + t)n =

(m,n)
(i,j)=(0,0)


m
i


n
j


(s + j)m−i(t + i)n−j

· (x − j)i−1(y − i)j−1((x − j)(y − i) − ij). (25)

This is the key identity in our derivation.
Let

fm,n(x, y) = Am,n


s t x − n y − m
0 0 0 0



=

(m,n)
(i,j)=(0,0)


m
i


n
j


(s + j)m−i(t + i)n−j(x − j)i(y − i)j, (26)

where we view s, t as constants and x, y as variable. First, it is easy to compute that

fm,0(x, y) = (s + x)m and f0,n(x, y) = (y + t)n. (27)

Note that

∂2

∂x∂y
fm,n(x, y) =

(m,n)
(i,j)=(0,0)

ij

m
i


n
j


(s + j)m−i(t + i)n−j(x − j)i−1(y − i)j−1.

Hence Identity (25) implies that

(x + s)m(y + t)n = fm,n(x, y) −
∂2

∂x∂y
fm,n(x, y). (28)

Let hm,n(x, y) = fm,n(x, y) − (x + s)m(y + t)n. Then

hm,n(x, y) = mn(x + s)m−1(y + t)n−1
+

∂2

∂x∂y
hm,n(x, y).

Comparing with (28), we notice that 1
mnhm,n satisfies the same differential equation as fm−1,n−1.

Consider the solution for the homogeneous differential equation

F(x, y) = k
∂2

∂x∂y
F(x, y). (29)

If F(x, y) =


i,j ai,jx
iyj, then we have the relations that

ai,j =


1
kj

ai−j,0

(i)jj!
if i ≥ j,

1
ki

aj−i,0

(j)ii!
if i < j.
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The only polynomial solution of (29) is F(x, y) = 0. Since both hm,n(x, y) and fm−1,n−1(x, y) are polynomials of x and y, we
conclude that

hm,n(x, y) = mnfm−1,n−1(x, y).

Therefore we have the recurrence

fm,n(x, y) = (x + s)m(y + t)n + mnfm−1,n−1(x, y) (m, n ≥ 1). (30)

Combining with the initial conditions (27), we obtain

fm,n(x, y) =

min(m,n)
k=0

(m)k(n)k(s + x)m−k(t + y)n−k. (31)

Let

F(u, v) :=


m,n≥0

fm,n
um

m!

vn

n!
.

Then from (31) we have

F(u, v) =


k≥0

ukvk

m≥k

[u(s + x)]m−k

(m − k)!


n≥k

[v(t + y)]n−k

(n − k)!
=

eu(x+s)+v(y+t)

1 − uv
. (32)

In terms of Am,n, we have that

Theorem 5.1.

Am,n


s t x y
0 0 0 0


=

min(m,n)
k=0

(m)k(n)k(s + x + n)m−k(t + y + m)n−k, (33)

and the generating function
m,n≥0

Am,n


s t x − n y − m
0 0 0 0


um

m!

vn

n!
=

eu(x+s)+v(y+t)

1 − uv
.

Note the similarity of Formula (33) with Riordan’s Abel identity of An(x, y; 0, 0), which was also called Cauchy’s formula
and given in [18, Formula (24), Chapter 1]:

An(x, y; 0, 0) =

n
k=0

(n)k(x + y + n)n−k.

5.3. Formula for α = −1 and β = γ = δ = 0

Using the recurrence relations ofAm,n and Theorem5.1, we can obtain the closed formula for another case, namely, when
exactly one of α, β, γ , δ is −1 and the others are 0. We work out the details with α = −1 and β = γ = δ = 0.

In (21), applying (24) to the second term, we have

Am,n


s t x y
α β γ δ


= sAm,n


s t x y

α − 1 β γ δ


+ nAm,n−1


s + 1 t x y
α − 1 β γ δ + 1


= sAm,n


s t x y

α − 1 β γ δ


+ n


yAm,n−1


s + 1 t x y
α − 1 β γ δ


+ mAm−1,n−1


s + 1 t x y + 1

α β γ δ


.

Hence

sAm,n


s t x y

α − 1 β γ δ


+ nyAm,n−1


s + 1 t x y
α − 1 β γ δ


= Am,n


s t x y
α β γ δ


− mnAm−1,n−1


s + 1 t x y + 1

α β γ δ


. (34)
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When α = β = γ = δ = 0, using (33) one computes that

Am,n


s t x y
0 0 0 0


− mnAm−1,n−1


s + 1 t x y + 1
0 0 0 0


= (s + x + n)m(t + y + m)n.

Therefore (34) leads to the identity

sAm,n


s t x y

−1 0 0 0


+ nyAm,n−1


s + 1 t x y
−1 0 0 0


= (s + x + n)m(t + y + m)n. (35)

The general formula of Am,n with (α, β, γ , δ) = (−1, 0, 0, 0) can be obtained by iterating the recurrence (35) with the
initial value

Am,0


s t x y

−1 0 0 0


= s−1(s + x)m.

For example,

Am,1


s t x y

−1 0 0 0


= (x + s + 1)m


t + y + m

s
−

y
s(s + 1)


.

Am,2


s t x y

−1 0 0 0


= (s + x + 2)m


(t + y + m)2

s
−

2y(t + y + m)

s(s + 1)
+

y2

s(s + 1)(s + 2)


.

In general, we have

Theorem 5.2.

Am,n


s t x y

−1 0 0 0


= (s + x + n)m


n

i=0

(−1)i(n)i
(s + i)i+1

(t + y + m)n−iyi


. (36)

When s = 1, the formula (36) is much simpler. In that case, (s + i)i+1 = (1 + i)!, and hence

Corollary 5.3.

Am,n


1 t x y

−1 0 0 0


= (1 + x + n)m


n

i=0

(−1)i(n)i
(1 + i)!

(t + y + m)n−iyi


=
(1 + x + n)m

(n + 1)y
((t + y + m)n+1

− (t + m)n+1).

Note that one cannot take s = 0 directly in (35) since s is not allowed to be zero when α = −1 in the defining Eq. (18) of
Am,n.

5.4. Final remark

We conclude the paper by briefly mentioning another interesting case where the matrix A is degenerate, i.e.,

A =


a ab
ca cab


.

Applying the same techniques as in the preceding subsections, we obtain a simpler expression for the following double
summation. Let

Bm,n(s, t, x, y) =

(m,n)
(i,j)=(0,0)


m
i


n
j


(s + i + bj)m−i(t + i + bj)n−j

·(x − i − bj)i(y − i − bj)j−1. (37)
Then we have

Bm,n(s, t, x, y; b) = (t + y)n


m
i=0

(−1)i(m)i

(y)i+1
(s + x)m−i(y − x)i


. (38)

Note that Bm,n(s, t, x, y; b) is independent of b. In particular, when y = −1, (y)i+1 = (−1)i+1(i + 1)! Therefore we obtain
the closed formula

Bm,n(s, t, x, −1; b) =
(t − 1)n

(1 + x)(1 + m)


(s − 1)m+1

− (s + x)m+1 . (39)

We skip the details of computation.
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