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Abstract Univariate Gončarov polynomials arose from the Gončarov interpolation problem in numerical anal-

ysis. They provide a natural basis of polynomials for working with u-parking functions, which are integer

sequences whose order statistics are bounded by a given sequence u. In this paper, we study multivariate

Gončarov polynomials, which form a basis of solutions for multivariate Gončarov interpolation problem. We

present algebraic and analytic properties of multivariate Gončarov polynomials and establish a combinatorial

relation with integer sequences. Explicitly, we prove that multivariate Gončarov polynomials enumerate k-tuples

of integers sequences whose order statistics are bounded by certain weights along lattice paths in Nk. It leads

to a higher-dimensional generalization of parking functions, for which many enumerative results can be derived

from the theory of multivariate Gončarov polynomials.
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1 Introduction

Gončarov polynomials arose in a special case of Hermite interpolation in numerical analysis.

Gončarov interpolation. Given two sequences of real or complex numbers a0, a1, . . . , an and b0, b1,

. . . , bn, find a polynomial p(x) of degree n such that for each i, 0 � i � n, the i-th derivative p(i)(x)

evaluated at ai equals bi.

The natural basis of polynomials for this interpolation problem is the sequence of Gončarov polynomials

(see [1, 2, 9, 13]), which are polynomials gn(x; a0, a1, . . . , an−1) defined by the biorthogonality relation:

ε(ai)D
ign(x; a0, a1, . . . , an−1) = n!δin,

where D is the differential operator, and ε(a) is evaluation at a. A special case of this is Abel interpolation,

where the point ai is the integer i. The Gončarov polynomials for this case are the Abel polynomials,

which frequently appear in enumerative combinatorics and are closely related to counting of labeled trees

and some special integer sequences called parking functions.

For a sequence of numbers (x1, x2, . . . , xn), the order statistics are the sequence x(1) � x(2) � · · · � x(n)

obtained by rearranging the original sequence in non-decreasing order. An ordinary parking function is

∗Corresponding author
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a sequence (x1, . . . , xn) of non-negative integers whose order statistics satisfy x(i) < i for all i. Ordinary

parking functions originated in the theory of hashing and searching in computer science (see [7, 8]), and

have been studied extensively in combinatorial literature. In particular, the number of ordinary parking

functions is an evaluation of an Abel polynomial.

There are many generalizations of ordinary parking functions. One of them is a set of integer sequences

called u-parking functions, which are studied in [10, 11, 14, 16–19]. Let u = (u1, u2, . . . ) be a sequence

of non-decreasing positive integers. A u-parking function of length n is a sequence (x1, x2, . . . , xn) of

non-negative integers whose order statistics satisfy x(i) < ui. Gončarov polynomials form a basis of

polynomials for working with u-parking functions. For example, the number of u-parking functions of

length n is (−1)ngn(0;u1, u2, . . . , un). When the sequence u is an arithmetic progression, the Gončarov

polynomial is an Abel polynomial. Gončarov polynomials have many nice algebraic and analytic proper-

ties, which extend automatically to u-parking functions. In particular, Gončarov polynomials satisfy a

linear recursion obtained by expanding xn as a linear combination of Gončarov polynomials, which leads

to a decomposition of an arbitrary sequence of non-negative integers into two subsequences: a maximum

u-parking function and a subsequence consisting of terms of higher values. Many enumerative results of

u-parking functions can be derived from this decomposition.

Gončarov interpolation problem has a natural generalization in multi-variables, whose solutions are

characterized by multivariate Gončarov polynomials. Explicitly, let n1, n2, . . . , nk be positive integers.

Given a set of nodes S = {zi1,...,ik ∈ Rk | 0 � ij � nj} and values {bi1,...,ik ∈ R | 0 � ij � nj}, we want

to find a polynomial P ∈ R[x1, . . . , xk] whose partial derivatives satisfy

∂i1+···+ik

∂xi1
1 · · · ∂xik

k

P (zi1,...,ik) = bi1,...,ik .

Such a problem has a unique solution in the space of polynomials of coordinate degree (n1, . . . , nk), i.e.,

in the space Pn1,...,nk
, where

Pn1,...,nk
=

{
P ∈ R[x1, . . . , xk]

∣∣∣∣P =
∑

0�ij�nj

ai1,...,ikx
i1
1 xi2

2 · xik
k , ai1,...,ak

∈ R

}
.

Multivariate Gončarov polynomials are the natural basis of polynomials for this interpolation problem. In

this paper, we establish algebraic and analytic properties of multivariate Gončarov polynomials analogous

to those of the univariate ones, including a linear recurrence, generating functions, differential and integral

relations, a shift invariance formula, a perturbation formula, and a Sheffer relation. We show that the

coefficients of multivariate Gončarov polynomials can be expressed combinatorially in terms of ordered

partitions, which are partitions of a finite set whose blocks are linearly ordered. More interestingly,

multivariate Gončarov polynomials have a close relationship with order statistics of integer sequences.

The main combinatorial result of this paper is that a Gončarov polynomial in k variables with index

(n1, n2, . . . , nk) and the node set S enumerates the set of k-tuples of integer sequences (x1,x2, . . . ,xk),

where xi is a sequence of length ni, and the order statistics of these sequences are bounded by certain

weights along some lattice paths from the origin to (n1, . . . , nk) in Zk
+. The weights on the lattice

paths are given by the node set S. (See Section 6 for the exact description.) This leads to a new, higher-

dimensional generalization of classical parking functions, for which multivariate Gončarov polynomials are

the corresponding algebraic counterpart. Any reasonable formula for multivariate Gončarov polynomials

yields automatically a reasonable formula for higher-dimensional parking functions.

We remark that another type of Gončarov polynomial has been investigated by He [3]. Given n nodes

in R
k, He interpolated partial derivatives there with polynomials of degree n − 1 in k variables. Since

there are more polynomial coefficients than the number of interpolation conditions, additional constraints

are added in order to make the interpolation unique, much in the same way as in Kergin interpolation [5].

The multivariate Gončarov polynomials discussed in this paper are different from He’s.

For simplicity and clarity we present our results in two variables only. It is easy to extend all the

results to polynomials with k variables, for any positive integer k. The paper is organized as follows.
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First we review the theory of sequences of biorthogonal polynomials and results of univariate Gončarov

polynomials in Section 2. Then we introduce the bivariate generalization of Gončarov polynomials and

describe their algebraic and analytic properties in Section 3. In Section 4 we present a combinatorial

description of the coefficients of bivariate Gončarov polynomials in terms of ordered partitions. The

last two sections are focused on the relations between bivariate Gončarov polynomials gm,n((x, y);Z)

and order statistics of integer sequences. Section 5 contains explicit formulas for the case n = 1, where

the Gončarov polynomials can also be expressed in terms of u-parking functions. The combinatorial

representation for general cases is given in Section 6, where we propose a notion of 2-dimensional parking

functions, establish their relation with bivariate Gončarov polynomials, and derive a formula for the sum

enumerator of 2-dimensional parking functions.

2 Sequences of biorthogonal polynomials and univariate Gončarov polyno-

mials

We begin by giving an outline of the theory of sequences of polynomials biorthogonal to a sequence of

linear functionals. The details can be found in [10].

Let P be the vector space of all polynomials in the variable x over R. Let D : P → P be the

differentiation operator, and ε(a) : P → R be the evaluation at a ∈ R.

Let ϕs(D), s = 0, 1, 2, . . . be a sequence of linear operators on P of the form

ϕs(D) = Ds
∞∑
r=0

bsrD
r, (2.1)

where the coefficients bs0 are assumed to be non-zero. There exists a unique sequence pn(x), n = 0, 1, 2, . . .

of polynomials such that pn(x) has degree n and

ε(0)ϕs(D)pn(x) = n!δsn, (2.2)

where δsn is the Kronecker delta.

The polynomial sequence pn(x) is said to be biorthogonal to the sequence ϕs(D) of operators, or, the

sequence ε(0)ϕs(D) of linear functionals. Using Cramer’s rule to solve the linear system and Laplace’s

expansion to group the results, we can express pn(x) by the the following determinantal formula:

pn(x) =
n!

b00b10 · · · bn0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b00 b01 b02 . . . b0,n−1 b0n

0 b10 b11 . . . b1,n−2 b1,n−1

0 0 b20 . . . b2,n−3 b2,n−2

...
...

...
. . .

...
...

0 0 0 . . . bn−1,0 bn−1,1

1 x x2/2! . . . xn−1/(n− 1)! xn/n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.3)

The series {pn(x)}∞n=0 forms a basis of P . A special example of sequences of biorthogonal polynomials

is the Gončarov polynomials. Let (a0, a1, a2, . . .) be a sequence of numbers or variables called nodes. The

sequence of Gončarov polynomials gn(x; a0, a1, . . . , an−1), n = 0, 1, 2, . . . is the sequence of polynomials

biorthogonal to the operators

ϕs(D) = Ds
∞∑
r=0

arsD
r

r!
= ε(as)D

s.

As indicated by the notation, gn(x; a0, a1, . . . , an−1) depends only on the nodes a0, a1, . . . , an−1. Indeed,

one can write down a determinantal formula of gn(x; a0, a1, . . . , an−1) using Equation (2.3). In particular,

when all the ai equal a, we have gn(x; a, a, . . . , a) = (x−a)n and Gončarov interpolation is just expansion
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as a power series at x = a. When a0, a1, a2, . . . form an arithmetic progression a, a+ b, a+2b, . . . , we get

Abel polynomials gn(x; a, a+ b, a+ 2b, . . . , a+ (n− 1)b) = (x − a)(x− a− nb)n−1.

Gončarov polynomials have many nice algebraic and analytic properties, which make them very useful

in analysis and combinatorics. Here we list some basic properties whose proofs can be found in [10].

1. Expansion formula. If p(x) is a polynomial of degree n, then

p(x) =

n∑
i=0

ε(ai)D
ip(x)

i!
gi(x; a0, a1, . . . , ai−1).

2. Linear recurrence. Let p(x) = xn in the expansion formula, we have

xn =

n∑
i=0

(
n

i

)
an−i
i gi(x; a0, a1, . . . , ai−1).

3. Appell relation.

ext =

∞∑
n=0

gn(x; a0, a1, . . . , an−1)
tneant

n!
.

4. Differential relations. The Gončarov polynomials can be equivalently defined by the differential rela-

tions Dgn(x; a0, a1, . . . , an−1) = ngn−1(x; a1, a2, . . . , an−1), with initial conditions gn(a0; a0, a1, . . . , an−1)

= δ0n.

5. Integral relations.

gn(x; a0, a1, . . . , an−1) = n

∫ x

a0

gn−1(t; a1, a2, . . . , an−1)dt = n!

∫ x

a0

dt1

∫ t1

a1

dt2 · · ·
∫ tn−1

an−1

dtn.

6. Shift invariance. gn(x+ ξ; a0 + ξ, a1 + ξ, . . . , an−1 + ξ) = gn(x; a0, a1, . . . , an−1).

7. Perturbation formula.

gn(x; a0, . . . , am−1, am + bm, am+1, . . . , an−1)

= gn(x; a0, . . . am−1, am, am+1, . . . , an−1)

−
(
n

m

)
gn−m(am + bm; am, am+1, . . . , an−1)gm(x; a0, a1, . . . , am−1).

8. Sheffer relation.

gn(x+ y; a0, . . . , an−1) =

n∑
i=0

(
n

i

)
gn−i(y; ai, . . . , an−1)x

i.

In particular,

gn(x; a0, . . . , an−1) =

n∑
i=0

(
n

i

)
gn−i(0, ai, . . . , an−1)x

i.

That is, coefficients of Gončarov polynomials are constant terms of (shifted) Gončarov polynomials.

9. Combinatorial representation. Let u = (u1, u2, . . . ) be a sequence of non-decreasing positive integers.

Recall that a u-parking function of length n is a sequence (x1, x2, . . . , xn) of non-negative integers whose

order statistics satisfy x(i) < ui for 1 � i � n. Denote by PKn(u) the set of u-parking functions of

length n, and by PKn(u) the size of PKn(u). Then we have

PKn(u) = PKn(u1, u2, . . . , un) = gn(x;x − u1, x− u2, . . . , x− un)

= gn(0;−u1,−u2, . . . ,−un)

= (−1)ngn(0;u1, u2, . . . , un).

For more properties and computations of parking functions via Gončarov polynomials, please refer

to [10–12]. In particular, the sum enumerator and factorial moments of the sums are computed. For
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u-parking functions, the sum enumerator is a specialization of gn(x; a0, a1, . . . , an−1) with ai = 1 + q

+ · · ·+qui−1. Generating functions for factorial moments of sums of u-parking functions are given in [10],

while the explicit formulas for the first and second factorial moments of sums of u-parking functions are

given in [11], and in [12] for all factorial moments for classical parking functions where the sequence ui

is an arithmetic progression.

3 Algebraic properties of bivariate Gončarov polynomials

Sequences of multivariate biorthogonal polynomials can be defined by replacing the differential operator

D with partial derivatives. It turns out that we can define the multivariate Gončarov polynomials which

are the basis of solutions of the general Gončarov interpolation problem. Many algebraic and analytic

properties listed in the preceding section can be extended to the multivariate generalization. For simplicity

and clarity, we state and prove the results for the bivariate case only. It is routine to extend the results

to more variables.

In this paper N = {0, 1, 2, . . .} represents the set of all natural numbers.

Definition 1. A finite subset S of N2 is called a lower set if for any (m,n) ∈ S, we have that (i, j) ∈ S

for any 0 � i � m and 0 � j � n.

Let PS be the space of bivariate polynomials

PS =

{
P

∣∣∣∣P (x, y) =
∑

(i,j)∈S

ai,jx
iyj , ai,j ∈ R

}
. (3.1)

Some special cases of the lower set S are

1. S = [0, 1, . . . ,m]× [0, 1, . . . , n]. Then PS is the space of bivariate polynomials of coordinate degree

(m,n). It is denoted by Π2
m,n.

2. S = {(i, j) | 0 � i+ j � n}. Then PS is the space of bivariate polynomials of (total) degree n. It is

denoted by Π2
n.

Bivariate Gončarov interpolation problem. Given a lower set S, a set of nodes {zi,j = (xi,j , yi,j) |
(i, j) ∈ S} and a set of real numbers {bi,j | (i, j) ∈ S}, find a polynomial P ∈ PS satisfying

∂i+j

∂xi∂yj
P (xi,j , yi,j) = bi,j (3.2)

for all (i, j) ∈ S.

That the bivariate Gončarov interpolation problem is uniquely solvable follows from the fact that

with the appropriate ordering of the monomials xiyj and the corresponding order of the functionals

ε((xi,j , yi,j))∂
i+j/∂xi∂yj, the matrix of the linear system for the coefficients of the solution is an upper

diagonal matrix with non-zero entries on the diagonal. Here ε((x0, y0)) is evaluation at (x0, y0). An

appropriate order for both monomials and functionals is the faster scan order, i.e., (i, j) < (i′, j′) if

i+ j < i′ + j′, or i+ j = i′ + j′ and i < i′.
In particular, given (i, j) ∈ S, there exist unique polynomials Pi,j ∈ PS satisfying

∂r+s

∂xr∂ys
Pi,j(xr,s, yr,s) = δr,iδs,j (3.3)

for all (r, s) ∈ S. The uniqueness of the solution implies that

• Pi,j is a linear combination of only those monomials xky� with k � i and � � j, i.e., Pi,j ∈ Π2
i,j .

• Pi,j does not depend on S as long as (i, j) ∈ S.

• Pi,j does not depend on the node zi,j = (xi,j , yi,j).

In light of the above, we have
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Definition 2. Given a set of nodes Z = {zi,j = (xi,j , yi,j) | (i, j) ∈ N2}, the bivariate Gončarov

polynomial gi,j((x, y);Z) is the unique polynomial in Π2
i,j satisfying

∂r+s

∂xr∂ys
gi,j(zr,s) = i!j!δr,i δs,j (3.4)

for all 0 � r � i and 0 � s � j.

Note that gi,j((x, y);Z) depends only on the nodes {zr,s | 0 � r � i, 0 � s � j, (r, s) �= (i, j)}.
Nevertheless, for consistency we use the same (infinite) set Z throughout the paper.

Example 3.1. Some examples of bivariate Gončarov polynomials.

1. Comparing the definitions of univariate and bivariate Gončarov polynomials, we have

gi,0((x, y);Z) = gi(x;x0,0, x1,0, . . . , xi−1,0),

g0,j((x, y);Z) = gj(y; y0,0, y0,1, . . . , y0,j−1),

where gi and gj are univariate Gončarov polynomials.

2. When the set of node Z is a grid, i.e., (xi,j , yi,j) = (αi, βj) for some sequences {αi} and {βj}, then
gi,j((x, y);Z) = gi(x;α0, . . . , αi−1) gj(y;β0, . . . , βj−1)

is the product of univariate Gončarov polynomials in variables x and y. In particular, when αi = α and

βj = β are constants, we have gi,j((x, y);Z) = (x − α)i(y − β)j and the Gončarov interpolation is just

the Taylor expansion at (x, y) = (α, β). When xi and yj are arithmetic progressions, gi,j((x, y);Z) is an

product of Abel polynomials in x and y respectively. Multivariate Gončarov polynomials associated to a

grid were studied in [4].

3. Using MATLAB, we obtain

g11((x, y);Z) = xy − y10x− x01y + y10x00 + x01y00 − x00y00,

and

g21((x, y);Z) = x2y − 2x11xy + (2x01x11 − x2
01)y − y20x

2

+ (2x11y10 + 2y20x10 − 2x10y10)x− x2
00y00 + 2x11x00y00

− 2x01x11y00 + x2
01y00 + y20x

2
00 + 2x10y10x00 − 2x11y10x00 − 2y20x10x00.

Many properties of the univariate Gončarov polynomials can be extended to the multivariable gener-

alizations.

Theorem 3.2 (Expansion formula). For any p ∈ Π2
m,n,

p(x, y) =

m∑
i=0

n∑
j=0

1

i!j!

[
ε(zi,j)

∂i+j

∂xi∂yj
p(x, y)

]
gi,j((x, y);Z). (3.5)

Proof. This follows immediately from the biorthogonality of the functionals and the definition of bivari-

ate Gončarov polynomials.

For p(x, y) = xmyn, we obtain the linear recursion

Theorem 3.3 (Linear recursion).

xmyn =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j gi,j((x, y);Z). (3.6)

Theorem 3.4 (Appell relation).

esx+ty =

∞∑
m=0

∞∑
n=0

gm,n((x, y);Z)
smexm,ns

m!

tneym,nt

n!
. (3.7)
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Proof. We use, for any um,i,

∞∑
m=0

m∑
i=0

um,i =

∞∑
i=0

∞∑
m=i

um,i and

∞∑
m=i

1

m!

(
m

i

)
xm−ism =

si

i!

∞∑
r=0

1

r!
xrsr =

si

i!
exs

to obtain

esx+ty =
∞∑

m=0

∞∑
n=0

xmsm

m!

yntn

n!

=

∞∑
m=0

∞∑
n=0

m∑
i=0

n∑
j=0

1

m!

(
m

i

)
1

n!

(
n

j

)
xm−i
i,j smyn−j

i,j tngi,j((x, y);Z)

=

∞∑
i=0

∞∑
m=i

∞∑
j=0

∞∑
n=j

1

m!

(
m

i

)
1

n!

(
n

j

)
xm−i
i,j smyn−j

i,j tngi,j((x, y);Z)

=

∞∑
i=0

∞∑
j=0

gi,j((x, y);Z)

∞∑
m=i

1

m!

(
m

i

)
xm−i
i,j sm

∞∑
n=j

1

n!

(
n

j

)
yn−j
i,j tn

=

∞∑
i=0

∞∑
j=0

gi,j((x, y);Z)
si

i!

tj

j!
exm,ns+ym,nt.

The proof is complete.

Next, we derive the differential and integral relations for bivariate Gončarov polynomials. For the set

Z = {zi,j | i, j ∈ N}, let LZ = {wi,j | wi,j = zi+1,j , i, j ∈ N}, i.e., the first column of the set of nodes is

deleted and the others are moved to the left. Similarly define the set DZ as {wi,j | wi,j = zi,j+1, i, j ∈ N},
in which the first row of nodes of Z is deleted and the others are moved down. Then we have

Theorem 3.5 (Differential relations).

∂

∂x
gm,n((x, y);Z) = mgm−1,n((x, y);LZ), (3.8)

∂

∂y
gm,n((x, y);Z) = ngm,n−1((x, y);DZ). (3.9)

Proof. We prove the first relation only. Let h(x, y) = ∂
∂xgm,n((x, y);Z). Then h is a polynomial in

Π2
m−1,n. From the definition of gm,n((x, y);Z), h satisfies the interpolation conditions

∂r+s

∂xr∂ys
h(zr+1,s) =

∂r+1+s

∂xr+1∂ys
gm,n(zr+1,s) = 0

for 0 � r � m− 1, 0 � s � n and (r, s) �= (m− 1, n).

For (r, s) = (m− 1, n),
∂m−1+n

∂xm−1∂yn
h(zm,n) = m!n! = m(m− 1)!n!,

which are the same conditions that mgm−1,n((x, y);LZ) satisfies. Since the interpolation is unique,

h(x, y) = mgm−1,n((x, y);LZ).

Corollary 3.6. The general differential formula is

∂i+j

∂xi∂yj
gm,n((x, y);Z) = (m)i(n)j gm−i,n−j((x, y);D

jLiZ), (3.10)

where for any number r, (r)k = r(r − 1) · · · (r − k + 1) is the k-th lower factorial of r.

Theorem 3.7 (Integral relations). Let m � 1 and

Gm,n((x, y);LZ) = m

∫ x

gm−1,n((t, y);LZ)dt,
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where
∫ x

gm−1,n((t, y);LZ)dt is that indefinite integral with respect to x of gm−1,n((x, y);LZm,n) which

contains no constant term, i.e., no term of the form h(y).

Also, let Pn(y) be the solution of the univariate Gončarov interpolation problem

ε(y0,j)
dj

dyj
Pn(y) = ε(x0,j , y0,j)

∂j

∂yj
Gm,n((x, y);LZ)

for j = 0, . . . , n. Then

gm,n((x, y);Z) = Gm,n((x, y);LZ)− Pn(y). (3.11)

Similarly, if n � 1 and

Hm,n((x, y);LZ) = n

∫ y

gm,n−1((x, s);DZ) ds

and Qm(x) is the solution of the univariate Gončarov interpolation problem

ε(xi,0)
di

dxi
Qm(x) = ε(xi,0, yi,0)

∂i

∂xi
Hm,n((x, y);DZ)

for i = 0, . . . ,m, then

gm,n((x, y);Z) = Hm,n((x, y);DZ)−Qm(x). (3.12)

Proof. Again we only prove Formula (3.11). From the differential relations we have

∂

∂x
gm,n((x, y);Z) = mgm−1,n((x, y);LZ).

From the definition of Gm,n((x, y);LZ),

∂

∂x
Gm,n((x, y);LZ) = mgm−1,n((x, y);LZ).

Thus the difference Gm,n((x, y);LZm,n) − gm,n((x, y);Zm,n) is a function of y, actually a polynomial

Rn(y) of degree at most n in y. For Rn(y),

ε(y0,j)
dj

dyj
Rn(y) = ε(x0,j , y0,j)

∂j

∂yj
Gm,n((x, y);LZ).

From the differential relation, the interpolation conditions are satisfied for all nodes (xij , yij) with i � 1.

Subtracting Rn forces the interpolation conditions to be satisfied for i = 0.

Theorem 3.8 (Shift invariance). Let Ea be the shift operator (Eaf)(x) = f(x− a). Since shifts of a

function commute with derivatives and since (Eaf)(x+ a) = f(x), we have a shift invariance formula

gm,n((x+ ξ, y + η);Z + (ξ, η)) = gm,n((x, y);Z). (3.13)

In particular,

gm,n((0, 0);Z − (x, y)) = gm,n((x, y);Z), (3.14)

where Z − (x, y) = {(xi,j − x, yi,j − y) | i, j ∈ N}.
Theorem 3.9 (Perturbation formula). Let us perturb the (i0, j0)-th node of Z to be z∗i0,j0 and denote

the new set of nodes by Z∗. Then for (i0, j0) � (m,n),

gm,n((x, y);Z
∗) = gm,n((x, y);Z)−

(
m

i0

)(
n

j0

)
gm−i0,n−j0(z

∗
i0,j0 ;D

j0Li0Z)gi0,j0((x, y);Z).

Proof. Note that gm,n((x, y);Z) satisfies the same interpolation conditions as gm,n((x, y);Z
∗) except

at the (i0, j0)-th node, where
∂i0+j0

∂xi0∂yj0
gm,n(z

∗
i0,j0 ;Z)
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might not be 0. Subtracting the polynomial

∂i0+j0

∂xi0∂yj0
gm,n(z

∗
i0,j0 ;Z)

1

i0!

1

j0
gi0,j0((x, y);Z)

from gm,n((x, y);Z) yields a polynomial satisfying all of the conditions that gm,n((x, y);Z
∗) does. Using

the differential relations we obtain the perturbation formula.

Theorem 3.10 (Sheffer relation).

gm,n((x + b, y + c);Z) =
m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
gm−i,n−j((b, c);L

iDjZ)xiyj . (3.15)

Proof. Using the Taylor expansion about (b, c) and the differential relations

gm,n((x+ b, y + c);Z) =

m∑
i=0

n∑
j=0

1

i! j!

∂i+j

∂xi∂yj
[gm,n((b, c);Z)]xiyj

=

m∑
i=0

n∑
j=0

1

i! j!
· (m)i(n)j gm−i,n−j((b, c);L

iDjZ)xiyj

=

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
gm−i,n−j((b, c);L

iDjZ)xiyj ,

we finish the proof.

4 Coefficients of bivariate Gončarov polynomials

In this section we give an explicit formula and a combinatorial interpretation of the coefficients of bivariate

Gončarov polynomials. First we show that it suffices to consider only the constant terms.

Setting b = c = 0 in the Sheffer relation (3.15), we get

gm,n((x, y);Z) =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
gm−i,n−j((0, 0);L

iDjZ)xiyj . (4.1)

Hence the coefficients of bivariate Gončarov polynomials are products of binomial coefficients and the

constant terms of (shifted) bivariate Gončarov polynomials.

Example 4.1. Some explicit formulas for gm,n((0, 0);Z).

g1,1((0, 0);Z) = x0,0y1,0 + x0,1y0,0 − x0,0y0,0

g2,1((0, 0);Z) = −x2
0,0y0,0 + 2x1,1x0,0y0,0 − 2x0,1x1,1y0,0 + x2

0,1y,00

+ y2,0x
2
0,0 + 2x1,0y1,0x0,0 − 2x1,1y1,0x0,0 − 2y2,0x1,0x0,0.

Let fm,n be the number of monomials in the constant term of gm,n((x, y);Z), where we ignore the sign

and count multiplicity. For example, f1,1 = 3 and f2,1 = 13. The initial values of fm,n are listed in the

following table, where the rows are indexed by m and columns are indexed by n.

(m,n) 0 1 2 3 4 5

0 1 1 3 13 75 541

1 1 3 13 75 541

2 3 13 75 541

3 13 75 541

4 75 541

5 541
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We observe that fm,n depends only on m + n. The sequence 1, 1, 3, 13, 75, 541, . . . is the sequence

A000670 in the On-line Encyclopedia of Integer Sequences, which counts the number of preferential

arrangements, or ordered partitions of a set. Let S be a set with n elements. An ordered partition of S is

an ordered list (B1, B2, . . . , Bk) of disjoint non-empty subsets of S such that B1∪B2∪· · ·∪Bk = S. Write

an ordered partition by B1/B2/ · · · /Bk. Let αn be the number of ordered partitions of an n-element

set S. For example, α3 = 13, where the ordered partitions of {1, 2, 3} are 123, 12/3, 13/2, 23/1, 1/23,

2/13, 3/12, 1/2/3, 1/3/2, 2/1/3, 2/3/1, 3/1/2 and 3/2/1. The exponential generating function of αn is

well-known, for example, see [15, 3.15.10],

∑
n�0

αn
xn

n!
=

1

2− ex
.

Given an ordered partition π = B1/B2/ · · · /Bk of S, for two elements i, j ∈ S, we say that i is of a

lower rank than j if i ∈ Bs, j ∈ Bt and s < t.

Let

Am,n = {a1, a2, . . . , am, b1, b2, . . . , bn}
be a set consisting of m+ n elements. For an ordered partition π of Am,n and any element c ∈ Am,n, let

σ(c) = #{ai ∈ Am,n | ai has a lower rank than c}, (4.2)

ρ(c) = #{bj ∈ Am,n | bj has a lower rank than c}. (4.3)

We have the following combinatorial interpretation of gm,n((0, 0);Z).

Theorem 4.2.

gm,n((0, 0);Zm,n) =
∑
π

(−1)|π|
∏

ai∈Am,n

xσ(ai),ρ(ai)

∏
bj∈Am,n

yσ(bj),ρ(bj), (4.4)

where π ranges over all ordered partitions of Am,n, and |π| is the number of blocks in π. As a corollary,

fm,n = αm+n.

Proof. Denote by Γ(m,n) the sum on the right-hand side of Equation (4.4). By convention, set Γ(0, 0) =

1. Equation (4.4) holds for (m, 0), (0, n), which is proved in [10, Theorem 4.2].

In the linear recurrence (3.6), letting x = y = 0 and moving gm,n to the left-hand side of the equation,

we obtain

gm,n((0, 0);Z) = −
∑

(i,j) �=(m,n)

(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j gi,j((0, 0);Z). (4.5)

We shall show that Γ(m,n) satisfies the same recurrence relation. Let OP (i, j) be the set of all the

ordered partitions of the set Am,n where the last block Bk contains m − i elements from {a1, . . . , am}
and n − j elements from {b1, . . . , bn}. Note that (i, j) �= (m,n) since Bk cannot be empty. There are(
m
i

)(
n
j

)
ways to choose elements of Bk. Let T = Am,n \Bk. Hence the contribution of ordered partitions

in OP (i, j) to Γ(m,n) can be computed as

(−1) ·
(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j ·
∑
π′

(−1)|π
′| ∏

as∈T

xσ(as),ρ(as)

∏
bt∈T

yσ(bt),ρ(bt),

where π′ ranges over all ordered partitions of T . Summing over all i, j with 0 � i � m, 0 � j � n and

(i, j) �= (m,n), and using an inductive argument on m+n, one proves that gm,n((0, 0);Z) = Γ(m,n).

Example 4.3. The following table shows the correspondence between ordered partitions of the set

{a1, a2, b} and the monomials in g2,1((0, 0);Z).
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Ordered partition Term in g2,1((0, 0);Z)

a1a2b −x2
0,0y0,0

a1a2/b x2
0,0y2,0

a1/a2b, a2/a1b 2x0,0x1,0y1,0

a1b/a2, a2b/a1 2x0,0y0,0x1,1

b/a1a2 y0,0x
2
0,1

a1/a2/b, a2/a1/b −2x0,0x1,0y2,0

a1/b/a2, a2/b/a1 −2x0,0y1,0x1,1

b/a1/a2, b/a2/a1 −2y0,0x0,1x1,1

Corollary 4.4. The bivariate Gončarov polynomial gm,n((x, y);Z) is homogeneous of degree (m,n),

i.e., viewed as a polynomial of x, y, xi,j and yi,j, every term in the expansion of gm,n((x, y);Z) has total

x-degree m and y-degree n.

This follows from Theorem 4.2 and Equation (4.1) given at the beginning of this section.

5 Polynomial gm,1((x, y);Z) and integer sequences

The rest of the paper is devoted to the combinatorics theory of bivariate Gončarov polynomials. In

the case that Z is a grid, i.e., (xi,j , yi,j) = (αi, βj) for some sequences {αi} and {βj}, we have that

gm,n((x, y), Z) = gm(x;α0, . . . , αm−1)gn(y;β0, . . . , βn−1), which counts the number of pairs of sequences

(a, b), where a = (a0, a1, . . . , am−1) satisfies 0 � a(i) < x − αi, and b = (b0, b1, . . . , bn−1) satisfies

0 � b(j) < y − βj, for 0 � i < m, 0 � j < n.

When Z is not a grid, gm,n((x, y);Z) also counts pairs of sequences with certain constraints on their

order statistics. In this section we describe the combinatorial representation of gm,1((x, y);Z) and

express gm,1((x, y);Z) in terms of u-parking functions. The combinatorial interpretation for general

gm,n((x, y);Z) will be given in the next section.

Notation. Let Zm,n ⊂ Z be the set of nodes Zm,n = {zi,j = (xi,j , yi,j) | 0 � i � m, 0 � j � n}.
Assume that xi,j , yi,j are all positive integers, where xi,j � xi′,j′ and yi,j � yi′,j′ whenever i � i′ � m

and j � j′ � n. Let x > x0,0 and y > y0,0 be two sufficiently large positive integers.

Set ui,j = x − xi,j and vi,j = y − yi,j . Hence ui,j � ui′,j′ and vi,j � vi′,j′ whenever i � i′ � m and

j � j′ � n.

Let S(m,n) be the set of pairs of integer sequences (a, b), where a = (a0, a1, . . . , am−1) is of length m

whose terms satisfy 0 � ai < x, and b = (b0, b1, . . . , bn−1) is of lengths n whose terms satisfy 0 � bj < y.

Clearly |S(m,n)| = xmyn.

First we look at the combinatorial description of gm,1((x, y);Z) when m � 2. We would start with the

linear recurrence

xmyn =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j gi,j((x, y);Z). (5.1)

Example 5.1. The case m = n = 1. Equation (5.1) becomes

xy = x0,0y0,0g0,0((x, y);Z) + y1,0g1,0((x, y), Z) + x0,1g0,1((x, y);Z) + g1,1((x, y);Z). (5.2)

The left-hand side of Equation (5.2) counts the set S(1, 1), i.e., pairs of integers (a, b), where 0 � a < x

and 0 � b < y. The right-hand side has four terms:

1. x0,0y0,0g0,0 = x0,0y0,0. This counts the pairs such that a � u0,0 and b � v0,0.

2. y1,0g1,0((x, y), Z). This counts the pairs such that a < u0,0 but b � v1,0.

3. x0,1g0,1((x, y);Z). This counts the pairs such that b < v0,0 but a � u0,1.
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4. g1,1((x, y);Z): Comparing the above three cases with S(1, 1), we obtain that this term counts the

number of pairs (a, b) in the union of the two sets:

(1) a < u0,0 and b < v1,0, or (2) a < u0,1 and b < v0,0.

Example 5.2. The case m = 2 and n = 1. Equation (5.1) becomes

x2y =

2∑
i=0

(
2

i

)
x2−i
i,0 yi,0gi,0((x, y), Z) +

2∑
i=0

(
2

i

)
x2−i
i,1 gi,1((x, y), Z). (5.3)

The left-hand side of (5.3) counts number of pairs in S(2, 1). The right-hand side has six terms:

1. y0,0x
2
0,0g0,0 = y0,0x

2
0,0, which counts the pairs such that a(0) � u0,0, a(1) � u0,0, and b � v0,0.

2. The term 2y1,0x1,0g1,0 counts the pairs such that a(0) < u0,0 but a(1) � u1,0, and b � v1,0.

3. The term y2,0g2,0 counts the pairs such that a(0) < u0,0 and a(1) < u1,0, and b � v2,0.

4. The term x2
0,1g0,1 counts the pairs such that a(0) � u0,1, a(1) � u0,1, and b < v0,0.

5. The term 2x1,1g1,1 counts the union of pairs such that (1) a(0) < u0,0 but a(1) � u1,1, and b < v1,0;

or (2) a(0) < u0,1 but a(1) � u1,1, and b < v0,0.

6. The last term is g2,1((x, y);Z). Combining the above, we derive that this term counts the number

of pairs in the union of the following three sets:

(a) a(0) < u0,0, a(1) < u1,0 and b < v2,0.

(b) a(0) < u0,0, a(1) < u1,1 and b < v1,0.

(c) a(0) < u0,1, a(1) < u1,1 and b < v0,0.

For general m, we have the following description for gm,1((x, y);Z).

Theorem 5.3. The bivariate Gončarov polynomial gm,1((x, y);Z) counts the number of pairs of non-

negative integer sequences ((a0, a1, . . . , an−1), b) which are in the union

m⋃
i=0

{(a, b) : b < vi,0, a ∈ PKm(u0,0, . . . , ui−1,0, ui,1, . . . , um−1,1)}, (5.4)

where ui,j = x − xi,j and vi,j = y − yi,j. Equivalently, the set (5.4) can be expressed as the union of

disjoint sets Ai, where

Ai = {(a, b) | vi−1,0 � b < vi,0, a ∈ PKm(u0,0, . . . , ui−1,0, ui,1, . . . , um−1,1)} (5.5)

for i = 0, 1, . . . ,m. Here by convention u−1,0 = v−1,0 = 0.

Proof. We prove by induction on m. For m = 1, 2, Theorem 5.3 has been confirmed in Examples 5.1

and 5.2. Assume that the theorem holds for all positive integers less than m. We shall prove that it holds

for m as well.

Let Si = {((a0, a1, . . . , am−1), b) | 0 � ai < x, vi−1,0 � b < vi,0} for i = 0, 1, . . . ,m + 1, where by

convention v−1,0 = 0 and vm+1 = y. Let gm,1((xy);Z) ∩ Si be the set of sequences ((a0, . . . , am−1), b) in

Si that are counted by gm,1((x, y);Z). We just need to show that gm,1((x, y);Z)∩Si = Ai for 0 � i � m,

where Ai is given in (5.5), and gm,1((x, y);Z) ∩ Sm+1 = ∅.
For any sequence a = (a0, a1, . . . , am−1), compare its order statistics with t0, . . . , tm−1, where

tj =

{
uj,0, if j < i,

uj,1, if j � i.

Let κ = κ(a) be the maximum index such that

a(l) < tl, for l = 0, 1, . . . , κ− 1. (5.6)

It follows that a(κ) � tκ. Then the sequence a can be decomposed into two subsequences, the first

containing κ smallest terms and belonging to PKκ(t0, . . . , tκ−1), and the second containing m−κ largest

terms, each of which is in [tκ, x). Hence the set Si is a disjoint union of m+ 1 subsets Si(k), where

Si(k) = {(a; b) | κ(a) = k, vi−1,0 � b < vi,0 }, i = 0, 1, . . . ,m.
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The recurrence (5.1) with n = 1 becomes

xmy =
m∑
i=0

(
m

i

)
xm−i
i,0 yi,0gi,0((x, y), Z) +

m∑
i=0

(
m

i

)
xm−i
i,1 gi,1((x, y), Z). (5.7)

We analyze the contribution of each term on the right-hand side of Equation (5.7) to the set Si. First,

gj,0((x, y), Z) = PKj(u0,0, . . . , uj−1,0).

Hence the term (
m

j

)
xm−j
j,0 yj,0gj,0((x, y), Zi,0) (5.8)

counts the pairs of sequences ((a0, a1, . . . , am−1), b) such that

1. vj,0 � b < y;

2. the first j order statistics of the sequence a form a subsequence in PKj(u0,0, . . . , uj−1,0);

3. the largest m− j terms of the sequence a are in [uj,0, x).

Comparing with the set Si, we notice that the term (5.8) counts the number of all sequences in the set

Si(j) if j < i. While j � i, it does not count any sequence in Si. In particular, the sum of terms (5.8)

from j = 0, . . . ,m already counts all the sequences in Sm+1.

Next, we look at the term (
m

j

)
xm−j
j,1 gj,1((x, y), Z) (5.9)

for j < m. By inductive hypothesis, (5.9) counts the pairs of sequences (a, b) = ((a0, . . . , an), b) such

that

1. The largest m− j terms of the sequence a are in [uj,1, x).

2. Let a′ be the subsequence of a consisting of the smallest j terms. Then (a′, b) belongs to the disjoint

union of
j⋃

k=0

{(a′; b) | vk−1,0 � b < vk,0, a′ ∈ PKj(u0,0, . . . , uk−1,0, uk,1, . . . , uj−1,1)}.

Comparing with the set Si, we notice that when j < i, (5.9) counts nothing in Si; when i � j < m, it

counts all sequences in Si(j).

Excluding those sequences counted by (5.8) and (5.9) from the set Si, we obtain that gm,1((x, y);Z)

∩Si = Si(m), which is exactly the set Ai defined in (5.5).

Since vi,0 − vi−1,0 = yi−1,0 − yi,0, from (5.5) we get the following relation between gm,1((x, y);Zm,1)

and the univariate Gončarov polynomials gm(x).

Corollary 5.4.

gm,1((x, y);Z) =

m∑
i=0

(yi−1,0 − yi,0)gm(x;x0,0, . . . , xi−1,0, xi,1, . . . , xm−1,1),

where y−1,0 = y.

Using the shift invariance formula for univariate Gončarov polynomials and the combinatorial repre-

sentation by u-parking functions, we obtain the following corollary.

Corollary 5.5.

(−1)mgm,1((0, 0);Z) =
m∑
i=0

(yi−1,0 − yi,0)PKm(x0,0, . . . , xi−1,0, xi,1, . . . , xm−1,1),

where y−1,0 = 0.
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6 Polynomial gm,n((x, y);Z) and 2-dimensional parking function

For general m,n the bivariate Gončarov polynomial gm,n((x, y);Z) can also be interpreted as the number

of pairs of sequences (a, b) in S(m,n) whose order statistics satisfy certain constraints. In this section

we give the description for general cases, which leads to a definition of 2-dimensional parking functions.

We adopt the notation defined in the previous section. In addition, let Rm,n be the directed graph

whose vertices are all the lattice points {(i, j) : 0 � i � m, 0 � j � n}, and whose edges are all the

North and East unit steps connecting the vertices, where the North step is N = (0, 1) and the East step

is E = (1, 0). Associate to each edge e of Rm,n a weight wt(e) by letting

wt(e) =

{
ui,j , if e is an E-step from (i, j) to (i+ 1, j),

vi,j , if e is an N -step from (i, j) to (i, j + 1).
(6.1)

For a lattice path P from the origin O = (0, 0) to the point A = (m,n) in Rm,n consisting of N - and

E-steps, record the steps of P as P = p1p2 · · · pm+n, where pi ∈ {N,E} and there are exactly m E-steps

and n N -steps. Given a pair of sequences (a, b) ∈ S(m,n), we say that the order statistics of (a, b) are

bounded by the path P with respect to the set U = {(ui,j , vi,j) : 0 � i � m, 0 � j � n} if and only if the

order statistics of a are bounded by the weight on the E-steps, and the order statistics of b are bounded

by the weight on the N -steps of P . In other words, for r = 1, 2, . . . ,m+ n,{
a(i) < ui,j, if pr is an E-step from (i, j) to (i+ 1, j),

b(j) < vi,j , if pr is an N -step from (i, j) to (i, j + 1).
(6.2)

Denote by Sm,n(P ;U) the subset of S(m,n) consisting of the pairs of sequences (a, b) whose order

statistics are bounded by P with respect to U . Our main result is the following theorem.

Theorem 6.1. The bivariate Gončarov polynomial gm,n((x, y);Z) counts the number of pairs of se-

quences in S(m,n) whose order statistics are bounded by some lattice path from O to A = (m,n). That

is, gm,n((x, y);Z) is the cardinality of the union⋃
P :O→A

Sm,n(P ;U),

where P ranges over all lattice paths from O to A using N - and E-steps only, and the set U = {(ui,j , vi,j) :

0 � i � m, 0 � j � n} is determined by Z by the relations ui,j = x− xi,j , vi,j = y − yi,j.

We explain Theorem 6.1 using the example with m = n = 2.

Example 6.2. Similar to the examples in the previous subsection, one can compute by hand that

g2,2((x, y);Z) counts the number of pairs of sequences ((a0, a1); (b0, b1)) in the union of the six sets

described by the conditions listed below:

Subset a(0) a(1) b(0) b(1)

Subset 1 < u0,0 < u1,0 < v2,0 < v2,1

Subset 2 < u0,0 < u1,1 < v1,0 < v2,1

Subset 3 < u0,0 < u1,2 < v1,0 < v1,1

Subset 4 < u0,1 < u1,1 < v0,0 < v2,1

Subset 5 < u0,1 < u1,2 < v0,0 < v1,1

Subset 6 < u0,2 < u1,2 < v0,0 < v0,1

The graph D2,2 is shown in Figure 1, where the label on each edge is the corresponding bound of the

order statistic.

There are six lattice paths from O to A in D2,2, as illustrated in Figure 2. The i-th subset listed in

the above table is exactly S2,2(Pi;U) where Pi is the i-th lattice path in Figure 2.
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u0,0 u1,0

u0,1 u1,1

u0,2 u1,2

v0,0

v0,1

v1,0

v1,1

v2,0

v2,1

O

A

Figure 1 The graph D2,2

Figure 2 Lattice paths in D2,2

Again if ui,j = ui and vi,j = vj , i.e., Z2,2 is a grid, then all six sets are identical, which is

{((a0, a1); (b0, b1)) : a(0) < u0, a(1) < u1; b(0) < v0, b(1) < v1},

and is counted by the product of univariate Gončarov polynomials g2(x;x0,0, x1,0)g2(y; y0,0, y0,1).

Proof of Theorem 6.1. For any pair of sequences c = (a, b) ∈ S(m,n), construct a subgraph G(c) of

Dm,n as follows:

• O = (0, 0) is a vertex of G(c).

• For any vertex (i, j) of G(c),

− If a(i) < ui,j , then add the vertex (i+ 1, j) and the E-step {(i, j), (i+ 1, j)} to G(c).

− If b(j) < vi,j , then add the vertex (i, j + 1) and the N -step {(i, j), (i, j + 1)} to G(c).

Clearly G(c) is a connected graph containing the origin.

Lemma 6.3. If the edges e1 = {(i, j), (i + 1, j)} and e2 = {(i, j), (i, j + 1)} are both in G(c), then

edges e3 = {(i+ 1, j), (i+ 1, j + 1)} and e4 = {(i, j + 1), (i+ 1, j + 1)} are also in G(c).

Proof. The edge e1 is in G(c) means that the lattice point (i + 1, j) is in G(c) and a(i) < ui,j. The

edge e2 is in G(c) means that the lattice point (i, j + 1) is in G(c) and b(j) < vi,j . Since ui,j � ui,j+1

and vi,j � vi+1,j , we have a(i) < ui,j+1 and b(j) < vi+1,j . By the definition of G(c), the lattice point

(i+ 1, j + 1) and edges e3 and e4 are in G(c).

Order the lattice points of Z2 by letting (i, j) 	 (i′, j′) if and only if i � i′ and j � j′.

Lemma 6.4. The set of vertices of G(c) has a unique maximal vertex under the order 	.

Proof. First the vertex set of G(c) is non-empty since it always contains O. Assume (i, j) is a maximal

vertex, i.e., there is no other vertex (i′, j′) �= (i, j) in G(c) such that i′ � i and j′ � j. This implies that

a(i) � ui,j and b(j) � vi,j . Therefore a(i) � ui,k for all 0 � k � j, and b(j) � vl,j for all 0 � l � j. By the

definition of G(c), none of the E-edges connecting (i, k) to (i + 1, k), or the N -edges connecting (l, j) to

(l, j+1) is in G(c). Thus any vertex of G(c), being connected to O, must be less than (i, j) under 	.

Denote by v(c) the unique maximal vertex of G(c) under 	. Partition the set S(m,n) by v(c). i.e.,

let Km,n(i, j) ⊆ S(m,n) be the set

Km,n(i, j) = {c = (a, b) ∈ S(m,n) : v(c) = (i, j)}.
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Then S(m,n) is the disjoint union of Km,n(i, j) for 0 � i � m and 0 � j � n. Comparing the definitions,

one notes that the set Km,n(m,n) is exactly the union

⋃
P :O→A

Sm,n(P ;U),

where P ranges over all lattice paths from O to A using N - and E-steps only.

Let km,n(i, j) = |Km,n(i, j)|. By convention let k0,0(0, 0) = 1. We shall prove km,n(m,n) = gm,n((x, y);

Zm,n) by showing that they both satisfy the linear recurrence (3.6).

Consider the set Km,n(i, j). A pair c = (a, b) ∈ Km,n(i, j) means there exists a lattice path P ′ from
(0, 0) to (i, j) such that

1. the first i order statistics of a and the first j order statistics of b are bounded by P ′ with respect

to U . Let a′ be the subsequence of a consisting of the lowest i terms, and b′ be the subsequence of b

consisting of the lowest j terms. Then the pair (a′, b′) is in Ki,j(i, j). Such pairs are counted by ki,j(i, j).

2. For the sequence a, the largest m− i terms all take values in the interval [ui,j , x).

3. For the sequence b, the largest n− j terms all take values in the interval [vi,j , y).

Hence

km,n(i, j) =

(
m

i

)(
n

j

)
ki,j(i, j)(x− ui,j)

m−i(y − vi,j)
n−j =

(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j ki,j(i, j).

Thus

xmyn = |S(m,n)| =
m∑
i=0

n∑
j=0

km,n(i, j) =
m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
xm−i
i,j yn−j

i,j ki,j(i, j).

Comparing the initial values k0,0(0, 0) = 1 = g0,0((x, y), Z), we obtain Theorem 6.1.

Theorem 6.1 suggests a way to generalize the notion of parking function to higher-dimensions. Let us

state the two-dimensional definition.

Definition 3. Given a set of nodes U = {(ui,j, vi,j) ∈ N2 : i, j ∈ N} with the properties that

ui,j � ui′,j′ and vi,j � vi;,j′ whenever (i, j) 	 (i′, j′). A pair (a, b) of sequences of length (m,n) is a

2-dimensional U -parking function if and only if its order statistics are bounded by some lattice paths

from (0, 0) to (m,n) with respect to U .

Similarly one can define k-dimensional U -parking functions with respect to a set of nodes U =

{zi1,...,ik ∈ N
k : ij ∈ N} as k-tuples of sequences of length (n1, . . . , nk) whose order statistics are bounded

by some lattice paths from the origin to (n1, . . . , nk) with respect to U . To justify this definition, note

that in the case of k = 1, there is a unique lattice path along the x-axis from 0 to n, hence the integer

sequences defined are exactly those whose order statistics are bounded by the given set of nodes. It agrees

with the existing notion of u-parking functions.

Let PK(2)
m,n(U) be the subset of S(m,n) which consists of all 2-dimensional U -parking functions, and

PK
(2)
m,n(U) the size of PK(2)

m,n(U). Then Theorem 6.1 can be restated as

PKm,n(U) = gm,n((x, y);Z) = gm,n((x, y); (x, y) −U).

Using the shift invariance formula and the homogeneity of bivariate Gončarov polynomials, we obtain

the following theorem.

Theorem 6.5.

PK(2)
m,n(U) = gm,n((x, y); (x, y) −U) = gm,n((0, 0);−U) = (−1)m+ngm,n((0, 0);U). (6.3)

By Theorem 6.5 any result on bivariate Gončarov polynomials yields automatically a result of 2-

dimensional parking functions. For example, again using the homogeneity of Gončarov polynomials we

have
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Corollary 6.6.

PK(2)
m,n({(aui,j, bvi,j) : i, j ∈ N}) = ambnPK(2)

m,n({(uij , vij) : i, j ∈ N}).

Remark. Recall an equivalent definition for u-parking functions: a sequence (a1, . . . , an) is a u-parking

function if and only if there is a permutation σ of length n such that aσ(i) < ui. Using this definition

we get an interesting relation between 2-dimensional parking functions and the one-dimensional ones.

Assume that ui,j = vi,j = αi+j for some sequence {αi}. By definition, a pair (a, b) of length (m,n) is

a 2-dimensional U -parking function if and only if there is a rearrangement of the terms ai and bj such

that it is term-wise bounded by α0, α1, . . . , αm+n−1, i.e.,

PK(2)
m,n({(ui,j , vi,j) : ui,j = vi,j = αi+j}) = PKm+n(α0, . . . , am+n−1).

In particular, when αk = 1 + k, the number of 2-dimensional U -parking functions is given by a Cayley

number

PK(2)
m,n({(ui,j, vi,j) : ui,j = vi,j = 1 + i+ j}) = PKm+n(1, 2, . . . ,m+ n) = (1 +m+ n)m+n−1.

When αk = a+ bk, we have the Abel evaluation

PK(2)
m,n({(ui,j , vi,j) : ui,j = vi,j = a+ b(i+ j)}) = PKm+n(a, a+ b, a+ 2b, . . . , a+ (m+ n− 1)b)

= a(a+ (m+ n)b)m+n−1.

In general, when ui,j = a1 + b1i+ c1j and vi,j = a2 + b2i+ c2j we obtain a 2-dimensional analog of Abel

polynomials. Combinatorial identities associated with such polynomials will be discussed in an upcoming

paper [6].

As a conclusion, we present an explicit formula for the sum-enumerator of 2-dimensional U -parking

functions, which may be viewed as a q-analog of PK
(2)
m,n(U). More precisely, for any pair of sequences

c = (a, b) ∈ S(m,n), let sum(c) = (p
∑m−1

i=0 ai) · (q
∑n−1

j=0 bj ). Then

[x]mp [y]nq =
∑

c∈S(m,n)

sum(c) =

m∑
i=0

n∑
j=0

( ∑
c∈Km,n(i,j)

sum(c)

)
, (6.4)

where [x]p is the p-integer defined by [x]p = 1 + p+ · · ·+ px−1 = 1−px

1−p . Similar definition holds for [y]q.

Using the decomposition described in the proof of Theorem 6.1 and analyzing the sum enumerator of

the set Km,n(i, j), we obtain

∑
c∈Km,n(i,j)

sum(c) =

(
m

i

)(
n

j

)
([x]p − [ui,j ]p)

m−i([y]q − [vi,j ]q)
n−j

∑
c∈Ki,j(i,j)

sum(c). (6.5)

Notice that

[x]p − [ui,j ]p =
pui,j − px

1− p
, [y]q − [vi,j ]q =

qvi,j − qy

1− q
.

Therefore

[x]mp [y]nq =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)(
pui,j − px

1− p

)m−i (
qvi,j − qy

1− q

)n−j ∑
c∈Ki,j(i,j)

sum(c). (6.6)

Comparing Equations (6.6) and (3.6), and using the shift invariance formula (3.13) and the homogene-

ity, we have ∑
c∈Km,n(m,n)

sum(c) = gm,n

((
1

1− p
,

1

1− q

)
;

{(
pui,j

1− p
,
qvi,j

1− q

)
: i, j ∈ N

})

=
1

(1 − p)m(1− q)n
gm,n

(
(1, 1);Z(U)[p,q]

)
, (6.7)

where Z(U)[p,q] = {zi,j[p, q] = (pui,j , qvi,j ) : i, j ∈ N}. This is summarized in the following theorem,

which generalizes the formula for the sum enumerators of parking functions [10, Theorem 6.2].
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Theorem 6.7. ∑
c∈PK(2)

m,n(U)

p
∑m−1

i=0 ai · q
∑n−1

j=0 bj =
1

(1 − p)m(1− q)n
gm,n((1, 1);Z(U)[p,q]).
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