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We associate with a moon polyomino M a charge function C :
M→ {±1} such that every cell of the polyomino is either positive
or negative. The charge function induces naturally a sign on the
northeast and southeast chains of length 2 in 01-fillings of the
moon polyomino. We prove that the joint distribution of the
numbers of positive chains and negative chains is symmetric and
independent of the charge function. Our result reveals a deeper
symmetry between the northeast and southeast chains of length 2
in 01-fillings of moon polyominoes, and gives a new family of
Mahonian statistics for many combinatorial structures.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the last five years there has been an increasing interest in studying crossings and nestings in
various combinatorial structures, where crossings and nestings of two edges are natural analogs of
inversions and coinversions of permutations. It has been observed in many cases that the numbers
of crossings and nestings have a symmetric joint distribution, for example, in matchings and set
partitions by de Sainte-Catherine [8] and Kasraoui and Zeng [12], in linked partitions by Chen, Wu
and Yan [4], and in certain diagrams associated with permutations by Corteel [5]. The symmetry of the
maximal crossing and maximal nesting was proved by Chen, Deng, Du, Stanley and Yan [1]. Klazar [13]
further studied the distribution of crossings and nestings over the set of matchings obtained from a
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Fig. 1. An illustration of the statistics α and β .

given one by successfully adding edges, and the parallel results on set partitions were developed by
Poznanović and Yan [15].

Many classical results on enumerative combinatorics can be put in the larger context of counting
submatrices in fillings of polyominoes. For example, words and permutations can be represented as
01-fillings of rectangular boards, and graphs can be represented as fillings of arbitrary Ferrers shapes,
which were studied by Krattenthaler [14] and de Mier [6,7]. Other extensions include stack polyomi-
noes [9,10] and moon polyominoes [16,2]. In the language of fillings of polyominoes, crossings and
nestings of two edges become northeast and southeast chains of length 2. A unified result on the
numbers of northeast and southeast chains of length 2 was given by Kasraoui [11], who proved that
this pair of statistics has a symmetric joint distribution over families of 01-fillings of moon poly-
ominoes where either every row has at most one 1, or every column has at most one 1. Kasraoui
also gave an explicit formula for the joint distribution: with prefixed row-sum and column-sum, the
distribution is always a product of (p,q)-Gaussian coefficients. In [3] our collaborators and we re-
vealed a stronger symmetry between northeast and southeast chains of length 2. Roughly speaking,
we proved that one can mix the northeast and southeast chains according to the row position (or
column position) of one of the cells in the chain, yet still preserve the symmetric joint distribution.

Recently the first author of the present paper discovered an interesting phenomenon for crossings
and nestings of two edges over matchings and set partitions, which cannot be explained by the afore-
mentioned results. Let us describe it for matchings of [2n], which are partitions of the set [2n] into
n blocks of size 2. Each block is called an edge and is denoted (i, j) if i < j. We say that two edges
(i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 < j2; they form a nesting if i1 < i2 < j2 < j1. Let
cros(P ) and nest(P ) be the number of crossings and nestings of a matching P , respectively.

For a crossing with edges (i1, j1), (i2, j2) where i1 < i2, we say it is of Type I if i2 + j2 � 2n;
otherwise it is of Type II. For a nesting with edges (i1, j1), (i2, j2) where i1 < i2, we say it is of
Type I if i2 + j1 � 2n; otherwise it is of Type II.

Let P be a matching of [2n]. Consider two statistics

α(P ) = #{crossings of Type I in P } + #{nestings of Type II in P },
β(P ) = #{crossings of Type II in P } + #{nestings of Type I in P }.

For small n we observed that the pair (α(P ), β(P )) is equally distributed to the pair (cros(P ),nest(P ))

over the set of matchings of [2n] with given sets of minimal block elements and maximal block ele-
ments. The same result has been observed for set partitions as well. See Example 1 for an illustration.
Trying to explain this intriguing symmetry is the motivation of the present paper.

Example 1. Fig. 1 lists all the matchings of [8] with minimal block elements {1,2,5,6} and maximal
block elements {3,4,7,8}, and corresponding values of α(P ) and β(P ). It is clear that (α(P ), β(P ))

is equally distributed with (cros(P ),nest(P )) over this set of matchings.
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Fig. 2. A moon polyomino, a top-aligned and a left-aligned stack polyomino, and a top and right aligned Ferrers shape.

It is natural to consider the problem in the context of 01-fillings of moon polyominoes. In Section 2
we associate with a moon polyomino M a charge function C :M→ {−1,+1}, which assigns to each
cell of the polyomino either a positive or a negative charge. The charge function induces a sign for any
2 × 2 submatrix of the polyomino M, and hence divides the northeast and southeast chains of length
2 into two sets: the positive chains and the negative chains, which are counted by posC (M) and
negC (M), respectively. We prove that for certain families of stack polyominoes, the pair of statistics
(posC (M),negC (M)) has a stable symmetric distribution which is independent of the charge function.
In particular, when the charge is always positive, we get (ne(M), se(M)), the numbers of northeast
and southeast chains of length 2. This explains the new symmetry we found for matchings and set
partitions.

Unfortunately with the above natural definition of positive/negative chains the symmetry does not
hold in fillings of general moon polyominoes. In Section 3 we introduce the notions of restrictively
positive/negative chains, which coincide with the positive/negative chains in stack polyominoes. We
prove that the numbers of restrictively positive and negative chains are always equidistributed as the
pair (ne(M), se(M)) over 01-fillings of any charged moon polyominoes. Since the model of 01-fillings
of polyominoes contains many combinatorial structures, and northeast/southeast chains are natural
analogues of the basic Mahonian (permutation) statistics inversions/coinversions, our results lead to a
new family of Mahonian statistics for general combinatorial structures.

In Section 4 we present a new way to compute the symmetric joint distribution of (ne(M), se(M))

over 01-fillings of a moon polyomino. The idea is to transform the northeast/southeast chains in
01-fillings of a moon polyomino into positive/negative chains in fillings of a charged stack polyomino,
and then to fillings in a Ferrers shape. Enumeration of the latter is equivalent to the enumeration of
crossings and nestings in linked partitions, for which the formula has already been given in [4].

2. Positive chains and negative chains in stack polyominoes

In this section we introduce the notion of charged moon polyominoes, which induces a natural
sign on the northeast and southeast chains of length 2. We show that the numbers of positive and
negative chains have a stable and symmetric distribution over 01-fillings of top-aligned or left-aligned
stack polyominoes. First we introduce the necessary background and definitions.

A polyomino is a finite subset of Z2, where every element of Z2 is represented by a square cell.
The polyomino is convex if its intersection with any column or row is connected. It is intersection-free
if every two columns are comparable, i.e., the row-coordinates of one column form a subset of those
of the other column. Equivalently, it is intersection-free if every two rows are comparable. A moon
polyomino is a convex and intersection-free polyomino.

In this paper we always label the rows of a polyomino from top to bottom, and the columns from
left to right. If the rows (resp. columns) of a moon polyomino M are monotonically arranged, we call
it a stack polyomino. In particular, we say it is top-aligned (bottom-aligned) if the rows are arranged
from large to small (small to large). Similarly, we have left-aligned (right-aligned) stack polyomino if
the columns are arranged from large to small (small to large). If both the rows and the columns are
monotonically arranged, then the moon polyomino is a Ferrers shape. When needed, we will specify
the alignment of the Ferrers shape. See Fig. 2 for an illustration.

Given a moon polyomino M, we assign 0 or 1 to each cell of M so that there is at most one 1
in each column. Throughout this paper we will simply use the term filling to denote such 01-fillings.
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Fig. 3. A filling M with s = (1,1,0,2,1,0,1) and e = (1,0,1,1,1,1,1).

Fig. 4. A charged moon polyomino.

We say that a cell is empty if it is assigned 0, and it is a 1-cell otherwise. Assume the rows of M are
R1, . . . , Rn from top to bottom, and the columns are C1, . . . , Cm from left to right. The cell (i, j) refers
to the cell lying at row Ri and column C j . Let s = (s1, . . . , sn) ∈ Nn and e = (ε1, . . . , εm) ∈ {0,1}m ,
where

n∑
i=1

si =
m∑

j=1

ε j .

We denote by F(M, s,e) the set of fillings M of M such that row Ri has exactly si 1’s, and column
C j has exactly ε j 1’s, for 1 � i � n and 1 � j � m. The vectors s and e are called the row-sum and
column-sum vectors of the filling, respectively. Fig. 3 gives an example.

A 2 × 2 submatrix S of M is a set of four cells in M with the coordinates

S = {
(i1, j1), (i1, j2), (i2, j1), (i2, j2) ∈M: 1 � i1 < i2 � n, 1 � j1 < j2 � m

}
. (1)

A northeast chain of length 2 in a filling M consists of a 2 × 2 submatrix S as in (1) where (i1, j2)

and (i2, j1) are 1-cells. There is no constraint on the filling of the other two cells, except that all four
cells of S must be contained in M. Similarly, a southeast chain of length 2 consists of a submatrix S
where (i1, j1) and (i2, j2) are 1-cells. In both cases we say that the submatrix S is the support of the
chain. In this paper we are only concerned with chains of length 2. Hence we simply refer to them as
chains. Northeast (resp. southeast) chains are abbreviated as NE (resp. SE) chains. The number of NE
(resp. SE) chains of M is denoted by ne(M) (resp. se(M)).

A charged moon polyomino is a moon polyomino M equipped with a charge function, denoted
by C , where C :M→ {±1} assigns each cell of M either a positive or a negative charge. See Fig. 4
for an example, where + (resp. −) denotes the positive (resp. negative) charge of each cell.

For a 2 × 2 submatrix S of M with cells as in (1), set the sign of S as the charge of its bottom
right corner, that is,

sgn(S) = C
(
(i2, j2)

)
. (2)

Definition 2. Let M be a 01-filling of a charged moon polyomino M with charge function C . A chain
with support matrix S is positive with respect to C if it is
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Fig. 5. Positive and negative chains.

1. a northeast chain with sgn(S) = 1, or
2. a southeast chain with sgn(S) = −1.

Otherwise, the chain is negative.

Fig. 5 shows the positive and negative chains. Note that the charge on the cells of S other than
(i2, j2) does not affect the sign of S .

Given a moon polyomino M with charge function C , for any filling M in F(M, s,e), denote by
posC (M) and negC (M) the numbers of positive chains and negative chains of M with respect to C .
Let FC (p,q) be the bi-variate generating function for the pair (posC (M),negC (M)), that is

FC (p,q) =
∑

M∈F(M,s,e)

pposC (M)qnegC (M).

Write C = + if all the cells in the polyomino are positively charged, and C = − if all the cells are
negatively charged. We observe that pos+(M) = neg−(M) = ne(M), and neg+(M) = pos−(M) = se(M).
Our first result is the following theorem.

Theorem 3. Let M be a top-aligned or left-aligned stack polyomino. Then the bi-variate generating function
FC (p,q) does not depend on C . Consequently,

FC (p,q) = F+(p,q) =
∑

M∈F(M,s,e)

pne(M)qse(M).

As an immediate consequence, we have

Corollary 4. For a top-aligned or left-aligned stack polyomino M, the distribution of the pair (posC (M),

negC (M)) is symmetric over F(M, s,e).

Proof. Suppose C is a charge function of the given moon polyomino M. Let C ′ = −C . It is easy to
see that every positive (resp. negative) chain of M ∈ F(M, s,e) under C becomes a negative (resp.
positive) chain under C ′ . It follows that

posC (M) = negC ′(M) and negC (M) = posC ′(M).

By Theorem 3

∑
M∈F(M,s,e)

pposC (M)qnegC (M) =
∑

M∈F(M,s,e)

pposC ′ (M)qnegC ′ (M) =
∑

M∈F(M,s,e)

pnegC (M)qposC (M),

which yields the desired symmetry. �
To prove Theorem 3, we start with the case that the polyomino is a rectangle.
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Fig. 6. An illustration of the second case, where X is the bottom right cell.

Lemma 5. Let R be an n × m rectangle, and X = (n,m) be the cell at the bottom right corner. Let C be the
charge function

C
(
(i, j)

) =
{−1 if (i, j) = X,

+1 otherwise.

Then there exists a bijection ρ from F(R, s,e) to itself such that

(
posC (M),negC (M)

) = (
ne

(
ρ(M)

)
, se

(
ρ(M)

))
. (3)

Consequently, (posC (M),negC (M)) has the same distribution as (ne(M), se(M)) over F(R, s,e), where s and
e are given row-sum and column-sum vectors.

Proof. The bijection ρ is defined as follows. If sn = 0 or εm = 0, then ρ(M) = M is the identity map.
Otherwise, assume sn > 0 and εm = 1. Let M be a filling in F(R, s,e). We will keep all the empty
rows and empty columns of M unchanged, and define ρ(M) by the following steps.

1. If X is a 1-cell of M , then ρ(M) is obtained from M by blocking all the empty columns and
cyclically shifting every 1 horizontally to the next nonempty column on the right. That is, if
i1, i2, . . . ,m are the indices of the nonempty columns with i1 < i2 < · · · < m, then a 1 in the cell
Y = (k, it) �= X is moved to the cell (k, it+1), and the 1 in X is moved to (n, i1).

2. If X is empty but there is a 1-cell above X in the same column, then first block all the empty
columns and cyclic-shift every 1 horizontally to the next column on the right, as in the previous
step. Let R′ be the rectangle obtained from R by removing the last row. Block all the empty
columns of R′ and cyclic-shift every 1 of R′ horizontally to the next column on the left. See
Fig. 6 for an illustration.

We check that ρ is a bijection. The case that sn = 0 or εm = 0 is trivial. If snεm �= 0, we observe
that ρ(M) is obtained by the first case if the lowest cell of the first nonempty column is a 1-cell,
and by the second case if it is empty. In both cases, the procedure is easily reversed. So ρ defines a
bijection on F(R, s,e).

To check Eq. (3), we compute that when X is a 1-cell of M ,

posC (M) = ne(M) + (s1 + s2 + · · · + sn−1) = ne
(
ρ(M)

)
,

where the second equation is true since the 1 in the cell X is moved to the very left, and hence forms
NE chains with any 1 in the above rows. Similarly we have

negC (M) = se(M) − (s1 + s2 + · · · + sn−1) = se
(
ρ(M)

)
.

When X is empty in M , we claim

posC (M) = ne(M) − sn = ne
(
ρ(M)

)
.
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The second equation is true since each 1 in the last row is moved one step to the right and hence
decreases the number of NE chains by one. Similarly we have

negC (M) = se(M) + sn = se
(
ρ(M)

)
. �

Let M be a top-aligned or left-aligned stack polyomino with charge function C such that C �= +.
We prove Theorem 3 by showing that changing the charge of one cell from − to + does not change
the distribution of (posC (M),negC (M)) over F(M, s,e). Let X = (a, t) be the highest and the leftmost
cell with a negative charge under C . That is, C(X) = −1 and C((i, j)) = +1 for any cell (i, j) ∈ M
with i < a, or i = a and j < t . Let C ′ be the charge function obtained from C by changing the charge
of X to +1.

Claim. FC (p,q) = FC ′ (p,q).

Theorem 3 follows from the claim by changing the charge of the highest and the leftmost cell with
a negative charge in succession. Eventually all the cells of the polyomino would have positive charges
and the distribution of the pair of statistics (posC (M),negC (M)) remains the same in every step.

Proof of the claim. Let RX be the largest rectangle in M whose bottom right corner is the cell
X = (a, t). More precisely, assume that the leftmost cell in row Ra is (a, s) and the highest cell in
column Ct is (b, t). Then

RX = {
(i, j) ∈M: b � i � a, s � j � t

}
.

Note that the rectangle RX is unique and well-defined for any cell X when M is a top or left aligned
stack polyomino.

Let M be a filling in F(M, s,e) and ρ be the bijection defined in the proof of Lemma 5. Define
f (M) by replacing M ∩RX by ρ(M ∩RX ) and keeping the filling of M \RX unchanged. Clearly this
is a bijection on F(M, s,e). We shall verify that

(
posC (M),negC (M)

) = (
posC ′

(
f (M)

)
,negC ′

(
f (M)

))
. (4)

First, by Lemma 5,

posC (M ∩RX ) = ne
(

f (M) ∩RX
) = posC ′

(
f (M) ∩RX

)
.

Second, an NE or SE chain formed by two 1-cells outside RX is not changed, nor is the sign of
its support. Hence such chains contribute equally to both pairs of statistics in (4). We only need to
compare the contribution of chains in which there is exactly one relevant 1-cell outside RX . Note
that for such a chain the bottom right corner of its support matrix S cannot be X , hence sgn(S) is
the same under C and C ′ .

The proof is complete by showing that for any 1-cell Y /∈ RX , the number of NE (or SE) chains
formed by Y and 1-cells in RX depends only on the row-sum or column-sum of M ∩RX , which is
preserved under the map ρ . We provide details for the NE chains in a top-aligned stack polyomino.
The cases for SE chains and left-aligned stack polyominoes are proved in a similar manner.

Let Y = (u, v) ∈ M \ RX be a 1-cell in the filling M (and hence f (M)). We divide the cases
according to the location of Y with respect to the rectangle RX . See Fig. 7.

Case 1. u > a, i.e., Y is in a row lower than RX . The number of NE chains formed by Y and 1-cells
in RX equals the number of 1-cells in the columns {Cl ∩RX : v < l � t and (u, l) ∈M}.

Case 2. u � a and v < s, i.e., Y is on the left of RX . The number of NE chains formed by Y and
1-cells in RX equals the number of 1-cells in the rows {Rk ∩RX : k < u}.
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Fig. 7. The location of Y with respect to the rectangle RX .

Fig. 8. A charged triangular shape.

Case 3. u � a and v > t , i.e., Y is on the right of RX . The number of NE chains formed by Y and a
1-cell in RX equals the number of 1-cells in the rows {Rk ∩RX : k > u and (k, v) ∈M}.

In each case, the number is the same in both M and f (M). This completes the proof. �
Theorem 3 provides an explanation for the symmetry we found for matchings and set partitions,

as described in the Introduction. Take a matching P of [2n]. Consider a triangular shape whose rows
are of length 2n − 1,2n − 2, . . . ,1 that is top-aligned and right-aligned. Represent the edge (i, j) of P
by assigning a 1 in the cell (i, j − 1). In the triangular board, let a cell (i, j) be positive if and only
if i + j � 2n − 1. Then the statistics (α(P ), β(P )) are exactly the number of positive and negative
chains with respect to this charge function. Fig. 8 gives the corresponding charged triangular shape
and filling for the first matching in Example 1.

Remark.

1. Theorem 3 also holds for the set F(M,e, s), i.e., the 01-fillings where there is at most one 1 in
every row, but can have an arbitrary number of 1’s in a column. To prove it, one notes that the re-
flection with respect to the diagonal (a line of slope −1) maps a top-aligned stack polyomino to a
left-aligned stack polyomino while exchanging rows and columns. But such a reflection preserves
NE/SE chains, as well as the sign of any 2 × 2 submatrix in the polyomino.

2. In this paper we would only consider fillings that either the row-sum or the column-sum is a
01-vector. The reason is that with no restrictions on the row-sum or the column-sum, the joint
distribution of the statistics (ne, se) is not always symmetric, that is, (ne, se) and (se,ne) may
have different distributions. See Kasraoui [11, Sec. 6].
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Fig. 9. A counterexample.

Fig. 10. The box RX .

3. Extensions to general moon polyominoes

For general moon polyominoes Theorem 3 may not hold. The following is a counterexample.

Example 6. Consider the 01-fillings in Fig. 9 where every row and every column has exactly one 1,
and all but the bottom right cell have positive charges. We have

∑
M

pne(M)qse(M) = p2 + 2pq + q2, while
∑

M

pposC (M)qnegC (M) = 2p2 + 2q2.

In this section we introduce the notions of restrictively positive and negative chains, which coin-
cide with Definition 2 for top or left aligned stack polyominoes. We prove that the joint distribution
of restrictively positive and negative chains is stable and independent of the charge function for an
arbitrary moon polyomino.

We say that a rectangle R in a polyomino M is maximal if there is no rectangle R′ ⊆ M such
that R is a proper subset of R′ . For a cell X ∈M, define RX , the box of X , to be the widest maximal
rectangle contained in M whose bottom right corner is X . In particular, RX contains all the cells
that are in the same row and on the left of X . Fig. 10 gives an example where RX is depicted by
thick lines.

Definition 7. A 2 × 2 submatrix S ∈ M is said to be restrictive if and only if S ⊆ R(i2, j2) , where
(i2, j2) is the bottom right corner of S . We say that an NE/SE-chain is restrictive if its support matrix
is restrictive.

Definition 8. Let M be a 01-filling of a charged moon polyomino M with charge function C . A chain
with support matrix S is restrictively positive with respect to C if it is

1. a northeast chain with sgn(S) = 1, or
2. a northeast chain with sgn(S) = −1 that is not restrictive, or
3. a southeast chain with sgn(S) = −1 that is restrictive.

Otherwise, the chain is restrictively negative. Explicitly, a chain with support matrix S is restrictively
negative if it is

1. a southeast chain with sgn(S) = 1, or
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2. a southeast chain with sgn(S) = −1 that is not restrictive, or
3. a northeast chain with sgn(S) = −1 that is restrictive.

If M is a top or left aligned stack polyomino, then any 2 × 2 submatrix S of M is completely
contained in the box of its bottom right cell, i.e., S is always restrictive. Hence Definition 8 coincides
with Definition 2 for those special polyominoes.

Given a charged moon polyomino M with charge function C , for any filling M in F(M, s,e),
denote by posC (M) and negC (M) the numbers of restrictively positive chains and restrictively neg-
ative chains of M with respect to C . Let F C (p,q) be the bi-variate generating function for the pair
(posC (M),negC (M)), that is

F C (p,q) =
∑

M∈F(M,s,e)

pposC (M)qnegC (M).

Theorem 9. The bi-variate generating function F C (p,q) does not depend on the charge function. Consequently,

F C (p,q) = F +(p,q) =
∑

M∈F(M,s,e)

pne(M)qse(M).

Proof. We adapt the proof of Theorem 3 by showing F C (p,q) = F C ′ (p,q), where C is any charge
function that is not always positive, X = (a, t) is the highest and the leftmost cell with C(X) = −1,
and C ′ is obtained from C by changing the charge of X to +1.

Given a filling M ∈ F(M, s,e), let RX be the box of X . Define f (M) by replacing M ∩ RX by
ρ(M ∩ RX ) and keeping the other cells unchanged, where ρ is the bijection defined in Lemma 5.
Since RX depends only on the shape of the moon polyomino M, but not on the filling, this is a
bijection on F(M, s,e). We verify that

(
posC (M),negC (M)

) = (
posC ′

(
f (M)

)
, negC ′

(
f (M)

))
. (5)

Similarly to the proof of Theorem 3, the contributions of chains formed by two 1-cells both in-
side RX , or both outside RX are the same for the two pairs of statistics in (5). We only need to
compare the contribution of chains with exactly one relevant 1-cell outside RX .

Suppose that the four corners of RX are (b, s), (b, t), (a, s) and (a, t)(= X) respectively with b < a
and s < t . Then (a, s − 1) /∈M and

RX = {
(i, j): b � i � a, s � j � t

}
.

Let Y = (u, v) ∈ M\RX be a 1-cell in the filling M and hence f (M). We shall prove for each Y
that the number of restrictively positive (negative) chains formed by Y and 1-cells in RX depends
only on the row-sum or column-sum of M ∩RX , which are the same for M and f (M). It is verified
case-by-case according to the position of Y with respect to RX . In the following we shall give all
details for NE chains only. Fig. 11 shows the different positions of Y . The cases for SE chains are
similar.

Case 1. v < s, i.e., Y lies on the left of RX . Since M does not contain the cell (a, s − 1), Y could
form NE chains with 1-cells in RX only when b < u < a, and the number of NE chains
formed by Y and 1-cells in RX equals the number of 1-cells in the rows {Rk ∩RX : b � k <

u and (k, v) ∈M}. All such chains have positive support under both charge functions C and
C ′ , hence are always restrictively positive.

Case 2. s � v � t . There are two cases.
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Fig. 11. Various positions of Y .

(a) u < b, i.e., Y is on top of RX . The number of NE chains formed by Y and 1-cells in
RX equals the number of 1-cells in the columns {Cl ∩RX : s � l < v and (u, l) ∈M}. If
v �= t , all such chains have positive support. When v = t , all such chains have positive
support under C ′; while under C , such chains either have positive support, or are not
restrictive. In any case, all the NE chains are restrictively positive for both M and f (M).

(b) u > a, i.e., Y is below RX . The number of NE chains formed by Y and 1-cells in RX

equals the number of 1-cells in the columns {Cl ∩ RX : v < l � t and (u, l) ∈ M}. For
such a chain with a 1-cell in Cl ∩ RX , the sign of its support is C(Z) = C ′(Z) where
Z = (u, l). Whether it is restrictive depends only on the shape of M, but not the charge
function or the filling: If the cell (u, s − 1) ∈M, then RZ ∩RX = ∅ and the chain is not
restrictive; if (u, s − 1) /∈M, then RZ contains Cl ∩RX and the chain is restrictive.

Case 3. v > t .
(a) If u � a, there are no NE chains formed by Y and 1-cells in RX .
(b) b � u < a, i.e., Y is on the right of RX . For u < k � a, the number of NE chains formed

by Y and 1-cells in row Rk ∩RX equals the number of 1-cells in Rk ∩RX if (k, v) ∈M,
and is 0 otherwise. For each row Rk such that Z = (k, v) ∈M, the charge of Z and the
box RZ are not changed. Hence all the NE chains formed by Y and 1-cells in Rk ∩RX

have the same (restrictive) parity under C and C ′ .
(c) u < b, i.e., Y is in the northeast of RX . Let Z = (a, v) and W = (u, s). Since moon poly-

ominoes are intersection-free, at least one of W and Z is contained in M. If W ∈M,
the proof is the same as the case 3(b), where the row index k ranges from b to a. Other-
wise, assume Z ∈M but W /∈M, the number of NE chains formed by Y and 1-cells in
RX equals the number of 1-cells in the columns {Cl ∩RX : s < l � t and (u, l) ∈M}. For
each cell (i, l) in this set, the 2×2 submatrix consisting of cells {(u, l), (u, v), (i, l), (i, v)}
is not restrictive since W /∈ M . Hence all such NE chains are restrictively positive in both
M and f (M). �

Remark.

1. There can be many ways to define the restrictively positive/negative chains. For example, we can
replace RX by R′

X , which is the longest maximal rectangle in M whose bottom right corner
is X . In other words, if X = (a, t) and (c, t) is the top cell in column Ct , then R′

X is the maximal
rectangle contained in M whose last column consists of cells {(i, t): c � i � a}. All the results
and their proofs would hold suitably adapted.
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2. Following the preceding remark, Theorem 9 also holds for the set F(M,e, s), i.e., 01-fillings that
the number of 1’s in a row is at most 1, and the number of 1’s in a column can be any non-
negative integer. To see this, one simply reflects the polyomino and its fillings with respect to the
diagonal (a line of slope −1) to map fillings from F(M,e, s) to F(M, s,e) and RX to R′

X , while
keeping NE/SE chains and the sign of any 2 × 2 submatrix.

In the following we discuss the relations of the positive/negative chains with the mixed statistics
introduced in [3].

For a moon polyomino M, let S be a subset of rows. An NE (SE) chain is called a top S-NE (SE)
chain if its top 1-cell is in S; similarly, it is a bottom S-NE/SE chain if the lower 1-cell of the chain is
in S .

Consider the set of fillings F(M, s,e). (In [3] the set F(M,e, s) is used. By the symmetric shape
of the moon polyomino, it is equivalent to F(M, s,e). So we will use the latter to keep notations
consistent in this paper.) Let S = M \ S be the complement of S . Given a filling M ∈ F(M, s,e),
define the top-mixed statistic α(S; M) and the bottom-mixed statistic β(S; M) with respect to S as

α(S; M) = #{top S-NE chains of M} + #{top S-SE chains of M},
β(S; M) = #{bottom S-NE chains of M} + #{bottom S-SE chains of M}.

Analogously one defines the left-mixed statistic γ (T ; M) and right-mixed statistic δ(T ; M) with re-
spect to a subset T of columns.

The main result of [3] is the following. For a general moon polyomino M, let λ(A; M) be any
of the four statistics α(S; M), β(S; M), γ (T ; M), δ(T ; M). Then the joint distribution of the pair
(λ(A; M), λ(A; M)) is symmetric and independent of the subsets S, T . In particular, the joint dis-
tribution is the same as the distribution of (ne(M), se(M)).

The mixed statistics and the positive/negative chains considered here are complementary to each
other. There are some common cases. For example, to get the bottom-mixed statistic β(S; M), let C
be the charge function on M such that

C
(
(i, j)

) =
{

1 if i ∈ S,

−1 if i /∈ S.

Then clearly

β(S; M) = posC (M), β(S; M) = negC (M),

and hence the stable distribution of (β(S; M), β(S; M)) for top or left aligned stack polyominoes is a
special case of Theorem 3, so is the result for right-mixed statistic. For other mixed-statistics, we can
revise formula (2) of the sign of the 2 × 2 submatrix by using the charge of another corner of the
matrix, so that Theorem 3 implies the stable distribution of each family of mixed statistics with their
matching stack polyominoes.

However, in a general moon polyomino the numbers of positive/negative chains do not have a sta-
ble symmetric distribution, nor can the mixed statistics be interpreted as the numbers of restrictively
positive/negative chains. Together they reveal a subtle balance between the shape of the polyomino,
the charge function, and how restrictive the positivity is. In summary, we have that for the numbers
of positive/negative chains in 01-fillings of a polyomino,

• for a general moon polyomino and an arbitrary charge function, the symmetry holds only for the
restrictively positive and negative chains;

• for an arbitrary charge function and no restrictions on the positivity of chains, the symmetry
holds only for fillings on stack polyominoes whose shapes are compatible with the sign of 2 × 2
submatrices;
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• for a general moon polyomino and no restrictions on the positivity of chains, the symmetry holds
only for charge functions which are constant on each row, or on each column.

How to put the above results into a unified theory is still an open problem. Also we want to mention
that recently, Yan and Yeh proposed a new family of polyominoes–layer polyominoes, which are only
row-convex and row-intersection-free [17]. Layer polyominoes admit a free action by the symmetric
group. The notions of northeast and southeast chains can be extended to layer polyominoes, and it is
proved that the symmetry still holds for (ne(M), se(M)). The relation between charge functions and
layer polyominoes is currently under investigation.

4. Formula of the joint distribution

By Theorem 9 the joint distribution of (posC (M),negC (M)) over F(M, s,e) is the same as
that of (ne(M), se(M)), for which an explicit formula was given by Kasraoui [11] as a product of
(p,q)-Gaussian coefficients. Kasraoui’s proof consists of several technical steps: first one defines an
ordering on the rows of M, then maps each filling in F(M, s,e) bijectively to a product of integer
compositions. The generating function is then obtained by analyzing the contribution of each com-
position. In this section we give a new way to obtain the joint distribution of (ne(M), se(M)) by
reducing the problem to a known result following these steps:

1. Transform the moon polyomino into a Ferrers shape F with the same set of row-lengths and
column-lengths, so that one just needs to compute the distribution of (ne, se) over fillings of F .

2. Reduce the enumeration of (ne, se) for 01-fillings of a Ferrers shape F to the enumeration of
crossings and nestings over the set of linked partitions with a given degree sequence. The latter
is already known in [4].

4.1. Reduce the moon polyomino to a Ferrers shape

Let M be a moon polyomino with a positive charge in each cell and N be obtained from M by
rearranging the rows from longest to shortest. That is, N is a top-aligned stack polyomino.

Given a filling M ∈ F(M, s,e), we introduce an algorithm that generates a filling N of N such that

(
ne(M), se(M)

) = (
posC (N),negC (N)

)

under a suitably defined charge function C = CN . Let |Ri | be the number of cells in the i-th row, and
κ(M) be such that

|R1| � |R2| � · · · � |Rκ(M)| > |Rκ(M)+1| � · · · � |Rn|.

Algorithm τ for transforming M into a top-aligned stack polyomino N with charge function CN

1. Set M′ =M and C ′ = +.
2. If M′ is top-aligned, go to Step 5.
3. If M′ is not top-aligned, find the largest rectangle B completely contained in M′ such that

(1) B contains the first row R1 of M′ , and (2) B does not contain any row Ri with |Ri | = |R1|
and i > κ(M′).

4. Update C ′ by changing the charge of every cell in R1 to negative, and update M′ by moving R1
to the bottom of the rectangle B. Go to Step 2.

5. Set N =M′ and CN = C ′ .

Given a filling M of the moon polyomino M, let N be the filling of N = τ (M) obtained by
applying the algorithm τ to M and keeping the filling of each row when the row is moved. Denote
N = τ (M).
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Fig. 12. The algorithm τ , where the rows that are moved downward are highlighted.

It is easy to see that the set of NE (resp. SE) chains of M is in one-to-one correspondence to the
set of positive (resp. negative) chains of N . See Fig. 12 for an illustration.

Next we use the algorithm τ to reduce the enumeration of (ne(M), se(M)) over a moon polyomino
to that over a Ferrers shape with the same sets of row-lengths and column-lengths.

1. Given a filling M ∈ F(M, s,e), apply the algorithm τ to obtain a filling N ∈ F(N , s′,e), where N
is a top-aligned stack polyomino with the charge function CN and s′ is the sequence obtained
from s in the same way as the rows of N are obtained from the rows of M. Then

(
ne(M), se(M)

) = (
posCN (N),negCN (N)

)
,

and hence
∑

M∈F(M,s,e)

pne(M)qse(M) =
∑

N∈F(N ,s′,e)

pposCN (N)qnegCN (N)
.

2. By Theorem 3,

∑
N∈F(N ,s′,e)

pposCN (N)qnegCN (N) =
∑

N∈F(N ,s′,e)

pne(N)qse(N).

Hence we can ignore CN , or equivalently, reset CN = + in N .
3. For a filling of N (with the charge function +), rotating it 90 degrees counterclockwise, applying

the algorithm τ , and then rotating 90 degrees clockwise, we get a filling F ∈ F(F , s′,e′) of a top
and right aligned Ferrers shape F , together with a charge function C1 on F , where e′ is the
sequence obtained from e in the same way as the columns of F are obtained from the columns
of N . Now we have

∑
N∈F(N ,s′,e)

pne(N)qse(N) =
∑

F∈F(F,s′,e′)
pposC1

(F )qnegC1
(F ) =

∑
F∈F(F,s′,e′)

pne(F )qse(F ).

Fig. 13 shows an example of transforming a stack polyomino into a Ferrers shape.

4.2. Equivalence with crossings and nestings of linked partitions

Now it is sufficient to compute the distribution of (ne(F ), se(F )) over fillings in F(F , s′,e′) where
F is a Ferrers shape with the same row/column lengths as M, and s′ ∈ Nn , e′ ∈ {0,1}m are given
vectors.

It is first observed by de Mier [7] that fillings of Ferrers shapes with prescribed row and column
sums are in one-to-one correspondence with loop-less graphs on [n] with given left–right degree se-
quence. In a graph G on [n], the left (resp. right) degree of a vertex i is the number of edges that join i
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Fig. 13. Reduce a stack polyomino to a Ferrers shape.

Fig. 14. Correspondence between fillings of Ferrers diagram and graphs on [n].

to a vertex j with j < i (resp. j > i). The left–right degree sequence of G is the sequence (li, ri)1�i�n ,
where li is the left-degree of i and ri is the right degree of i. In particular, if in each pair (li, ri), either
li or ri is 0, the graph is called a left–right graph. A bijection is described by de Mier [7] between the
fillings of Ferrers shapes to left–right graphs, which can be stated as follows.

Let F be a Ferrers shape with n rows and m columns, which is aligned on the top and right.
Starting from the point on the top left corner of F , travel along the boundary of the polyomino using
south step (0,−1) and east step (1,0) until the bottom right corner of F is reached, and label the
steps from 1 to n + m. Assume that the south steps are labeled {a1, . . . ,an} while the east steps are
labeled {b1, . . . ,bm}. For 1 � k � n + m, let uk = (0, s′

i) if k = ai ; otherwise uk = (ε′
j,0) if k = b j .

For a filling F ∈ F(F , s′,e′), define a graph G(F ) on the vertex set [n + m] by letting ai adjacent
to b j if and only if there is a 1 in the cell lying in the row labeled by ai and the column labeled
by b j . Fig. 14 shows the graph corresponding to the filling on the right of Fig. 13.

Clearly G(F ) is a left–right graph where the left–right degree of the vertex k is uk . This gives
a one-to-one correspondence between the set F(F , s′,e′) and the set G[n + m;u] that consists of
graphs on [n + m] with the left–right degree sequence u = (u1, . . . , un+m). Under this correspondence
the NE/SE chains in a filling become nestings and crossings formed by two edges in a graph.

Note that in a graph in G[n +m;u], the left-degree of any vertex is either 0 or 1. Such graphs have
been studied in [4] under the name linked partitions. Using the notation of [4, Section 3], G[n + m;u]
is exactly the set L Pn+m(S, T ) of linked partitions on [n + m] with the multisets S = {as′1

1 , . . . ,a
s′n
n }

and T = {b j: ε′
j �= 0}. The joint distribution of the numbers of crossings and nestings is given in

Theorem 3.5 of [4]. Translating to fillings of F , we obtain the following theorem, which agrees with
Kasraoui’s on moon polyominoes [11, Theorem 2.2].
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Let [r]p,q be the p,q-integer

[r]p,q = pr − qr

p − q
= pr−1 + pr−2q + · · · + pqr−2 + qr−1.

The p,q-factorial [r]p,q! is defined as [r]p,q! = ∏r
i=1[i]p,q , and the (p,q)-Gaussian coefficient

[ h
s

]
p,q is

given by

[
h
s

]
p,q

= [h]p,q!
[s]p,q![h − s]p,q! .

Theorem 10. For each 1 � i � n, let hi = |{ j ∈ T : j > ai}| − |{ j ∈ S: j > ai}|. Then

∑
F∈F(F,s′,e′)

pne(F )qse(F ) =
n∏

i=1

[
hi
si

]
p,q

. (6)
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