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Abstract

In this paper we extend the work of [1] to study combinatorial problems via the theory
of biorthogonal polynomials. In particular, we give a unified algebraic approach to several
combinatorial objects, including order statistics of a real sequence, parking functions, lattice
paths, and area-enumerators of lattice paths, by describing the properties of the sequence of
Goncarov polynomials and its various generalizations.
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1 Introduction

The main content of this paper is to use theory of sequences of polynomials biorthogonal to a
sequence of linear operators to study combinatorial problems. In particular, we described the al-
gebraic properties of the sequence of Goncarov polynomials and its various generalizations, which
give a unified algebraic approach to several combinatorial objects, including (1) The cumulative
distribution functions of the random vectors of order statistics of n independent random vari-
ables with uniform distribution on an interval; (2) general parking functions, that is, sequences
(x1, x2, . . . , xn) of integers whose order statistics are bounded between two given non-decreasing
sequences; (3) Lattice paths that avoid certain general boundaries; and (4) The area-enumerator
of lattice paths avoiding certain general boundaries. The object (2) can be viewed as a discrete
analog of (1). In literature, objects (1) and (3) have been extensively studied by probabilistic ar-
gument and counting techniques. General parking functions with one boundary has been studied
in a previous paper by the first and the third author [2].

The contribution of the current paper is to put all four problems in the same umbrella, and
present a unified treatment. For object (1) and (2), the corresponding polynomial sequences is
Goncarov polynomials, which are outlined in Section 2. This section also contains an introduction
to the theory of sequences of biorthogonal polynomials. In Section 3 we describe the sequences of
difference Goncarov polynomials. The combinatorial interpretation of difference Goncarov polyno-
mials is lattice paths with one-sided boundary, which is given in Section 4. Section 5 and 6 are
on q-analog of difference Goncarov polynomials, and its application in enumerating area of lattices
paths with one-sided boundary. The two-sided boundaries for both parking functions and lattice
paths are treated in Section 7.

2 Sequences of biorthogonal polynomials and Goncarov polyno-
mials

We begin by giving an outline of the theory of sequences of polynomials biorthogonal to a sequence
of linear functionals. The details can be found in [1].

Let P be vector space of all polynomials in the variable x over a field F of characteristic zero.
Let D : P → P be the differentiation operator. For a scalar a in the field F, let

ε(a) : P → F, p(x) 7→ p(a)

be the linear functional which evaluates p(x) at a.
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Let ϕs(D), s = 0, 1, 2, . . . be a sequence of linear operators on P of the form

ϕs(D) = Ds
∞∑
r=0

bsrD
r, (2.1)

where the coefficients bs0 are assumed to be non-zero. There exists a unique sequence pn(x), n =
0, 1, 2, . . . of polynomials such that pn(x) has degree n and

ε(0)ϕs(D)pn(x) = n!δsn, (2.2)

where δsn is the Kronecker delta.

The polynomial sequence pn(x) is said to be biorthogonal to the sequence ϕs(D) of operators,
or, the sequence ε(0)ϕs(D) of linear functionals. Using Cramer’s rule to solve the linear system and
Laplace’s expansion to group the results, we can express pn(x) by the the following determinantal
formula:

pn(x) =
n!

b00b10 · · · bn0

∣∣∣∣∣∣∣∣∣∣∣∣∣

b00 b01 b02 . . . b0,n−1 b0n
0 b10 b11 . . . b1,n−2 b1,n−1
0 0 b20 . . . b2,n−3 b2,n−2
...

...
...

. . .
...

...
0 0 0 . . . bn−1,0 bn−1,1
1 x x2/2! . . . xn−1/(n− 1)! xn/n!

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Since {pn(x)}∞n=0 forms a basis of P, any polynomial can be uniquely expressed as a linear
combination of pn(x)’s. Explicitly, we have the expansion formula: If p(x) is a polynomial of
degree n, then

p(x) =

n∑
i=0

dipi(x)

i!
, (2.4)

where di = ε(0)ϕi(D)p(x). In particular,

xn =

n∑
i=0

n!bi,n−ipi(x)

i!
, (2.5)

which gives a linear recursion for pn(x). Equivalently, one can write (2.5) in terms of formal power
series equations, and obtain the Appell relation

ext =

∞∑
n=0

pn(x)ϕn(t)

n!
, (2.6)
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where ϕn(t) = ts
∑∞

r=0 bsrt
r.

A special example of sequences of biorthogonal polynomials is the Goncarov polynomials. Let
(a0, a1, a2, . . .) be a sequence of numbers or variables called nodes. The sequence of Gonc̆arov
polynomials

gn(x; a0, a1, . . . , an−1), n = 0, 1, 2, . . .

is the sequence of polynomials biorthogonal to the operators

ϕS(D) = Ds
∞∑
r=0

arsD
r

r!
.

As indicated by the notation, gn(x; a0, a1, . . . , an−1) depends only on the nodes a0, a1, . . . , an−1.
Indeed, from equation (2.3), we have the determinantal formula,

gn(x; a0, a1, . . . , an−1) = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a0
a20
2!

a30
3! . . .

an−1
0

(n−1)!
an0
n!

0 1 a1
a21
2! . . .

an−2
1

(n−2)!
an−1
1

(n−1)!

0 0 1 a2 . . .
an−3
2

(n−3)!
an−2
2

(n−2)!
...

...
...

...
. . .

...
0 0 0 0 . . . 1 an−1
1 x x2

2!
x3

3! . . . xn−1

(n−1)!
xn

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From equations (2.5) and (2.6), we have the linear recursion

xn =
n∑
i=0

(
n

i

)
an−ii gi(x; a0, a1, . . . , ai−1)

and the Appell relation

ext =
∞∑
n=0

gn(x; a0, a1, . . . , an−1)
tneant

n!
.

Finally, from equation (2.4), we have the expansion formula. If p(x) is a polynomial of degree n,
then

p(x) =

n∑
i=0

ε(ai)D
ip(x)

i!
gi(x; a0, a1, . . . , ai−1).

The sequence of Goncarov polynomials possesses a set of specific properties, which are listed in
the following. The proofs can be found in [1].
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1. Differential relations.

The Gonc̆arov polynomials can be equivalently defined by the differential relations

Dgn(x; a0, a1, . . . , an−1) = ngn−1(x; a1, a2, . . . , an−1),

with initial conditions
gn(a0; a0, a1, . . . , an−1) = δ0n.

2. Integral relations.

gn(x; a0, a1, . . . , an−1) = n

∫ x

a0

gn−1(t; a1, a2, . . . , an−1)dt

= n!

∫ x

a0

dt1

∫ t1

a1

dt2 · · ·
∫ tn−1

an−1

dtn.

3. Shift invariant formula.

gn(x+ ξ; a0 + ξ, a1 + ξ, . . . , an−1 + ξ) = gn(x; a0, a1, . . . , an−1).

4. Perturbation formula.

gn(x; a0, . . . , am−1, am + bm, am+1, . . . , an−1) = gn(x; a0, . . . am−1, am, am+1, . . . , an−1)

−
(
n

m

)
gn−m(am + bm; am, am+1, . . . , an−1)gm(x; a0, a1, . . . , am−1).

Applying the perturbation formula repeatedly, we can perturb any subset of nodes. For
example, the following formula allows us to perturb an initial segment of length n−m+ 1 :

gn(x; a0 + b0, a1 + b1, . . . , an−m + bn−m, an−m+1, . . . , an−1)

= gn(x; a0, a1, . . . , an−m, an−m+1, . . . , an−1)

−
n−m∑
i=0

(
n

i

)
gn−i(ai + bi; ai, ai+1, . . . , an−1)gi(x; a0 + b0, a1 + b1, . . . , ai−1 + bi−1).

5. Binomial expansion.

gn(x+ y; a0, . . . , an−1) =
n∑
i=0

(
n

i

)
gn−i(y; ai, . . . , an−1)x

i.
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In particular,

gn(x; a0, . . . , an−1) =

n∑
i=0

(
n

i

)
gn−i(0, ai, . . . , an−1)x

i.

That is, coefficients of Goncarov polynomials are constant terms of (shifted) Goncarov poly-
nomials.

6. Combinatorial representation. Let u be a sequence of non-decreasing positive integers. A u-
parking function of length n is a sequence (x1, x2, . . . , xn) whose order statistics (the sequence
(x(1), x(2), . . . , x(n)) obtained by rearranging the original sequence in non-decreasing order)
satisfy x(i) ≤ ui.
Goncarov polynomials form a natural basis of polynomials for working with u-parking func-
tions. Explicitly, we have

Pn(u1, u2, . . . , un) = gn(x;x− u1, x− u2, . . . , x− un)

= gn(0;−u1,−u2, . . . ,−un)

= (−1)ngn(0;u1, u2, . . . , un).

For more properties and computations of parking functions via Goncarov polynomials, please
refer to [1, 2, 3]. In particular, the sum enumerator and factorial moments of the sums are computed.
For u-parking functions, the sum enumerator is a specialization of gn(x; a0, a1, . . . , an−1) with
ai = 1 + q+ · · ·+ qui−1. Generating functions for factorial moments of sums of u-parking functions
are given in [1], while the explicit formulas for the first and second factorial moments of sums
of u-parking functions are given in [2], and in [3] for all factorial moments for classical parking
functions where ui forms an arithmetic progression.

Remark. Sequences of polynomials of binomial type and the related Sheffer sequences can be
viewed as special cases of sequences of biorthogonal polynomials. We shall use a description given
in the classical paper of Rota, Kahaner and Odlyzko [9]. A delta operator B is a formal power
series of order 1 in the derivative operator D,

B(D) = D + b2D
2 + b3D

3 + · · ·

A Sheffer sequence {sn} (for B) is a polynomial sequence such that

Bsn = sn−1

for all n = 0, 1, 2, . . . , The basic sequence {bn} (for B) is the Sheffer sequence with initial values
bn(0) = δ0,n. Basic sequence is also called sequences of binomial type, which has generating function
of the form

∞∑
n=0

bn(x)
tn

n!
= exf(t), (2.7)
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where f(t) is the compositional inverse of B(x) = x + b2x
2 + b3x

3 + · · · . Sheffer sequences have
generating functions of the form

∞∑
n=0

sn(x)
tn

n!
=

1

s(t)
exf(t), (2.8)

where f(t) is as above, and s(t) =
∑

n≥0 sn(0)tn is a formal power series of order 0. Substituting
B(t) for t in (2.8), we obtain the Appell relation

ext =

∞∑
n=0

sn(x)
s(B(t))[B(t)]n

n!
.

From this we conclude that Sheffer polynomials can be viewed as sequences of polynomials biorthog-
onal to operator sequences of the form

ϕs(D) = s(B(D))[B(D)]n,

where B(t), s(t) are formal power series with s(0) 6= 0, B(0) = 0 and B′(0) 6= 0.

It is known that Sheffer sequences with special initial values can be used to study lattice
path enumeration and empirical distribution functions, where the corresponding delta operators
are D and the backward difference operator ∆. See [5, 6] and their references. For example,
in studying the order statistics of a set of uniformly distributed random variables in [0, 1], let
sn(x) := gn(x; an, an−1, . . . , a1). Since Dsn(x) = nsn−1(x), we get a Sheffer sequence {sn} with
initial values sn(an) = δ0,n. Hence computing the empirical distribution is reduced to compute
Sheffer polynomials with given initial values. For lattice path enumeration, one just replace D
with ∆, (See Section 3 and 4 for details). Niederhausen has used Umbral Calculus to find explicit
solutions for lattices paths in the following cases: (1) the boundary points an are piecewise affine
in n, (2) the steps are in several directions, and (3) lattice paths are weighted by the number of
left turns. The Sheffer sequence is also used to enumerate lattice paths inside a band parallel to
the diagonal, which is a special case described in Section 7.

In this paper, we use the framework of sequences of biorthogonal polynomials for the following
reason: (1) It is more general, while almost all the nice formulas for Sheffer sequences can be ex-
tended to this general setting, (2) It is a natural algebraic correspondence for working with parking
functions and lattice paths, by the combinatorial decomposition theorem for parking functions [1,
Theorem5.1], and its analog in lattice paths (c.f. Section 4). And (3). The theory of biorthogonal
polynomials gives a unified treatment to several combinatorial objects simultaneously, including
parking functions, order statistics of a set of uniformly distributed random variables, lattice paths,
and the area-enumerator of lattice paths.
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3 Difference Goncarov Polynomial

In this section we discuss the difference analog of Goncarov polynomials, which is the sequence
of polynomials biorthogonal to a sequence of linear operators defined by formal power series of
the (backward) difference operators ∆. Explicitly, let p(x) be a polynomial in the vector space
P = F [x]. Define

∆p(x) = p(x)− p(x− 1).

Note that ∆p(x) is a polynomial of x whose degree is one less than that of p(x).

We follow the convention that the upper factorial x(n) is x(x + 1) · · · (x + n − 1). Observe
that the polynomials pn(x) = x(n) form a basis of the vector space P; ∆pn(x) = npn−1(x); and
∆ipn(x)

∣∣
x=0

= 0, whenever i < n. Given a sequence b0, b1, . . . , let ψS(∆), s = 0, 1, 2, . . . be the
linear operators

ψs(∆) =
∞∑
r=0

b
(r)
s

r!
∆r+s. (3.1)

The difference Goncarov polynomials

g̃n(x; b0, . . . , bn−1), n = 0, 1, 2, . . .

is the the unique sequence of polynomials satisfying deg(g̃n(x; b0, . . . , bn−1)) = n and

ψs(∆)g̃n(x; b0, . . . , bn−1)|x=0 = n!δsn.

Many properties of Goncarov polynomials have a difference analog. which are listed in the
following list. Most proofs are similar to that of the differential case, and hence omitted or only
given a sketch.

1. Determinantal formula.

g̃n(x; b0, . . . , bn−1) = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b0
b
(2)
0
2!

b
(3)
0
3! · · · b

(n−1)
0

(n−1)!
b
(n)
0
n!

0 1 b1
b
(2)
1
2! · · · b

(n−2)
1

(n−2)!
b
(n−1)
1

(n−1)!

0 0 1 b2 · · · b
(n−3)
2

(n−3)!
b
(n−1)
2

(n−2)!
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 bn−1

1 x x(2)

2!
x(3)

3! · · · x(n−1)

(n−1)!
x(n)

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.2)
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2. Expansion formula. If p(x) is a polynomial of degree n, then

p(x) =
n∑
i=0

ψi(∆)(p(x))|x=0

i!
g̃i(x; b0, . . . , bi−1). (3.3)

It is obtained by applying Di on both sides and then setting x = 0.

3. Linear recurrence. Let p(x) = x(n) in (3.3), we get

x(n) =
n∑
i=0

(
n

i

)
b
(n−i)
i g̃i(x; b0, . . . , bi−1). (3.4)

4. Appell relation.

(1− t)−x =

∞∑
n=0

g̃n(x; b0, . . . , bn−1)
tn

(1− t)bnn!
.

5. Difference relation.

∆g̃n(x; b0, . . . , bn−1) = ng̃n−1(x; b1, . . . , bn−1), (3.5)

and

g̃n(b0; b0, . . . , bn−1) = δ0n. (3.6)

The above difference relation and initial condition uniquely determine the sequence of differ-
ence Goncarov polynomials.

6. Summation formula. When x, b0 are integers, solving the difference relation, we have the
summation

g̃n(x; b0, b1, . . . , bn−1) = n

x∑
t=b0+1

g̃n−1(t; b1, . . . , bn−1). (3.7)

Iterating this when x, bi ∈ Z, we have the summation formula

g̃n(x; b0, . . . , bn−1) = n!
x∑

i1=b0+1

 i1∑
i2=b1+1

· · · in−1∑
in=bn−1+1

1

 , (3.8)

where

w2∑
i=w1

α(i) =


α(w1) + α(w1 + 1) + · · ·+ α(w2) if w1 ≤ w2;
0 if w1 = w2 + 1;
−α(w2 + 1)− α(w2 + 2)− · · · − α(w1 − 1) if w1 > w2 + 1.

(3.9)
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7. Shift-invariant formula. Using a change of variable, the summation relation (3.7), and induc-
tion, one obtain the following shift-invariant formula

g̃n(x+ t; b0 + t, . . . , bn−1 + t) = g̃n(x; b0, . . . , bn−1). (3.10)

Note that Equation (3.10) holds for all x, t, and bi’s, since it is a polynomial identity which
is true for infinitely many values of x, t and bi’s.

8. Perturbation formula.

g̃n(x; b0, . . . , bm−1, bm + δm, bm+1, . . . , bn−1)

= g̃n(x; b0, . . . , bm−1, bm, bm+1, . . . , bn−1) (3.11)

−
(
n

m

)
g̃n−m(bm + δm; bm, bm+1, . . . , bn−1)g̃m(x; b0, . . . , bm−1).

Applying the perturbation formula repeatly, we get

g̃n(x; b0 + δ0, b1 + δ1, . . . , bn−1 + δn−1)

= g̃n(x; b0, . . . , bn−1) (3.12)

−
n∑
i=0

(
n

i

)
g̃n−i(bi + δi; bi, . . . , bn−1)g̃i(x; b0 + δ0, . . . , bi−1 + δi−1).

9. Binomial expansion. If we expand g̃n(x+ y; b0, . . . , bn−1) using the basis {x(n)}, we can get

g̃n(x+ y; b0, . . . , bn−1) =
n∑
i=0

(
n

i

)
g̃n−i(y; bi, . . . , bn−1)x

(i). (3.13)

To see this, note that ∆(x + y)(i) = i(x + y)(i−1), and ∆g̃n(x + y; b0, . . . , bn−1) = ng̃n−1(x +
y; b0, . . . , bn−1). Now apply ∆ to both side of Equation (3.13) and set x = 0. Equation (3.13)
follows from induction.

Difference Goncarov polynomial of low degrees can be easily computed by the determinant
formula or the summation formula. For example,

g̃0(y) = 1,

g̃1(y; b0) = y(1) − b(1)0 ,

g̃2(y; b0, b1) = y(2) − 2b
(1)
1 y(1) + 2b

(1)
0 b

(1)
1 − b

(2)
0 ,

g̃3(y; b0, b1, b2) = y(3) − 3b
(1)
2 y(2) + (6b

(1)
1 b

(1)
2 − 3b

(2)
1 )y(1)

−b(3)0 + 3b
(2)
0 b

(1)
2 − 6b

(1)
0 b

(1)
1 b

(1)
2 + 3b

(1)
0 b

(2)
1 .
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In the following special cases, difference Goncarov polynomials have a nice closed-form expres-
sion.

Case 1 bi = b for all i. Then
g̃n(x, b, . . . , b) = (x− b)(n).

Case 2 bi = y + (i − 1)b forms an arithmetic progression. Then we have the difference analog of
Abel polynomials:

g̃n(x, y, y + b, . . . , y + (n− 1)b) =

{
(x− y)(x− y − nb+ 1)(n−1) n > 0;
1 n = 0.

To see this, verify the difference relation that ∆g̃n(x; b0, . . . , bn−1) = ng̃n−1(x; b1, . . . , bn−1)
and g̃n(b0; b0, . . . , bn−1) = δ0n. In particular, g̃n(0;−1, . . . ,−n) = n!

n+1

(
2n
n

)
= n!Cn, where

Cn = 1
n+1

(
2n
n

)
is the famous Catalan number.

4 Difference Goncarov Polynomials and Lattice Paths

In this section we describe a combinatorial decomposition which allows us to relate the difference
Goncarov polynomials with certain lattice paths in plane.

Let x, n be positive integers. Consider lattices paths from (0, 0) to (x−1, n) with steps (1, 0) or
(0, 1). Denote by the sequence (x0, . . . , xn) such a path whose right-most point on the i-th row is
(xi, i). Obviously, we always have xn = x−1. Given b0 ≤ b1 ≤ · · · ≤ bn−1 ≤ x, let LPn(b0, . . . , bn−1)
be the number of paths (x0, . . . , xn−1) from (0, 0) to (x− 1, n) with steps (1, 0) and (0, 1) such that
xi < bi for 0 ≤ i ≤ n− 1.

It is well-known that the total number of the paths from (0, 0) to (x−1, n) in the grid (x−1)×n
is

LPn(x, . . . , x) =

(
x+ n− 1

n

)
=
x(n)

n!
.

Another way of counting paths in the grid (x − 1) × n is to decompose the paths into several
classes as follows. Let (x0, . . . , xn) be such a path and i be the first row that xi ≥ bi. Each of such
paths consists of three parts: the first part is a path from (0, 0) to (bi− 1, i) that never touches the
points (bj , j) for j = 0, 1, . . . , i, the second path consists of one step (1, 0), from (bi− 1, i) to (bi, i),
and the third part is a path that goes from (bi, i) to (x − 1, n). The number of paths of the first

kind is LPi(b0, . . . , bi−1), while that of the third kind is
(
x−1−bi+n−i

n−i
)

= (x−bi)(n−i)

(n−i)! . Therefore the
total number of paths is

n∑
i=0

LPi(b0, . . . , bi−1)
(x− bi)(n−i)

(n− i)!
.
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So

x(n) =

n∑
i=0

n!LPi(b0, . . . , bi−1)
(x− ai)(n−i)

(n− i)!
. (4.1)

Comparing Equations (3.4) and (4.1), we get

Theorem 4.1

LPi(b0, . . . , bi−1) =
1

i!
g̃i(x;x− b0, . . . , x− bn−1).

In particular,

LPn(b0, . . . , bn−1) =
1

n!
g̃n(0;−b0, . . . ,−bn−1). (4.2)

Using the identity (−x)(n) = (−1)nx(x− 1)(x− 2) · · · (x− n+ 1) = (−1)nx(n) where x(n) is the
lower factorial, and the determinant formula for g̃n, we get

LPn(b0, . . . , bn−1) = det

[(
bi

j − i+ 1

)]
0≤i,j≤n−1

.

An equivalent description for LPn(b0, . . . , bn−1) is the number of integer points in certain n-
dimensional polytope considered by Pitman and Stanley in [8]. Let

Πn(x) := {y ∈ Rn : yi ≥ 0 and y1 + y2 + · · ·+ yi ≤ x1 + · · ·+ xi for all 1 ≤ i ≤ n},

Pitman and Stanley computed the number of integer points in the polytope Πn when x1, . . . , xn
are positive integers, and gave the formula

N(Πn(x)) =
∑
k∈Kn

(x1 + 1)(k1)

k1!

n∏
i=2

x
(ki)
i

k2!
,

where

Kn = {k ∈ Nn :

i∑
i=1

ki ≥ j for all 1 ≤ i ≤ n− 1 and

n∑
i=1

ki = n}.

Letting b0 = x0 + 1, bi = 1 +
∑i

j=0 xi. Every integer point y = (y1, . . . , yn) ∈ Πn(x) corresponds

uniquely to a lattice path 0 ≤ r0 ≤ r1 ≤ · · · ≤ rn−1 where ri =
∑i

i=0 yi < bi for all i. Hence

N(Πn(x)) = LPn(b0, b1, . . . , bn−1) = det

[(
bi

j − i+ 1

)]
0≤i,j≤n−1

. (4.3)
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Formula (4.3) can also be derived from the Steck formula (c.f. Theorem 7.3) on the number of
lattice paths lying between two given increasing sequences [11, 12]. The detailed can be found in
the monograph [4] and corresponding theory of biorthogonal polynomials are presented in Section
7.

As an application of (4.2), let bi = i. Then LPn(1, 2, . . . , n) counts the number of Dyck paths.
We have LPn(1, . . . , n) = 1

n! g̃n(0;−1, . . . ,−n) = 1
n+1

(
2n
n

)
, again obtain the famous Catalan number.

In general, we can consider the number of lattice paths from (0, 0) to (r + µn, n) (r, µ ∈ P), which
never touch the line x = r + µy. This is just the case where bi = r + (i − 1)µ, and the number is
given by

LPn(r, r + µ, r + 2µ, . . . , r + (n− 1)µ) =
1

n!
g̃n(0;−r,−r − µ, . . . ,−r − (n− 1)µ)

=
1

n!
r(r + nµ+ 1)(n−1)

=
r

r + n(µ+ 1)

(
r + n(µ+ 1)

n

)
, (4.4)

a well-known result. (See, for example, [4, p.9]. In particular, for r = 1 and µ = k, it counts the
number of lattice paths from the origin to (kn, n) that never pass below the line y = x/k. The
formula (4.4) becomes 1

kn+1

(
(k+1)n
n

)
, the nth k-Catalan number [10, p. 175].

We can reinterpret the perturbation formula (3.12) using paths. Given two paths (a0, . . . , an−1)
and (c0, c1, . . . , cn−1) with ai ≤ ci, We consider all paths that never touch (c0, c1, . . . , cn−1).
First, it is LPn(c0, . . . , cn−1) as defined. Secondly, we can also count the paths that never touch
(c0, . . . , cn−1), while they touch the path (a0, . . . , an) on i-th row for the first time. The total
number of such paths is LPi(a0, . . . , ai−1)LPn−i(ci − ai, ci+1 − ai, . . . , cn−1 − ai). So we have the
formula

LPn(c0, . . . , cn−1) =
n∑
i=0

LPi(a0, . . . , ai−1)LPn−i(ci − ai, ci+1 − ai, . . . , cn−1 − ai) (4.5)

+LPn(a0, . . . , an).

Converting the equation using difference Goncarov polynomials, we have

g̃n(x;x− a0, x− a1, . . . , x− an−1)
= g̃n(x;x− c0, . . . , x− cn−1)

−
n∑
i=0

(
n

i

)
g̃n−i(0; ai − ci, . . . , ai − cn−1)g̃i(x;x− a0, . . . , x− ai−1).

Replacing x− ci with bi, ci − ai with δi, and using the shift formula (3.10) on
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g̃n−i(0; ai − ci, . . . , ai − cn−1) by

g̃n−i(0; ai − ci, . . . , ai − cn−1) = g̃n−i(0;−δi, bi+1 − bi − δi, . . . , bn−1 − bi − δi)
= g̃n−i(bi + δi; bi, bi+1, . . . , bn−1),

we get the perturbation formula (3.12) again.

Remark. Let b0 ≤ b1 ≤ bn−1 be a sequence of integers. Denote by LP<
n the set of integer

sequences (r0 < r1 < · · · < rn−1) such that 0 ≤ ri < bi for i = 0, 1, . . . , n − 1. Then LP<n , the
cardinality of LP<

n , can be obtained as follows: Let si = ri − (i − 1). Then s0 ≤ s1 ≤ · · · ≤ sn−1
and 0 ≤ si < bi − (i− 1). Hence LP<n (b0, . . . , bn−1) = LPn(b0, b1 − 1, . . . , bn−1 − n− 1).

Alternatively, we can use the forward difference operator ∆f and its basic polynomials x(n) =

x(x− 1) . . . (x− n+ 1) to replace ∆ and x(n) in (3.1), where ∆fp(x) = p(x+ 1)− p(x). Explicitly,

let ψS(∆f ) =
∑∞

r=0
(bs)(r)
r! ∆r+s

f . Denote the corresponding sequence of biorthogonal polynomials
by g̃f,n(x; b0, . . . , bn−1). The determinant formula of g̃f,n(x; b0, . . . , bn−1) is obtained from (3.2) by
replacing each upper factorial a(i) with the lower factorial a(i) = a(a− 1) . . . (a− i+ 1). Under this

setting, we have LP<n (b0, . . . , bn−1) = 1
i! g̃f,n(0;−b0, . . . ,−bn−1).

The above two approaches yield the following determinant formulas for LP<n (b0, . . . , bn−1).

LP<n (b0, . . . , bn−1) = det

[(
bi − i

j − i+ 1

)]
0≤i,j<n

= det

[(
bi + j − i
j − i+ 1

)]
0≤i,j<n

.

5 q-Goncarov Polynomial

For u-parking functions, the sum enumerator Sn(q,u) =
∑

(a1,...,an)
qa1+a2+···+an , where (a1, . . . , an)

ranges over all u-parking functions, is just the specialization of the (differential) Goncarov poly-
nomials where ui is replaced with 1 + q + · · · + qui−1. This is not the case for lattice paths and
difference Goncarov polynomials. Define the area-enumerator of lattice paths to be

Arean(q;b) :=
∑

(x0,...,xn−1)∈LPn(b)

qx0+x1+···+xn−1 , (5.1)

where LPn(b) is the set of lattice paths from (0, 0) to (x − 1, n) (x − 1 ≥ bn−1) that never touch
(b0, b1, . . . , bn−1). Note that x0 +x1 + · · ·+xn−1 is the area of the region bounded by the path and
the lines x = 0 and y = n. To study Arean(q;b), we develop the q-analog of difference Goncarov
polynomials.

We use the following the conventions that (n)q = 1−qn
1−q ; (n)q! = (1)q · · · (n)q; and the rising

q-factorial

(A; q)n =

{
(1−A) · · · (1−Aqn−1) if n > 0,
1 if n = 0.
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Let p(y) be a polynomial in the ring F (q)[y]. Define

∆qp(y) =
p(y)− p(y/q)

(1− q)y/q
.

It is easy to check that ∆qp(y) is a polynomial of y whose degree is one less than that of p(y).

Observe that the polynomials pn(y) = (y; q)n form a basis of the ring F (q)[y]; ∆qpn(y) =
(n)qpn−1(y); and ∆i

qpn(y)
∣∣
y=1

= 0, whenever i < n. Let ψq,s(∆q), s = 0, 1, 2, . . . , be the sequence

of linear operators

ψq,s(Dq) =
∞∑
s=0

(bs; q)r
(r)q!

∆r+s
q , (5.2)

and define the difference q-Goncarov polynomials gn(q; y;b) = gn(q; y; b0, . . . , bn−1) to be the se-
quence of polynomials biorthogonal to ψq,s(∆q), i.e.,

ψq,s(∆q)gn(y;b; q)|y=1 = (n)q!δsn.

Similar properties satisfied by the regular Goncarov polynomials can be generalized to a q-analog
for the difference q-Goncarov polynomials. We list the main results in the following.

1. Determinantal formula.

gn(q; y; b0, . . . , bn−1) = (n)q!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (b0; q)1
(b0;q)2
(2)q !

(b0;q)3
(3)q !

· · · (b0;q)n−1

(n−1)q !
(b0;q)n
(n)q !

0 1 b1
(b1;q)2
(2)q !

· · · (b1;q)n−2

(n−2)q !
(b1;q)n−1

(n−1)q !

0 0 1 b2 · · · (b2;q)n−3

(n−3)q !
(b2;q)n−1

(n−2)q !
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 bn−1

1 (y; q)1
(y;q)2
(2)q !

(y;q)3
(3)q !

· · · (y;q)n−1

(n−1)q !
(y;q)n
(n)q !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

2. Expansion formula. For any polynomial p(y) ∈ F (q)[y],

p(y) =
n∑
i=0

ψq,i(∆q)(p(y))|y=1

(i)q!
gn(q; y; b0, . . . , bi−1), (5.3)

To verify, apply Di on both sides and then set y = 1.

3. Linear recursion.

(y; q)n =
n∑
i=0

(
n

i

)
q

(bi; q)n−igi(q; y; b0, . . . , bi−1). (5.4)
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4. Appell Relation. Since ∑
n

(a; q)n
(q; q)n

tn =
(at; q)∞
(t; q)∞

,

where (a; q)∞ =
∏∞
k=0(1− aqk), we have the generating function

(yt; q)∞ =
∞∑
i=0

gi(q; y; b0, . . . , bi−1)
(bit; q)∞

(i)q!
ti

5. Difference relation.

∆qgn(q; y; b0, . . . , bn−1) = (n)qgn−1(q; y; b1, . . . , bn−1), (5.5)

with the initial conditions

gn(q; b0; b0, . . . , bn−1) = δ0n. (5.6)

6. Binomial expansion. The binomial expansion of Goncarov polynomials becomes

gn(q; ty; b0, . . . , bn−1; q) =

n∑
i=0

(
n

i

)
q

tign−i(q; t; bi, . . . , bn−1)(y; q)i. (5.7)

This is because ∆q(ty; q)i = (i)qt(ty; q)i−1, and

∆qgn(q; ty; b0, . . . , bn−1) = (n)qtgn−1(q; ty; b1, . . . , bn−1).

Now apply ∆q to both side of the equation and set y = 1.

7. Summation formula. Let y = qx and bi = qai , where x and ai are integers, we have

gn(q; y; b0, . . . , bn−1) = (1− q)
x∑

i=a0+1

qi−1(n)qgn−1(q; q
i; b1, . . . , bn−1),

where the sum is defined the same as in 3.9. This is because

gn(q; y; b0, . . . , bn−1) = gn(q; qx−1; b0, . . . , bn−1) + (1− q)qx−1(n)qgn−1(q; q
x; b1, . . . , bn−1)

and the initial condition (5.6). Iterate it we obtained the sum formula

gn(q; y; b0, . . . , bn−1) = (1− q)n(n)q!

x∑
i1=a0+1

qi1−1

 i1∑
i2=a1+1

qi2−1

· · · in−1∑
in=an−1+1

qin−1

 .(5.8)

From this we derive the shift formula:

gn(q; yqξ; b0q
ξ, . . . , bn−1q

ξ) = qnξgn(q; y; b0, . . . , bn−1). (5.9)

Since gn(q; y;b) is a polynomial of y and b′s over a field and the equation above holds for
infinitely many y′s and b′s, it holds for all y and b′s.
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Examples of the q-Goncarov polynomials follow.

g0(q; y) = 1,

g1(q; y; b0) = (y; q)1 − (b0; q)1,

g2(q; y; b0, b1) = (y; q)2 − (2)q!(b1; q)1(y; q)1 + (2)q!(b0; q)1(b1; q)1 − (b0; q)2,

g3(q; y; b0, b1, b2) = (y; q)3 − (3)q(b2; q)1(y; q)2 + ((3)q!(b1; q)1(b2; q)1 − (3)q(b1; q)2)(y; q)1

−(b0; q)3 + (3)q(b0; q)2(b2; q)1 − (3)q!(b0; q)1(b1; q)1(b2; q)1 + (3)q(b0; q)1(b1; q)2.

In particular, in some special cases we have nice closed formula,

gn(q; qx; qb, . . . , qb) = qnb(qx−b; q)n

and
gn(q; qx; qy, qy+1, . . . , qy+n−1) = (−1)nq(

n
2)−nx(qy−x; q)n.

6 q-Goncarov Polynomials and Area of Lattice Paths

Define the q-upper factorial x
(n)
q = (1 − qx) · · · (1 − qx+n−1)/(1 − q)n. In this section we use

the difference q-Goncarov polynomial developed in the previous section to represent the area-
enumerator of lattice paths with upper constraint.

Consider an (x− 1) by n grid consisting of vertical and horizontal lines. Let (x0, . . . , xn−1) be
a path that goes from (0, 0) to (x− 1, n) along the grid, while the right-most point on the i-th row
is (xi, i) for i = 0, 1, . . . , n − 1. Given a path (b0, b1, . . . , bn−1) with b0 ≤ b1 ≤ · · · ≤ bn−1 ≤ x − 1,
let Arean(q;b) be given in Formula (5.1). We establish a recurrence of Arean(q;b) by computing
the area-enumerator of Arean(q;x− 1, x− 1, . . . , x− 1) in two ways.

First, it is well-known that the area-enumerators of all the paths in the grid (x− 1)× n is

Arean(q;x− 1, . . . , x− 1) =

(
x+ n− 1

n

)
q

=
x
(n)
q

(n)q!
.

Now apply the decomposition as in §4. Let (x0, . . . , xn) be a path in (x−1)×n for which i be the first
row that the path touches the path (b0, . . . , bn−1), i.e., xi ≥ bi. Each of such paths consists of two
parts: the first part is a path from (0, 0) to (bi−1, i) that never touches the path (b0, . . . , bi−1), the
second part consists of one horizontal step from (bi−1, i) to (bi, i), and the third part is a path that
goes from (bi, i) to (x− 1, n). The area contributed by the first part is Areai(q; b0, . . . , bi−1), while
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that of the second kind and the third is qbi(n−i)
(
x− 1− bi + n− i

n− i
)
q

= qbi(n−i)
(x−bi)(n−i)

q

(n−i)q !
. Therefore the

area-enumerator of all the paths is

n∑
i=0

Areai(q; b0, . . . , bi)q
bi(n−i)

(x− bi)(n−i)q

(n− i)q!
.

So

x(n)q =
n∑
i=0

(n)q!

(n− i)q!
Areai(q; b0, . . . , bi)q

(n−i)bi(x− bi)(n−i)q , (6.1)

which leads to

(qx; q)n =
n∑
i=0

(n)q!

(n− i)q!
(1− q)i

[
(qx−bi ; q)n−i

]
q(n−i)biAreai(q; b0, . . . , bi). (6.2)

Comparing equations (5.4) and (6.2), we need to make the power of q on the right-hand side
of equation (6.2) depending only on i and bi. To achieve this, we replace q by 1

q in equation (6.2).

Then (qx; q)n becomes (−1)nq−(nx+(n2))(qx; q)n, and (n)q! becomes q−(n2)(n)q!. Substituting into
(6.2) and reorganizing the equation, we get

(qx; q)n =
n∑
i=0

(
n

i

)
q

(i)q!(−1)i
[
(qx−bi ; q)n−i

]
qix(1− 1

q
)iAreai(

1

q
; b0, . . . , bi). (6.3)

Comparing equations (5.4) and (6.3), we obtain

Areai(
1

q
; b0, . . . , bi) =

(−1)i

(i)q!q
ix(1− 1

q )i
gn(q; qx; qx−b0 , . . . , qx−bi−1).

Let f(q;x, b0, . . . , bn−1) be a polynomials of q with parameters x, b0, . . . , bn−1 given by

f(q;x, b0, . . . , bn−1) = gn(q; qx; qx−b0 , . . . , qx−bi−1).

Then

Theorem 6.1 The area-enumerators of lattice paths in the rectangle (x− 1)×n that stays strictly
above the path (b0, . . . , bn) is

Arean(q;b) =
(−1)n

(1− q)n(n)q!
q

n(n−1)
2

+nxf(
1

q
;x, b0, . . . , bn−1)

=
(−1)n

(1− q)n(n)q!
q

n(n−1)
2 fn(

1

q
; 0, b0, . . . , bn−1). (6.4)
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7 Two-Boundary Extensions

Goncarov polynomials can be extended to represent parking functions and lattice paths with both
both upper and lower boundaries.

7.1 Parking functions with two-sided boundary

u-parking functions are integer sequences whose order statistics is bounded by a prefixed sequence
u from above. We may consider parking functions with both upper and lower constraints. More
precisely, let r1 ≤ r2 · · · ≤ rn and s1 ≤ s2 ≤ · · · ≤ sn be two sequence of non-decreasing integers.
A (r, s)-parking function of length n is a sequence (x1, . . . , xn) whose order statistics satisfy ri ≤
x(i) < si. Denoted by Pn(r, s) = Pn(r1, . . . , rn; s1, . . . , sn) the number of (r, s)-parking functions of
length n. The formula Pn(r, s) can also be expressed as biorthogonal polynomials.

Let (a0, a1, a2, . . . ) and (b0, b1, b2, . . . ) be two sequences of numbers. Define the extended
Goncarov polynomials

g†n(x;a,b) = g†n(x; a0, a2, . . . , an−1; b0, b1, . . . , bn−1), n = 0, 1, 2, . . . ,

to be the sequence of polynomials biorthogonal to the operators

ϕs(D) = Ds
∞∑
r=0

(bs − as+r−1)r+Dr

r!
, (7.1)

where x+ = max(x, 0). (Here we set a−1 = 0.) By the determinant formula (2.3),

g†n(x;a,b) = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 (b0 − a0)+
(b0−a1)2+

2!

(b0−a2)3+
3! . . .

(b0−an−2)
n−1
+

(n−1)!
(b0−an−1)n+

n!

0 1 (b1 − a1)+
(b1−a2)2+

2! . . .
(b1−an−2)

n−2
+

(n−2)!
(b1−an−1)

n−1
+

(n−1)!

0 0 1 (b2 − a2)+ . . .
(b2−an−2)

n−3
+

(n−3)!
(b2−an−1)

n−2
+

(n−2)!
...

...
...

...
. . .

...
0 0 0 0 . . . 1 (bn−1 − an−1)+
1 x x2

2!
x3

3! . . . xn−1

(n−1)!
xn

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In particular, g†n(0;a,b)) = (−1)nn! det[(bi−aj)j−i+1
+ /(j−i+1)!]. By the linear recurrence equation

(2.5), we have

xn =
n∑
i=0

(
n

i

)
(bi − an−1)n−i+ g†i (x;a,b).
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It follows that for n ≥ 1,

n∑
i=0

(
n

i

)
(bi − an−1)n−i+ g†i (0;a,b) = 0. (7.2)

The sequence {g†n(0,a,b) is uniquely determined by the above recurrence and initial values g†0(0;a,b) =

1, g†1(0;a,b) = −(b0 − a0)+.

Theorem 7.1

Pn(r1, . . . , rn; s1, . . . , sn) = (−1)ng†n(0; r1, . . . , rn; s1, . . . , sn). (7.3)

To prove Theorem 7.1, it is sufficient to show that

n∑
i=0

(−1)i
(
n

i

)
(si+1 − rn)n−i+ Pi(r, s) = 0, (7.4)

for n ≥ 0, and P1(r, s) = (s1 − r1)+. The initial value is clear. In the following we give two proof
of equation (7.4). The first one is based on a weighted version of inclusion-exclusion principle.
The second is an involution on the set of “marked” parking functions, which reveals some intrinsic
structures of two-sided parking functions.

First Proof of (7.4). Let M(S) be the set of all sequences α of length n such that α|S is a
(r, s)-parking function of length |S|, and each term in α|Sc lies in [rn, si+1), where Sc = [n] \ S.
Then (7.4) is equivalent to

∑
S(−1)|S||M(S)| = 0, where the sum ranges over all subsets S ⊆ [n].

For any sequence α, let T [α] = {S : α ∈M(S)}. It is sufficient to show that∑
T∈T [α]

(−1)|T | = 0. (7.5)

Observe that if α ∈M(S) and S ⊂ S′, then α ∈M(S′). Hence T [α] is a filter in the power set
of [n]. T [α] 6= ∅ if and only if α is a (r, s)-parking function. When T [α] 6= ∅, let S1, . . . , Sr be the
minimal elements of T [α]. S1, . . . , Sr satisfy the following properties.

1. |Si| < n. For any (r, s)-parking function α, deleting the largest element which is in [rn, sn),
the remaining is a (r, s)-parking function of length n− 1. Hence T [α] 6= {[n]}.

2. |S1| = |S2| = · · · = |Sr| = k for some k < n. Assume k = |S1| < |S2| = `. The condition
α ∈ M(S1) implies all terms of α are less than sk+1, and at least n − k of them are larger
than or equal to rn. In particular, the largest element in α|S2 lies in [rn, sk+1). Then S2 is
not minimal.
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3. S1 ∪ S2 ∪ · · · ∪ Sr 6= [n]. Otherwise, every term in α appears in some (r, s)-parking function
of length k < n, and hence less than sk. And any term in a position of S1 \S2 is greater than
or equal to rn. Hence the minimal element of T [α] has length ≤ |S1| − 1, a contradiction.

Denoted by F(S1, . . . , Sr) the filter of the power set of [n] generated by S1, . . . , Sr, and

W (F(S1, . . . , Sr)) =
∑

T∈F(S1,...,Sr)

w(T ),

for a weight function w(T ). Note that F(S1, . . . Sr) = F(S1) ∪ . . .F(Sr), and F(Si) ∩ F(Sj) =
F(Si ∪ Sj), using Inclusion-Exclusion, we have

W (F(S1, . . . , Sr)) =
∑
i

W (F(Si))−
∑
i<j

W (F(Si ∪ Sj)) +
∑
i<j<k

W (F(Si ∪ Sj ∪ Sk))− · · · .

Letting the weight w(T ) = (−1)|T |. Formula (7.5) follows from the equationW (F(S)) = (−1)n−|S| =
0 whenever S 6= [n]. �

Second Proof of (7.4). We give a bijective proof for the equivalent form∑
i even

(
n

i

)
(si+1 − rn)n−i+ Pi(r, s) =

∑
i odd

(
n

i

)
(si+1 − rn)n−i+ Pi(r, s). (7.6)

The left-hand side of (7.6) is the cardinality of the set M of pairs (α, S) where α is a sequence of
length n, S ⊂ [n] with |S| even, such that α|S is a (r, s)-parking function of length |S|, and any
term in α|Sc lies in [rn, s|S|+1). The right-hand side of (7.6) is the cardinality of the set N of pairs
(α, S) where (α, S) is similar as those appeared in M , except that |S| being odd.

For a sequence α, let m = max(α) be the first maximal entry of α. Let pos(m) be the position
of m. Define σ : M 7→ N by letting σ(α, S) = (α, T ) where

T =

{
(α, S \ {pos(m)}), if pos(m) ∈ S,
(α, S ∪ {pos(m)}), if pos(m) /∈ S.

The map σ is well-defined: For any pair (α, S) with |S| even, clearly |T | is odd.
Case 1. If pos(m) ∈ S, then deleting m from the subsequence in S, we obtain a (r, s)-parking
function of length |S| − 1 = |T |. The condition that m = max(α) and m ∈ [r|S|, s|S|) implies that
for any term x in α|T c , x ≤ m < s|S| = s|T |+1. In addition, if Sc 6= ∅, then m ≥ x ≥ rn for any
x ∈ Sc; if Sc = ∅, then α itself is a (r, s)-parking function of length n, hence m ≥ rn. This proves
that in the case pos(m) ∈ S, (α, T ) ∈ N .
Case 2. If pos(m) /∈ S, then any term x ∈ Sc lies in [rn, s|S|+1) ⊆ [rn, s|S|+2). As m ∈ [rn, s|S|+1),
joining m to the subsequence on S will result in a (r, s)-parking function of length |S| + 1 = |T |.
In both cases, σ maps a pair in M to a pair in N .
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It is easily seen that σ has the inverse map σ−1(α, T ) = (α, S) where

S =

{
(α, T \ {pos(m)}), if pos(m) ∈ T,
(α, T ∪ {pos(m)}), if pos(m) /∈ T.

This proved that σ is a bijection from M to N . �

Equation (7.1) should be compared with following formula of Steck [11, 12] for the cumulative
distribution function of the random vector of order statistics of n independent random vaiables
with uniform distribution on an interval. Let

0 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ 1

0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ 1,

be given constants such that ri < vi for i = 1, 2, . . . , n. If X(1), X(2), . . . , X(n) are the order statistics
in ascending order from a sample of n independent uniform random variables with ranges 0 to 1,
then

Pr(ri ≤ X(i) ≤ si, 1 ≤ i ≤ n) = n! det[(si − rj)j−i+1
+ /(j − i+ 1)!]. (7.7)

The difference between equations (7.1) and (7.7) is that in a (r, s)-parking function, the sequence
can only assume integer values. While a uniform random variable in [0, 1] corresponds to real-
valued parking functions, [2]. Hence equation (7.1) can be viewed as a discrete extension of the
Steck formula (7.7).

The equation (7.4) can be extended to the sum-enumerator of (r, s)-parking functions. Define

Sn(q; r, s) =
∑

α=(a1,...,an)

qa1+···+an

where the sum ranges over all (r, s)-parking functions of length n. With a similar proof to that of
(7.4), we can show that

n∑
i=0

(−1)i
(
n

i

)
((si+1)q − (rn)q)

n−i Si(q; r, s) = 0,

where the factor si+1)q − (rn)q is 0 if rn ≥ si+1. Hence, the sum-enumerator is a specialization of
the polynomial Pn(r, s):

Theorem 7.2
Sn(q; r, s) = Pn(r(q), s(q)),

where
r(q) = ((r1)q, (r2)q, . . . , (rn)q),

and
s(q) = ((s1)q, (s2)q, . . . , (sn)q).
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7.2 Lattice paths with two-sided boundary

The number of lattice paths with two boundaries was obtained as a determinant formula by Steck
[11, 12]. Such enumeration and various generalizations has been extensively studied, for example,
in [4, Chapter2]. Hence we just list the main results on the subject, and explain the connection to
biorthogonal polynomials.

Theorem 7.3 (Steck) Let a0 ≤ a1 ≤ · · · ≤ am and b0 ≤ b1 ≤ · · · ≤ bm be sequences of integers
such that ai, bi. The number of sets of integers (r0, r1, . . . , rm) such that r0 < r1 < · · · < rm and
ai < ri < bi for 0 ≤ i ≤ m is the (m+ 1)-th determinant det(dij) where dij =

(bi−aj+j−i−1
j−i+1

)
if i ≤ j

and bi − aj > 1. Otherwise dij = 0.

Denoted by LPn(a,b) the number of lattice paths (x0, x1, . . . , xn−1) from (0, 0) to (x − 1, n)
satisfying ai ≤ xi < bi < x. Steck’s formula gives

LPn(a,b) = det

[(
(bi − aj)+
j − i+ 1

)]
. (7.8)

Formula (7.8) is a specialization of extended difference Goncarov polynomials. Given two sequences

a = (a0, a1, a2, . . . ) and b = (b0, b1, b2, . . . ), let g̃†n(x;a,b) = g̃†n(x; a0, a1, . . . , an−1; b0, b1, . . . , bn−1)
(n = 0, 1, 2 . . . ) be the sequence of polynomials biorthogonal to the operators

ψS(∆) = ∆s
∞∑
r=0

(−1)r
(

(bs − as+r−1)+
r

)
∆r. (7.9)

Then

g̃†n(0;a,b)) = n! det[

(
(bi − aj)+
j − i+ 1

)
] = n!LPn(a,b). (7.10)

These equations enable us to enumerate LPn(a,b) from the theory of biorthogonal polynomials.
Since generally, recurrence relations and generating functions are major techniques to solve a count-
ing problem, we show how such results on LPn(a,b) follow from the properties of g̃†n(0;a,b)).

First, the linear recurrence (3.4) becomes

x(n) =

n∑
i=0

n!

i!
(−1)n−i

(
(bi − an−1)+

n− i

)
g̃†i (x;a,b)

It follows that

δ0,n =
n∑
i=0

(−1)i
(

(bi − an−1)+
n− i

)
1

i!
g̃†i (0;a,b) =

n∑
i=0

(−1)i
(

(bi − an−1)+
n− i

)
LPi(a,b). (7.11)
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Equation (7.11) gives a linear recurrence to compute LPn(a,b). This equation has been obtained in
[4] as well, see equation (2.37). One can also prove it combinatorially by counting alternatively the
set Mi of all pairs (α, i) where α = (α1, α2, . . . , αn) is an integer sequence satisfying (1) α1 ≤ α2 ≤
· · · ≤ αi, (2) aj ≤ αj < bj for each j = 0, 1, . . . , i, and (3) αi+1 < αi+2 < · · · < αn ∈ [an, bi+1)

n−i.
By a similar argument, if one define

Arean(q;a,b) =
∑
x

qx0+x1+···+xn−1−a0−···−an−1 ,

Then

δ0,n =

n∑
i=0

(−1)i
(

(bi − an−1)+
n− i

)
q

Areai(q;a,b).

From the Appell relation

1

(1− t)x
=
∞∑
n=0

g̃†n(x;a,b)
ψn(t)

n!
,

we get the identity
∞∑
n=0

LPn(a,b)
ψn(t)

n!
= 1,

where ψn(t) is given in (7.9). In particular, when ai = ki + c, bi = ki + d with c < d, i.e., lattice
paths are restricted in a strip of width d− c, ψn(t) = tnf(t) where f(t) is a polynomials of degree
dd−ck e. Hence the sequence LPn(a,b) has a rational generating function

∞∑
n=0

LPn(a,b)
tn

n!
=

1

f(t)
.

It remains true even the initial boundaries ai, bi for i = 0, 1, . . . , T are arbitrary.
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