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Abstract

A non-crossing pairing on a binary string pairs ones and zeroes such that the arcs
representing the pairings are non-crossing. A binary string is well-balanced if it is
of the form 1a10a11a20a2 . . . 1ar0ar . In this paper we establish connections between
non-crossing pairings of well-balanced binary strings and various lattice paths in
plane. We show that for well-balanced binary strings with a1 ≤ a2 ≤ · · · ≤ ar,
the number of non-crossing pairings is equal to the number of lattice paths on the
plane with certain right boundary, and hence can be enumerated by differential
Goncarov polynomials. For the regular binary strings S = (1k0k)n, the number of
non-crossing pairings is given by the (k+1)-Catalan numbers. We present a simple
bijective proof for this case.
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1 Introduction

Motivated by problems that arose from the theory of random matrices and free probability,
Kemp, Mahlburg, Rattan, and Smyth[4] studied non-crossing pairings of binary strings.
Given a binary string S = 1a10b11a20b2 · · ·, a non-crossing pairing on S matches ones and
zeroes of S such that the arcs connecting the ones and zeroes are non-crossing if one puts
the bits along a line and draws all the arcs above the bits. A binary string is balanced
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if the number of ones is the same as the number of zeroes. For a balanced binary string
S, let NC2(S) be the set of non-crossing pairings of S. It is easy to see that NC2(S)
is always non-empty. In [4], Kemp et.al. presented recurrence relations and functional
equations satisfied by |NC2(S)|, and proved general upper bounds in terms of the k-
Catalan numbers. In this paper we examine a subset of this problem and further explore
its properties.

Definition 1.1. Let S = 1a10b11a20b2 · · · 1ar0ar be a binary string. We say that S is
well-balanced if ai = bi for all i. We say that S is regular if ai = bj for all i, j.

The main objective of this paper is to establish a connection between non-crossing
pairings of well-balanced binary strings and lattice paths with a general right boundary.
It is known in [4] that the non-crossing pairings for a regular binary string are counted by
the k-Catalan numbers. In section 2 we give a bijective proof to complement the algebraic
argument of [4]. We then list several lattice path representations for non-crossing pairings
of regular binary strings. In section 3, we prove that for a well-balanced binary string
S = 1a10a1 · · · 1ar+10ar+1 with a1 ≤ a2 ≤ · · · ≤ ar+1, the number of non-crossing pairings
can be computed as the number of lattice paths from (0, 0) to (sr, r) with the right
boundary (s1, s2, . . . , sr), where si = a1 + · · · + ai for i = 1, 2, . . . , r. This result allows
us to study NC2(S) by the powerful machinery in symbolic computation and umbral
calculus. As corollaries, we give a determinant formula, a linear recurrence relation, and
a (shifted) generating function for |NC2(S)|. Finally in Section 4, we describe a bijective
proof for the well-balanced strings.

2 Regular Binary Strings

The number of non-crossing pairings for a regular binary string S = (1k0k)n is equal to the
nth (k + 1)-Catalan number. This result was stated by Kemp et al. [4, Prop 1.6], where
they outlined an algebraic proof analyzing the recurrence relations of both structures.
In this section we present a simple bijective proof, mapping non-crossing pairings on a
regular binary string to a k-Catalan structure.

The Catalan structure we will be using is the generalization of representation (n) of
Stanley’s online list [13]. The basic structure for k = 2 is n non-crossing chords pairing
2n (labeled) points on a circle. The k-Catalan version is non-intersecting regions in a
circle, each containing k of the nk points on the circle. An equivalent definition is given
in [1, item (10)], where it is described as a family of n non-intersecting chord paths of
length k − 1 joining kn points on the circumference of a circle. For each region in the
first description, the chord path can be obtained by joining the points in this region in
clockwise order. The chord paths are non-intersecting since they are contained in non-
intersecting regions. Alternatively, one can create chord groups where the first point in
the region (in clockwise order) is connected to each other point in the region with a chord,
as in [12]. Again these chord groups are non-intersecting with each other.

All three representations are equivalent. See Fig. 1 for an illustration with k = 3 and
n = 2, where the rightmost point on the circle is the initial point. In the following we
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shall use the first description in the bijection. The third one is convenient to extend to
Catalan structures with a left weight, as demonstrated in [12].

Figure 1: Three versions of representation (n) for the 2nd 3-Catalan number.

Theorem 2.1. Let S = (1k0k)n be a regular binary string. Then |NC2(S)| = Ck+1
n =

1
(k+1)n+1

(

(k+1)n+1
n

)

, the nth (k + 1)-Catalan number.

Proof. We present a bijection between the set of non-crossing pairings for the binary
string S = (1k0k)n and the set of ways to divide a circle inscribed with (k + 1)n points
into n non-intersecting regions each with k + 1 points. Given a non-crossing pairing of
ones and zeroes of S, we first arrange the 2kn 01-bits clockwisely on a circle, starting
from the position (1, 0). That is, the first one of S corresponds to the rightmost point on
the circle. The pairing is then represented by kn non-crossing chords of the circle. Next
we compress each consecutive run of k ones to a single point, and hence obtain n points
Q1, . . . , Qn, where each Qi is connected to k distinct zeroes on the circle with non-crossing
chords. Now there are (k + 1)n points in total. Taking the convex hull of Qi and its k

neighbors for each i gives n non-intersecting regions.
The inverse map is slightly more complex. Given a circle with n(k+1) points inscribed,

divided into n distinct regions of k+1 points, start with the fixed starting point and mark
the points in the positions 1, (k+1)+1, 2(k+1)+1, . . . , (n−1)(k+1)+1. We claim that
each region contains exactly one marked point. To see this, it is enough to show that no
two marked points can belong to the same region. Assume otherwise and the points Pi

and Pj at positions i(k + 1) + 1 and j(k + 1) + 1 (where i < j) are in the same region A.
Since the regions are non-intersecting, between any two consecutive points in the same
region there are (k + 1)t points for some integer t ≥ 0. Assume that there are y points
lying strictly between Pi and Pj that are also in the region A. Then 0 ≤ y ≤ k − 1 and
the total number of points between Pi and Pj is of the form y + (k + 1)t. This leads to
the equation y + (k + 1)t = (j − i)(k + 1) − 1, which implies that y = −1 (mod k + 1).
This contradicts the fact that 0 ≤ y ≤ k − 1.

Now we expand each marked point into k points labeled by 1, and label each unmarked
point by 0. Within each region there are 2k points, k with label 1 and k with 0. When
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reading clockwise, they are of the form 0t1k0k−t, which is equivalent to 1k0k by rotation
and having exactly one non-crossing pairing. Laying all the points on a line and putting
the non-crossing pairing for each region together gives us the non-crossing pairing of the
appropriate regular binary string.

As an example, in Fig. 2 we illustrate the correspondence between non-intersecting
regions and non-crossing pairings of the regular binary string (1202)2.

Figure 2: The corresponding regions and pairings of the binary string (1202)2.

The Catalan family contains many combinatorial structures, notably lattice paths. We
list here some families of lattice paths that are also enumerated by the nth (k+1)-Catalan
number, and hence equi-numerated with the non-crossing pairings of the regular binary
strings. For all the cases of Corollary 2.2, bijective proofs are known: cases 1 and 2 are
proved in [12], case 3 is given in [1] and case 4 in [6]. In the next section we will prove
that lattice paths with a given right boundary plays an important role in the enumeration
of non-crossing pairings of well-balanced binary strings. This result can be viewed as a
generalization of case 4.

Corollary 2.2. Let S = (1k0k)n be a regular binary string. Then the set of non-crossing
pairings on S corresponds to the following sets of lattice paths.

1. Lattice paths from (0, 0) to (kn, kn) with steps (0, k) and (1, 0), never rising above
the line y = x. Equivalently, this is the set of sequences from (0, 0) to (2kn, 0) with
steps (k, k) and (1,−1), never falling below the x-axis.

2. Lattice paths from (0, 0) to (2(kn + 1)), 0), starting with a (1, 1) step with the re-
maining steps in the path being n steps (k, k) and kn+1 steps (1,−1), never falling
below the x-axis, such that any maximal sequence of consecutive (1,−1) steps ending
on the x-axis has odd length.

4



3. Lattice paths from (0, 0) to (kn, n) with steps (1, 0) or (1, 0), never lying below the
line x = ky.

4. Lattice paths from (0, 0) to (kn, n− 1) with steps (1, 0) or (1, 0), never touching the
line x = ky + k + 1.

3 Well-balanced binary strings

For a well-balanced binary string S = 1a10a11a20a2 · · · 1ar0ar1ar+10ar+1, we say that S

consists of r + 1 segments, where the ith segment is 1ai0ai. Again let NC2(S) be
the set of non-crossing pairings of ones and zeroes of S. Following [4], we denote by
φ∗(a1, a2, . . . , ar, ar+1) the cardinality of NC2(S).

In this section we prove that for any sequence of non-decreasing integers a1 ≤ a2 · · · ≤
ar ≤ ar+1, φ

∗(a1, . . . , ar+1) equals the number of lattice paths in the plane from (0, 0) to
(x, r) with the right boundary (s1, s2, . . . , sr), where si = a1 + · · ·+ ai. This result leads
to many algebraic properties and explicit formulas for φ∗.

A lattice path P is a path in the plane with two kinds of steps: a unit north step
N = (0, 1) or a unit east step E = (1, 0). If x is a positive integer, a lattice path from
the origin (0, 0) to the point (x, n) can be coded by a length n non-decreasing sequence
(x1, x2, . . . , xn), where 0 ≤ xi ≤ x and xi is the x-coordinate of the i-th north step. For
example, the path EENENNEE is coded by (2, 3, 3). In other words, the i-th north
step of the path has coordinates (xi, i− 1) → (xi, i).

In general, let s be a non-decreasing sequence with positive integer terms s1, s2, . . . ,
sn. A lattice path from (0, 0) to (x, n) is one with the (weak) right boundary s if xi ≤ si
for 1 ≤ i ≤ n. If x ≥ sn, then the number of lattice paths from (0, 0) to (x, n) with the
right boundary s does not depend on x. Let Pathn(s) be the set of lattice paths from
(0, 0) to (x, n) (where x ≥ sn) with the right boundary s, and LPn(s) be the cardinality
of Pathn(s).

Given a sequence of positive integers a1 ≤ a2 ≤ · · · ≤ ar ≤ ar+1, we first notice a basic
fact.

Lemma 3.1. φ∗(a1, a2, . . . , ar, ar+1) is independent of the value of ar+1. That is,

φ∗(a1, a2, . . . , ar, ar+1) = φ∗(a1, a2, . . . , ar, ar) for all ar+1 ≥ ar. (1)

Proof. To see this, for any i > ar let α be the ith one in the last segment 1ar+10ar+1. For
any zero before α, it is easy to check that there are more ones than zeroes between this
zero and α. Hence in any non-crossing pairing α must be paired with a zero in the last
segment. There is only one way to do so, namely, we pair the last ar+1 − ar ones in the
(r+1)st segment with the ar+1−ar zeroes immediately after them. Hence (1) follows.

Clearly, φ∗(a) = 1. By convention, set φ∗(∅) = 1. Our main result is the following
equation of φ∗(a1, a2, . . . , ar, ar+1).
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Theorem 3.2. For a sequence of positive integers a1 ≤ a2 ≤ · · · ≤ ar ≤ ar+1 with r ≥ 1,
let

s1 = a1

s2 = a1 + a2

· · · = · · ·

sr = a1 + a2 + · · ·+ ar.

Then φ∗(a1, a2, . . . , ar, ar+1) equals the number of lattice paths with the right boundary
(s1, s2, . . . , sr), that is

φ∗(a1, a2, . . . , ar, ar+1) = LPr(s1, s2, . . . , sr). (2)

We prove the theorem by a double induction on the length r and the first term a1.
First, when r = 1, the string S is of the form 1a10a11a20a2 where a1 ≤ a2. Given a non-
crossing pairing, among the a1 1s in the first segment, assume that i of them are paired
with zeroes in the first segment, and a1−i of them to zeroes in the second segment. There
is only one way to arrange such a pairing. See Figure 3 for an illustration. As i ranges
from 0 to a1, we have φ∗(a1, a2) = a1 + 1 = LP1(a1).

1 1 · · · 1 1 · · · 1 0 0 · · · 0 0 1 1 · · · 1 0 0 · · · 0 0

i pairs

a1 − i pairs

Figure 3: non-crossing pairings of 1a10a11a20a2 .

Let us assume that Equation (2) holds for all sequences of length less than or equal
to r. We shall show that it is true for sequences of length r + 1. To achieve this, we do
induction on the first term a1.

First we show Equation (2) for a1 = 1. This is achieved by showing that φ∗(a1, . . . , ar+1)
and LPr(s1, . . . , sr) satisfy the same recurrence relation.

Lemma 3.3. The number of non-crossing pairings on well-balanced strings satisfies the
recurrence

φ∗(1, a2, . . . , ar, ar+1) =
r+1
∑

i=1

φ∗(a2, . . . , ai)φ
∗(ai+1, . . . , ar+1).

where we use the convention that φ∗(∅) = 1.

Proof. Each summand represents a choice of which segment to match the first zero in
the string S = 101a20a2 · · · 1ar+10ar+1. If we match it to the one at the head of S, then
we are left with the binary string 1a20a2 · · · 1ar+10ar+1. There are φ∗(a2, · · · , ar+1) many
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non-crossing pairings in this case. Otherwise, we have to match the first zero to the very
first one in the (i+ 1)st segment, for some i = 1, 2, . . . , r. Call this pair the first pair. In
that case, the string S is broken into two pieces, one is nested under the first pair with bits
1a20a2 · · ·1ai0ai , and the other is outside the first pair with bits 1ai+10ai+1 · · · 1ar+10ar+1.
They contribute φ∗(a2, . . . , ai)φ

∗(ai+1, · · · , ar+1) non-crossing pairings.

Next we prove that the number of lattice paths with the right boundary (s1, s2, . . . , sr),
where s1 = 1, and si = 1 + a2 + · · ·+ ai for i = 2, 3, . . . , r, satisfies a similar recurrence.

Lemma 3.4.

LPr(1, s2, . . . , sr) = LPr−1(s2 − 1, s3 − 1, . . . , sr − 1)+
r

∑

i=1

LPi−2(s2 − 1, . . . , si−1 − 1) · LPr−i(ai+1, ai+1 + ai+2, . . . , ai+1 + · · ·+ ar),

where we use the convention that LP−1 = LP0 = 1.

Proof. Let x be any number larger than sr. For lattice paths from (0, 0) to (x, r) with the
right boundary (s1, s2, . . . , sr), we partition them according to the minimal i such that
the point (si, i− 1) is on the lattice path.

Case 1. The path does not contain the lattice point (si, i− 1) for any i = 1, 2, . . . , r.
Such a lattice path is strictly on the left of the boundary (s1, s2, . . . , sr). They are counted
by LPr(0, s2 − 1, s3 − 1, . . . , sr − 1) = LPr−1(s2 − 1, s3 − 1, . . . , sr − 1).

Case 2. The lattice path does not pass the points (s1, 0), (s2, 1), . . . , (si−1, i − 2), but
contains (si, i − 1). Then the part from (0, 0) to (si, i − 1) is strictly on the left of
(s1 = 1, s2, . . . , si−1) and is counted by LPi−1(0, s2 − 1, s3 − 1, . . . , si−1 − 1), which equals
LPi−2(s2 − 1, . . . , si−1 − 1) when i ≥ 3, and is 1 for i = 1, 2. The next step on the path
must be an N -step from (si, i − 1) to (si, i). The part from (si, i) to (x, r) is bounded
by (si+1, si+2, . . . , sr) and is counted by LPr−i(si+1 − si, si+2 − si, . . . , sr − si). Summing
over Case 2 with i = 1, 2, . . . , r and combining with Case 1 gives the desired recurrence
formula.

By the inductive hypothesis, we have that

LPr−1(s2 − 1, . . . , sr − 1) = φ∗(s2 − 1, . . . , sr − sr−1, ∗) = φ∗(a2, . . . , ar, ar+1).

Similarly,

LPi−2(s2 − 1, . . . , si−1 − 1) =

{

1 if i = 1
φ∗(a2, . . . , ai) for i ≥ 2

LPr−i(si+1 − si, si+2 − si, . . . , sr − si) = φ∗(ai+1, . . . , ar, ar+1).

Hence Lemmas 3.3 and 3.4 imply Equation (2) for a1 = 1.
Now assume Equation (2) is true for all non-decreasing integer sequences of length less

than or equal to r, and true for all non-decreasing sequences of length r+1 with the first
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term less than a1. We shall show it is true for the sequence a1 ≤ a2 ≤ · · · ≤ ar ≤ ar+1.
This is again achieved by showing that φ∗(a1, . . . , ar+1) and LPr(s1, . . . , sr) satisfy the
same recurrence relation. We note that Lemma 3.5 has been given in [4, Thm 3.3].
Since the argument is short and parallel to that of Lemma 3.3, we include it here for
completeness.

Lemma 3.5. Let a1 > 1. We have

φ∗(a1, . . . , ar, ar+1) =
r+1
∑

i=1

φ∗(a1 − 1, a2, . . . , ai)φ
∗(ai+1, . . . , ar+1). (3)

Proof. Let α be the first zero in the binary string S = 1a10a1 · · · 1ar+10ar+1. We partition
the non-crossing pairings of the zeroes and ones of S according to the one that pairs with
α.

Case 1. α is paired with the last 1 in the first segment. Such non-crossing pairings
are counted by φ∗(a1 − 1, a2, . . . , ar+1). This is the last term in the summation of (3).

Case 2. α is paired with the bit β, which is a 1 in the (i+1)th segment, where 1 ≤ i ≤ r.
Then β must be at the a1 position in the (i+1)th segment. Hence the string S is broken
into two pieces, one is nested under the pair (α, β) with bits 0a1−11a20a2 · · · 1ai0ai1a1−1

which is rotated to the string 1a1−10a1−11a20a2 · · ·1ai0ai , and the other is outside the pair
(α, β) with bits 1ai+10ai+1 · · · 1ar+10ar+1. This gives the product

φ∗(a1 − 1, a2, . . . , ai)φ
∗(ai+1, . . . , ar+1)

for 1 ≤ i ≤ r.
Combining the above two cases, we obtain the recurrence (3).

Let si = a1 + · · ·+ ai for i = 1, 2, . . . , r. Next we consider lattice paths with the right
boundary (s1, s2, . . . , sr).

Lemma 3.6. For s1 > 1, we have

LPr(s1, s2, . . . , sr) =
r+1
∑

i=1

LPi−1(s1 − 1, . . . , si−1 − 1) · LPr−i(ai+1, ai+1 + ai+2, . . . , ai+1 + · · ·+ ar). (4)

Proof. Again we partition the lattice paths from (0, 0) to (x, r) (where x ≥ sr)) with the
right boundary (s1, s2, . . . , sr) by the minimal i such that the path contains the point
(si, i− 1).

Case 1. The path does not contain any of the points {(si, i − 1) : i = 1, 2, . . . , r}.
There are LPr((s1 − 1, s2 − 1, . . . , sr − 1) many such paths. This gives the last term in
the summation of (4).

Case 2. The path does not contain (s1, 0), . . . , (si−1, i−2) but contains (si, i−1). Then
the part from (0, 0) to (si, i− 1) is strictly on the left of (s1, s2, . . . , si−1) and is counted
by LPi−1(s1 − 1, s2 − 1, . . . , si−1 − 1). The next step on the path must be an N-step from
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(si, i − 1) to (si, i). The part from (si, i) to (x, r) is bounded by (si+1, . . . , sr), and is
counted by LPr−i(si+1 − si, si+2 − si, . . . , sr − si). Noting that sj − si = ai+1 + · · ·+ aj ,
we obtain the recurrence (4).

Theorem 3.2 follows from the recurrences (3) and (4) and the inductive hypothesis. 2

One advantage of equating a new combinatorial structure to lattice paths is that lat-
tice paths are a classical subject in combinatorial theory, whose enumeration can been
systematically approached by symbolic computation and umbral calculus, see, for exam-
ple, the classical book by Mohanty [6] and the extensive work done by H. Niederhausen
and his collaborators [7, 8, 9, 10, 11, 2, 3]. In particular, it is known that lattice paths
within general boundaries can by computed by a determinant formula. See Theorem 1
of [6, p.32]. Applying Theorem 3.2, we obtain the following determinant formula for the
value of φ∗(a1, . . . , ar, ar+1).

Corollary 3.7. Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ ar+1 be a non-decreasing integer sequence
of length r + 1. Then

φ∗(a1, a2, . . . , ar+1) = detM,

where M is a r × r matrix whose entries are given by Mi,j =
(

si+1
j−i+1

)

.

We check some easy cases.

1. For r = 1, s1 = a1, and any a2 ≥ a1, we have φ∗(a1a2) = det1×1(a1 + 1) = a1 + 1.

2. For r = 2, s1 = a1 and s2 = a1 + a2, for any a1 ≤ a2 ≤ a3 we have

φ∗(a1, a2, a3) = det

(

s1 + 1
(

s1+1
2

)

1 s2 + 1

)

= (s1 + 1)(s2 + 1−
s1

2
)

= (a1 + 1)(a2 + 1 +
a1

2
).

3. For the regular binary strings S = (1k0k)n,

φ∗(k, k, . . . , k) = LPn−1(k, 2k, . . . , (n− 1)k)

is the number of lattice paths from (0, 0) to (x, n − 1) (where x > (n − 1)k) that
never touches the line x = ky + k + 1. Using the formula (1.11) of [6, p.9], we have

|NC2((1
k0k)n)| =

k + 1

k + 1 + (k + 1)(n− 1)

(

k + 1 + (k + 1)(n− 1)

n− 1

)

=
1

(k + 1)n+ 1

(

(k + 1)n+ 1

n

)

,

which is the n-th (k + 1)-Catalan number.
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Another approach in lattice path counting is to use the analytical theory of biorthog-
onal polynomials. In [5] the second author, together with Kung and Sun, proved that
LPr(s1, . . . , sr) can be represented by differential Goncarov polynomials, which is a se-
quence of polynomials that are biorthogonal to a given sequence of linear operators, each
of which is a formal power series of the (backward) difference operator. Explicitly, let
g̃r(x; b1, . . . , br) be the difference Goncarov polynomials with the variable x and parame-
ters b1, . . . , br. Then Theorem 4.1 of [5] states that

LPr(s1, . . . , sr) =
1

r!
g̃r(x; x− s1 − 1, x− s2 − 1, . . . , x− sr − 1), ∀x ∈ R.

In particular, letting x = 1, we derive the following equation.

Corollary 3.8. Let a1 ≤ a2 ≤ · · · ≤ ar+1 and si = a1 + · · ·+ ai. Then

φ∗(a1, . . . , ar, ar+1) =
1

r!
g̃r(1;−s1,−s2, . . . ,−sr). (5)

Goncarov polynomials bear many nice analytical and combinatorial properties, includ-
ing the expansion formula, a linear recurrence, the Appell relations, difference relations,
summation formula, shift invariant formula, and binomial expansion. See [5] for an expos-
itory article on the theory of Goncarov polynomials and its application in combinatorics.
Our result in the present paper allows one to apply these powerful mechanisms to the
enumeration of non-crossing pairings of well-balanced binary strings. As examples, we
list the linear recurrence and the Appell relation of differential Goncarov polynomials,
which give a linear recurrence and a shifted generating function for φ∗. In fact, many of
the combinatorial properties of φ∗ discussed in [4] can be deduced from the known results
of lattice paths and Goncarov polynomials.

• Linear Recurrence for Differential Goncarov Polynomials.

x(n) =

n
∑

i=0

(

n

i

)

b
(n−i)
i g̃i(x; b0, b1, . . . , bi−1) (6)

where x(n) is the rising factorial x(n) = x(x+ 1) · · · (x+ n− 1).

• Appell relation for Differential Goncarov Polynomials.

(1− t)−x =
∞
∑

n=0

g̃n(x; b0, . . . , bn−1)
tn

n!(1− t)bn
. (7)

Letting x = 1 we have the following results for φ∗(a1, . . . , ar+1) with a1 ≤ a2 ≤ · · · ≤
ar+1.

Corollary 3.9. Linear recurrence for φ∗

1 =
n

∑

i=0

(−1)n−i
(si)(n−i)

(n− i)!
φ∗(a1, a2, . . . , ai+1),

where (x)n is the falling factorial (x)n = x(x− 1) · · · (x− n + 1).
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Corollary 3.10. Appell relation for φ∗.
∞
∑

i=0

ti(1− t)si+1φ∗(a1, . . . , ai+1) =
1

1− t
,

where si = a1 + · · ·+ ai.

We remark that Theorem 3.2 is only proved for non-decreasing sequences a1 ≤ a2 ≤
· · · ≤ ar+1. It is easy to check that in general,

φ∗(a1, . . . , ai, ai+1, . . . , ar) 6= φ∗(a1, . . . , ai+1, ai, . . . , ar).

Finding explicit formulas for φ∗(a1, . . . , ar) for general integer sequences is still an open
problem.

4 A bijective proof for Theorem 3.2

Inspired by the recurrence proof in Section 3, we construct a bijection between the set
of non-crossing pairings of a well-balanced binary string to the set of lattice paths with
appropriate right boundary. The bijection is established via an intermediate object–
the ordered left-weighted ballot sequences, or the ordered left-weighted parenthesization,
which are special cases of the left-weighted Catalan extensions studied and cataloged by
the first author in [12].

Definition 4.1. Given a sequence of positive integers b = (b1, b2, . . . , bk) such that
∑k

i=1 bi = n, an ordered ballot sequence of left-weight b is an arrangement of b1, b2, . . . , bk
and n copies of −1 such that (i) the terms b1, . . . , bk appear in order, and (ii) the partial
sums are always non-negative.

For example, the ordered ballot sequences of left-weight (2, 1) are listed below.

21−−− 2− 1−− 2−−1−

An equivalent description is the ordered left-weighted parenthesization, where each
integer bi represents a left parenthesis of weight bi, (or an inseparable block of bi many
left-parentheses), and each −1 represents one right-parenthesis. For each bi, we draw
a line from bi to the last right-parenthesis that matches with it, and refer to it as the
region of the left-parenthesis bi. See the following figure for an illustration, where we also
indicate which right parentheses are matched with bi.

Let a1 ≤ a2 ≤ · · · ≤ ar ≤ ar+1 be a sequence of positive integers, and let si =
a1 + · · ·+ ai for i = 1, 2, . . . , r. We will use LwP (a1, . . . , ar) to denote the set of ordered
left-weighted parentheses with the weight (a1, . . . , ar). Let S = 1a10a1 · · ·1ar+10ar+1. We
shall construct two bijections, bijection f from Pathr(s1, . . . , sr) to LwP (a1, . . . , ar, ar+1)
and bijection g from LwP (a1, . . . , ar+1) to NC2(S). We will then combine f and g to
create a bijection from Pathr(s1, . . . , sr) to NC2(S)
Bijection f from Pathr(s1, . . . , sr) to LwP (a1, . . . , ar, ar+1).

For any path P from (0, 0) to (sr, r) with the right boundary s1, . . . , sr, write the path
P as a sequence of E and Ns. There are r N -steps and sr many E steps.

11



2 1 ) ) ) 2 ) 1 ) ) 2 ) ) 1 )

Figure 4: Ordered left-weighted parentheses and the corresponding regions

1. Add an N at the beginning of P , and ar+1 many E at the end of P .

2. Replace the ith N with a left-parenthesis of weight ai.

3. Replace each E with a right parenthesis.

For example, let the positive integers ai be 2, 2, 3, 4, then the right boundary is s =
(2, 4, 7). For a path P coded by (1, 1, 2), the steps in P are ENNENEEEEE, then
f(P ) = 2)23)4))))))))).

It is easy to see that f(P ) ∈ LwP (a1, . . . , ar, ar+1) whenever P ∈ Pathr(s1, . . . , sr).
The steps are easy to reverse, so f is a bijection.

Bijection g from LwP (a1, . . . , ar+1) to NC2(S), where S = 1a10a1 · · · 1ar+10ar+1 and

a1 ≤ a2 ≤ · · · ≤ ar+1.
The map g is defined inductively. First set g(∅) = ∅. For r = 0, the unique element

of LwP (a) is mapped to the unique non-crossing pairing of 1a0a.
Assume that g is a well-defined bijection from the set LwP (a1, . . . , al) to the set

NC2(1
a10a1 · · · 1al0al) for all l ≤ r and a1 ≤ a2 ≤ · · · ≤ al. We shall define g on

LwP (a1, . . . , ar+1).
Given an ordered left-weighted parenthesization π ∈ LwP (a1, . . . , ar+1), let α1, . . . , αa1

be the right parentheses that match the first left parenthesis (of weight a1). These are
the right parentheses that belong to the region of the first left parenthesis but not to any
other regions.

We count the left parentheses from left to right. Let ci be the number of left parentheses
before αi (with the convention that c0 = 1, α0 is the first left parenthesis, and αa1+1 = ∞).
Then the segment πi, between αi and αi+1 (for i = 0, 1, . . . , a1), will consist of the left
parentheses numbered ci + 1 to ci+1 and their matching right parentheses. Thus, πi is an
ordered left-weighted parenthesization with the non-decreasing weight (aci+1, . . . , aci+1

).
By inductive hypothesis, g(πi) is a non-crossing pairing of the binary string

Si = 1aci+10aci+1 · · · 1aci+10aci+1 .

Let S̄i be the string obtained from Si by moving the last a1 − i zeroes to the beginning.
Then g(πi) is also a non-crossing pairing of S̄i, as the non-crossing pairings are invariant
under the rotation of the underlying binary string.

To construct g(π), start with the unique pairing of 1a10a1 . Denote by β0 the substring
1a1 , and βi the ith zero. Let βa1+1 = ∞. For i = 0, 1, . . . , a1, insert the string S̄i

between βi and βi+1, together with the pairing g(πi). This gives a non-crossing pairing of
1a10a1 · · ·1ar+10ar+1.

12



The above steps are reversible, hence it defines a bijection.

As an example, the following figures show the non-crossing pairing corresponding to
the ordered left-weighted parenthesization 2)23)4))))))))).

2 ) 2 3 ) 4 ) ) ) ) ) ) ) ) )

1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0

Figure 5: An ordered left-weighted parenthesization and the corresponding non-crossing
pairing.
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