Supplement: On the equation in Corollary 4.7

Catherine Yan

September 30, 2023

In Corollary 4.7 of [3] we obtained the following interesting equation of the Narayana numbers $N(n,k) = \frac{1}{k} \binom{n}{k} \binom{n}{k-1}$.

$$\sum_{p \ge 0} N(1+p+q,1+p)z^p = \frac{N_q(z)}{(1-z)^{2q+1}},\tag{1}$$

where $N_q(z) = \sum_{k=1}^n N(n, k) z^{k-1}$.

In a talk presented at the International Conference on Enumerative Combinatorics and Applications Virtual (ICECA 2023, Sep 4–6, 2023), I asked whether anyone has seen this equation or something similar before. Thanks for replies from Mireille Bousquet-Melou, Richard Stanley, and Sergi Elizalde, who provided valuable information on this equation.

1 Parallelogram polyomino

Figure 1: A parallelogram polyomino having a 6×5 bounding box.

Equation (1) has been proved by Mireille Bousquet-Melou [1, 2] as the generating function of the number of parallelogram polyominoes having a fixed width.

A parallelogram polyomino having an $m \times n$ bounding box is a polyomino in a rectangle consisting of $m \times n$ cells that is formed by cutting out two (possibly empty) non-touching Young diagrams which have corners at (0, n) and (m, 0). See Figure 1 for a parallelogram polyomino having a 6×5 bounding box. In [2, Eq.(19)] Bousquet-Melou proved that $P_{n,m}$, the number of parallelogram polyominoes within a $p \times q$ bounding box, is the Narayana number N(p+q-1,p). In an accompanying paper [1] she derived explicit expressions for the generating function of parallelogram polyominoes, according to their height, width and area. A specialization of the generating function of parallelogram polyominoes with width n, given in Equations (23)–(25) in [1], can be stated as

$$P(y) := \sum_{m} y^{m} P_{n,m} = y \frac{N_{n-1}(y)}{(1-y)^{2n-1}}.$$

Given a parallelogram polyomino with an $m \times n$ bounding box, removing the two cells at the lower-left corner and the upper-right corner, we obtain two lattice paths in the boundary of the polyomino, namely, L_1 from (1,0) to (m, n-1) and L_2 from (0,1) to (m-1,n). Moving L_1 one unit to the left and L_2 one unit down, we obtain a pair of non-crossing lattice paths from (0,0) to (m-1, n-1). Figure 2 shows the non-crossing lattice paths corresponding to the parallelogram polyomino in Figure 1. This above process is invertable and gives a bijection between parallelogram polyominoes with an $m \times n$ bounding box and pairs of non-crossing lattice paths with the box $(m-1) \times (n-1)$. The latter correspond to the set of (m-1, n-1)-parking functions. Changing variables, we see that Corollary 4.7 in our paper matches exactly the results of Bousquet-Melou.

Figure 2: A pair of non-crossing lattice paths in a 5×4 box.

2 Order polynomial and P-Eulerian polynomial

This interpretation of (1) is communicated by Richard Stanley.

In [3, Prop. 4.3, Cor. 4.4] we obtained that N(1 + p + q, 1 + p) is number of multichains of length p + 1 in the poset $\mathbf{2} \times \mathbf{q}$, which also counts the number of order preserving maps from $\mathbf{2} \times \mathbf{q}$ to $\mathbf{p} + \mathbf{1}$. Thus the left side of Equation (1) is the generating function for the order polynomial of the poset $\mathbf{2} \times \mathbf{q}$ (up to a factor z).

From [5, Theorem 4.5.14], the generating function of the order polynomial of a poset P can be expressed as $P(X)/(1-z)^{n+1}$, where n = |P| and P(x) is the P-Eulerian polynomial.

Some background on *P*-Eulerian polynomial: Let (P, \preceq) be a poset on the vertex set [n]. The Jordan-Hölder set of *P* is the set of linear extensions of *P*:

$$\mathcal{L}(P) := \{ \pi \in \mathfrak{S}_n : \text{ if } \pi_i \preceq \pi_j, \text{ then } i \leq j \text{ for all } i, j \in [n] \},\$$

where each permutation $\pi = \pi_1 \pi_2 \cdots \pi_n$ in the symmetric group \mathfrak{S}_n is written in one-line notation. The *P*-Eulerian polynomial is defined by

$$A_P(x) := \sum_{\pi \in \mathcal{L}(P)} x^{\operatorname{des}(\pi)+1}.$$
(2)

When $P = \mathbf{2} \times \mathbf{q}$, we can assume that the vertex set is [2q] and the partial order \leq is given by $1 \leq 2 \leq \cdots \leq q$, $q + 1 \leq q + 2 \leq \cdots \leq 2q$ and $i \leq q + i$ for $i \in [q]$. Hence each linear extension of P corresponds to a Dyck path of semilength q, and a descent corresponds to a valley of the Dyck path. Since the number of valleys is one less than the number of peaks, we have that the P-Eulerian polynomial is the generating function of Dyck paths by the number of peaks, which is $zN_q(z)$.

The above argument gives the equation

$$\sum_{p\geq 0} N(1+p+q,1+p)z^{p+1} = \frac{zN_q(z)}{(1-z)^{2q+1}},$$

which is equivalent to Equation (1).

REMARK. For any finite poset P, the order polytope O(P), and a related chain polytope C(P), have the property that their Ehrhart polynomial is the order polynomial of P (shifted by 1). This implies that the h^* -vector of O(P) is the P-Eulerian polynomial. See [4, Section 4].

Equivalently, $N_q(z)$ is the h^* -vector of the order polytope of $\mathbf{2} \times \mathbf{q}$. By the hook-content formula, the coefficients of the generating function are

$$(p+1)(p+2)^2(p+3)^2...(p+q)^2(p+q+1)/(12^2...q^2(q+1)) = N(1+p+q,1+p) = N(1+p+q) = N(1+p+q,1+p) = N(1+p+q,1+p) = N(1+p+q,1+p) = N(1+p+q,1+p) = N(1+p+q,1+p) = N(1+p+q) = N($$

agreeing with our result.

3 A bijective proof

The following bijective proof of (1) is constructed by Sergi Elizalde.

The coefficient of z^p in the left-hand side of Equation (1) counts Dyck paths of semilength p + q + 1 with p + 1 peaks.

The coefficient of z^p in the right-hand side counts Dyck paths of semilength q (given by the numerator), together with a sequence of nonnegative integers $(a_0, a_1, \ldots, a_{2q})$ (given by the denominator). If the path has k peaks, then we must have $a_0 + a_1 + \cdots + a_{2q} = p + 1 - k$, to get a z^p . We can think of (a_0, \ldots, a_{2q}) as labels on the 2q + 1 vertices of the path.

Now here is a bijection between the two sides. Take a Dyck path of semilength p + q + 1 with p + 1 peaks. Remove the p + 1 peaks UD of this path, and put a label on each vertex indicating how many peaks were removed from that location.

This gives a bijection to Dyck paths of semilength q together with a sequence of nonnegative integers $(b_0, b_1, \ldots, b_{2q})$ indicating how many peaks were removed at each vertex, with the condition that $b_0 + \cdots + b_{2q} = p + 1$, and that each vertex on top of a peak must have at a label $b_i > 0$ (otherwise it would have been a peak of the original path and it would have been removed).

Now, subtract one from each label at a peak.

This gives a bijection to Dyck paths of semilength q together with a sequence of nonnegative integers $(a_0, a_1, \ldots, a_{2q})$ such that $a_0 + \cdots + a_{2q} = p + 1 - k$, where k is the number of peaks of the path.

References

- Mireille Bousquet-Melou. Convex polyominoes and heaps of segments. J. Phys. A: Math. Gen. 25 (1992), 1925–1934.
- [2] Mireille Bousquet-Melou. Convex polyominoes and algebraic languages. J. Phys. A: Math. Gen. 25 (1992), 1935–1944.
- [3] Lauren Snider and Catherine Yan. U-Parking Functions and (p,q)-Parking Functions. Adv. Appl. Math. vol.134, 2022, 102309.
- [4] Richard P. Stanley. Two poset polytopes. Discrete Comput. Geom. 1(1986), 9-23. https://math.mit.edu/~rstan/pubs/pubfiles/66.pdf.
- [5] R.P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, 1997.