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In Corollary 4.7 of [3] we obtained the following interesting equation of the Narayana numbers
N(n, k) = 1

k

(
n
k

)(
n
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)
. ∑

p≥0
N(1 + p+ q, 1 + p)zp =

Nq(z)

(1− z)2q+1
, (1)

where Nq(z) =
∑n

k=1N(n, k)zk−1.
In a talk presented at the International Conference on Enumerative Combinatorics and Appli-

cations Virtual (ICECA 2023, Sep 4–6, 2023), I asked whether anyone has seen this equation or
something similar before. Thanks for replies from Mireille Bousquet-Melou, Richard Stanley, and
Sergi Elizalde, who provided valuable information on this equation.

1 Parallelogram polyomino

Figure 1: A parallelogram polyomino having a 6× 5 bounding box.

Equation (1) has been proved by Mireille Bousquet-Melou [1, 2] as the generating function of
the number of parallelogram polyominoes having a fixed width.

A parallelogram polyomino having an m×n bounding box is a polyomino in a rectangle consisting
of m × n cells that is formed by cutting out two (possibly empty) non-touching Young diagrams
which have corners at (0, n) and (m, 0). See Figure 1 for a parallelogram polyomino having a 6× 5
bounding box.
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In [2, Eq.(19)] Bousquet-Melou proved that Pn,m, the number of parallelogram polyominoes
within a p×q bounding box, is the Narayana numner N(p+q−1, p). In an accompanying paper [1]
she derived explicit expressions for the generating function of parallelogram polyominoes, accord-
ing lo their height, width and area. A specialization of the generating function of parallelogram
polyominoes with width n, given in Equations (23)–(25) in [1], can be stated as

P (y) :=
∑
m

ymPn,m = y
Nn−1(y)

(1− y)2n−1
.

Given a parallelogram polyomino with an m × n bounding box, removing the two cells at the
lower-left corner and the upper-right corner, we obtain two lattice paths in the boundary of the
polyomino, namely, L1 from (1, 0) to (m,n − 1) and L2 from (0, 1) to (m − 1, n). Moving L1 one
unit to the left and L2 one unit down, we obtain a pair of non-crossing lattice paths from (0, 0) to
(m − 1, n − 1). Figure 2 shows the non-crossing lattice paths corresponding to the parallelogram
polyomino in Figure 1. This above process is invertable and gives a bijection between parallelogram
polyominoes with an m × n bounding box and pairs of non-crossing lattice paths with the box
(m− 1)× (n− 1). The latter correspond to the set of (m− 1, n− 1)-parking functions. Changing
variables, we see that Corollary 4.7 in our paper matches exactly the results of Bousquet-Melou.

Figure 2: A pair of non-crossing lattice paths in a 5× 4 box.

2 Order polynomial and P-Eulerian polynomial

This interpretation of (1) is communicated by Richard Stanley.
In [3, Prop. 4.3, Cor. 4.4] we obtained that N(1 + p + q, 1 + p) is number of multichains of

length p+ 1 in the poset 2× q, which also counts the number of order preserving maps from 2× q
to p + 1. Thus the left side of Equation (1) is the generating function for the order polynomial of
the poset 2× q (up to a factor z).

From [5, Theorem 4.5.14], the generating function of the order polynomial of a poset P can be
expressed as P (X)/(1− z)n+1, where n = |P | and P (x) is the P -Eulerian polynomial.

Some background on P -Eulerian polynomial: Let (P,�) be a poset on the vertex set [n]. The
Jordan-Hölder set of P is the set of linear extensions of P :

L(P ) := {π ∈ Sn : if πi � πj , then i ≤ j for all i, j ∈ [n]},
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where each permutation π = π1π2 · · ·πn in the symmetric group Sn is written in one-line notation.
The P -Eulerian polynomial is defined by

AP (x) :=
∑

π∈L(P )

xdes(π)+1. (2)

When P = 2 × q, we can assume that the vertex set is [2q] and the partial order � is given by
1 � 2 � · · · � q, q + 1 � q + 2 � · · · � 2q and i � q + i for i ∈ [q]. Hence each linear extension
of P corresponds to a Dyck path of semilength q, and a descent corresponds to a valley of the
Dyck path. Since the number of valleys is one less than the number of peaks, we have that the
P -Eulerian polynomial is the generating function of Dyck paths by the number of peaks, which is
zNq(z).

The above argument gives the equation∑
p≥0

N(1 + p+ q, 1 + p)zp+1 =
zNq(z)

(1− z)2q+1
,

which is equivalent to Equation (1).
Remark. For any finite poset P , the order polytope O(P ), and a related chain polytope C(P ),

have the property that their Ehrhart polynomial is the order polynomial of P (shifted by 1). This
implies that the h∗-vector of O(P ) is the P -Eulerian polynomial. See [4, Section 4].

Equivalently, Nq(z) is the h∗-vector of the order polytope of 2×q. By the hook-content formula,
the coefficients of the generating function are

(p+ 1)(p+ 2)2(p+ 3)2...(p+ q)2(p+ q + 1)/(122...q2(q + 1)) = N(1 + p+ q, 1 + p),

agreeing with our result.

3 A bijective proof

The following bijective proof of (1) is constructed by Sergi Elizalde.
The coefficient of zp in the left-hand side of Equation (1) counts Dyck paths of semilength

p+ q + 1 with p+ 1 peaks.
The coefficient of zp in the right-hand side counts Dyck paths of semilength q (given by the

numerator), together with a sequence of nonnegative integers (a0, a1, . . . , a2q) (given by the denom-
inator). If the path has k peaks, then we must have a0 + a1 + · · · + a2q = p + 1 − k, to get a zp.
We can think of (a0, . . . , a2q) as labels on the 2q + 1 vertices of the path.

Now here is a bijection between the two sides. Take a Dyck path of semilength p+ q + 1 with
p + 1 peaks. Remove the p + 1 peaks UD of this path, and put a label on each vertex indicating
how many peaks were removed from that location.

This gives a bijection to Dyck paths of semilength q together with a sequence of nonnegative
integers (b0, b1, . . . , b2q) indicating how many peaks were removed at each vertex, with the condition
that b0 + · · · + b2q = p + 1, and that each vertex on top of a peak must have at a label bi > 0
(otherwise it would have been a peak of the original path and it would have been removed).
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Now, subtract one from each label at a peak.
This gives a bijection to Dyck paths of semilength q together with a sequence of nonnegative

integers (a0, a1, . . . , a2q) such that a0 + · · ·+ a2q = p+ 1− k, where k is the number of peaks of the
path.
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