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Abstract

The notions of U -parking functions and (p, q)-parking functions are two high-dimensional
generalizations of the classical parking functions. U -parking functions are defined via a special
family of interpolation polynomials called Gončarov polynomials, while (p, q)-parking functions
can be interpreted as recurrent configurations in the sandpile model for a complete bipartite
graph with an additional root, as introduced by Cori and Poulalhon. In this paper we show
that (p, q)-parking functions can be obtained as a specialization of U -parking functions and
characterized by a pair of weakly disjoint lattice paths in the grid p × q. Then we present
various enumerative results for increasing (p, q)-parking functions.

1 Introduction

Classical parking functions were initially defined by Konheim and Weiss as a tool in their study of
random hashing functions [12], though in recent decades parking functions have been well-studied
and recognized for their numerous connections to various combinatorial objects, from labeled trees
and noncrossing partitions, to hyperplane arrangements and the sandpile model [23]. To give a
simple yet formal definition, a parking function of length n is a sequence a = a1a2 . . . an of n non-
negative integers whose non-decreasing rearrangement a(1) ≤ a(2) ≤ · · · ≤ a(n) satisfies a(i) < i
for each 1 ≤ i ≤ n. Here, we call the non-decreasing sequence a(1) ≤ a(2) ≤ · · · ≤ a(n) the order
statistics of a, with a(i) the i-th order statistic of a.

Among the various generalizations of parking functions which have appeared since the classical
definition, two higher dimensional generalizations exist in the literature: the U -parking function
and the (p, q)-parking function. The more recent of the two, the U -parking function, was de-
scribed by Khare, Lorentz, and Yan [11] in their study of bivariate Gončarov polynomials, a class
of polynomials that form the basis for the solutions of the two-dimensional Gončarov Interpola-
tion Problem. Combinatorially, bivariate Gončarov polynomials enumerate the number of pairs
of integer sequences whose order statistics satisfy certain constraints. These pairs of integer se-
quences arising naturally from this combinatorial interpretation are what Khare et al. referred
to as 2-dimensional U -parking functions, with multidimensional U -parking functions analogously
derived from multivariate Gončarov polynomials. For a precise definition and further discussion on
2-dimensional U -parking functions, see Subsection 2.1.
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Motivated by the connection between classical parking functions and the Abelian sandpile model
on complete graphs, Cori and Poulalhon [7] introduced (p, q)-parking functions, which can be
realized as recurrent states of the sandpile model on complete bipartite graphs having an additional
distinguished root vertex. These 2-dimensional parking functions admit a definition in terms of
a certificate permutation σ ∈ Sp+q, as well as in terms of parking cars of two distinct colors. It
should be noted that classical parking functions might also be defined in terms of a certificate:
the integer sequence a = a1a2 . . . an is a parking function if and only if there exists a permutation
σ = σ1σ2 . . . σn ∈ Sn such that 0 ≤ ai < σi for all i. A straightforward extension of these
definitions of (p, q)-parking functions to k dimensions for an arbitrary integer k > 2 yields what are
more generally referred to as (p1, p2, . . . , pk)-parking functions. More on (p, q)-parking functions,
including formal definitions, is provided in Subsection 2.2.

Beyond the preliminary definitions of Section 2, the remainder of this paper seeks to bring
together the two notions of higher dimensional parking functions, as well as share several results
concerning increasing (p, q)-parking functions. The first of these objectives is addressed in Section
3, in which (p, q)-parking functions are shown to be U -parking functions for a specific node-set U .
Section 4 introduces the sum-enumerator of increasing (p, q)-parking functions, with Subsections
4.1-4.2 presenting a recurrence relation and then utilizing a plane partition representation to derive
further enumerative results. A q-analog of the Narayana numbers is defined in Subsection 4.3.
Finally, Section 5 combines several results on noncrossing partitions and parallelogram polyominoes
to relate the usual area-statistic on Catalan paths to two area-statistics on a pair of weakly disjoint
lattice paths, from which we are able to associate the sum-enumerator of Section 4 to certain
well-known Catalan q-analogs in the literature.

2 Two-dimensional parking functions

2.1 Multidimensional U -parking functions

We begin with a brief overview of the multidimensional U -parking function, which originated in
the study of bivariate Gončarov polynomials [11] and their relationship to pairs of integer sequences
whose order statistics satisfy certain constraints. For general p, q ∈ N, let U ⊂ N2 be a set of nodes
U = {(ui,j , vi,j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q}. Define Gp,q(U) to be the directed graph having as vertices
the lattice points {(i, j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q} and having as edges all north steps N = (0, 1) and
east steps E = (1, 0) connecting its vertices. Every edge e of Gp,q(U) is assigned a weight wt(e)
given by

wt(e) =

{
ui,j if e is an east step from (i, j) to (i+ 1, j),

vi,j if e is a north step from (i, j) to (i, j + 1).

For a lattice path P from the origin (0, 0) to the point (p, q), we write P = e1e2 . . . ep+q, where
ei ∈ {E,N}, to record the sequence of steps of P . Note that P must have exactly p east steps
and q north steps. Let (a, b) be a pair of non-negative integer sequences with a = a1a2 . . . ap and
b = b1b2 . . . bq. Then we say that the order statistics of (a, b) are bounded by P with respect to

2



the set U if and only if, for r = 1, 2, . . . , p+ q,{
a(i) < wt(er) if er is the i-th east step of P,

b(j) < wt(er) if er is the j-th north step of P,

where a(1) ≤ · · · ≤ a(p) and b(1) ≤ · · · ≤ b(q) are the order statistics of a and b, respectively.

Definition 2.1. [11] Suppose U = {(ui,j , vi,j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q} ⊂ N2 is a set of nodes
satisfying ui,j ≤ ui′,j′ and vi,j ≤ vi′,j′ when i ≤ i′ and j ≤ j′. A pair of sequences of non-negative
integers (a, b) = (a1a2 . . . ap, b1b2 . . . bq) is a 2-dimensional U -parking function if and only if the
order statistics of (a, b) are bounded by some lattice path from (0, 0) to (p, q) with respect to U .

Remark. The lattice path, if it exists, may not be unique.

The set of 2-dimensional U -parking functions with the above parameters will be denoted

PF (2)
p,q(U). We may analogously define a k-dimensional U -parking function for k > 2: for n =

(n1, . . . , nk) ∈ Nk, given a set of nodes U = {zi = (zi1 , . . . , zik) ∈ Nk : 0 ≤ ij ≤ nj for all j}, we
define a weighted directed graph Gn(U) whose vertices are the integer points {i = (i1, . . . , ik) ∈ Nk :
ij ≤ nj for all j} and whose edges consist of all unit steps connecting those integer points, with the
k directed edges starting from point i having weights zi1 , . . . , zik . A k-tuple (a(1), . . . ,a(k)) of non-
negative integer sequences of respective lengths n1, . . . , nk is a k-dimensional U -parking function if
its order statistics are bounded by some lattice path from the origin to the point n = (n1, . . . , nk)
with respect to U . As with the 2-dimensional case, the set of all k-dimensional U -parking func-

tions will be denoted by PF (k)
n (U). Multidimensional U -parking functions can be enumerated by

specializations of multivariate Gončarov polynomials, as described in [11].
Since the definition of a 2-dimensional U -parking function (a, b) is dependent on the order

statistics of both sequences a and b, the set PF (2)
p,q(U) is invariant under the action of the product

Sp × Sq of symmetric groups. That is, for any σ ∈ Sp and τ ∈ Sq, (σ(a), τ(b)) is also a 2-
dimensional U -parking function. In particular, we will say a 2-dimensional U -parking function

(a, b) is increasing if a and b are non-decreasing sequences. Let IPF (2)
p,q(U) denote the subset of 2-

dimensional U -parking functions which are increasing. Thus, we might consider the set IPF (2)
p,q(U)

as representatives of the orbits of the action of Sp ×Sq on PF (2)
p,q(U). Of course, this definition of

increasing U -parking functions is readily extended to the k-dimensional case.

2.2 (p, q)-parking functions

An alternative 2-dimensional generalization of parking functions, which predates the aforemen-
tioned U -parking functions, was introduced by Cori and Poulalhon in [7]. For positive integers p
and q, a (p, q)-sequence is a pair (a, b) of sequences of non-negative integers such that a = a1a2 . . . ap
is of length p with 0 ≤ ai ≤ q for all i ∈ [p], and b = b1b2 . . . bq is of length q with 0 ≤ bj ≤ p
for all j ∈ [q]. Let Sp,q denote the set of all (p, q)-sequences. We will first provide a definition of
(p, q)-parking functions in terms of permutations in Sn, where n = p+ q, followed by an interpre-
tation of this definition in terms of parking cars. First, define a map ϕ : Sn → Sp,q as follows: for
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σ = σ1σ2 . . . σn ∈ Sn, set ϕ(σ) = (u1u2 . . . up, v1v2 . . . vq), where ui = #{r : p+ 1 ≤ r ≤ n, σr < σi}
for i ∈ [p] and vj = #{r : 1 ≤ r ≤ p, σr < σp+j} for j ∈ [q].

Example 2.2. Let p = 4, q = 6, and σ = 1 3 6 8 2 4 5 7 9 10. Then ϕ(σ) = (0134, 122344).

Definition 2.3. [7] The (p, q)-sequence (a, b) is a (p,q)-parking function if there exists a permu-
tation σ ∈ Sn with ϕ(σ) = (u1u2 . . . up, v1v2 . . . vq) satisfying ai ≤ ui for all i ∈ [p] and bj ≤ vj for
all j ∈ [q]. In this case, the permutation σ is called a certificate for (a, b).

We may interpret this definition in terms of a set of parking conditions on n cars. Consider the
following scenario: p red cars and q blue cars wish to park along a one-way street with n parking
spots. Each driver i of a red car prefers to have at least ai blue cars parked before him, and each
driver j of a blue car prefers to have at least bj red cars parked before him. Then the (p, q)-sequence
(a, b) is a (p,q)-parking function if there exists a parking arrangement which accommodates the
preferences of all n drivers.

Example 2.4. The (4, 6)-sequence (0124, 011344) is a (4, 6)-parking function since the permutation
σ = 1 3 6 8 2 4 5 7 9 10 is a certificate. Alternatively, we see that the parking arrangement depicted
below, where R represents a parked red car and B a parked blue car, accommodates the preferences
of all drivers.

R B R B B R B R B B

Note that the set of all (p, q)-parking functions is invariant under the action of Sp ×Sq. We
say a (p, q)-sequence (a, b) is an increasing (p, q)-parking function if it is a (p, q)-parking function
with both a and b non-decreasing sequences. Then as with 2-dimensional U -parking functions, the
set of increasing (p, q)-parking functions may be considered as representatives of the orbits of the
action of Sp ×Sq on the set of all (p, q)-parking functions.

The following results are obtained in [7].

Theorem 2.5. The number of (p, q)-parking functions is (p + q + 1)(p + 1)q−1(q + 1)p−1, and
the number of increasing (p, q)-parking functions is the Narayana number N(p + q + 1, p + 1) =

1
p+q+1

(
p+q+1
p+1

)(
p+q+1
p

)
.

3 Relation between the two higher dimensional parking functions

In this section we show that (p, q)-parking functions are in fact 2-dimensional U -parking functions
for a particular set U , and then use the latter to characterize (p, q)-parking functions by pairs
of weakly disjoint lattice paths. This specialization holds analogously in higher dimensions. In
addition, for any dimension k, the ratio of increasing U -parking functions to all U -parking functions
is the same as the ratio of k-tuples of increasing sequences to k-tuples of integer sequences in a
proper range.
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Theorem 3.1. Set U = {(ui,j , vi,j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q} with ui,j = j + 1 and vi,j = i + 1. A
(p, q)-sequence (a, b) is a (p, q)-parking function if and only if (a, b) is a 2-dimensional U -parking
function.

Proof. Suppose (a, b) = (a1a2 . . . ap, b1b2 . . . bq) is a (p, q)-parking function. Without loss of general-
ity, we may assume (a, b) is increasing. Thus, (a, b) corresponds to a successful parking arrangement
of p red cars and q blue cars in which the driver of the i-th red car (i ∈ [p]) has at least ai = a(i)
blue cars parked before him and the driver of the j-th blue car (j ∈ [q]) has at least bj = b(j) red
cars parked before him. From this parking arrangement, construct a lattice path P = e1e2 . . . en
from (0,0) to (p, q) as follows: beginning with the car parked in the first spot and continuing down
the line, if the i-th parked car is red, record step ei of P as E; and if the i-th parked car is blue,
record step ei of P as N . This means for r = 1, 2, . . . , n, if er is the i-th east step from (i− 1, j) to
(i, j), then the i-th red car is parked in the r-th spot and exactly j blue cars are parked before it.
Hence, we must have ai ≤ j < j + 1 = wt(er). Similarly, if er is the j-th north step from (i, j − 1)
to (i, j), then the j-th blue car is parked in the r-th spot and exactly i red cars are parked before
it. Thus, bj ≤ i < i+ 1 = wt(er). Therefore, (a, b) is a 2-dimensional U -parking function.

On the other hand, if (a, b) is a 2-dimensional U -parking function with ui,j = j + 1 and
vi,j = i + 1, then by definition the order statistics of (a, b) are bounded by a lattice path P from
(0, 0) to (p, q) with respect to U . Write P = e1e2 . . . ep+q with ei ∈ {E,N}. Assume the indices for
the east steps are i1 < i2 < · · · < ip and the indices for the north steps are j1 < · · · < jq. Rearrange
the terms i1, . . . , ip as i′1 · · · i′p so that it is order isomorphic to a, and similarly define j′1 . . . j

′
q. Let

σ = i′1 . . . i
′
pj
′
1 . . . j

′
q. Then (a, b) is a (p, q)-parking function with σ being a certificate.

Example 3.2. To demonstrate the second part of the above proof, consider the 2-dimensional
U -parking function (a, b) = (1021, 224313), whose order statistics are bounded by the lattice path
P = ENENNENENN with respect to U as described in Proposition 3.1. The indices for the
east steps in P are 1, 3, 6, 8; rearranged according to the pattern of a, we have i′1i

′
2i
′
3i
′
4 = 3 1 8 6.

Similarly, j′1 . . . j
′
6 = 4 5 10 7 2 9. Hence, σ = 3 1 8 6 4 5 10 7 2 9 is a certificate for the (4, 6)-parking

function (a, b).

Instead of using one lattice path to bound the order statistics of the sequence (a, b), we can
characterize (p, q)-parking functions via a pair of lattice paths. This suggests a direct method
for checking whether a given (p, q)-sequence is in fact a (p, q)-parking function. Without loss of
generality, we can just work with the order statistics of given sequences. Let (a, b) be an increasing
(p, q)-sequence. Construct a lattice path Pa from (0,0) to (p, q) which has the i-th east step (i ∈ [p])
from (i − 1, ai) to (i, ai) and then north steps that connect the east steps. Similarly, construct a
lattice path Pb from (0,0) to (p, q) which has the j-th north step (j ∈ [q]) from (bj , j − 1) to (bj , j)
and then east steps that connect the north steps. See the left figure in Figure 1.

Definition 3.3. For two lattice paths P1 and P2 from (0, 0) to (p, q), we say that P1 lies weakly
below P2 (equivalently, P2 lies weakly above P1) if the cells enclosed by P1, y = 0, and x = p are
disjoint from the cells enclosed by P2, x = 0, and y = q. In this case, we also say that the pair
(P1, P2) is a pair of weakly disjoint lattice paths.
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Theorem 3.4. A (p, q)-sequence (a′, b′) with corresponding increasing (p, q)-sequence (a, b) is a
(p, q)-parking function if and only if Pa lies weakly below Pb.

Proof. Let (a,b) be an increasing (p, q)-parking function. Then there is a parking arrangement
R ∈ {R,B}p+q of p red cars and q blue cars that accommodates the preferences of all drivers. Let
P be the lattice path obtained by replacing R with E and B with N . If ai = j, then there are at
least j blue cars parked before the i-th red car, and consequently the i-th east step of P has height
at least j. This is true for all i = 1, . . . , p. Hence P lies weakly above Pa. Similarly, P lies weakly
below Pb. In summary, if (a, b) is an increasing (p, q)-parking function, we must have that Pa lies
weakly below Pb. Moreover, this result holds for all (p, q)-parking functions due to the invariance
under the action of Sp ×Sq.

Now if (a, b) is an increasing (p, q)-sequence such that Pa lies weakly below Pb, then the lattice
path Pb translates to a parking arrangement of red and blue cars: let an E-step indicate a parked
red car and an N -step indicate a parked blue car. Then by construction, this parking arrangement
must accommodate the preferences of all drivers of blue cars. But also, since Pa lies weakly below
Pb, it must accommodate the preferences of all drivers of red cars. Hence, (a, b) is a (p, q)-parking
function.

Pa

Pb

3

2

1 5

4

3

2

4

1

Figure 1: Pa and Pb for the (5, 4)-parking function (a, b) = (01223, 0123), and the labeled paths
for (a′, b′) = (21032, 3102).

The left figure in Figure 1 shows the pair of lattice paths corresponding to an increasing (p, q)-
parking function. General (p, q)-parking functions can be depicted by labeling the lattice paths Pa

and Pb, analogous to the manner in which classical parking functions are depicted by labeled Dyck
paths. Explicitly, the east steps of Pa at y = k are labeled by the indices {r : ar = k}, from left to
right. Similarly, the north steps of Pb at x = k are labeled by the indices {r : br = k}, from bottom
to top. For an example, see the right figure in Figure 1.

The following is an immediate corollary of Theorem 2.5.

Corollary 3.5. The number of pairs (P1, P2) of lattice paths from (0, 0) to (p, q) such that P1 lies
weakly below P2 is given by the Narayana number N(p+ q+ 1, p+ 1). The number of such lattice
paths with labels as described in the proceeding paragraph is given by (p+q+1)(p+1)q−1(q+1)p−1.
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Just as with U -parking functions, (p, q)-parking functions can be generalized to higher dimen-
sions, which is also considered in [7]. Let p1, p2, . . . , pk be positive integers with n = p1 + · · ·+ pk
and qi = n−pi for i ∈ [k]. A (p1, . . . , pk)-sequence is a k-tuple (a(1), . . . ,a(k)) of integer sequences of

respective lengths p1, . . . , pk such that 0 ≤ a
(i)
j ≤ qi for all i ∈ [k], j ∈ [pi]. Consider the following

scenario: there are pi cars of color ri for each i ∈ [k] wishing to park along a one-way street with

n parking spots in such a way that the j-th driver (j ∈ [pi]) of an ri-color car desires to have a
(i)
j

cars of different colors parked before him. Then (a(1), . . . ,a(k)) is a (p1, . . . , pk)-parking function if
and only if there is a parking arrangement that accommodates the desires of all n drivers. We say
the (p1, . . . , pk)-parking function (a(1), . . . ,a(k)) is increasing if a(1), . . . ,a(k) are all non-decreasing
sequences. In [7], (p1, . . . , pk)-parking functions are defined via a permutation that serves as a cer-
tificate, though our above definition in terms of parking cars is equivalent. As in the 2-dimensional
case, we have a similar relation between the two notions of higher dimensional parking functions.

Theorem 3.6. A (p1, . . . , pk)-sequence (a(1), . . . ,a(k)) is a (p1, . . . , pk)-parking function if and only

if it is a k-dimensional U -parking function, where U = {(u(1)i1,...,ik , . . . , u
(k)
i1,...,ik

) : 0 ≤ i1 ≤ p1,
. . . , 0 ≤ ik ≤ pk} with u

(j)
i1,...,ik

= 1− ij +
∑k

r=1 ir for j ∈ [k].

Proof. Because it is a direct extension of the proof of Theorem 3.1, we only give a sketch. Assume
(a(1), . . . ,a(k)) is an increasing (p1, . . . , pk)-parking function, meaning it corresponds to a successful
parking arrangement of n = p1 + · · ·+ pk cars in total, where pi cars are of color ri for each i ∈ [k].
Construct a lattice path P from the origin to the point (p1, . . . , pk) as follows: beginning with the
car parked in the first spot and continuing down the line, if the next parked car has color rj , the
next step of P will be from (i1, . . . , ij − 1, . . . , ik) to (i1, . . . , ij , . . . , ik). But this will necessarily

be the (ij)-th car of color rj to park, meaning a
(j)
ij

< i1 + · · · + ik − ij + 1 = u
(j)
i1,...,ik

. Thus,

(a(1), . . . ,a(k)) is a k-dimensional U -parking function.
Now if (a(1), . . . ,a(k)) is a k-dimensional U -parking function, then the order statistics of

(a(1), . . . ,a(k)) are bounded by some lattice path, say Q, from the origin to (p1, . . . , pk) with respect
to U . We can associate Q with a parking arrangement according to the above process, and this
parking arrangement will satisfy the preferences of all n drivers by construction.

It is shown in Proposition 19 of [7] that the number of (p1, . . . , pk)-parking functions is

(n+ 1)k−1
k∏
i=1

(n− pi + 1)pi−1,

with the subset of increasing (p1, . . . , pk)-parking functions having size

1

n+ 1

k∏
i=1

(
n+ 1

pi

)
.

Cori and Poulalhon noted that the ratio of increasing (p1, . . . , pk)-parking functions among the
increasing (p1, . . . , pk)-sequences is equal to the ratio of (p1, . . . , pk)-parking functions among the
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(p1, . . . , pk)-sequences. In addition, this ratio is computed as

(n+ 1)k∏n
i=1(n− pi + 1)

,

where n =
∑k

i=1 pi.
We will now extend this result to U -parking functions for any affine node-set U , that is,

U = {ui ∈ Nk : i = (i1, . . . , ik), 0 ≤ ij ≤ pj}, where

ui = Ai + s (1)

for some k × k N-matrix A = (aij) and s = (s1, . . . , sk) ∈ Nk.
Let Xp be the set of all k-tuples (x(1), . . . ,x(k)) of integer sequences with respective lengths

p1, . . . , pk and such that

0 ≤ (x(i))j < si + (Ap)i = si +

k∑
j=1

aijpj , ∀i = 1, . . . , k,∀j = 1, . . . , pi,

and let IXp be the set of non-decreasing sequences in Xp. Then

|Xp| =
k∏
i=1

si +

k∑
j=1

aijpj

pi

and |IXp| =
k∏
i=1

(
si +

∑k
j=1 aijpj

)(pi)
pi!

.

where x(k) = x(x+ 1) · · · (x+ k − 1) is the k-th rising factorial.

Theorem 3.7. Let U be an affine set of node defined by Equation (1). Then the ratio of U -parking
functions in the set Xp is the same as the ratio of increasing U -parking functions in the set IXp.

Proof. The number of U -parking functions and the number of increasing U -parking functions
for an affine node-set U can be computed via the theory of differential and difference Gončarov
polynomials. Explicitly, by Proposition 17 of [1] we have that∣∣∣IPF (k)

p (U)
∣∣∣ =

1

p1! · · · pk!
det(K)

k∏
i=1

(si +
∑
j

aijpj + 1)(pi−1), (2)

where K = (kij) is a k × k matrix given by

kij =

{
si +

∑
j 6=i aijpj if i = j

−piaji if i 6= j.
(3)

On the other hand, U -parking functions are defined by the multivariate Gončarov polynomials, as
in [11]. Applying Theorem 6.1(i) of [15] with the differential operators, we have

#PF (k)
p (U) = det(K)

k∏
i=1

(si +
∑
j

aijpj)
pi−1, (4)
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where K is given by (3). Combining Equations (2) and (4) we have∣∣∣IPF (k)
p (U)

∣∣∣
|IXp|

=

∣∣∣PF (k)
p (U)

∣∣∣
|Xp|

=
det(K)∏

i(si +
∑

j aijpj)
. (5)

For the special case A = J − I where J is the all-1 matrix, and s = (1, . . . , 1), we recover Cori
and Poulalhon’s (p1, . . . , pk)-parking functions. In this case, the ratio at the right-hand side of
Equation (5) is exactly (n+ 1)k/

∏k
i=1(n− pi + 1).

4 Sum-enumerator for increasing (p, q)-parking functions

One of the most important statistics of classical parking functions is the sum of the terms. For
bivariate U -parking functions, the sum-enumerator can be obtained as a specialization of the
bivariate Gončarov polynomials, as discussed in [11]. In this section we study the sum-enumerator
of increasing (p, q)-parking functions. Consider the bivariate generating function

Fp,q(s, t) =
∑

(a,b) increasing

s
∑p

i=1 ai · t
∑q

j=1 bj . (6)

where (a, b) ranges over all increasing (p, q)-parking functions, which by Theorem 3.1 are precisely
the increasing bivariate U -parking functions with U = {(ui,j , vi,j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q} and
ui,j = j + 1, vi,j = i+ 1.

Clearly, Fp,q(s, t) = Fq,p(t, s). If p or q is 0, set Fp,q(s, t) = 1. For small values of p and q, we have

F1.1(s, t) = 1 + t+ s

F2,1(s, t) = 1 + t+ s+ t2 + ts+ s2

F3,1(s, t) = 1 + s+ t+ s2 + t2 + s3 + t3 + st+ st2 + s2t

F2,2(s, t) = 1 + s+ t+ 2s2 + 2t2 + t3 + s3 + t4 + s4 + st+ 2st2 + 2s2t+ st3 + s3t+ 2s2t2.

For an increasing (p, q)-parking function (a, b), let (Pa, Pb) be the corresponding weakly disjoint
lattice paths from (0, 0) to (p, q), as defined in the previous section. Then

∑p
i=1 ai is the area

enclosed by Pa, y = 0, and x = p; and
∑q

j=1 bj is the area enclosed by Pb, x = 0, and y = q. See
the left grid in Figure 2.

With this lattice path representation, it is immediate that

Fp,q(s, t) = Fq,p(s, t) and Fp,q(s, t) = Fp,q(t, s). (7)

In addition,

Fp,q(s, 0) =

[
p+ q

p

]
s

.

9
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Figure 2: The areas determined by Pa and Pb, and the corresponding plane partition.

This is because when t = 0, the nontrivial terms in the summation of Fp,q(s, t) are those with bi = 0
for all i, for which Pb is the unique path with p N -steps followed by q E-steps, and Pa can be any
lattice path from (0, 0) to (p, q). Now Fp,q(s, 0) is the area-enumerator of all such Pa and is given
by the Gaussian coefficient.

4.1 A recurrence relation for Fp,q(s, t)

Next we give a recurrence for Fp,q(s, t). The main tool we will use is a decomposition of the set
of pairs of non-decreasing sequences, as is used in [1] to give a combinatorial interpretation of the
increasing bivariate U -parking functions for general U . We adopt the same notation as in [1] to
establish a recurrence for the sum-enumerator of increasing bivariate U -parking functions, i.e. for
the generating function

Fp,q(s, t;U) =
∑

(a,b)∈IPF(2)
p,q(U)

s
∑p

i=1 ait
∑q

j=1 bj

where IPF (2)
p,q(U) is the set of all increasing 2-dimensional U -parking functions of size (p, q). Then

we specialize the recurrence to the case where ui,j = j + 1 and vi,j = i + 1, in accordance with
Theorem 3.1.

The following construction is taken from [1]. Note that we adjust the notations from [11] such
that for an integer sequence, the subscript starts with 1.

Let I(p, q) be the set of pairs of integer sequences (a, b) such that a = a1a2 . . . ap satisfies
0 ≤ a1 ≤ a2 ≤ · · · ≤ ap < x and b = b1b2 . . . bq satisfies 0 ≤ b1 ≤ b2 ≤ · · · ≤ bq < y, where x, y are
positive integers. It is well-known that∑

(a,b)∈I(p,q)

s
∑p

i=1 ait
∑q

j=1 bj =

[
x+ p− 1

p

]
s

[
y + q − 1

q

]
t

. (8)

Let P be a lattice path from (0, 0) to (p, q). Denote by Ip,q(P ;U) the subset of I(p, q) consisting
of the pairs of sequences (a, b) of respective lengths p and q that are bounded by P with respect
to U .

10



For any pair of sequences c = (a, b) ∈ I(p, q), we construct a subgraph G(c) of the digraph
Gp,q(U) as follows.

• O = (0, 0) is a vertex of G(c).

• For any vertex (i, j) of G(c),

– if ai+1 < ui,j , then add the vertex (i+ 1, j) and the E-step {(i, j), (i+ 1, j)} to G(c).

– if bj+1 < vi,j , then add the vertex (i, j + 1) and the N -step {(i, j), (i, j + 1)} to G(c).

By definition G(c) is a connected graph containing at least the vertex O. It is proved in [11] that
the set of vertices of G(c) has a unique maximal vertex v(c) ∈ [0, p] × [0, q] under the order �,
where (i, j) � (i′, j′) if and only if i ≤ i′ and j ≤ j′, for (i, j), (i′, j′) ∈ N2.

Let (i, j) � (p, q). Define the set Kp,q(i, j) = {c ∈ I(p, q) : v(c) = (i, j)} and let kp,q(i, j) =
|Kp,q(i, j)|. Then I(p, q) can be decomposed into the disjoint union of sets Kp,q(i, j) for 0 ≤ i ≤ p
and 0 ≤ j ≤ q, and

Kp,q(p, q) =
⋃

P :(0,0)→(p,q)

Ip,q(P ;U) = IPF (2)
p,q(U).

Now a pair of sequences c = (a, b) is in Kp,q(i, j) if and only if there exists a lattice path
P ′ : (0, 0)→ (i, j) satisfying the following:

• The initial segments a′ = a1 . . . ai and b′ = b1 . . . bj are bounded by P ′ with respect to U .
That is, (a′, b′) is in Ki,j(i, j). There are ki,j(i, j) such pairs of initial segments.

• The integer sequence ai+1 . . . ap satisfies ui,j ≤ ai+1 ≤ · · · ≤ ap < x.

• The integer sequence bj+1 . . . bq satisfies vi,j ≤ bj+1 ≤ · · · ≤ bq < y.

It follows that ∑
(a,b)∈Kp,q(i,j)

s
∑p

i=1 ait
∑q

j=1 bj

= Fi,j(s, t;U) · s(p−i)ui,j
[
x− ui,j + p− i− 1

p− i

]
s

· t(q−j)vi,j
[
y − vi,j + q − j − 1

q − j

]
t

.

Therefore, we reach the following equation that can be used as a recurrence for Fp,q(s, t;U).

Theorem 4.1.[
x+ p− 1

p

]
s

[
y + q − 1

q

]
t

=

p∑
i=0

q∑
j=0

Fi,j(s, t;U) · s(p−i)ui,j
[
x− ui,j + p− i− 1

p− i

]
s

· t(q−j)vi,j
[
y − vi,j + q − j − 1

q − j

]
t

.

Setting ui,j = j + 1, vi,j = i+ 1 will give a recurrence for the sum-enumerator of (p, q)-parking
functions, where x, y are any integers satisfying x > q + 1 and y > p+ 1.
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Corollary 4.2 (Recurrence Relation for Fp,q(s, t)). For any non-negative integers p, q and
integers x > q + 1 and y > p+ 1, we have[

x+ p− 1

p

]
s

[
y + q − 1

q

]
t

=

p∑
i=0

q∑
j=0

Fi,j(s, t) · s(p−i)(j+1)

[
x+ p− i− j − 2

p− i

]
s

· t(q−j)(i+1)

[
y + q − i− j − 2

q − j

]
t

.

When q = 0, we have Fp,0(s, t) = 1, and so Corollary 4.2 becomes[
x+ p− 1

p

]
s

=

p∑
i=0

sp−i
[
x+ p− i− 2

p− i

]
s

=

q∑
i=0

si
[
x+ i− 2

i

]
s

.

Letting k = x − 2 and replacing the variable s with q, the above equation becomes a q-analog of
the Hockey Stick Identity: [

k + p+ 1

p

]
q

=

p∑
i=0

qi
[
i+ k

k

]
q

.

Remark. For computational purposes, in Corollary 4.2 we can take x = q + 2 and y = p+ 2. So
the recurrence becomes[

p+ q + 1

p

]
s

[
p+ q + 1

q

]
t

=

p∑
i=0

q∑
j=0

s(p−i)(j+1)

[
p+ q − i− j

p− i

]
s

t(q−j)(i+1)

[
p+ q − i− j

q − j

]
t

Fi,j(s, t). (9)

For example, one can derive from (9) that Fq,1(s, t) =
∑

i+j≤m s
itj , which can be easily checked

using the definition of the sum-enumerator.

4.2 Plane partitions in the box p× q × 2

There is a one-to-one correspondence between pairs of weakly disjoint lattice paths in the p × q
grid and plane partitions in the box p× q × 2: put 2 in each square to the upper-left of the lattice
path Pb, 0 in each square to the lower-right of the lattice path Pa, and 1 in the remaining squares.
See the right grid in Figure 2.

For a plane partition π in the box p× q × 2, each column can be viewed as a partition λ inside
the rectangle 2× q, and π can be viewed as a multichain 0̂ = λ(0) ≤ λ(1) ≤ · · · ≤ λ(p) ≤ λ(p+1) = 1̂,
where λ(i) is the (p+ 1− i)-th column in π and 0̂ = ∅ = (0q), 1̂ = (2q).

Let Lq be the lattice of all partitions inside the rectangle 2× q, ordered by inclusion. Then Lq
is a distributive lattice that is isomorphic to J(Pq), the order ideals of the poset Pq = 2×q, where
q is the q-element chain.

The above argument leads to the following proposition.
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Figure 3: The lattice L3.

Proposition 4.3. The Narayana number N(1 + p + q, p) counts the number of multichains 0̂ =
I0 ≤ I1 ≤ · · · ≤ Ip+1 = 1̂ of length p+ 1 in Lq.

From Proposition 3.5.1 of [18], we have

Corollary 4.4. The Narayana number N(1 + p+ q, p) also counts the following:

1. order-preserving maps σ : Pq → p + 1;

2. the set of order ideals J(Pq × p).

Next we use the multichain representation of plane partitions in Proposition 4.3 to derive a
Catalan-type recurrence for the generating function of Fp,q(s, t). In the following we will just
consider multichains of the form λ(1) ≤ · · · ≤ λ(p) which do not necessarily start with 0̂ or end with
1̂. For a plane partition π in the box p× q × 2 whose content is 0r01r12r2 , let

wt(π) = ar0br1cr2 ,

and define

Sp,q(a, b, c) =
∑

π∈p×q×2
wt(π). (10)

Note that we may work interchangeably with Sp,q(a, b, c) and Fp,q(s, t), for Fp,q(s, t) = Sp,q(s, 1, t)
and Sp,q(a, b, c) = bpqFp.q(a/b, c/b). It is more convenient to work with Sp,q(a, b, c) in the lattice Lq.

Fixing q, we will compute the generating function Sq(a, b, c; z) defined by

Sq(a, b, c; z) =
∞∑
p=0

Sp,q(a, b, c)z
p. (11)
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First, it is clear that S0(a, b, c; z) = 1/(1− z).
For a plane partition π with columns λ(p), . . . , λ(1), we have

wt(π) =

m∏
i=1

wt(λ(i)).

For q = 1, the poset L1 is a chain consisting of the three elements ∅, (1), (2) with weights a, b, c
respectively. Thus, a multichain λ(1) ≤ · · · ≤ λ(p) is just a sequence with ∅ followed by some (1)’s
and then (2)’s. Hence,

S1(a, b, c; z) =
1

1− az
· 1

1− bz
· 1

1− cz
. (12)

In general, we can compute Sq(a, b, c; z) by a summation over the set of chains in Lq as follows.
Let K be a chain of Lq and let L(K) be the set of multichains whose support is K. Then

∑
C∈L(K)

wt(C)z|C| =
∏

λ(i)∈K

wt(λ(i))z

1− wt(λ(i))z
,

where |C| is the number of elements in the multichain C. Consequently,

Sq(a, b, c; z) =
∑
K

∏
λ(i)∈K

wt(λ(i))z

1− wt(λ(i))z
, (13)

where K ranges over all chains in the lattice Lq.
For example, for q = 2 we have

S2(a, b, c; z) =
1

(1− a2z)(1− abz)(1− bcz)(1− c2z)

(
1

1− b2z
+

1

1− acz
− 1

)
. (14)

Formula (13) shows that Sq(a, b, c; z) is a rational function, although its usage to compute
Sq(a, b, c; z) is impractical due to the large possible number of chains in Lq. Next we present a
recurrence for Sq(a, b, c; z) that generalizes the Catalan recurrence

Cn =

n−1∑
i=0

CiCn−i−1

and provides a faster way to compute Sq(a, b, c; z).

Theorem 4.5. The generating functions Sq(a, b, c; z) satisfy the following recurrence: for q ≥ 2,

Sq(a, b, c; z) =
1

1− cqz

(
Sq−1(a, b, c; bz)

1− aqz

+

q−1∑
i=1

aq−icizSi(a, b, c; aq−iz)Sq−i−1(a, b, c; bciz)

)
(15)
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Proof. The idea is to decompose all multichains in a proper way. Let µ(i) be the partition (2i0q−i).
For each i = 1, 2, . . . , q − 1, let Mi be the set of multichains that contain µ(i) but not µ(j) for any
j such that i < j < q.

Let L−q (µ(i)) = {λ ∈ Lq : λ ≤ µ(i)} and L+
q (µ(i)) = {λ ∈ Lq : λ ≥ µ(i)}. We compute

the weighted sum of the multichains from Mi. Any such a multichain consists of a multichain
over the poset L−q (µ(i)), at least one occurrence of µ(i), and then a multichain over the sub-poset

L+
q (µ(i))− {µ(i), . . . , µ(q−1)}.

The first observation is that L−q (µ(i)) ' Li but the weight of an element in L−q (µ(i)) has one more

factor of aq−i than its corresponding term in Li. Hence, multichains in L−q (µ(i)) contribute a factor

of Si(a, b, c; aq−iz). The second observation is that the sub-poset L+
q (µ(i))− {µ(i), . . . , µ(q−1), µ(q)}

is isomorphic to Lq−i−1; actually, the former is obtained from the latter by adjoining i+ 1 parts of
(2i1), each having weight bci, to each partition. In addition, µ(q) is larger than any other element
and can occur any time in a multichain. Hence the multichains in L+

q (µ(i)) − {µ(i), . . . , µ(q−1)}
contribute a factor of

Sq−i−1(a, b, c; bciz)/(1− cqz).

Combining the two observations and summing over i = 1, 2, . . . , q − 1, while additionally noting
that the weight of µ(i) in Lq is aq−ici, we obtain the summation part in Equation (15).

One more case remains: the multichain does not contain any µ(i) for i = 1, 2, . . . , q − 1. But
Lq − {µ(i) : i = 1, . . . , q − 1} can be viewed as obtained from Lq−1 by joining to each partition a
new part of size 1, and then adding 0̂ = ∅ and 1̂ = (2q). Multichains in this case contribute the
term

Sq−1(a, b, c; bz)
(1− aqz)(1− cqz)

.

For q = 2, Theorem 4.5 gives Equation (14) again. For q = 3, we have

S3(a, b, c; z) = 1
(1−a3z)(1−c3z)(1−a2bz)(1−bc2z)

(
ac2z

(1−abcz)(1−ac2z)(1−ab2z)

+ ac2z
(1−a2cz)(1−abcz)(1−ac2z) −

ac2z
(1−abcz)(1−ac2z)

+ a2cz
(1−a2cz)(1−abcz)(1−b2cz) + 1

(1−ab2z)(1−b2cz)(1−b3z)

+ 1
(1−ab2z)(1−b2cz)(1−abcz) −

1
(1−ab2z)(1−b2cz)

)
An interesting case is when a = b = c = 1. Let Sq(z) := Sq(1, 1, 1; z). Then from Equation

(15), we have

Sq(z) =
1

(1− z)2
Sq−1(z) +

q−1∑
i=1

z

1− z
Si(z)Sq−i−1(z).
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The initial cases are S0(z) = (1− z)−1 and S1(z) = (1− z)−3. If we let Sq(z) = Tq(z)/(1− z)2q+1,
then (Tq(z)) is necessarily a sequence of polynomials satisfying

Tq(z) = Tq−1(z) +

q−1∑
i=1

zTi(z)Tq−i−1(z), (16)

for q ≥ 2, with the initial conditions T0(z) = T1(z) = 1.
Define the n-th Narayana polynomial by letting

Nn(z) =
n∑
k=1

N(n, k)zk−1,

where N(n, k) = 1
n

(
n
k

)(
n
k−1
)

is the Narayana number. For n = 0, set N0(z) = 1. We remark that
this definition of the Narayana polynomial is slightly different than the usual one appearing in the
literature, which has an extra factor of z. For example, see [21]. Nevertheless, the Nn(z) defined
here is the rank-generating function of the lattice of noncrossing partitions of [n], which plays an
important role in the next result.

Proposition 4.6. Let q be a positive integer. Then Tq(z) = Nq(z) and hence

Sq(z) =
Nq(z)

(1− z)2q+1
.

Proof. Clearly N1(z) = 1. We use the combinatorial interpretation that N(q, k) counts the num-
ber of noncrossing partitions of [q] = {1, . . . , q} with k blocks and verify that Nq(z) satisfies the
recurrence relation given by Equation (16).

For a noncrossing partition π ∈ NC([q]) with k blocks, assume that q is in the block whose
minimal element is i + 1. If i = 0, then π is obtained from a noncrossing partition of [q − 1] with
k blocks by adjoining q to the block that contains 1. For i = 1, . . . , q − 1, π can be viewed as the
disjoint union of two noncrossing partitions, one on [i] and the other on {i + 1, . . . , q} such that
i+1 and q are in the same block. Moreover, the total number of blocks is k. Putting them together
and noting that in Nq(z), N(q, k) is the coefficient of zk−1, we obtain the recurrence

Nq(z) = Nq−1(z) +

q−1∑
i=1

zNi(z)Nq−i−1(z).

Since Sq(z) =
∑

p≥0 Fp,q(1, 1)zp and Fp,q(1, 1) = N(1 + p + q, 1 + p), we obtain the following
equation of the Narayana numbers.

Corollary 4.7. ∑
p≥0

N(1 + p+ q, 1 + p)zp =
Nq(z)

(1− z)2q+1
.
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Finally, we give a formula for the bivariate generating function

S(x; z) :=
∑
q≥0
Sq(z)xq.

It is known [20] that the bivariate generating function for the Narayana numbers

F (x, z) =

∞∑
q=1

q∑
k=1

N(q, k)xqzk (17)

has the algebraic formula

F (x, z) =
1− (z + 1)x−

√
1− 2(z + 1)x+ (z − 1)2x2

2x
.

Proposition 4.6 implies the equation

S(x; z) =
1

1− z

1 +

∞∑
q=1

q∑
k=1

N(q, k)zk−1
(

x

(1− z)2

)q .

Using Equation (17) we obtain the following corollary.

Corollary 4.8.

S(x; z) =
1− z − x−

√
1 + x2 + z2 − 2z − 2x− 2xz

2xz
.

4.3 A q-analog of the Narayana numbers

In this subsection we prove the following q-analog of the Narayana numbers.

Theorem 4.9. When s = 1/t, Fp,q(s, t) yields a q-analog of the Narayana numbers via the equation

tpqFp,q(1/t, t) =
1

[1 + p+ q]t

[
1 + p+ q

p

]
t

[
1 + p+ q

q

]
t

Proof. For an increasing (p, q)-parking function (a, b), let (Pa, Pb) be the corresponding pair of
weakly disjoint lattice paths from (0, 0) to (p, q). By moving Pa one unit to the right and adding
an E-step at the beginning, and moving Pb one unit up and adding an E-step at the end, the pair
(Pa, Pb) becomes a pair of vertex disjoint lattice paths from the vertex set (A1, A2) to (B1, B2),
where A1 = (0, 0), A2 = (0, 1), B1 = (p + 1, q), and B2 = (p + 1, q + 1). This is a one-to-one
correspondence. Hence we can use the Lemma of Gessel-Viennot to count the number of vertex
disjoint path systems.

We adopt a weighted version of the lattice graph with E- and N - steps that is used to describe
a combinatorial definition of Schur functions and the Jacobi-Trudi identity. See, for example,
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Figure 4: The corresponding vertex disjoint path system with weights for (Pa, Pb).

Theorem 7.16.1 of [19] or Theorem 8.8 in [2]. Consider the lattice graph with E- and N - steps,
where all E-steps have weight 1, and an N -step at the line x = k has weight xk. The weight of a
path P is the product

∏
e∈P weight(e). For a path system P = (P1, P2) where Pi is from Ai to Bi,

we have
weight(P) =

∏
e∈P1

weight(e)
∏
f∈P2

weight(f).

Applying the Lemma of Gessel-Viennot to the vertex sets (A1, A2) and (B1, B2), we have∑
P is vertex disjoint

weight(P) = detM, (18)

where the path matrix M is a 2× 2 matrix with entries mi,j = hq−i+j(x0, . . . , xp+1).
By the Jacobi-Trudi identity,

detM = sλ(x0, . . . , xp+1), (19)

where λ = (q, q).
We need the specialization sλ(1, t, . . . , tn), which is given by the Hook-Content Formula (see

Theorem 7.21.2 of [19]).

The Hook-Content Formula. For any partition λ and n > 0,

sλ(1, q, . . . , qn−1) = q
∑

(i−1)λi
∏
u∈λ

[n+ c(u)]

[h(u)]
.

where for a cell u = (i, j) in an integer partition λ, the hook length h(u) of λ at u is defined by
h(u) = λi+λ

′
j−i−j+1, where λ′ is the conjugate of λ, and the content c(u) is defined by c(u) = j−i.

Using the Hook-Content formula, we have

sq2(1, t, . . . , tp+1) =
tq

[1 + p+ q]t

[
1 + p+ q

p

]
t

[
1 + p+ q

q

]
t

. (20)

Next we connect the sum-enumerator Fp.q(s, t) of increasing (p, q)-parking functions to weight(P)
for a vertex disjoint path system P = (P1, P2). Note that we require that Pi is from Ai to Bi for
i = 1, 2.
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For a lattice path Pi from Ai to Bi, if Pi has N -steps at x = r1, r2, . . . , rn, then the weight of Pi
is xr1xr2 · · ·xrn . When xi = ti, the weight of Pi becomes t

∑n
i=1 ri . Comparing with the definition

of Fp,q(s, t), we have that weight(P1) = t(p+1)q−
∑

i ai and weight(P2) = t
∑

j bj . Therefore,∑
P is vertex disjoint

weight(P) = t(p+1)qFp,q(1/t, t). (21)

Theorem 4.9 follows from Equations (18)–(21).

5 Increasing (p, q)-parking functions and Catalan structures

In this final section, we focus on lattice paths in Z2 consisting of east and north steps. A Dyck
path is a lattice path from (0, 0) to (p, p) which may touch but never goes below the line y = x.
Such a Dyck path is said to be of length 2p.

In Theorem 2.3 of [6], a bijection is constructed between the set of pairs of weakly disjoint
lattice paths from (0, 0) to (p, p) and the set of noncrossing partitions of [2p + 1] having p + 1
blocks. The following generalizes this bijection to lattice paths from (0, 0) to (p, q) for arbitrary
positive integers p and q.

Theorem 5.1. Let p, q be positive integers. Then there exists a bijection Φ between the set of
pairs of weakly disjoint lattice paths from (0, 0) to (p, q) and the set of noncrossing partitions of
[p+ q + 1] with p+ 1 blocks.

Proof. Let P = e1e2 . . . ep+q and Q = d1d2 . . . dp+q be weakly disjoint lattice paths from (0, 0) to
(p, q) consisting of N = (0, 1) and E = (1, 0) steps, where Q is weakly below P . The bijection
Φ defined below uniquely assigns to each such (P,Q) a pair of degree sequences (l1, l2, . . . , lp+q+1)
and (r1, r2, . . . , rp+q+1). Here, li denotes the left-degree of vertex i in the standard representation
of a partition, meaning the number of vertices j with j < i connected to i; and similarly, ri denotes
the right-degree of vertex i, or the number of vertices j with j > i connected to i. Initially, we set
l1 = rp+q+1 = 0; then for each i = 1, . . . , p+ q, (ri, li+1) is determined as follows:

1. (ei, di) = (N,N) if and only if (ri, li+1) = (1, 1).

2. (ei, di) = (N,E) if and only if (ri, li+1) = (1, 0).

3. (ei, di) = (E,N) if and only if (ri, li+1) = (0, 1).

4. (ei, di) = (E,E) if and only if (ri, li+1) = (0, 0).

To uniquely form a noncrossing partition of [p+ q+ 1] from these left- and right-degree sequences,
iteratively pair the leftmost vertex having nonzero left-degree with the nearest vertex having nonzero
right-degree on its left. The result is the standard representation of a partition R := Φ({P,Q}).
To see why this iterative process of pairing vertices necessarily works, note that we can conclude
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from Q being weakly below P that
∑k

i=1 ri ≥
∑k+1

i=1 li, which always guarantees the existence of a
vertex having nonzero right-degree to the left of a chosen vertex.

It remains to check that R is a noncrossing partition of [p + q + 1] with p + 1 blocks. Note
that our process for generating the degree sequences (l1, l2, . . . , lp+q+1) and (r1, r2, . . . , rp+q+1) from
(ei, di) for each i = 1, . . . , p + q guarantees that the resulting standard representation has vertex
set [p+ q + 1]. The total number of arcs is half the number of N -steps in both P and Q, which is
equal to q. Since there are p+ q+ 1 vertices, this implies the resulting partition R has p+ 1 blocks.
Also, R must be noncrossing based on our method of constructing the standard representation of
R from the degree sequences.

Additionally, an explicit correspondence between pairs of noncrossing lattice paths from (0, 0)
to (p, p) and Dyck paths from (0, 0) to (2p + 1, 2p + 1) having p + 1 N -steps at odd positions is
presented in [6], which is based on the Labelle Merging Algorithm [14]. This correspondence is
extended below to lattice paths from (0, 0) to (p, q) for arbitrary positive integers p and q.

Theorem 5.2. (Generalized Labelle Merging Algorithm) There exists a bijection Ψ between the
set of pairs of weakly disjoint lattice paths from (0, 0) to (p, q) and the set of Dyck paths of length
2(p+ q + 1) having p+ 1 N -steps at odd positions.

Proof. Let P = e1e2 . . . ep+q and Q = d1d2 . . . dp+q be weakly disjoint lattice paths from (0, 0) to
(p, q), and assume Q lies weakly below P . Set Q′ = d′1d

′
2 . . . d

′
p+q, where N ′ = E and E′ = N . Now

define a new lattice path L := Ψ(P,Q) by letting

L = Ne1d
′
1e2d

′
2 . . . ep+qd

′
p+qE.

Let f be a function with f(N) = 1 and f(E) = −1. Since Q lies weakly below P , we have∑r
i=1(f(ei)+f(d′i)) =

∑r
i=1(f(ei)−f(di)) ≥ 0 for all r = 1, 2, . . . , p+q. It follows that

∑r
i=1(f(ei)+

f(d′i)) + f(ei+1) ≥ −1 for all r = 1, . . . , p + q − 1. Note that L begins with an N -step. Hence, L
is in fact a Dyck path from (0, 0) to (p + q + 1, p + q + 1). Moreover, it has p + 1 N -steps at odd
positions, since Q′ contains p N -steps.

To verify that Ψ is a bijection, we define the reverse map. Let L = `1`2 . . . `2p+2q+1`2p+2q+2 be
a Dyck path with p+ 1 N -steps at odd positions. Set P = `2`4 . . . `2p+2q and Q = `′3`

′
5 . . . `

′
2p+2q+1,

where N ′ = E and E′ = N . Since L has p + 1 N -steps at odd positions, Q will have p E-steps
and q N -steps. Since L has length 2(p + q + 1), P must also have p E-steps and q N -steps. Now
if there exists some k such that P and Q cross at their k-th step (that is, after k steps, Q is above
P ), then

#{i : `2i = N, 1 ≤ i ≤ k} < #{i : `′2i+1 = N, 1 ≤ i ≤ k} = #{i : `2i+1 = E, 1 ≤ i ≤ k},

which implies that L crosses the line y = x by its k-th step, a contradiction. So P and Q are
noncrossing, and Ψ is indeed a bijection.

In discussing pairs of weakly disjoint lattice paths, an object which naturally arises is the
parallelogram polyomino, which is a polyomino in a p× q rectangular grid that is bounded by two
(N,E)-lattice paths from (0, 0) to (p, q) which touch only at their starting and ending points. Aval et
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al. [3] present a bijection ptd between the set of parallelogram polyominoes in a p×q grid and the set
of prime Dyck paths of length 2(p+q), that is, Dyck paths of length 2(p+q) that touch the diagonal
y = x only at their starting and their ending points. We will briefly review that bijection here.
Consider a parallelogram polyomino bounded by the two (N,E)-lattice paths P = e1e2 . . . ep+q and
Q = d1d2 . . . dp+q from (0, 0) to (p, q), where Q is weakly below P . By necessity, P and Q touch only
at their starting and ending points. Define Q′ = d′1d

′
2 . . . d

′
p+q, where N ′ = E and E′ = N . Now

form the Dyck path C = ptd(P,Q) = e1d
′
1e2d

′
2 . . . ep+qd

′
p+q. This construction is easily reversed

to yield a bijective correspondence between the set of all parallelogram polyominoes in an p × q
rectangular grid and the set of all prime Dyck paths from (0, 0) to (p + q, p + q) having exactly p
N -steps in even positions.

The Generalized Labelle Merging Algorithm in Theorem 5.2 and the bijection ptd in [3] for
constructing a Dyck path from a pair of lattice paths are very similar. The difference is that in
Theorem 5.2, the pair (P,Q) of lattice paths from (0, 0) to (p, q) can touch, and the image lattice
path L = Ψ(P,Q) from (0, 0) to (p+ q + 1, p+ q + 1) is guaranteed to be a Dyck path due to the
initial N -step and final E-step imposed in the construction. Yet in [3], because P and Q bound a
parallelogram polyomino and consequently only touch at start and end, the extra N - and E-steps
are not necessary. Actually, starting from a pair of weakly disjoint lattice paths (P,Q) where Q is
weakly below P , if we let Q′ be the path obtained through the addition of an initial E-step and
final N -step to Q, and P ′ be the path obtained by adding an initial N -step and final E-step to P ,
then the resulting figure is a parallelogram polyomino bounded by (P ′, Q′) in a (p + 1) × (q + 1)
grid (see Figure 5). Furthermore, ptd(P ′, Q′) = N L E, where L = Ψ(P,Q). The extra N - and
E-steps guarantee that ptd(P ′, Q′) is a prime Dyck path.

In the following, we will use a result in [3] to compute the areas bounded by the lattice paths.
To avoid confusion, we will always indicate which construction we are using.

In [3], a method of encoding each parallelogram polyomino as an area word consisting of barred
and unbarred natural numbers is presented, which in turn can be recognized from the polyomino’s
corresponding Dyck path under the map ptd. This encoding assigns unbarred natural numbers
to all E-steps of the lower bounding lattice path and barred natural numbers to all N -steps of
the upper bounding lattice path, with the area word a particular permutation of these barred and
unbarred numbers. In fact, the sum of the numbers in the area word (ignoring the bars) is equal to
the area of the parallelogram polyomino. For our purposes, we will only be concerned with finding
the barred and unbarred numbers which compose the area word. These are determined as follows.
Let P be a paralleogram polyomino in a p× q grid.

1. For each E-step of the lower lattice path, draw a line with a slope of −1 which starts at
the right endpoint of this E-step and stops upon reaching the upper lattice path. Label the
original E-step with the (unbarred) number of squares crossed by this line.

2. After doing this for every E-step of the lower lattice path, label each N -step of the upper
lattice path with the (barred) number of squares to the right and in the interior of the
parallelogram polyomino which were not crossed by any of the diagonal lines we drew.

Alternatively, given a (prime) Dyck path C from (0, 0) to (p + q, p + q), we can find the area
word of the associated parallelogram polyomino as follows:
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1. Label the diagonal through (0, 1) and (p+q−1, p+q) with 0̄, the diagonal through (0, 2) and
(p+ q− 2, p+ q) with 1, the diagonal through (0, 3) and (p+ q− 3, p+ q) with 1̄, the diagonal
through (0, 4) and (p+ q − 4, p+ q) with 2, the diagonal through (0, 5) and (p+ q − 5, p+ q)
with 2̄, and so on.

2. Label each N -step of C with the label of the diagonal line immediately above it.

3. Read the labels of the N -steps of C in order to obtain the area word of the associated
parallelogram polyomino.

Figure 5 gives an example of the labeling described. The left is a pair of weakly disjoint lattice
paths (P,Q), the middle is the corresponding parallelogram polyomino bounded by (P ′, Q′), and
the right is the prime Dyck path C ′ = ptd(P ′, Q′), together with the labeled diagonals. Reading
the labels on the N -steps of C ′ from bottom to top yields the area word 011̄211̄22̄.

1 2

1 20̄

1̄

1̄

2̄

ptd

0̄

1

1̄

2

2̄

3

3̄

Figure 5: A pair of weakly disjoint paths (P,Q), the parallelogram polyomino bounded by (P ′, Q′),
and the prime Dyck path ptd(P ′, Q′).

The following theorem uses this area word encoding of parallelogram polyominoes to establish a
relation between the well studied area statistic of Dyck paths and the left- and right-areas associated
with a pair of weakly disjoint lattice paths. The area statistic of Dyck paths, denoted by area(C),
is the number of whole squares between the Dyck path C and the line y = x. Given a pair (P,Q)
of weakly disjoint lattice paths from (0, 0) to (p, q) with Q weakly below P , the left-area statistic
areaL(P ) of P is the number of squares in the p × q rectangular grid to the left of P , and the
right-area statistic areaR(Q) is the number of squares to the right of Q.

Theorem 5.3. Let L1 and L2 be weakly disjoint lattice paths from (0, 0) to (p, p) with L2 weakly
below L1. If C is the Dyck path associated with the pair (L1, L2) according to the Generalized
Labelle Merging Algorithm, then

area(C) = (2p+ 1)p− 2(areaL(L1) + areaR(L2)).
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Proof. Let L′1 be the lattice path from (0, 0) to (p+ 1, p+ 1) obtained by adding an initial N -step
and a final E-step to L1. Similarly, let L′2 be the lattice path from (0, 0) to (p+ 1, p+ 1) by adding
an initial E-step and a final N -step to L2. Let P be the parallelogram polyomino bounded by L′1
and L′2.

Consider the prime Dyck path C ′ = ptd(L′1, L
′
2) associated with P, which goes from (0, 0) to

(2(p+ 1), 2(p+ 1)). We have C ′ = NCE. Observe that we can compute area(C ′) by labeling each
N -step of C ′ with the number of whole squares to its right up to the line y = x and then adding
all of these p labels together. Equivalently, for each i = 1, . . . , 2p + 1, we can draw the diagonal
line through (0, i) and (2p + 2 − i, 2p + 2) and assign it the label i − 1; then label each N -step of
C ′ with the label of the diagonal line immediately above it. Either of these methods will yield the
same labels for the N -steps of C ′. Clearly these labels will differ from the labels which are assigned
to the N -steps of C ′ according to the method in [3]. In particular, if an N -step is assigned the
label 2k according to our method, it will be assigned the label k̄ according to the method in [3];
and if an N -step is assigned the label 2k− 1 according to our method, it will be assigned the label
k according to the method in [3].

Let a1, . . . , ap+1 denote the unbarred numbers and b1, . . . , bp+1 denote the barred numbers which
together comprise the area word of the parallelogram polyomino P. Then according to the method
of conversion of the labels described above,

area(C ′) = (2a1 − 1) + (2a2 − 1) + · · ·+ (2ap+1 − 1) + 2b1 + 2b2 + · · ·+ 2bp+1

= 2(a1 + a2 + · · · ap+1 + b1 + b2 + · · ·+ bp+1)− (p+ 1)

= 2[(p+ 1)2 − (areaL(L′1) + areaR(L′2))]− (p+ 1)

=

(
2p+ 2

2

)
− 2(areaL(L′1) + areaR(L′2)).

Now since area(C ′) =
(
2p+2
2

)
−
(
2p+1
2

)
+ area(C), areaL(L′1) = areaL(L1), and areaR(L′2) =

areaR(L2), we will have

area(C) =

(
2p+ 1

2

)
− 2(areaL(L1) + areaR(L2)),

so the theorem is proved.

Theorem 5.4. Let L1 and L2 be a pair of weakly disjoint lattice paths from (0, 0) to (p, q) with
L1 weakly above L2, and let C be the Dyck path generated from L1 and L2 by the Generalized
Labelle Merging Algorithm. Then

area(C) = (2p+ 1)q − 2(areaL(L1) + areaR(L2)).

Proof. When r = p − q > 0, we can add r N -steps to the end of both L1 and L2. Call these
new lattice paths from (0, 0) to (p, p) L′1 and L′2. The Dyck path C ′ generated from L′1 and L′2
by the Generalized Labelle Merging Algorithm will differ from C in that it contains r extra NE
pairs right before the last E-step. Adopting the notation of areaL(C) for Dyck paths to denote

23



the number of squares to the left of C in the rectangular grid (p+ q+ 1)× (p+ q+ 1), observe that
areaL(C ′)− areaL(C) will be

(p+ q) + (p+ q + 1) + · · ·+ (p+ q + r − 1) = r(p+ q) +
(r − 1)r

2
.

Also, we have areaL(L′1) = areaL(L1) + pr and areaR(L′2) = areaR(L2). Thus, by Theorem 3,

area(C) =

(
p+ q + 1

2

)
− areaL(C)

=

(
p+ q + 1

2

)
− areaL(C ′) + r(p+ q) +

r(r − 1)

2

= 2p2 + q −
(

2p+ 1

2

)
+ area(C ′)

= 2p2 + q −
(

2p+ 1

2

)
+ (2p+ 1)p− 2(areaL(L′1) + areaR(L′2))

= 2p2 + q − 2(areaL(L1) + pr + areaR(L2))

= (2p+ 1)q − 2(areaL(L1) + areaR(L2))

Similarly, when r = q − p > 0, we can add r E-steps to the end of both L1 and L2, creating
new lattice paths L′1 and L′2 from (0, 0) to (p, q). Since this will add r EN pairs to the end of C,
the new Dyck path C ′ generated from L′1 and L′2 will satisfy

areaL(C ′) = areaL(C) + (p+ q + 1) + · · ·+ (p+ q + r) = areaL(C) + r(p+ q) +
r(r + 1)

2
.

Also, areaR(L′2) = areaR(L2) + qr and areaL(L′1) = areaL(L1). Therefore,

area(C) =

(
p+ q + 1

2

)
− areaL(C)

=

(
p+ q + 1

2

)
− areaL(C ′) + r(p+ q) +

r(r + 1)

2

= 2q2 + q −
(

2q + 1

2

)
+ area(C ′)

= 2q2 + q −
(

2q + 1

2

)
+ (2q + 1)q − 2(areaL(L′1) + areaR(L′2))

= 2q2 + q − 2(areaL(L1) + qr + areaR(L2))

= (2p+ 1)q − 2(areaL(L1) + areaR(L2)),

and we are done.

We conclude the paper by relating the above discussion on Dyck paths to the bivariate generating
function Fp,q(s, t). The relations are presented in Equations (23) and (25). Let D(p) denote the
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set of Dyck paths from (0, 0) to (p, p), and let LP(p, q) denote the set of pairs of weakly disjoint
lattice paths (L1, L2) from (0, 0) to (p, q), where L1 lies weakly above L2. To remain in accordance
with our variable choices in the generating function Fp,q(s, t), we will use the variable t instead of
q in all below definitions of Catalan q-analogs.

Let Cp(t) denote the q-analog of the Catalan numbers studied by Carlitz and Riordan [5]:

Cp(t) =
∑

P∈D(p)

tarea(P ).

Using the Generalized Labelle Merging Algorithm and Theorems 5.3 and 5.4, we have∑
P∈D(K+1)

tarea(P ) =
∑
p,q∈N
p+q=K

∑
(L1,L2)∈LP(p,q)

t(2p+1)(q)−2(areaL(L1)+areaR(L2)). (22)

With some algebraic manipulation, we get the following relation.

Proposition 5.5. ∑
p,q∈N
p+q=K

t(
p−q+1

2 )Fp,q(t
2, t2) = t(

K+1
2 )CK+1(1/t). (23)

Let Catp(t) denote the MacMahon q-analog of the Catalan numbers [17]:

Catp(t) =
1

[1 + p]t

[
2p

p

]
t

,

and let Cp(q, t) denote the (q, t)-Catalan numbers introduced by Garcia and Haiman [9]. In fact,
the former is a special case of the latter, since it was shown in [9] that

t(
p
2)Cp(t, 1/t) = Catp(t). (24)

From Theorem 4.9, Equation (24), and the identity (see [22])

Catp(t) =

p∑
k=1

N(p, k; t),

where N(p, k; t) is the t-Narayana number tk(k−1)

[p]t

[
p
k

]
t

[
p

k−1
]
t
, we have the following equation.

Proposition 5.6. For fixed K ∈ N:∑
p,q∈N
p+q=K

tp(p+q+1)Fp,q(t, 1/t) = CatK+1(t) = t(
K+1

2 )CK+1(t, 1/t). (25)
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