
Chapter 4

Unitary Matrices

4.1 Basics

This chapter considers a very important class of matrices that are quite use-
ful in proving a number of structure theorems about all matrices. Called
unitary matrices, they comprise a class of matrices that have the remarkable
properties that as transformations they preserve length, and preserve the an-
gle between vectors. This is of course true for the identity transformation.
Therefore it is helpful to regard unitary matrices as “generalized identities,”
though we will see that they form quite a large class. An important exam-
ple of these matrices, the rotations, have already been considered. In this
chapter, the underlying field is usually C, the underlying vector space is Cn,
and almost without exception the underlying norm is k · k2. We begin by
recalling a few important facts.

Recall that a set of vectors x1, . . . , xk ∈ Cn is called orthogonal if
x∗jxm = hxm, xji = 0 for 1 ≤ j 6= m ≤ k. The set is orthonormal if

x∗jxm = δmj =

½
1 j = m
0 j 6= m.

An orthogonal set of vectors can be made orthonormal by scaling:

xj −→ 1

(x∗jxj)1/2
xj .

Theorem 4.1.1. Every set of orthonormal vectors is linearly independent.

Proof. The proof is routine, using a common technique. Suppose S =
{xj}kj=1 is orthonormal and linearly dependent. Then, without loss of gen-
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158 CHAPTER 4. UNITARY MATRICES

erality (by relabeling if needed), we can assume

uk =
k−1X
j=1

cjuj .

Compute u∗kuk as

1 = u∗kuk = u
∗
k

k−1X
j=1

cjuj


=
k−1X
j=1

cju
∗
kuj = 0.

This contradiction proves the result.

Corollary 4.1.1. If S = {u1 . . . uk} ⊂ Cn is orthonormal then k ≤ n.
Corollary 4.1.2. Every k-dimensional subspace of Cn has an orthonormal
basis.

Proof. Apply the Gram—Schmidt process to any basis to orthonormalize
it.

Definition 4.1.1. A matrix U ∈Mn is said to be unitary if U
∗U = I. [If

U ∈Mn(R) and U
TU = I, then U is called real orthogonal.]

Note: A linear transformation T : Cn → Cn is called an isometry if
kTxk = kxk for all x ∈ Cn.
Proposition 4.1.1. Suppose that U ∈Mn is unitary. (i) Then the columns
of U form an orthonormal basis of Cn, or Rn , if U is real. (ii) The spectrum
σ(u) ⊂ {z | |z| = 1}. (iii) |detU | = 1.
Proof. The proof of (i) is a consequence of the definition. To prove (ii), first
denote the columns of U by ui, i = 1, . . . , n. If λ is an eigenvalue of U with
pertaining eigenvector x, then kUxk = kPxiuik = (

P |xi|2)1/2 = kxk =
|λ|kxk. Hence |λ| = 1. Finally, (iii) follows directly because detU = Qλi.
Thus |detU | =Q |λi| = 1.
This important result is just one of many equivalent results about unitary
matrices. In the result below, a number of equivalences are established.

Theorem 4.1.2. Let U ∈Mn. The following are equivalent.



4.1. BASICS 159

(a) U is unitary.

(b) U is nonsingular and U∗ = U−1.

(c) UU∗ = I.

(d) U∗ is unitary.

(e) The columns of U form an orthonormal set.

(f) The rows of U form an orthonormal set.

(g) U is an isometry.

(h) U carries every set of orthonormal vectors to a set of orthonormal
vectors.

Proof. (a) ⇒ (b) follows from the definition of unitary and the fact that
the inverse is unique.

(b) ⇒ (c) follows from the fact that a left inverse is also a right inverse.

(a) ⇒ (d) UU∗ = (U∗)∗U∗ = I.
(d) ⇒ (e) (e) ≡ (b) ⇒ u∗jukδjk, where u1 . . . un are the columns of U .
Similarly (b) ⇒ (e).

(d) ≡ (f) same reasoning.
(e)⇒ (g) We know the columns of U are orthonormal. Denoting the columns
by u1 . . . un, we have

Ux =
nX
1

xiui

where x = (x1, . . . , xn)
T . It is an easy matter to see that

kUxk2 =
nX
1

|xi|2 = kxk2.

(g) ⇒ (e). Consider x = ej . Then Ux = uj . Hence 1 = kejk = kUejk =
kujk. The columns of U have norm one. Now let x = αei + βej be chosen
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such that kxk = kαei + βejk =
q
|α|2 + |β|2 = 1. Then

1 = kUxk2
= kU (αei + βej)k2
= hU (αei + βej) , U (αei + βej)i
= |α|2 hUei, Ueii+ |β|2 hUej , Ueji+ αβ̄ hUei, Ueji+ ᾱβ hUej , Ueii
= |α|2 hui, uii+ |β|2 huj , uji+ αβ̄ hui, uji+ ᾱβ huj , uii
= |α|2 + |β|2 + 2< ¡αβ̄ hui, uji¢
= 1 + 2< ¡αβ̄ hui, uji¢

Thus < ¡αβ̄ hui, uji¢ = 0. Now suppose hui, uji = s + it. Selecting α =
β = 1√

2
we obtain that <hui, uji = 0, and selecting α = iβ = 1√

2
we obtain

that =hui, uji = 0. Thus hui, uji = 0. Since the coordinates i and j are
arbitrary, it follows that the columns of U are orthogonal.
(g) ⇒ (h) Suppose {v1, . . . , vn} is orthogonal. For any two of them kU(vj +
vk)k2 = kvj + vkk2. Hence hUvj , Uvki = 0.
(h)⇒ (e) The orthormal set of the standard unit vectors ej , j = 1, . . . , n
is carried to the columns of U . That is Uej = uj , the j

th column of U .
Therefore the columns of U are orthonormal.

Corollary 4.1.3. If U ∈Mn(C) is unitary, then the transformation defined
by U preserves angles.

Proof. We have for any vectors x, y ∈ Cn that the angle θ is completely
determined from the inner product via cos θ = hx,yi

kxkkyk . Since U is unitary

(and thus an isometry) it follows that

hUx,Uyi = hU∗Ux, yi = hx, yi
This proves the result.

Example 4.1.1. Let T (θ) =
£
cos θ − sin θ
sin θ cos θ

¤
where θ is any real. Then T (θ) is

real orthogonal.

Proposition 4.1.1. If U ∈M2(R) is real orthogonal, then U has the form
T (θ) for some θ or the form

U =

·
1 0
0 −1

¸
T (θ) =

·
cos θ sin θ
sin θ − cos θ

¸
Finally, we can easily establish the diagonalizability of unitary matrices.
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Theorem 4.1.3. If U ∈Mn is unitary, then it is diagonalizable.

Proof. To prove this we need to revisit the proof of Theorem 3.5.2. As
before, select the first vector to be a normalized eigenvector u1 pertaining
to λ1. Now choose the remaining vectors to be orthonormal to u1. This
makes the matrix P1 with all these vectors as columns a unitary matrix.
Therefore B1 = P

−1UP is also unitary. However it has the form

B1 =


λ α1 . . . αn−1
0
... A2
0

 where A2 is (n− 1)× (n− 1)

Since it is unitary, it must have orthogonal columns by Theorem 4.1.2. It
follows then that α1 = α2 = · · · = αn = 0 and

B1 =


λ 0 . . . 0
0
... A2
0


At this point one may apply and inductive hypothesis to conclude that A2
is similar to a diagonal matrix. Thus by the manner in which the full
similarity was constructed, we see that A must also be similar to a diagonal
matrix.

Corollary 4.1.1. Let U ∈Mn be unitary. Then

(i) Then U has a set of n orthogonal eigenvectors.

(ii) Let {λ1, . . . ,λn} and {v1, . . . , vn} denote respectively the eigenvalues
and their pertaining orthonormal eigenvectors of U. Then U has the
representation as the sum of rank one matrices given by

U =
nX
j=1

λjvjv
T
j

This representation is often called the spectral respresentation or spectral
decomposition of U .
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4.1.1 Groups of matrices

Invertible and unitary matrices have a fundamental structure that makes
possible a great many general statements about their nature and the way
they act upon vectors other vectors matrices. A group is a set with a math-
ematical operation, product, that obeys some minimal set of properties so
as to resemble the nonzero numbers under multiplication.

Definition 4.1.2. A group G is a set with a binary operation G×G→ G
which assigns to every pair a, b of elements of G a unique element ab in G.
The operation, called the product, satisfies four properties:

1. Closure. If a, b ∈ G, then ab ∈ G.

2. Associativity. If a, b, c ∈ G, then a(bc) = (ab)c.

3. Identity. There exists an element e ∈ G such that ae = ea = a for
every a ∈ G. e is called the identity of G.

4. Inverse. For each a ∈ G, there exists an element â ∈ G such that
aâ = âa = e. â is called the inverse of a and is often denoted by a−1.

A subset of G that is itself a group under the same product is called a
subgroup of G.

It may be interesting to note that removal of any of the properties 2-4 leads
to other categories of sets that have interest, and in fact applications, in
their own right. Moreover, many groups have additional properties such as
commutativity, i.e. ab = ba for all a, b ∈ G. Below are a few examples of
matrix groups. Note matrix addition is not involved in these definitions.

Example 4.1.2. As usual Mn is the vector space of n × n matrices. The
product in these examples is the usual matrix product.

• The group GL(n, F ) is the group of invertible n× n matrices. This is
the so-called general linear group. The subset of Mn of invertible
lower (resp. upper) triangular matrices is a subgroup of GL(n, F ).

• The unitary group Un of unitary matrices in Mn(C).

• The orthogonal group On orthogonal matrices in Mn(R). The sub-
group of On denoted by SOn consists of orthogonal matrices with
determinant 1.
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Because element inverses are required, it is obvious that the only subsets
of invertible matrices in Mn will be groups. Clearly, GL(n,F ) is a group
because the properties follow from those matrix of multiplication. We have
already established that invertible lower triangular matrices have lower tri-
angular inverses. Therefore, they form a subgroup of GL(n, F ). We consider
the unitary and orthogonal groups below.

Proposition 4.1.2. For any integer n = 1, 2, . . . the set of unitary matrices
Un (resp. real orthogonal) forms a group. Similarly On is a group, with
subgroup SOn.

Proof. The result follows if we can show that unitary matrices are closed
under multiplication. Let U and V be unitary. Then

(UV )∗(UV ) = V ∗U∗UV
= V ∗V = I

For orthogonal matrices the proof is essentially identical. That SOn is a
group follows from the determinant equality det(AB) = detAdetB. There-
fore it is a subgroup of On.

4.1.2 Permutation matrices

Another example of matrix groups comes from the idea of permutations of
integers.

Definition 4.1.3. The matrix P ∈Mn(C) is called a permutation matrix
if each row and each column has exactly one 1, the rest of the entries being
zero.

Example 4.1.3. Let

P =

1 0 0
0 0 1
0 1 0

 Q =


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


P and Q are permutation matrices.

Another way to view a permutation matrix is with the game of chess.
On an n × n chess board place n rooks in positions where none of them
attack one another. Viewing the board as an n×n matrix with ones where
the rooks are and zeros elsewhere, this matrix will be a permutation matrix.
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Of course there are n! such placements, exactly the number of permutations
of the integers {1, 2, . . . , n}.

Permutation matrices are closely linked with permutations as discussed
in Chapter 2.5. Let σ be a permutation of the integers {1, 2, . . . , n}. Define
the matrix A by

aij =

½
1 if j = σ (i)
0 if otherwise

Then A is a permutation matrix. We could also use the Dirac notation
to express the same matrix, that is to say aij = δiσ(j). The product of
permutation matrices is again a permutation matrix. This is apparent by
straight multiplication. Let P and Q be two n × n permutation matrices
with pertaining permutations σP and σQ of the integers {1, 2, . . . , n}. Then
the ith row of P is eσP (i) and the i

th row of Q is eσQ(i). (Recall the ei are

the usual standard vectors.) Now the ith row of the product PQ can be
computed by

nX
j=1

pijeσQ(j) =
nX
j=1

δiσ(j)eσQ(j) = eσQ(σP (i))

Thus the multiplication ithrow of PQ is a standard vector. Since the σP (i)
ranges over the integers {1, 2, . . . , n}, it is true also that σQ (σP (i)) does
likewise. Therefore the “product” σQ (σP (i)) is also a permutation. We
conclude that the standard vectors constitute the rows of PQ. Thus permu-
tation matrices are orthogonal under multiplication. Moreover the inverse of
every permutation is permutation matrix, with the inverse describe through
the inverse of the pertaining permutation of {1, 2, . . . , n}. Therefore, we
have the following result.

Proposition 4.1.3. Permutation matrices are orthogonal. Permutation
matrices form a subgroup of On.

4.1.3 Unitary equivalence

Definition 4.1.4. A matrix B ∈Mn is said to be unitarily equivalent to A
if there is a unitary matrix U ∈Mn such that

B = U∗AU.

(In the real case we say B is orthogonally equivalent to A.)
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Theorem 4.1.4. If B and A are unitarily equivalent. Then

nX
i,j=1

|bij |2 =
nX

i,j=1

|aij |2.

Proof. We have
nP

i,j=1
|aij |2 = tr A∗A, and

Σ|bij |2 = tr B∗B = tr (U∗AU)∗U∗AU = tr U∗A∗AU
= tr A∗A,

since the trace is invariant under similarity transformations.

Alternatively, we have BU∗ = U∗A. Since U (and U∗) are isometries
we have each column of U∗A has the same norm as the norm of the same
column of A. The same holds for the rows of BU∗, whence the result.

Example 4.1.4. B =
£
3 1−2 0

¤
and A = [ 1 10 2 ] are similar but not unitarily

equivalent. A and B are similar because (1) they have the same spectrum,
σ(A) = σ(B) = {1, 2} and (2) they have two linearly independent eigenvec-
tors. They are not unitarily equivalent because the conditions of the above
theorem are not met.

Remark 4.1.1. Unitary equivalence is a finer classification than similarity.
Indeed, consider the two sets S(A) = {B | B is similar to A} and U(A) =
{B|B is unitarily equivalent to A}, then

U(A) ⊂ S(A).

(Can you show that U(A) $ S(A) for some large class of A ∈Mn?)

4.1.4 Householder transformations

An important class of unitary transformations are elementary reflections.
These can be realized as transformations that reflect one vector to its neg-
ative and leave invariant the orthocomplement of vectors.

Definition 4.1.5. Simple Householder transformation.) Suppose w ∈ Cn,
kwk = 1. Define the Householder transformation Hw by

Hw = I − 2ww∗
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Computing

HwH
∗
w = (I − 2ww∗)(I − 2ww∗)∗

= I − 2ww∗ − 2ww∗ + 4ww∗ww∗
= I − 4ww∗ + 4hw,wiww∗ = I

it follows that Hw is unitary.

Example 4.1.5. Consider the vector w =

·
cos θ
sin θ

¸
and the Householder

transformation

Hw = I − 2wwT =
·
1− 2 cos2 θ −2 cos θ sin θ
−2 cos θ sin θ 1− 2 sin2 θ

¸
=

· − cos 2θ − sin 2θ
− sin 2θ cos 2θ

¸
The transformation properties for the standard vectors are

Hw e1 =

· − cos 2θ
− sin 2θ

¸
and

Hw e2 =

·
cos 2θ
− sin 2θ

¸
This is shown below. It is evident that this unitary transformation is not a
rotation. Though, it can be imagined as a “rotation with a one dimensional
reflection.”

w

w

w

H e

H e
e

e2

1
θ

2θ

2θ

Householder transformation

Example 4.1.6. Let θ be real. For any n ≥ 2 and 1 ≤ i, j ≤ n with i 6= j
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define

Un(θ, i, j)

i

j



1 0 . . .
... 0

. . .
...

...

0 1
...

...
. . . . . . . . . . . cos θ . . . . . . . . . . . . − sin θ . . . . . . . . . . .

...

1
. . .

1

...

. . . . . . . . . . . sin θ . . . . . . . . . . . . cos θ . . . . . . . . . . .
...

... 1
...

...
... 0

. . . 0

0
...

...
... 1


i j

Then Un(θ; i, j) is a rotation and is unitary.

Proposition 4.1.4 (Limit theorems). (i) Show that the unitary matri-
ces are closed with respect to any norm. That is, if the sequence {Un}⊂
Mn(C) are all unitary and the limn→∞ Un = U in the k·k2 norm, then U
is also unitary.

(ii) The unitary matrices are closed under pointwise convergence. That
is, if the sequence {U n}⊂Mn(C) are all unitary and limn→∞ Un = U for
each (ij)entry, then U is also unitary.

Householder transformations can also be used to triangularize a matrix.
The procedure successively removes the lower triangular portion of a matrix
column by column in a way similar to Gaussian elimination. The elemen-
tary row operations are replaced by elementary reflectors. The result is a
triangular matrix T = Hvn · · ·Hv2Hv1A. Since these reflectors are unitary,
the factorization yields an effective method for solving linear systems. The
actual process is rather straightforward. Construct the vector v such that

¡
I − 2vvT ¢A = ¡I − 2vvT ¢


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 =

â11 â12 · · · â1n
0 â22 · · · â2n
...

...
. . .

...
0 ân2 · · · ânn


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This is accomplished as follows. This means we wish to find a vector v
such that ¡

I − 2vvT ¢ [a11, a21, · · · , an1]T = [â11, 0, · · · , 0]T
For notational convenience and to emphasize the construction is vector
based, relabel the column vector [a11, a21, · · · , an1]T as [x1, x2, . . . , xn]T

vj =
xj

2 hv, xi
for j = 2, 3, . . . , n. Define

v1 =
x1 + α

2 hv, xi
Then

hv, xi =
hx, xi
2 hv, xi +

αx1
2 hv, xi =

kxk2
2 hv, xi +

αx1
2 hv, xi

4 hv, xi2 = 2 kxk2 + 2αx1
where k·k denotes the Euclidean norm. Also, for Hv to be unitary we need

1 = hv, vi = 1

4 hv, xi2
³
kxk2 + 2αx1 + α2

´
4 hv, xi2 = kxk2 + 2αx1 + α2

Equating the two expressions for 4 hv, xi2 gives
2 kxk2 + 2αx1 = kxk2 + 2αx1 + α2

α2 = kxk2
α = ±kxk

We now have that

4 hv, xi2 = 2 kxk2 ± 2 kxkx1

hv, xi =

µ
1

2

³
kxk2 ± kxkx1

´¶ 1
2

This makes v1 =
x1±kxk

( 12(kxk2±kxkx1))
1
2
. With the construction of Hv to “elim-

inate” the first column of A, we relabel the vector v as v1 (with the small
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possibility of notational confusion) and move to describe Hv2 using a trans-
formation of the same kind with a vector of the type v = (0, x2, x3, . . . , xn).
Such a selection will not affect the structure of the first column. Continue
this until the matrix is triangularized. The upshot is that every matrix can
be factored as A = UT, where U is unitary and T is upper triangular.
The main result for this section is the factorization theorem. As it turns out,
every Unitary matrix can be written as a product of elementary reflectors.
The proof requires a slightly more general notion of reflector.

Definition 4.1.6. The general form of the Householder matrix, also called
an elementary reflector, has the form

Hv = I − τvv∗

where the vector v ∈ Cn.
In order for Hv to be unitary, it must be true that

HvH
∗
v = (I − τvv∗) (I − τvv∗)∗
= (I − τvv∗) (I − τ̄vv∗)
= I − τvv∗ − τ̄vv∗ + |τ |2 (v∗v) vv∗
= I − 2Re (τ) vv∗ + |τ |2 |v|2 vv∗
= I

Therefore, for v 6= 0 we must have
−2Re (τ) vv∗ + |τ |2 |v|2 vv∗ =

³
−2Re (τ) + |τ |2 |v|2

´
vv∗

= 0

or

−2Re (τ) + |τ |2 |v|2 = 0
Now suppose that Q ∈Mn (R) is orthogonal and that the spectrum σ (Q) ⊂
{−1, 1} . Suppose Q has a complete set of normalized orthogonal eigen-

vectors1, it can be expressed as Q =
nP
i=1

λiviv
T
i where the set v1, . . . , vn are

the eigenvectors and λi ⊂ σ (Q). Now assume the eigenvectors have been
arranged so that this simplifies to

Q = −
kX
i=1

viv
T
i +

nX
i=k+1

viv
T
i

1This is in fact a theorem that will be established in Chapter 4.2. It follows as a
consequence of Schur’s theorem



170 CHAPTER 4. UNITARY MATRICES

Here we have just arrange the eigenvectors with eigenvalue −1 to come first.
Define

Hj = I − 2vjvTj , j = 1, . . . , k

It follows that

Q =
kY
j=1

Hj =
kY
j=1

¡
I − 2vjvTj

¢
for it is easy to check that

Uvm =
kY
j=1

Hj =

½ −vm if m ≤ k
vm if m > k

Since we have agreement withQ on a basis, the equality follows. In words we
may say that an orthogonal matrix U with spectrum σ (Q) ⊂ {−1, 1} with
can be written as a product of reflectors. With this simple case out of

the way, we consider more general case we write Q =
nP
i=1

λiviv
T
i . where the

set v1, . . . , vn are the eigenvectors and λi ⊂ σ (Q). We wish to represent Q
similar to the above formula as a product of elementary reflectors.

Q =
kY
j=1

Hj =
kY
j=1

¡
I − τjwjw∗j

¢
where wi = αivi for some scalars αi. On the one hand it must be true
that −2Re (τi) + |τi|2 |wi|2 = 0 for each i = 1, . . . n, and on the other hand
it must follow that

(I − τiwiw∗i ) vm =
½
λivi if m = i
vm if m 6= i

The second of these relations is automatically satisfied by the orthogonality
of the eigenvectors. The second relation can needs to be solved. This

simplifies to (I − τiwiw∗i ) vi =
³
1− τi |αi|2

´
vi = λivi. Therefore, it is

necessary to solve the system

−2Re (τi) + |τi|2 |vi|2 = 0

1− τi |αi|2 = λi

Having done so there results the factorization.
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Theorem 4.1.5. Let Q ∈ Mn be real orthogonal or unitary. Then Q can

be factored as the product of elementary reflectors Q =
nQ
j=1

³
I − τjwjw∗j

´
,

where the wj are the eigenvectors of Q.

Note that the product written here is up to n whereas the earlier product
was just up to k. The difference here is slight, for by taking the scalar (α)
equal zero when necessary, it is possible to equate the second form to the
first form when the spectrum is contained in the set {−1, 1}.

4.2 Schur’s theorem

It has already been established in Theorem 3.5.2 that every matrix is similar
to a triangular matrix. A far stronger result is possible. Called Schur’s
theorem, this result proves that the similarity is actually unitary similarity.

Theorem 4.2.1 (Schur’s Theorem). Every matrix A ∈ Mn(C) is uni-
tarily equivalent to a triangular matrix.

Proof. We proceed by induction on the size of the matrix n. First suppose
the A is 2 × 2. Then for a given eigenvalue λ and normalized eigenvector
v form the matrix P with its first column v and second column any vector
orthogonal to v with norm one. Then P is an unitary matrix and P ∗AP =·
λ ∗
0 ∗

¸
. This is the desired triangular form. Now assume the Schur

factorization is possible for matrices up to size (n− 1) × (n− 1). For the
given n×nmatrix A select any eigenvalue λ . With its pertaining normalized
eigenvector v construct the matrix P with v in the first column and an
orthonormal complementary basis in the remaining n− 1 columns. Then

P ∗AP =


λ â12 · · · â1n
0 â22 · · · â2n
...

...
. . .

...
0 ân2 · · · ânn

 =

λ â12 · · · â1n
0
... A2
0


The eigenvalues of A2 together with λ constitute the eigenvalues of A. By
the inductive hypothesis there is an (n− 1)× (n− 1) unitary matrix Q̂ such
that Q̂∗A2Q̂ = T2, where T2 is triangular. Now embed Q̂ in an n×n matrix
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Q as shown below

Q =


λ 0 · · · 0
0
... Q̂
0


It follows that

Q∗P ∗APQ =


λ 0 · · · 0
0
... T2
0

 = T
is triangular, as indicated. Therefore the factorization is complete upon
defining the similarity transformation U = PQ. Of course, the eigenvalues
of A2 together with λ constitute the eigenvalues of A, and therefore by
similarity the diagonal of T contains only eigenvalues of A.

The triangular matrix above is not unique as is easy to see by mixing or
permuting the eigenvalues. An important consequence of Schur’s theorem
pertains to unitary matrices. Suppose that B is unitary and we apply the
Schur factorization to write B = U∗TU . Then T = UBU∗. It follows that
the upper triangular matrix is itself unitary, which is to say T ∗T = I. It is a
simple fact to prove this implies that T is in fact a diagonal matrix. Thus,
the following result is proved.

Corollary 4.2.1. Every unitary matrix is diagonalizable. Moreover, every
unitary matrix has n orthogonal eigenvectors.

Proposition 4.2.1. If B,A ∈M2 are similar and tr(B
∗B) = tr(A∗A), then

B and A are unitarily equivalent.

This result higher dimensions.

Theorem 4.2.2. Suppose that A ∈Mn(C) has distinct eigenvalues λ1 . . .λk
with multiplicities n1, n2, . . . , nk respectively. Then A is similar to a matrix
of the form 

T1
0

T2

0
. . .

Tk


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where Ti ∈Mni is upper triangular with diagonal entries λi.

Proof. Let E1 be eigenspace of λ1. Assume dimE1 = m1. Let u1 . . . um1 be
an orthogonal basis of E1, and suppose v1 . . . vn−m1 is an orthonormal basis
of Cn − E1. Then with P = [u1 . . . um1 , v1 . . . vn−m1 ] we have P

−1AP has
the block structure ·

T1 0

0 A2

¸
.

Continue this way, as we have done before. However, if dimEi < mi we
must proceed a different way. First apply Schur’s Theorem to triangularize.
Arrange the first m1 eigenvalues to the first m1 diagonal entries of T , the
similar triangular matrix. Let Er,s be the matrix with a 1 in the r, s position
and 0’s elsewhere. We assume throughout that r 6= s. Then, it is easy to
see that I + αEr,s is invertible and that (I + αErs)

−1 = I − αErs. Now if
we define

(I + αErs)
−1 T (I + αErs)

we see that trs → trs+α(trr− tss). We know trr− tss 6= 0 if r and s pertain
to values with different eigenvalues. Now this value is changed, but so also
are the values above and to the right of trs. This is illustrated below.

columns → s

row r


↑

∗ ↑
∗ → →


To see how to use these similarity transformation to zero out the upper

blocks, consider the special case with just two blocks

A =


T1 T12

0 T2


We will give a procedure to use elementary matrices αEij to zero-out each
of the entries in T12. The matrix T12 has m1 ·m2 entries and we will need
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to use exactly that many of the matrices αEij . In the diagram below we
illustrate the order of removal (zeroing-out) of upper entries

T1

m1 2m1 · · · m1 ·m2
...

...
...

2
...

1 m1 + 1 · · · · · ·

0 T2


When performed in this way we developm1·m2 constants αij . We proceed in
the upper right block (T12) in the left-most column and bottom entry, that is
position (m1,m1 + 1) . For the (m1,m1 + 1) position we use the elementary
matrix αEm1,m1+1 to zero out this position. This is possible because the
diagonal entries of T1 and T2 are different. Now use the elementary matrix
αEm1−1,m1+1 to zero-out the position (m1 − 1,m1 + 1). Proceed up this
column to the first row each time using a new α. We are finished when
all the entries in column m1 + 1 from row m1 to row 1 are zero. Now
focus on the next column to the right, column m1 + 2. Proceed in the
same way from the (m1,m1 + 2) position to the (1,m1 + 1) position, using
elementary matrices αEk,m1+2 zeroing out the entries (k,m1 + 2) positions,
k = m1, . . . , 1. Ultimately, we can zero out every entry in the upper right
block with this marching left-to-right, bottom-to-top procedure.

In the general scheme with k × k blocks, next use the matrices T2 and
T3 to zero-out the block matrix T23.(See below.)

T =



T1 0 T13
T2 T23

T3

. . . . . .

0

. . .

Tk−1 Tk−1,k
Tk



After that it is possible using blocks T1 and T3 to zero-out the block T13.
This is the general scheme for the entire triangular structure, moving down
the super-diagonal (j.j+1) blocks and then up the (block) columns. In this
way we can zero-out any value not in the square diagonal blocks pertaining
to the eigenvalues λ1 . . .λk.
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Remark 4.2.1. If A ∈ Mn(R) and σ(A) ⊂ R, then all operations can be
carried out with real numbers.

Lemma 4.2.1. Let J ⊂Mn be a commuting family. Then there is a vector
x ∈ Cn for which x is an eigenvector for every A ∈ J .
Proof. Let W ⊂ Cn be a subspace of minimal dimension that is invariant
under J . Since Cn is invariant, we know W exists. Since Cn is invariant,
we know W exists. Suppose there is an A ∈ J for which there is a vector
in W which is not an eigenvector of A. Define W0 = {y ∈ W | Ay =
λy for some λ}. That is, W0 is a set of eigenvectors of A. Since W is
invariant under A, it follows that W0 6= φ. Also, by assumption. W0 $W .
For any x ∈W0

ABx = (AB)x = B(Ax) = λBx

and so Bx ∈ W0. It follows that W0 is J invariant, and W0 has lower
positive dimension than W .

As a consequence we have the following result.

Theorem 4.2.3. Let J be a commuting family in Mn. If A ∈ J is diago-
nalizable, then J is simultaneously diagonalizable.

Proof. Since A is diagonalizable there are n linearly independent eigenvec-
tors of A and if S is in Mn and consists of those eigenvectors the matrix
S−1AS is diagonal. Since eigenvectors of A are the same as eigenvectors of
B ∈ J , it follows that S−1BS is also diagonal. Thus S−1JS = D := all
diagonal matrices.

Theorem 4.2.4. Let J ⊂ Mn be a commuting family. There is a unitary
matrix U ∈Mn such that U

∗AU is upper triangular for each A ∈ J .
Proof. From the proof of Schur’s Theorem we have that the eigenvectors
chosen for U are the same for all A ∈ J . This follows because after the first
step we have reduced A and B to·

A11 A12
0 A22

¸
and

·
B11 B12
0 B22

¸
respectively. Commutativity is preserved under simultaneous similarity and
therefore A22 and B22 commutes. Therefore at the second step the same
eigenvector can be selected for all B22 ⊂ J2, a commuting family.
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Theorem 4.2.5. If A ∈ Mn(R), there is a real orthogonal matrix Q ∈
Mn(R) such that

(?) QTAQ =


A1

A2 ?

0
. . .

Ak

 1 ≤ k ≤ n

where each Ai is a real 1× 1 matrix or a real 2× 2 matrix with a non real
pair of complex conjugate eigenvalues.

Theorem 4.2.6. Let J ⊂ Mn(R) be a commuting family. There is a real
orthogonal matrix Q ∈ Mn(R) for which Q

TAQ has the form (?) for every
A ∈ J .
Theorem 4.2.7. Suppose A,B ∈ Mn(C) have eigenvalues α1, . . . ,αn and
β1, . . . ,βn respectively. If A and B commute then there is a permutation
i1 . . . in of the integers 1, . . . , n for which the eigenvalues of A+B are αj +
βij , j = 1, . . . , n. Thus σ(A+B) ⊂ σ(A) + σ(B).

Proof. Since J = {A,B} forms a commuting family we have that every
eigenvector of A is an eigenvector of B, and conversely. Thus if Ax = αjx
we must have that Bx = Bijx. But how do we get the permutation? The
answer is to simultaneously triangularize with U ∈Mn. We have

U∗AU = T and U∗BU = R.

Since

U∗(A+B)U = T +R

we have that the eigenvalues pair up as described.

Note: We don’t necessarily need A and B to commute. We need only the
hypothesis that A and B are simultaneously diagonalizable.

If A and B do not commute little can be said of σ(A+B). In particular
σ(A+B) $ σ(A) + σ(B). Indeed, by summing upper triangular and lower
triangular matrices we can exhibit a range of possibilities. Let A = [ 0 10 0 ],
B = [ 0 01 0 ], σ(A+B) = {−1, 1} but σ(A) = σ(B) = {0}.
Corollary 4.2.1. Suppose A,B ∈Mn are commuting matrices with eigen-
values
α1, . . . ,αn and β1, . . . ,βn respectively. If αi 6= −βj for all 1 ≤ i, j ≤ n,
then A+B is nonsingular.
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Note: Giving conditions for the nonsingularity of A+B in terms of various
conditions on A and B is a very different problem. It has many possible
answers.

4.3 Exercises

1. Characterize all diagonal unitary matrices and all diagonal orthogonal
matrices in Mn.

2. Let T (θ) =
£
cos θ − sin θ
sin θ cos θ

¤
where θ is any real. Then T (θ) is real orthog-

onal. Prove that if U ∈M2(R) is real orthogonal, then U has the form
T (θ) for some θ or

U =

·
1 0
0 −1

¸
T (θ),

and conversely.

3. Let us define the n × n matrix P to be a w-permutation matrix if
for every vector x ∈ Rn, the vector Px has the same components
as x in value and number, though possibly permuted. Show that
w-permutation matrices are permutation matrices.

4. In R2 identify all Householder transformations that are rotations.

5. Given any unit vector w in the plane formed by ei and ej . Express
the Householder matrix for this vector.

6. Show that the set of unitary matrices on Cn forms a subgroup of the
subset of GL(n,C).

7. In R2, prove that the product of two (Householder) reflections is a
rotation. (Hint. If the reflection angles are θ1 and θ2, then the rotation
angle is 2 (θ1 − θ2) .)

8. Prove that the unitary matrices are closed the norm. That is, if the
sequence {Un}⊂ Mn(C) are all unitary and limn→∞ Un = U in the
k·k2 norm, then U is also unitary.

9. Let A ∈Mn be invertible. Define G = A
k, (A−1)k, k = 1, 2, . . . . Show

that G is a subgroup of Mn. Here the group multiplication is matrix
multiplication.
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10. Prove that the unitary matrices are closed under pointwise conver-
gence. That is, if the sequence {U n}⊂ Mn(C) are all unitary and
limn→∞ Un = U for each (ij)entry, then U is also unitary.

11. Suppose that A ∈Mn and that AB = BA for all B ∈Mn. Show that
A is a multiple of the identity.

12. Prove that a unitary matrix U can be written as V −1W−1VW for
unitary V,W if and only if detU = 1. (Bellman, 1970)

13. Prove that the only triangular unitary matrices are diagonal matrices.

14. We know that given any bounded sequence of numbers, there is a
convergent subsequence. (Bolzano-Weierstrass Theorem). Show that
the same is true for matrices for any given matrix norm. In particular,
show that if Un is any sequence of unitary matrices, then there is a
convergent subsequence.

15. The Hadamard Gate (from quantum computing) is defined by the

matrix H = 1√
2

·
1 1
1 −1

¸
. Show that this transformation is a House-

holder matrix. What are its eigenvalues and eigenvectors?

16. Show that the unitary matrices do not form a subspace Mn(C).

17. Prove that if a matrix A ∈Mn(C) preserves the orthonormality of one
orthonormal basis, then it must be unitary.

18. Call the matrix A a checkerboard matrix if either

(I) aij = 0 if i+ j is even or (II) aij = 0 if i+ j is odd

We call the matrices of type I even checkerboard and type II odd
checkerboard. Define CH (n) to be all n×n invertible checkerboard
matrices. The questions below all pertain to square matrices.

(a) Show that if n is odd there are no invertible even checkerboard
matrices.

(b) Prove that every unitary matrix U has determinant with modulus
one. (That is, |detU | = 1.)

(c) Prove that n is odd the product of odd checkerboard matrices is
odd.
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(d) Prove that if n is even then the product of an even and an odd
checkerboard matrix is odd, while the product of two even (or
odd) checkerboard matrices is even.

(e) Prove that if n is even then the inverse of any checkerboard matrix
is a checkerboard matrix of the same type. However, in light of
(a), it is only true that if n is an invertible odd checkerboard
matrix, its inverse is odd.

(f) Suppose that n = 2m. Characterize all the odd checkerboard
invertible matrices.

(g) Prove that CH (n) is a subgroup of GL (n) .

(h) Prove that the invertible odd checkerboard matrices of any size
n forms a subgroup of CH (n).

In connection with chess, checkerboard matrices give the type of chess
board on which the maximum number of mutually non-attacking knights
can be placed on the even (i+j is even) or odd (i+j is odd) positions.

19. Prove that every unitary matrix can be written as the product of a
unitary diagonal matrix and another unitary matrix whose first column
has nonnegative entries.
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