Math. 401, Sec. 501

Perturbation Theory Homework # 1, due April 7

Problem 1: Verify the following order relations.

(1) $\epsilon^2 \tanh \epsilon = O(\epsilon^2)$ as $\epsilon \to \infty$. (2) $\exp(-\epsilon) = o(1)$ as $\epsilon \to \infty$. (3) $\sqrt{\epsilon(1-\epsilon)} = O(\sqrt{\epsilon})$ as $\epsilon \to 0^+$. (4) $\frac{\sqrt{\epsilon}}{1-\cos\epsilon} = O(\epsilon^{-3/2})$ as $\epsilon \to 0^+$. (5) $\epsilon = o(\epsilon^2)$ as $\epsilon \to \infty$. (6) $\exp(\epsilon) - 1 = O(\epsilon)$ as $\epsilon \to 0$. (7) $\int_0^{\epsilon} \exp(-x^2) dx = O(\epsilon)$ as $\epsilon \to 0^+$. (8) $\exp(\tan \epsilon) = O(1)$ as $\epsilon \to 0$. (9) $e^{-\epsilon} = o(\epsilon^{-p})$ as $\epsilon \to \infty$, for all p > 0. (10) $\ln \epsilon = o(\epsilon^{-p})$ as $\epsilon \to 0^+$, for all p > 0.

Problem 2: Find only first three terms of the asymptotic power series solution of the following equations.

- (1) $x^2 + 2\varepsilon x 1 = 0.$
- (2) $x^3 + \varepsilon x^2 + 1 = 0.$
- $(3) x^3 4x + 2\varepsilon = 0.$

Problem 3: Find roots of $x^2 - 1 + \varepsilon = 0$ accurate up to $O(\varepsilon^2)$.

1

Spring, 2016