Perturbation Theory
 Homework \# 3, due April 14

1. Obtain a two-term perturbation expansion for the solutions of the following problems:
A. $\frac{d v}{d t}=-1-\varepsilon v^{3}, \quad v(0)=1$
B. $\frac{d v}{d t}-v=\varepsilon v^{2} e^{-t}, \quad v(0)=1$
C. $\frac{d^{2} v}{d t^{2}}+v=\varepsilon \frac{d v}{d t}, \quad v(0)=1,\left.\frac{d v}{d t}\right|_{t=0}=0$.
D. $\frac{d^{2} v}{d t^{2}}+v=-\varepsilon\left(\frac{d v}{d t}\right)^{3}, \quad v(0)=1,\left.\frac{d v}{d t}\right|_{t=0}=0$.
2. Verify the following order relations:
(i) $\frac{1-\cos \left(x^{2}\right)}{\sin \left(x^{3}\right)}=\mathrm{O}(\mathrm{x})$ as $x \rightarrow 0$
(ii) $\tan x-x=\mathrm{O}\left(\mathrm{x}^{3}\right)$ as $x \rightarrow 0$
(iii) $\ln (1+\sqrt{x})-\sqrt{x}=\mathrm{O}(\mathrm{x})$ as $x \rightarrow 0$
(iv) $e^{\sin \varepsilon}-1=\mathrm{O}(\varepsilon)$ as $\varepsilon \rightarrow 0$
3. Obtain first three non-zero coefficients in the asymptotic expansion of the following functions using the asymptotic sequence $\left\{1, \sin \varepsilon,(\sin \varepsilon)^{2},(\sin \varepsilon)^{3}, \cdots\right\}$
(i) $\ln (1+\varepsilon)$
(ii) e^{ε}
what would be the coefficients if, instead you use the asymptotic sequence $\left\{1, \ln (1+\varepsilon), \ln \left(1+\varepsilon^{2}\right)+\cdots\right\}$. Using both asymptotic series for each of the functions above, find numerical values of $\ln (1.1)$ and $e^{0.1}$.
