Math. 401, Sec. 501

Spring, 2016

Perturbation Theory Homework # 3, due April 14

- 1. Obtain a two-term perturbation expansion for the solutions of the following problems:
 - A. $\frac{dv}{dt} = -1 \varepsilon v^3$, v(0) = 1
 - B. $\frac{dv}{dt} v = \varepsilon v^2 e^{-t}, \quad v(0) = 1$
 - C. $\frac{d^2v}{dt^2} + v = \varepsilon \frac{dv}{dt}, \quad v(0) = 1, \frac{dv}{dt}\Big|_{t=0} = 0.$ D. $\frac{d^2v}{dt^2} + v = -\varepsilon \left(\frac{dv}{dt}\right)^3, \quad v(0) = 1, \frac{dv}{dt}\Big|_{t=0} = 0.$
- 2. Verify the following order relations:

(i)
$$\frac{1-\cos(x^2)}{\sin(x^3)} = O(x)$$
 as $x \to 0$

- (ii) $\tan x x = O(x^3)$ as $x \to 0$
- (iii) $\ln(1+\sqrt{x}) \sqrt{x} = O(x)$ as $x \to 0$
- (iv) $e^{\sin \varepsilon} 1 = \mathcal{O}(\varepsilon)$ as $\varepsilon \to 0$
- 3. Obtain first three non-zero coefficients in the asymptotic expansion of the following functions using the asymptotic sequence $\{1, \sin \varepsilon, (\sin \varepsilon)^2, (\sin \varepsilon)^3, \cdots\}$
 - (i) $\ln(1+\varepsilon)$
 - (ii) e^{ε}

what would be the coefficients if, instead you use the asymptotic sequence $\{1, \ln(1 + \varepsilon), \ln(1 + \varepsilon^2) + \cdots\}$. Using both asymptotic series for each of the functions above, find numerical values of $\ln(1.1)$ and $e^{0.1}$.