Homework 3, due Feb 11

1. Verify that the following are Sturm-Liouville eigenvalue problems, and specify whether they are regular or singular:
(i) $f^{\prime \prime}(x)+\lambda f(x)=0, \quad 0<x<1$,
$f(0)+2 f^{\prime}(0)=0, \quad f^{\prime}(1)=0 ;$
(iii) $2 f^{\prime \prime}(x)+f^{\prime}(x)+\lambda f(x)=0, \quad 0<x<\infty$,
$f(0)=0, \quad f(x), f^{\prime}(x)$ are bounded as $x \rightarrow \infty ;$
2. Compute the eigenvalues and eigenfunctions of the following S-L problems:
(i) $f^{\prime \prime}(x)+\lambda f(x)=0, \quad 0<x<\pi$, $f(0)=0, \quad f^{\prime}(\pi)=0$;
(iii) $f^{\prime \prime}(x)+\lambda f(x)=0, \quad 0<x<1$, $f^{\prime}(0)-f(0)=0, \quad f(1)=0 ;$
(v) $f^{\prime \prime}(x)+\lambda f(x)=0, \quad 0<x<1$, $f^{\prime}(0)-f(0)=0, \quad f^{\prime}(1)=0 ;$
3. Find the Generalized Fourier series expansions of the following functions in the eigenfunctions of the problem solved in class (i.e. the example (3.10) (see also (3.16) in the book).

$$
\text { (i) } \quad u(x) \equiv 1, \quad 0 \leq x \leq \pi \text {; }
$$

(iii) $u(x)= \begin{cases}x, & 0 \leq x \leq \frac{1}{2}, \\ 1-x, & \frac{1}{2}<x \leq 1 .\end{cases}$

Answers

1. (i) Regular. (iii) Singular.
2. (i) $\lambda_{n}=(2 n-1)^{2} / 4, f_{n}(x)=\sin ((2 n-1) x / 2), n=1,2, \ldots$
(iii) $\lambda_{n}=\zeta_{n}^{2}$, where ζ_{n} are the roots of the equation $\tan \zeta=-\zeta$, $f_{n}(x)=\zeta_{n} \cos \left(\zeta_{n} x\right)+\sin \left(\zeta_{n} x\right), n=1,2, \ldots$
(v) $\lambda_{n}=\zeta_{n}^{2}$, where ζ_{n} are the roots of the equation $\cot \zeta=\zeta$, $f_{n}(x)=\zeta_{n} \cos \left(\zeta_{n} x\right)+\sin \left(\zeta_{n} x\right), n=1,2, \ldots$
3. (i) $u(x) \sim \sum_{n=1}^{\infty} \frac{2}{n \pi}\left[1-(-1)^{n}\right] \sin (n x)$.
(iii) $u(x) \sim \sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}} \sin \frac{n \pi}{2} \sin (n \pi x)$.
