Perturbation Theory Homework 4, due April 26

1. [BUSH (page 84)] Use the Lindstedt-Poincaré technique to show that the two-term uniformly valid expansion of the solution of

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} t^{2}}+u=\varepsilon u\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}\right)^{2}, \quad u(0)=1, \quad \frac{\mathrm{~d} u}{\mathrm{~d} t}(0)=0
$$

is

$$
u=\cos \tau+\frac{\varepsilon}{32}(\cos 3 \tau-\cos \tau)+\mathrm{O}\left(\varepsilon^{2}\right)
$$

where

$$
\tau=\left(1-\frac{\varepsilon}{8}+\mathrm{O}\left(\varepsilon^{2}\right)\right) t \quad \text { as } \varepsilon \rightarrow 0
$$

2. [BUSH (page 97)] Obtain, using the Lindstedt-Poincaré technique, the two-term uniformly valid expansion for the solution of Duffing's equation:

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} t^{2}}+u=\varepsilon u^{3}, \quad u(0)=1, \quad \frac{\mathrm{~d} u}{\mathrm{~d} t}(0)=0 .
$$

3. [Bush, p. 172, (i)] Find the lowest-order composite solution.

$$
\varepsilon y^{\prime \prime}-y^{\prime}+\frac{1}{y}=0, \quad y(0)=2, \quad y(1)=1, \quad 0 \leq \varepsilon \ll 1
$$

4. [Bush, p. 172, (ii)] Find the lowest-order composite solution.

$$
\varepsilon \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+e^{y}=0, \quad y(0)=1, \quad y(1)=-\ln 2, \quad 0 \leq \varepsilon \ll 1
$$

5. [Logan, p. 69, Ex. 3.2(a)] Find the lowest-order composite solution for each sign of ε.

$$
\varepsilon y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=0, \quad y(1)=1, \quad 0 \leq|\varepsilon| \ll 1 .
$$

Solve this for both signs of ε.

