Homework 6, due March 31

1. Use the definition of the Fourier transform to find the Fourier transforms of the following functions.

$$
\text { (i) } f(x)=\left\{\begin{array}{ll}
x, & -1<x<1, \\
0 & \text { otherwise } ;
\end{array} \quad \text { (ii) } f(x)= \begin{cases}e^{x}, & -1<x<1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Express the result in the form $a+i b$ with a, b real.
2. Show that the Fourier transform of $f(x)=\left\{\begin{array}{ll}1, & |x| \leq a \\ 0, & |x|>a\end{array}\right.$ is $\tilde{f}=\sqrt{\frac{2}{\pi}} \frac{\sin (\omega a)}{\omega}$.
3. Use a suitable Fourier transformation to solve the following problems.

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t), \quad-\infty<x<\infty, t>0 \\
& u(x, t), u_{x}(x, t) \rightarrow 0 \text { as } x \rightarrow \pm \infty, t>0 \\
& u(x, 0)=f(x), \quad-\infty<x<\infty
\end{aligned}
$$

with
(i) $f(x)=-3 e^{-x^{2}}$.
(ii) $f(x)=\left(1-2 x^{2}\right) e^{-4 x^{2}}$.
(iii) $f(x)= \begin{cases}1, & |x| \leq 1 \\ 0, & |x|>1\end{cases}$
4. Use a suitable Fourier transformation to solve the following problems.

$$
\begin{aligned}
& u_{t t}(x, t)=c^{2} u_{x x}(x, t), \quad-\infty<x<\infty, t>0 \\
& u(x, t), u_{x}(x, t) \rightarrow 0 \text { as } x \rightarrow \pm \infty, t>0 \\
& u(x, 0)=f(x), \quad u_{t}(x, 0)=0, \quad-\infty<x<\infty
\end{aligned}
$$

with
(i) $c=2, \quad f(x)=3 e^{-2 x^{2}}$.
(ii) $c=\frac{1}{3}, \quad f(x)=1 /\left(x^{2}+9\right)$.

