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A B S T R A C T
We present a theoretical study on the role of elasticity in causing fingering or fracturing instability
during the immiscible displacement process of a viscoelastic fluid by another viscoelastic fluid in a
rectilinear Hele-Shaw cell. Upper convected Maxwell (UCM) models are used for both fluid layers
and linear stability analysis is performed in the regime of moderate to large Deborah number. This is a
generalization of [20] where the case of a Newtonian fluid displacing an UCM fluid is considered. The
elastic effect of the displacing layer has a significant impact on the overall flow stability. The dispersion
relation is implicitly given a quartic polynomial equation with its coefficients depending on a modified
wavenumber 𝑘̂, viscosity contrast 𝜂𝑟∕𝜂𝑙 (displaced/displacing fluid), relaxation time contrast 𝜆𝑟∕𝜆𝑙
and a composite parameter 𝛽 inversely related to the flow speed 𝑈 (depth averaged). Viscous effect is
still the dominant mechanism in determining long wave stability (unstable if 𝜂𝑟∕𝜂𝑙 > 1). The elastic
effect of the displacing layer always destabilizes short waves (unstable if wavelength is shorter than
𝜆𝑙𝑈 ). In addition, three types of singular behaviors are found all of which are associated with elastic
effects: (i) velocity becomes singular at infinitely many isolated wavenumbers (precise values are
inversely proportional 𝜆𝑙𝑈 or 𝜆𝑟𝑈 ); (ii) stress becomes singular if wavenumber exceeds certain value
(can happen even for slow flow); and (iii) growth rate becomes singular at up to two wavenumbers if
𝜂𝑟∕𝜂𝑙 , 𝜆𝑟∕𝜆𝑙 and 𝛽 fall within a certain range but this can always be avoided if flow is slow enough.
The special cases of an UCM fluid displacing air or a viscous Newtonian fluid are also considered.

1. Introduction
During the immiscible displacement of a more viscous

fluid by a less viscous one in a Hele-Shaw cell, the fluid-
fluid interface becomes unstable and develops into finger-
like patterns. This process is commonly referred to as vis-
cous fingering or Saffman-Taylor instability [44], although it
appears that Hill [21] was the first one to study this problem.
Due to its relevance in science and technology, considerable
amount of research efforts have been devoted since the
fifties in an attempt to better understand this phenomenon.
Currently, such displacement processes are well understood
when involved fluids are Newtonian and stability results are
harnessed to the extent possible in controlling undesirable
fingering stability (see [43, 22, 7] for a review).

Experimental investigations on non-Newtonian Hele-
Shaw flows started in the eighties and strikingly different fin-
gering patterns were observed, such as dendritic [6, 30], frac-
tal [35, 10, 25, 53, 50, 48, 30] and fractures [25, 53, 49, 30,
32, 46, 2]. It comes as no surprise that there is no complete
understanding for such differences because the morphology
of fingering patterns strongly depends on the physiochemical
nature of the fluids in addition to the usual parameters such as
geometry of the cell, flow speed, and interfacial tension, etc..
The fluids generally can exhibit multiple non-Newtonian
properties, such as shear-rate dependent viscosity, elasticity,
yield-stress, etc., which can synergize or compete against
each other for the overall flow dynamics. Disentangling
different effects is essential to gain fundamental understand-
ing of the pattern formation process. This is an extremely
challenging task and requires simultaneous experimental
[5, 37, 26, 28, 27, 29, 34, 45, 32, 2, 14, 15, 1] and theoretical
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efforts [51, 42, 41, 24, 23, 9, 3, 16, 31, 32, 17, 2, 47]. We have
cited only some works here from a huge body of literature
in this area and we refer the readers to the above papers
and references cited therein for a more complete overview
overview of the field.

It is generally believed that shear-thinning effect pro-
motes fractal growth, characterized by a highly ramified tip-
splitting process. On the other hand, a transition from fractal
pattern to fracturing [25, 53, 30, 49, 32, 46] is observed if
the material relaxation time or flow speed are sufficiently
increased (i.e. increased Deborah number) where the fingers
become crack-like with sharp tips. In addition, there are also
secondary cracks perpendicularly branching off the sides of
the main cracks whereas the branching for classical Saffman-
Taylor fingers or fractal type happens at the finger-tips. Since
similar pattern is found in an elastic solid under sufficiently
large tensile stress, it is natural to expect that elasticity
must play a role in causing the fractures. However, this has
received much less attention from the scientific community
compared to other non-Newtonian effects.

The first theoretical attempt on the role of elastic ef-
fect was made by Wilson [51] who considered air displac-
ing an Oldroyd-B fluid or an Upper convected Maxwell
(UCM) fluid and studied the linear stability in the regime
of moderate to high Deborah number. Since the averaging
procedure used in the Newtonian case yielding Darcy’s
law is no longer valid, Wilson started with the full set of
equations from which a system of linearized perturbation
equations was obtained in the thin gap limit. Using a normal
mode ansatz for the perturbations, the equations were then
solved numerically to obtain the dispersion relations. A
sharp increase, although remains finite, in the growth rate
as Deborah number increases is predicted which the author
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ascribed to a resonance phenomenon. Mora and Manna [32]
later considered the same problem (air displacing UCM)
using a semi-analytical approach. They predicted a large
growth rate near certain wavenumber, which eventually be-
comes singular when a combination of dimensionless groups
exceeds a critical value. They also performed experiments
and observed fracturing, thus establishing the connection
of the resonance phenomenon to something observable in
experiments. About the same time, Daripa [11, 12] studied
the same problem with an Oldroyd-B fluid but neglecting
the time derivative in the constitutive relation. There ap-
pears to be no physical or mathematical justification for
this simplification except to make the problem analytically
tractable. This subsequently led to an explicit formula for
the dispersion relation which also shows the existence of
singular growth rate in spite of gross simplification of the
underlying modeling equations. Recently, Hai and Daripa
[20] tackled the same problem where a viscous Newtonian
fluid displaces an UCM fluid. The solution technique is
analytical and produces the dispersion relation in closed
form and recovers results obtained in [44, 51, 32] as special
cases. Additional singular behaviors absent in [51, 32] are
also discovered.

In this paper, we provide further insights on the role of
elasticity in causing fingering or fracturing instability and
generalize the results obtained by Hai and Daripa [20] by
replacing the displacing Newtonian fluid with another UCM
fluid. The development procedure is similar to that of [20]
but is written in a self-contained manner at the expense of
some degree of overlap.

This paper is organized as follows. In §2, the setup is
described and the governing equations are presented. In §3,
the equations are non-dimensionalized and a set of reduced
equations is obtained in the thin gap limit while keeping the
Deborah number to be of constant order or larger so that
elastic effect is apparent. In §4, the equations are perturbed
and linearized about the basic flow of form 𝒖0 = (𝑈 (𝑦), 0, 0).
The method of normal mode is applied to the linearized
equations, which then leads to a boundary value problem
(BVP). The BVP is then solved analytically where the solu-
tion involves weighted integral of Bessel functions. In §5, the
solution of BVP is then inserted into the interface conditions
to obtain the eigenvalue relation  = 0, where  is a quartic
polynomial in the growth rate with coefficients depending
on wavenumber, along with several dimensionless groups
as parameters. The detailed analysis on the roots is given
where stable and unstable wave bands are identified and the
effects of involved parameters are discussed. Several types
of singular behaviors strongly related to elastic effect are
discovered. The special cases where UCM displaces air or
a viscous Newtonian fluid are also considered. Significant
results from a physical perspective for all these cases are
documented in this section. Three Appendices contain im-
portant details which lead to these results. Conclusions are
made in §6.

Figure 1: A section of the rectilinear Hele-Shaw flow

2. Setup Description and governing equations
Two fluids are confined in a rectilinear Hele-Shaw cell

with a gap separation 2𝑏 and moving to the +𝑥 direction due
to a driving source located upstream (−𝑥 direction). A sec-
tion of the setup is shown in figure 1. The fluids are assumed
to be immiscible, incompressible and homogeneous. The
interface that separates the two fluids has constant interfacial
tension 𝛾 . The wetting effect and 𝑦 direction variation of
the interface are neglected [36, 38, 41] and will be further
discussed in the remark at the end of §3. We further assume
that the interface can be described by an equation of form
𝑥 = 𝜁 (𝑧, 𝑡). The displacing fluid occupies 𝑥 < 𝜁 (𝑧, 𝑡) and
the displaced fluid occupies 𝜁 (𝑧, 𝑡) < 𝑥. Inertial terms and
gravity effect are neglected.

The flow is governed by equations of continuity, momen-
tum and UCM constitutive equation
∇ ⋅ 𝒖 = 0, ∇𝑝 = ∇ ⋅ 𝝉 ,

𝝉 + 𝜆𝐷1𝝉
𝐷𝑡 = 𝜂(∇𝒖 + (∇𝒖)𝑇 ).

⎫

⎪

⎬

⎪

⎭

(1)

where 𝒖 = (𝑢, 𝑣,𝑤) is the velocity field with 𝑢, 𝑣,𝑤 as
velocity components in the 𝑥, 𝑦, 𝑧 directions respectively,
𝑝 is the pressure, 𝝉 is the extra stress tensor, 𝜆 and 𝜂 are the
material relaxation time and viscosity respectively. 𝐷1∕𝐷𝑡is the upper convected time derivative.

All quantities involved in (1) are understood as piece-
wise functions with jump discontinuities across the interface
𝑥 = 𝜁 (𝑧, 𝑡). Throughout the development, we use super-
scripts 𝑙 and 𝑟 to refer a quantity to be associated with
the displacing and displaced layers respectively. We denote
by ⟨⋅⟩ the average across the gap direction, and by J⋅K the
jump across the interface. Subscripts 𝑥, 𝑦 and 𝑧 denote the
corresponding partial derivatives.

Non-slip and non-penetration conditions at the cell plates
𝒖|𝑦=±𝑏 = 0. (2)
At the interface 𝑥 = 𝜁 (𝑧, 𝑡), we impose gap averaged
kinematic and dynamic conditions. The former states the
interface velocity is the same as the average fluid velocity
on the two sides
𝜁𝑡 = ⟨𝑢𝑟⟩ − ⟨𝑤𝑟⟩𝜁𝑧 = ⟨𝑢𝑙⟩ − ⟨𝑤𝑙⟩𝜁𝑧. (3)
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The latter states the discontinuity of the average normal
stress is balanced by the curvature effect−J⟨𝑝⟩K+𝒏⋅J⟨𝝉⟩K𝒏 =
𝛾∇ ⋅ 𝒏, where 𝒏 is the unit normal of the interface pointing
into the displaced fluid. Equivalently, this reads
(1 + 𝜁2𝑧 )J⟨𝑝⟩K − J⟨𝜏𝑥𝑥⟩ − 2⟨𝜏𝑥𝑧⟩𝜁𝑧 + ⟨𝜏𝑧𝑧⟩𝜁2𝑧 K

=𝛾𝜁𝑧𝑧∕(1 + 𝜁2𝑧 )
1∕2. (4)

3. Lubrication approximation
Certain terms from (1)-(4) can be dropped in the thin

gap limit owing to the Hele-Shaw geometry. To do so, a
set of scales must be properly chosen first. Away from the
interface, the dominant part of the flow field is parallel to the
cell plates, therefore the relative sizes of physical variables
can be captured by studying flow of the form 𝒖 = (𝑢(𝑦), 0, 0)
for which (1) reduces to

𝑝𝑥 = 𝜂𝑢𝑦𝑦, 𝑝𝑦 = 0, 𝑝𝑧 = 0,

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜂𝑢𝑦, 𝜏𝑥𝑥 = 2𝜆𝑢𝑦𝜏𝑥𝑦,

⎫

⎪

⎬

⎪

⎭

(5)

where all other components of 𝝉 are zero. From (5), we
obtain the following scales
𝑥, 𝑧 ∝ 𝐿, 𝑦 ∝ 𝑏, 𝑢,𝑤 ∝ 𝑉 , 𝑣 ∝ 𝑏𝑉 ∕𝐿

𝑡 ∝ 𝐿∕𝑉 , 𝑝 ∝ 𝐺, 𝜏𝑥𝑦, 𝜏𝑦𝑧 ∝ 𝜂𝑉 ∕𝑏,

𝜏𝑥𝑥, 𝜏𝑥𝑧, 𝜏𝑧𝑧 ∝ 𝜆𝜂𝑉 2∕𝑏2, 𝜏𝑦𝑦 ∝ 𝜂𝑉 ∕𝐿,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(6)

where 𝐿 and 𝑉 are the characteristic length and velocity
scale in the lateral direction, 𝑏 is the length scale in the
transverse direction, 𝐺 is a characteristic pressure, 𝜆 = 𝜆𝑙 +
𝜆𝑟, and 𝜂 = 𝜂𝑙+𝜂𝑟. The use of 𝜂 and 𝜆 is to have a consistent
set of units for both fluid layers. The difference in viscosities
and relaxation times of the two fluid layers are reflected in
𝑅𝑙,𝑟𝜂 and 𝑅𝑙,𝑟𝜆 defined in (7) below, which will be carried into
the scaled equations.

𝑅𝑙,𝑟𝜆
𝑑𝑒𝑓
= 𝜆𝑙,𝑟∕𝜆, 𝑅𝑙,𝑟𝜂

𝑑𝑒𝑓
= 𝜂𝑙,𝑟∕𝜂 (7)

The following relation is obtained by balancing the units on
the momentum equation

𝑉 = 𝜖2𝐺𝐿∕𝜂. (8)
Using the scaling scheme introduced above, non-dimensionalized
version of equations (1)-(4), as we will see below, contain the
following dimensionless groups

𝜖
𝑑𝑒𝑓
= 𝑏∕𝐿, 𝐷𝑒

𝑑𝑒𝑓
= 𝜖2𝐺𝜆∕𝜂, 𝐶𝑎

𝑑𝑒𝑓
= 𝐺𝐿∕𝛾, (9)

where 𝜖 is the characteristic aspect ratio of the Hele-Shaw
cell, 𝐷𝑒 is the Deborah number, and 𝐶𝑎 is the capillary
number. In the thin gap limit 𝜖 → 0, elastic behavior is
apparent if 𝐷𝑒 ∼ 𝑂(1) or larger. Since the characteristic

pressure 𝐺 is ultimately determined by the external driving
source,𝐺 can be taken as an adjustable parameter to achieve
this. For example, 𝐷𝑒 ∼ 𝑂(1) if 𝐺 ∼ 𝑂(𝜖−2) by (9). In such
a regime, the leading order equations obtained from (1)-(4)
are given by (with slight risk of confusion, we have used the
same symbols to denote the dimensionless quantities)

𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = 0, 𝑝𝑦 = 0,

𝑝𝑥 = 𝑅𝜂(𝑅𝜆𝐷𝑒(𝜏𝑥𝑥𝑥 + 𝜏𝑥𝑧𝑧 ) + 𝜏𝑥𝑦𝑦 ),

𝑝𝑧 = 𝑅𝜂(𝑅𝜆𝐷𝑒(𝜏𝑥𝑧𝑥 + 𝜏𝑧𝑧𝑧 ) + 𝜏𝑦𝑧𝑦 ),

𝐿𝜏𝑥𝑦 = 𝑢𝑦 + 𝑅2
𝜆𝐷𝑒

2(𝑣𝑥𝜏𝑥𝑥 + 𝑣𝑧𝜏𝑥𝑧)⋯
+𝑅𝜆𝐷𝑒((𝑢𝑥 + 𝑣𝑦)𝜏𝑥𝑦 + 𝑢𝑧𝜏𝑦𝑧 + 𝑢𝑦𝜏𝑦𝑦),

𝐿𝜏𝑦𝑧 = 𝑤𝑦 + 𝑅2
𝜆𝐷𝑒

2(𝑣𝑥𝜏𝑥𝑧 + 𝑣𝑧𝜏𝑧𝑧)⋯
+𝑅𝜆𝐷𝑒((𝑤𝑧 + 𝑣𝑦)𝜏𝑦𝑧 +𝑤𝑥𝜏𝑥𝑦 +𝑤𝑦𝜏𝑦𝑦),

𝐿𝜏𝑥𝑥 = 2(𝑢𝑦𝜏𝑥𝑦 + 𝑅𝜆𝐷𝑒(𝑢𝑥𝜏𝑥𝑥 + 𝑢𝑧𝜏𝑥𝑧)),

𝐿𝜏𝑥𝑧 = 𝑢𝑦𝜏𝑦𝑧 +𝑤𝑦𝜏𝑥𝑦⋯
+𝑅𝜆𝐷𝑒((𝑢𝑥 +𝑤𝑧)𝜏𝑥𝑧 + 𝑢𝑧𝜏𝑧𝑧 +𝑤𝑥𝜏𝑥𝑥),

𝐿𝜏𝑦𝑦 = 2(𝑣𝑦 + 𝑅𝜆𝐷𝑒(𝑣𝑥𝜏𝑥𝑦 + 𝑣𝑦𝜏𝑦𝑦 + 𝑣𝑧𝜏𝑦𝑧)),

𝐿𝜏𝑧𝑧 = 2(𝑤𝑦𝜏𝑦𝑧 + 𝑅𝜆𝐷𝑒(𝑤𝑧𝜏𝑧𝑧 +𝑤𝑥𝜏𝑥𝑧)),

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10)

where
𝐿
𝑑𝑒𝑓
= 𝐼 + 𝑅𝜆𝐷𝑒(𝜕𝑡 + 𝑢𝜕𝑥 + 𝑣𝜕𝑦 +𝑤𝜕𝑧). (11)

At the cell plates 𝑦 = ±1,, 𝑢 = 𝑣 = 𝑤 = 0. At the interface
𝑥 = 𝜁 (𝑧, 𝑡),

𝜁𝑡 = ⟨𝑢𝑟⟩ − ⟨𝑤𝑟⟩𝜁𝑧,

⟨𝑢𝑟⟩ − ⟨𝑤𝑟⟩𝜁𝑧 = ⟨𝑢𝑙⟩ − ⟨𝑤𝑙⟩𝜁𝑧,

J(1 + 𝜁2𝑧 )𝑝 − 𝑅𝜂𝑅𝜆𝐷𝑒⟨𝜏
𝑥𝑥 − 2𝜏𝑥𝑧𝜁𝑧 + 𝜏𝑧𝑧𝜁2𝑧 ⟩K

= 𝐶𝑎−1𝜁𝑧𝑧∕(1 + 𝜁2𝑧 )
1∕2.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(12)

Remark: If the displaced fluid wets the walls, there will be
a thin film left behind the interface. Over such a region, the
flow essentially becomes a channel flow in 𝑥−𝑧 plane where
the two fluids are separated by an interface parallel to the
channel walls. Since there are many works [52, 40, 8, 18, 19]
showing the interface between layered fluids in a channel
or pipe can become unstable, one may speculate that such
instability in the thin film region could affect the leading
interface. However, we believe the initial onset of instability
of the leading interface will not be caused by that of the thin
film region. But to fully address such an issue with rigor,
perhaps a multi-scale analysis is necessary. This is because
such investigations need to be done over a length scale
on the order of 𝑏 whereas the Hele-Shaw approximation
assumes the separation of length scale 𝜖 = 𝑏∕𝐿 ≪ 1, where
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the primary length scale of interest 𝐿 is in the spanwise
direction (𝑧). In other words, linear theory based on such
approximation cannot capture any details over the length
scale of order 𝑏 or less. This is also the reason why we
confined our later analysis to relatively long wavelength to
preserve the reliability of the theory.

4. Linear stability
Now we consider the linear stability of the basic flow

𝒖0 = (𝑈 (𝑦), 0, 0) for equations (10) through (12). The basic
solution satisfying 𝑈 (±1) = 0 is easily found to be
𝑈 = −3⟨𝑈⟩(𝑦2 − 1)∕2, ⟨𝑈⟩ = −𝑝0,𝑥∕(3𝑅𝜂),

𝜏𝑥𝑦0 = 𝑈𝑦, 𝜏𝑥𝑥0 = 2𝑈𝑦𝜏
𝑥𝑦
0 ,

⎫

⎪

⎬

⎪

⎭

(13)

where 𝑝0,𝑥 is a negative constant. Interface conditions (12)
give
𝜁0 = ⟨𝑈⟩𝑡, J⟨𝑈⟩K = 0, J𝑝0 − 𝑅𝜂𝑅𝜆𝐷𝑒⟨𝜏𝑥𝑥0 ⟩K = 0. (14)
By (13)2 and (14)2
J𝑝0,𝑥K = −3⟨𝑈⟩J𝑅𝜂K. (15)
Now we perturb equations (10) through (12) about the basic
solution given by (13) and (14), and then linearize. This
process is lengthy but straightforward thus omitted. On the
resulting equations, a moving frame of reference 𝑥 ↦ 𝑥 −
⟨𝑈⟩𝑡 is used, and the following normal mode ansatz is used
for the perturbations (a two dimensional perturbation for the
velocity field is assumed, namely 𝑣1 ≡ 0).
(𝑢1, 𝑤1, 𝑝1, 𝜏

𝑖𝑗
1 , 𝜁1) = (𝑢̂, 𝑤̂, 𝑝̂, 𝜏 𝑖𝑗 , 𝜁 )𝑒𝜇𝑡+𝑖𝑘𝑧, (16)

where the quantities with hat are complex valued amplitudes,
𝜇 ∈ ℂ is the temporal growth rate of perturbations (real
part understood) and 𝑘 is the wavenumber in the 𝑧-direction
(perpendicular to the direction of basic flow). The resulting
equations for (10) are given by (17) below (obtained with
𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 0 already have been applied. This is because
they satisfy 𝐿𝜏𝑦𝑦 = 𝐿𝜏𝑧𝑧 = 0 where 𝐿 is defined in (18)1below. The solutions for both are proportional to exp(−(1 +
𝜇𝐷𝑒𝑅𝜆)𝑥∕(𝑅𝜆𝐷𝑒𝑉 ∗)) with 𝑉 ∗ given by (18)2. Since 𝑉 ∗

changes sign at 𝑦 = ±1∕
√

3, it must be 𝜏𝑦𝑦 = 𝜏𝑧𝑧 = 0
to be continuous).

𝑢̂𝑥 + 𝑖𝑘𝑤̂ = 0, 𝑝̂𝑦 = 0,

𝑝̂𝑥 = 𝑅𝜂(𝑅𝜆𝐷𝑒(𝜏𝑥𝑥𝑥 + 𝑖𝑘𝜏𝑥𝑧) + 𝜏𝑥𝑦𝑦 ),

𝑖𝑘𝑝̂ = 𝑅𝜂(𝑅𝜆𝐷𝑒𝜏𝑥𝑧𝑥 + 𝜏𝑦𝑧𝑦 ),

𝐿𝜏𝑥𝑦 = 𝑢̂𝑦 + 𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 𝑢̂𝑥, 𝐿𝜏𝑦𝑧 = 𝑤̂𝑦 + 𝑅𝜆𝐷𝑒𝑉 ∗

𝑦 𝑤̂𝑥,

𝐿𝜏𝑥𝑥 = 2𝑉 ∗
𝑦 (𝜏

𝑥𝑦 + 𝑢̂𝑦 + 2𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 𝑢̂𝑥),

𝐿𝜏𝑥𝑧 = 𝑉 ∗
𝑦 (𝜏

𝑦𝑧 + 𝑤̂𝑦 + 2𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 𝑤̂𝑥),

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(17)

where (the letter 𝐿 is reused and not to be confused with
(11))

𝐿
𝑑𝑒𝑓
= (1 + 𝜇𝐷𝑒𝑅𝜆)𝐼 + 𝑅𝜆𝐷𝑒𝑉 ∗𝜕𝑥,

𝑉 ∗ 𝑑𝑒𝑓
= −3⟨𝑈⟩(𝑦2 − 1∕3)∕2.

⎫

⎪

⎬

⎪

⎭

(18)

The corresponding interface condition (12) at 𝑥 = 0 reads

𝜇𝜁 = ⟨𝑢̂⟩, J⟨𝑢̂⟩K = 0,

J𝑝̂ − 𝑅𝜂𝑅𝜆𝐷𝑒⟨𝜏𝑥𝑥⟩K = (−𝑘2∕𝐶𝑎 + 3⟨𝑈⟩J𝑅𝜂K)𝜁,

⎫

⎪

⎬

⎪

⎭

(19)

where (15) is used to obtain the second term on the right
hand side of equation (19)3.

From (17)1, we obtain 𝐿[𝜏𝑥𝑦𝑥 + 𝑖𝑘𝜏𝑦𝑧] = 0 and 𝐿[𝜏𝑥𝑥𝑥 +
2𝑖𝑘𝜏𝑥𝑧] = 2𝑉 ∗

𝑦 (𝜏
𝑥𝑦
𝑥 + 𝑖𝑘𝜏𝑦𝑧). For the solutions to be contin-

uous, it must be
𝜏𝑥𝑦𝑥 + 𝑖𝑘𝜏𝑦𝑧 = 0, 𝜏𝑥𝑥𝑥 + 2𝑖𝑘𝜏𝑥𝑧 = 0. (20)
By (20), (17)3 and (17)4, we obtain 𝑝̂𝑥𝑥 − 𝑘2𝑝̂ = 0 which
is satisfied by 𝑝̂𝑙 for 𝑥 < 0 and 𝑝̂𝑟 for 𝑥 > 0. The solution
subject to the far field conditions 𝑝̂𝑙 → 0 as 𝑥 → −∞ and
𝑝̂𝑟 → 0 as 𝑥→ ∞ is given by
𝑝̂𝑙 = 𝑝̂−𝑒|𝑘|𝑥, 𝑝̂𝑟 = 𝑝̂+𝑒−|𝑘|𝑥, (21)
for some constants 𝑝̂− and 𝑝̂+. Applying the operator 𝐿 to
(17)3
𝐿𝑝̂𝑥∕𝑅𝜂 = 𝑅𝜆𝐷𝑒𝐿[𝜏𝑥𝑥𝑥 + 𝑖𝑘𝜏𝑥𝑧] + 𝐿𝜏𝑥𝑦𝑦

= − 𝑅𝜆𝐷𝑒(𝑖𝑘𝐿[𝜏𝑥𝑧] + 𝑉 ∗
𝑦 𝜏

𝑥𝑦
𝑥 ) + [𝐿𝜏𝑥𝑦]𝑦

= − 𝑅𝜆𝐷𝑒(𝑖𝑘𝑉 ∗
𝑦 (𝑤̂𝑦 + 2𝑅𝜆𝐷𝑒𝑉 ∗

𝑦 𝑤̂𝑥) + 𝑉
∗
𝑦 (𝜏

𝑥𝑦
𝑥 + 𝜏𝑦𝑧))

⋯ + [𝑢̂𝑦 + 𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 𝑢̂𝑥]𝑦

=𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 [𝑢̂𝑦 + 2𝑅𝜆𝐷𝑒𝑉 ∗

𝑦 𝑢̂𝑥]𝑥 + [𝑢̂𝑦 + 𝑅𝜆𝐷𝑒𝑉 ∗
𝑦 𝑢̂𝑥]𝑦.

(22)
In the second equality above, (20)2 is used along with the
definition of 𝐿. (17)5 and (17)8 are used to obtain the
third equality, and (17)1, (20)1 for the fourth. Substituting
𝐿 and 𝑉 ∗ given by (18) into (22), we obtain an equation
of the form 𝐸(𝑢̂, 𝑝̂;𝑅𝜆, 𝑅𝜂 , 𝜇,𝐷𝑒, ⟨𝑈⟩) = 0 where 𝐸 is
a second order partial differential operator. The associated
equation for the displacing (l) and the displaced (r) layers
are respectively given by 𝐸(𝑢̂𝑙, 𝑝̂𝑙;𝑅𝑙𝜆, 𝑅𝑙𝜂 , 𝜇,𝐷𝑒, ⟨𝑈⟩) = 0
and 𝐸(𝑢̂𝑟, 𝑝̂𝑟;𝑅𝑟𝜆, 𝑅𝑟𝜂 , 𝜇,𝐷𝑒, ⟨𝑈⟩) = 0 where 𝑝̂𝑙 and 𝑝̂𝑟 are
given by (21). These two equations are to be solved for 𝑢̂𝑙
and 𝑢̂𝑟 subject to 𝑢̂𝑙 = 𝑢̂𝑟 = 0 at 𝑦 = ±1 with the far field
conditions 𝑢̂𝑙 → 0 as 𝑥→ −∞ and 𝑢̂𝑟 → 0 as 𝑥→ ∞. Using
similar techniques introduced in Hai & Daripa [20, §5], the
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solutions are given by

𝑢̂𝑙 = (|𝑘|𝑝̂−∕𝑅𝑙𝜂)𝑒
|𝑘|𝑥𝑢̃𝑙(𝑦),

𝑢̃𝑙
𝑑𝑒𝑓
= 𝑒𝑅

𝑙
𝜆𝑘̂𝑦

2
(𝑢𝑙𝑝 − 𝑢

𝑙
𝑝(1)𝑢

𝑙
𝑒∕𝑢

𝑙
𝑒(1)),

𝑢𝑙𝑝
𝑑𝑒𝑓
= 𝑢𝑙𝑜 ∫

𝑦
0 𝜓

𝑙𝑢𝑙𝑒𝑒
−𝑅𝑙𝜆𝑘̂𝑠

2
𝑑𝑠 − 𝑢𝑙𝑒 ∫

𝑦
0 𝜓

𝑙𝑢𝑙𝑜𝑒
−𝑅𝑙𝜆𝑘̂𝑠

2
𝑑𝑠,

𝜓 𝑙
𝑑𝑒𝑓
= 𝜇𝐷𝑒𝑅𝑙𝜆 + 1 + 𝑅𝑙𝜆𝑘̂∕3 − 𝑅

𝑙
𝜆𝑘̂𝑦

2,

𝑢𝑙𝑒
𝑑𝑒𝑓
= Γ(3∕4)𝐽−1∕4(𝑅𝑙𝜆𝑘̂𝑦

2),

𝑢𝑙𝑜
𝑑𝑒𝑓
= Γ(5∕4)𝑦𝐽1∕4(𝑅𝑙𝜆𝑘̂𝑦

2).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(23)

𝑢̂𝑟 = −(|𝑘|𝑝̂+∕𝑅𝑟𝜂)𝑒
−|𝑘|𝑥𝑢̃𝑟(𝑦),

𝑢̃𝑟
𝑑𝑒𝑓
= 𝑒−𝑅

𝑟
𝜆𝑘̂𝑦

2
(𝑢𝑟𝑝 − 𝑢

𝑟
𝑝(1)𝑢

𝑟
𝑒∕𝑢

𝑟
𝑒(1)),

𝑢𝑟𝑝
𝑑𝑒𝑓
= 𝑢𝑟𝑜 ∫

𝑦
0 𝜓

𝑟𝑢𝑟𝑒𝑒
𝑅𝑟𝜆𝑘̂𝑠

2
𝑑𝑠 − 𝑢𝑟𝑒 ∫

𝑦
0 𝜓

𝑟𝑢𝑟𝑜𝑒
𝑅𝑟𝜆𝑘̂𝑠

2
𝑑𝑠,

𝜓𝑟
𝑑𝑒𝑓
= 𝜇𝐷𝑒𝑅𝑟𝜆 + 1 − 𝑅𝑟𝜆𝑘̂∕3 + 𝑅

𝑟
𝜆𝑘̂𝑦

2,

𝑢𝑟𝑒
𝑑𝑒𝑓
= Γ(3∕4)𝐽−1∕4(𝑅𝑟𝜆𝑘̂𝑦

2),

𝑢𝑟𝑜
𝑑𝑒𝑓
= Γ(5∕4)𝑦𝐽1∕4(𝑅𝑟𝜆𝑘̂𝑦

2).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(24)

where 𝐽±1∕4 is the analytic part of 𝐽±1∕4, the Bessel function
of first kind of order ±1∕4, the Gamma values Γ(3∕4) and
Γ(5∕4) are merely for convenience, and 𝑘̂ is a modified
wavenumber given by

𝑘̂
𝑑𝑒𝑓
= 3|𝑘|𝐷𝑒⟨𝑈⟩∕2. (25)

5. Dispersion Relation
Substituting (23)1 and (24)1 into the right hand side of

(17)5, the stress 𝜏𝑥𝑦,𝑙 and 𝜏𝑥𝑦,𝑟 can be solved with integration
𝑅𝑙𝜂𝜏

𝑥𝑦,𝑙 = |𝑘|𝑝̂−𝑒|𝑘|𝑥𝜏𝑥𝑦,𝑙,

𝜏𝑥𝑦,𝑙
𝑑𝑒𝑓
= (𝑢̃𝑙𝑦 + 𝜓

𝑙
𝑦𝑢̃
𝑙)∕𝜓 𝑙,

𝑅𝑟𝜂𝜏
𝑥𝑦,𝑟 = −|𝑘|𝑝̂+𝑒−|𝑘|𝑥𝜏𝑥𝑦,𝑟,

𝜏𝑥𝑦,𝑟
𝑑𝑒𝑓
= (𝑢̃𝑟𝑦 + 𝜓

𝑟
𝑦 𝑢̃
𝑟)∕𝜓𝑟,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(26)

Similarly, we obtain from (17)7
𝑅𝑙𝜂𝑅

𝑙
𝜆𝐷𝑒𝜏

𝑥𝑥,𝑙 = 2𝑝̂−𝑒|𝑘|𝑥𝜏𝑥𝑥,𝑙,

𝜏𝑥𝑥,𝑙
𝑑𝑒𝑓
= (𝜏𝑥𝑦,𝑙 + 𝑢̂𝑙𝑦 + 2𝜓 𝑙𝑦𝑢̂

𝑙)𝜓 𝑙𝑦∕𝜓
𝑙,

𝑅𝑟𝜂𝑅
𝑟
𝜆𝐷𝑒𝜏

𝑥𝑥,𝑟 = 2𝑝̂+𝑒−|𝑘|𝑥𝜏𝑥𝑥,𝑟,

𝜏𝑥𝑥,𝑟
𝑑𝑒𝑓
= (𝜏𝑥𝑦,𝑟 + 𝑢̂𝑟𝑦 + 2𝜓𝑟𝑦 𝑢̂

𝑟)𝜓𝑟𝑦∕𝜓
𝑟.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(27)

The following relations are obtained by substituting (21),
(20)2 and (26) into (17)3.
𝑅𝑙𝜂𝑅

𝑙
𝜆𝐷𝑒𝜏

𝑥𝑥,𝑙
𝑥 =2𝑝̂−|𝑘|𝑒|𝑘|𝑥(1 − 𝜏𝑥𝑦,𝑙𝑦 ),

𝑅𝑟𝜂𝑅
𝑟
𝜆𝐷𝑒𝜏

𝑥𝑥,𝑟
𝑥 = − 2𝑝̂+|𝑘|𝑒−|𝑘|𝑥(1 − 𝜏𝑥𝑦,𝑟𝑦 ).

By (27), it must be 𝜏𝑥𝑥,𝑙 = 1− 𝜏𝑥𝑦,𝑙𝑦 and 𝜏𝑥𝑥,𝑟 = 1− 𝜏𝑥𝑦,𝑟𝑦 . As
a result, taking the gap average gives (notice 𝜏𝑥𝑦,𝑙 and 𝜏𝑥𝑦,𝑟
are odd functions in 𝑦)
𝑅𝑙𝜂𝑅

𝑙
𝜆𝐷𝑒⟨𝜏

𝑥𝑥,𝑙
⟩ = 2𝑝̂−𝑒|𝑘|𝑥(1 − 𝜏𝑥𝑦,𝑙(1)),

𝑅𝑟𝜂𝑅
𝑟
𝜆𝐷𝑒⟨𝜏

𝑥𝑥,𝑟
⟩ = 2𝑝̂+𝑒−|𝑘|𝑥(1 − 𝜏𝑥𝑦,𝑟(1)),

or equivalently after using (26) and 𝑢̃𝑙(1) = 𝑢̃𝑟(1) = 0,

𝑅𝑙𝜂𝑅
𝑙
𝜆𝐷𝑒⟨𝜏

𝑥𝑥,𝑙
⟩ = 2𝑝̂−𝑒|𝑘|𝑥(1 − 𝑢̃𝑙𝑦(1)∕𝜓

𝑙(1)),

𝑅𝑟𝜂𝑅
𝑟
𝜆𝐷𝑒⟨𝜏

𝑥𝑥,𝑟
⟩ = 2𝑝̂+𝑒−|𝑘|𝑥(1 − 𝑢̃𝑟𝑦(1)∕𝜓

𝑟(1)).

⎫

⎪

⎬

⎪

⎭

(28)

Using (19)1, (19)2, (23)1, (24)1 and (28), the dynamic con-
dition (19)3 becomes

𝜇𝑅𝑙𝜂
2𝑢̃𝑙𝑦(1)∕𝜓

𝑙(1) − 1

⟨𝑢̃𝑙⟩
+ 𝜇𝑅𝑟𝜂

2𝑢̃𝑟𝑦(1)∕𝜓
𝑟(1) − 1

⟨𝑢̃𝑟⟩
=|𝑘|3𝐶𝑎−1 − 3⟨𝑈⟩|𝑘|J𝑅𝜂K. (29)
From the definitions given in (23) and (24), it is clear that 𝑢̃𝑙
and 𝑢̃𝑟 can be written as
𝑢̃𝑙 = 𝜇𝐷𝑒𝑅𝑙𝜆𝑢̃

𝑙
1(𝑦;𝑅

𝑙
𝜆𝑘̂) + 𝑢̃

𝑙
2(𝑦;𝑅

𝑙
𝜆𝑘̂),

𝑢̃𝑟 = 𝜇𝐷𝑒𝑅𝑟𝜆𝑢̃
𝑟
1(𝑦;𝑅

𝑟
𝜆𝑘̂) + 𝑢̃

𝑟
2(𝑦;𝑅

𝑟
𝜆𝑘̂).

⎫

⎪

⎬

⎪

⎭

(30)

Eliminating |𝑘| in favor 𝑘̂ by (25) from the right hand side of
(29) and substituting (30) into the left hand side along with
𝜓 𝑙 and 𝜓𝑟 given by (23)4 and (24)4 respectively gives

𝑅𝑙𝜂𝜇𝑧
𝑙(𝜇𝑅𝑙𝜆 + 𝑦

𝑙)

(𝜇𝑅𝑙𝜆 +𝑀
𝑙𝑘̂)(𝜇𝑅𝑙𝜆 + 𝑥

𝑙)
+

𝑅𝑟𝜂𝜇𝑧
𝑟(𝜇𝑅𝑟𝜆 + 𝑦

𝑟)

(𝜇𝑅𝑟𝜆 +𝑀
𝑟)(𝜇𝑅𝑟𝜆 + 𝑥

𝑟)

= 𝛽𝑘̂3 − 2𝑘̂J𝑅𝜂K, (31)
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where

𝜇
𝑑𝑒𝑓
= 𝜇𝐷𝑒, 𝛽

𝑑𝑒𝑓
= 1∕(𝐶𝑎𝐷𝑒2(3⟨𝑈⟩∕2)3),

𝑥𝑙
𝑑𝑒𝑓
=

⟨𝑢𝑙2⟩

⟨𝑢𝑙1⟩
, 𝑦𝑙

𝑑𝑒𝑓
=

2𝑢𝑙2,𝑦(1)−(1−
2
3𝑅

𝑙
𝜆𝑘̂)

2𝑢𝑙1,𝑦(1)−1
,

𝑧𝑙
𝑑𝑒𝑓
=

2𝑢𝑙1,𝑦(1)−1

⟨𝑢𝑙1⟩
, 𝑀 𝑙 𝑑𝑒𝑓= 1 − 2

3𝑅
𝑙
𝜆𝑘̂,

𝑥𝑟
𝑑𝑒𝑓
=

⟨𝑢𝑟2⟩
⟨𝑢𝑟1⟩

, 𝑦𝑟
𝑑𝑒𝑓
=

2𝑢𝑟2,𝑦(1)−(1+
2
3𝑅

𝑟
𝜆𝑘̂)

2𝑢𝑟1,𝑦(1)−1
,

𝑧𝑟
𝑑𝑒𝑓
=

2𝑢𝑟1,𝑦(1)−1

⟨𝑢𝑟1⟩
, 𝑀𝑟 𝑑𝑒𝑓= 1 + 2

3𝑅
𝑟
𝜆𝑘̂.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(32)

Since 𝑅𝑙𝜆 + 𝑅𝑟𝜆 = 1 with 𝑅𝑙𝜆, 𝑅𝑟𝜆 ∈ (0, 1), we may define
J𝑅𝜆K = 𝑅𝑟𝜆 − 𝑅𝑙𝜆 for J𝑅𝜆K ∈ (−1, 1) so that 𝑅𝑙𝜆 = (1 −
J𝑅𝜆K)∕2 and 𝑅𝑟𝜆 = (1 + J𝑅𝜆K)∕2. Similarly, we have 𝑅𝑙𝜂 =
(1 − J𝑅𝜂K)∕2 and 𝑅𝑟𝜂 = (1 + J𝑅𝜂K)∕2 for J𝑅𝜂K ∈ (−1, 1).
Recall 𝑥𝑙, 𝑦𝑙, 𝑧𝑙 are functions of 𝑅𝑙𝜆𝑘̂, and 𝑥𝑟, 𝑦𝑟, 𝑧𝑟 are
functions of 𝑅𝑟𝜆𝑘̂. As a result, (31) is of form
 (𝜇, 𝑘̂, J𝑅𝜂K, J𝑅𝜆K, 𝛽) = 0. (33)
Solving (33) for 𝜇 gives the so-called dispersion relation,
which as we will see later, are multi-valued. The stability
criterion is given by the region in the parameter space
(𝑘̂, J𝑅𝜂K, J𝑅𝜆K, 𝛽) over which all solution branches have
negative real parts.

In dimensional terms, the modified wavenumber 𝑘̂ given
by (25) and the composite parameter 𝛽 given by (32)2 reads

𝑘̂ = 3𝜆⟨𝑈∗
⟩|𝑘∗|∕2, 𝛽 = 8𝛾𝑏2∕(27𝜂𝜆

2
⟨𝑈∗

⟩

3), (34)
where ⟨𝑈∗

⟩ is the dimensional flow speed, and |𝑘∗| is the
dimensional wavenumber of the disturbance. In a given
experiment, 𝛾𝑏2∕(𝜂𝜆2) is fixed a priori therefore the size
of 𝛽 is essentially determined by the flow speed ⟨𝑈∗

⟩. The
remaining two parameters (J𝑅𝜂K, J𝑅𝜆K) belong to (−1, 1) ×
(−1, 1) by definition, where physical meaning of various
parts of this square region is explained in figure 2. The
special cases of Newtonian displacing UCM (top edge of
figure 2) and Air displacing UCM (top right corner) have
been investigated in [20]. We consider the following cases
§5.1: UCM displacing Air (bottom left corner of figure 2).
§5.2: UCM displacing Newtonian (bottom edge of figure 2).
§5.3: UCM displacing UCM (interior pts. of figure 2).
Remark: It is not difficult to see from (23) and (24)
that 𝑢̂𝑙 is singular if 𝑘̂ = 𝛼𝑗∕𝑅𝑙𝜆, and 𝑢̂𝑟 is singular if
𝑘̂ = 𝛼𝑗∕𝑅𝑟𝜆, where {𝛼𝑗}∞𝑗=1 ≈ {2, 5, 8,⋯} is the set of
zeros of 𝐽−1∕4. When the (modified) wavenumber 𝑘̂ is near
any member of the set {𝛼𝑗∕𝑅𝑙𝜆, 𝛼𝑗∕𝑅

𝑟
𝜆}

∞
𝑗=1, perturbations

become very large, therefore the dynamics can not be

Figure 2: ∙ : air displacing UCM. −−: Newtonian displacing
UCM. ∙: UCM displacing air. −−: UCM displacing Newtonian.
−−: not physically relevant as they all involve an inviscid UCM
fluid.

captured by linear theory. By (34)1, 𝑅𝑙𝜆 ∶= 𝜆𝑙∕𝜆 and
𝑅𝑟𝜆 ∶= 𝜆𝑟∕𝜆, the set of singular (dimensional) wavelengths
is {3𝜆𝑙⟨𝑈∗

⟩∕(2𝛼𝑗), 3𝜆𝑟⟨𝑈∗
⟩∕(2𝛼𝑗)}∞𝑗=1, thus such singular

behavior is a result of elastic effect. It should be noted
that all these singular waves are removable singularities for
equation (33) because all zeros of 𝐽−1∕4 are simple. On
the other hand, most of such singular waves, if not all, can
be neglected because of a more fundamental limitation of
the theory. The Hele-Shaw scaling 𝐿 ≫ 𝑏 does not apply
in the immediate vicinity of the interface where a fully
three dimensional flow is expected, thus the theory becomes
unreliable when the (dimensional) wavelength 1∕|𝑘∗| of
disturbances is comparable or smaller than the thickness of
this region which is expected to be 𝑂(𝑏) [38]. Recall (34)1,
the condition 1∕|𝑘∗| ≫ 𝑏 gives 𝑘̂ ≪ 3𝜆⟨𝑈∗

⟩∕(2𝑏). In a
typical Hele-Shaw experiment, the right hand side of the last
inequality is 𝑂(10), therefore we restrict to 𝑘̂ ∈ (0, 4) for the
remainder of the development.
5.1. UCM displacing Air

This specical case is obtained by taking the limits
𝑅𝑙𝜂 , 𝑅

𝑙
𝜆 → 1 and𝑅𝑟𝜂 , 𝑅𝑟𝜆 → 0 in (31), which in turn reduces to

(‘ua’ stands for UCM and Air) 𝑢𝑎 =
∑2
𝑗=0 𝜇

𝑗𝑓 𝑢𝑎𝑗 (𝑘̂, 𝛽) = 0
and the coefficients 𝑓 𝑢𝑎𝑗 s are given in Appendix.A. Denote
by 𝜇𝑢𝑎𝑗 = 𝜇𝑢𝑎𝑗 (𝑘̂, 𝛽) for 𝑗 = 1, 2 the two roots of 𝑢𝑎, and
without loss of generality we assume ℜ{𝜇𝑢𝑎1 } ≤ ℜ{𝜇𝑢𝑎2 }.
In Appendix.A.1, it is shown that both roots are distinct real
and
{𝜇𝑢𝑎1 , 𝜇

𝑢𝑎
2 < 0} = {𝑘̂ < 3∕2}. (35)

As an illustration, 𝜇𝑢𝑎1 and 𝜇𝑢𝑎2 v.s. 𝑘̂ in figure 3 for a few
values of 𝛽.

The stresses associated with the eigenvalue 𝜇𝑢𝑎1 or 𝜇𝑢𝑎2
can become unbounded over some regions in 𝑘̂ − 𝛽 plane
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Figure 3: (a) 𝜇𝑢𝑎2 are plotted v.s. 𝑘̂ at 𝛽 = 0.1, 5, 20. (b) same is done for 𝜇𝑢𝑎1 . (c) the stress-singular region associated with 𝜇𝑢𝑎1
and 𝜇𝑢𝑎2 are respectively given by Ω2 ∪Ω3 and Ω3. The right and left boundaries of Ω2 are given by 𝑘̂ = 3∕2 and 𝛽 = 𝜍1(𝑘̂), where
𝜍1 is given by (44)2.

Figure 4: A summary of results of § 5.1 in terms of dimensional wavelength 1∕|𝑘∗|.

(see Appendix.A.2 for details), and this is an elastic effect be-
cause the singularity disappears for vanishingly small relax-
ation time. These singular regions are shown in figure 3(c).
Both modes 𝜇𝑢𝑎1 and 𝜇𝑢𝑎2 do not suffer from singular-stress
issues for sufficiently long waves, i.e. over Ω1. However, the
stress becomes singular for both modes for short waves i.e.
over Ω3, and this can happen even for slow flow (large 𝛽).
Interestingly, 𝜇𝑢𝑎1 is more prone to suffer from singular stress
than 𝜇𝑢𝑎2 even though 𝜇𝑢𝑎1 < 𝜇𝑢𝑎2 .

Using (34)1 (with 𝜆 = 𝜆𝑙), we may convert (35) into
dimensional terms, namely 1∕|𝑘∗| > 𝜆𝑙⟨𝑈∗

⟩, where 1∕|𝑘∗|
and ⟨𝑈∗

⟩ are the dimensional wavelength and flow speed.
Similarly, the left boundary of Ω2 in figure 3(c) depends
weakly on 𝛽 and is approximately located at 𝑘̂ = 1∕2, or
equivalently 1∕|𝑘∗| = 3𝜆𝑙⟨𝑈∗

⟩. The summary of results
obtained thus far is illustrated in figure 4. Although both
eigenvalues are negative for any disturbance of wavelength
1∕|𝑘∗| greater than 𝜆𝑙⟨𝑈∗

⟩, one can only conclude sta-
bility for 1∕|𝑘∗| ∈ (3𝜆𝑙⟨𝑈∗

⟩,∞) because the stress be-
comes unbounded for at least one eigenvalues if 1∕|𝑘∗| ∈
(𝜆𝑙⟨𝑈∗

⟩, 3𝜆𝑙⟨𝑈∗
⟩). The size of 3𝜆𝑙⟨𝑈∗

⟩ is typically on the
order of millimeter range and close to the typical gap size
for a Hele-Shaw cell, thus it is consistent with the Hele-
Shaw approximation 1∕|𝑘∗| ≫ 𝑏. For wavelength shorter
than 3𝜆𝑙⟨𝑈∗

⟩, linear theory fails because it assumes all
disturbances must be small to begin with, however it can
nonetheless indicate, as 1∕|𝑘∗| → 3𝜆𝑙⟨𝑈∗

⟩, the stress must
become very large, thus establishing the connection to frac-
turing instability observed in experiments [25, 49, 32, 46].
This explanation should be taken with caution because it
may be due to (i) a flaw of the UCM model itself, which

allows the polymer particles to be infinitely stretched due to
Hook’s spring law used [4, 39, 33], leading to unbounded
stress, or (ii) the mathematical nature of this singular behav-
ior is very similar to the ones found in the Rayleigh’s eq.
or Orr-Sommerfeld eq. in unbounded domain [13], which is
associated with the continuous part of the eigen-spectrum.
There appears to be no simple way to resolve this but dealing
with the full initial value problem which is outside the scope
of this paper.
Remark: To simplify the language for the remainder of the
development, we still adopt the conventional language that
’stable’ means the the real part of the largest eigenvalues is
negative and ’unstable’ if positive, and neutrally/marginally
’stable’ if 0. The reason for this emphasis is because there
can be stress singularity even when it is ’stable’ as discussed
above.
5.2. UCM displacing Newtonian

This special case is obtained by taking the limit 𝑅𝑟𝜆 → 0
in (31), which in turn reduces to (‘un’ stands for UCM and
Newtonian) 𝑢𝑛 =

∑3
𝑗=0 𝜇

𝑗𝑓 𝑢𝑛𝑗 (𝑘̂, J𝑅𝜂K, 𝛽) = 0 and the
coefficients 𝑓 𝑢𝑛𝑗 s are given in Appendix.B. Denote by 𝜇𝑢𝑛𝑗 =
𝜇𝑢𝑛𝑗 (𝑘̂, J𝑅𝜂K, 𝛽) for 𝑗 = 1, 2, 3 the three roots of 𝑢𝑛. Without
loss of generality, we may assume ℜ{𝜇𝑢𝑛1 } ≤ ℜ{𝜇𝑢𝑛2 } ≤
ℜ{𝜇𝑢𝑛3 }.

Since𝜇𝑢𝑛3 s are polynomial roots, the condition forℜ{𝜇𝑢𝑛3 } <
0 is given by the Routh-Hurwitz criterion, from which we
obtain (see Appendix.B.1 for details)
{ℜ{𝜇𝑢𝑛3 } < 0 | J𝑅𝜂K ≤ 0} = {𝑘̂ < 3∕2}, (36)
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Figure 5: The region ℜ{𝜇𝑢𝑛3 } < 0 described by (37) is shown in the 𝑘̂− 𝛽 plane for select values of J𝑅𝜂K. The upper curve (solid)
is given by 𝛽 = 𝜍0, which intersects with the vertical line at (𝑘̂, 𝛽) = (3∕2, 8J𝑅𝜂K∕9). The dashed curve is 𝛽 = 𝛽2. The ℜ{𝜇𝑢𝑛3 } < 0
branch right to the vertical line vanishes in the limit J𝑅𝜂K → 1.

and
{ℜ{𝜇𝑢𝑛3 } < 0 | J𝑅𝜂K > 0}

={𝛽 > 𝜍0 | 𝑘̂ < 3∕2} ∪ {𝛽2 < 𝛽 < 𝜍0 | 𝑘̂ > 3∕2}, (37)
where 𝜍0 and 𝛽2 are functions of 𝑘̂ and J𝑅𝜂K and given by
(52)1 and (55)2 respectively. In figure 5, the region described
in (37) is shown in the 𝑘̂ − 𝛽 plane for select values of
J𝑅𝜂K > 0.

Viscous effect is still the dominant mechanism in de-
termining stability for long waves (stable if J𝑅𝜂K ≤ 0, or
equivalently 𝜂𝑟∕𝜂𝑙 ≤ 1). Increasing 𝛽 (slow flow) has a
stabilizing effect on long waves. Unlike the Saffman-Taylor
case (Newtonian displacing Newtonian) where the short
waves are stabilized by interfacial tension, the short waves
are destabilized by elastic effect. On the other hand, similar
to the special case discussed in §5.1, the stress associated
with 𝜇𝑢𝑛𝑗 can become unbounded due to elastic effect over
some regions in the 𝑘̂− 𝛽 plane, which are dependent on the
viscosity contrast parameter J𝑅𝜂K ∈ (−1, 1). We find that
long waves do not suffer from such singular behavior but
short waves always do. In particular (see Appendix B.2 for
details), for J𝑅𝜂K ≲ 1∕2 (𝜂𝑟∕𝜂𝑙 ≲ 3), we find (i) 𝜇𝑢𝑛1 is never
stress-singular, and (ii) 𝜇𝑢𝑛3 is stress-singular for 𝑘̂ > 3∕2,
and (iii) 𝜇𝑢𝑛2 is stress-singular if 𝑘̂ > 𝑘̂∗(𝛽, J𝑅𝜂K). Further, 𝑘̂∗depends on J𝑅𝜂K and 𝛽 weakly, and for reasonable 𝛽 values
(upto 100), 𝑘̂∗ is approximately 1∕2. In summary, the stress-
singular regions for 𝜇𝑢𝑛1 and 𝜇𝑢𝑛3 are contained in that of 𝜇𝑢𝑛2 .
For larger J𝑅𝜂K, this remains to the case unless for relatively
small 𝛽 (fast flow).

5.3. UCM displacing UCM
After some algebra, (31) can be rewritten as  =

∑4
𝑗=0 𝜇

𝑗𝑓𝑗(𝑘̂, J𝑅𝜂K, J𝑅𝜆K, 𝛽) = 0, and the coefficients 𝑓𝑗s
are given in Appendix.C. Denote by𝜇𝑗 = 𝜇𝑗(𝑘̂, J𝑅𝜂K, J𝑅𝜆K, 𝛽)for 𝑗 = 1, 2, 3, 4 the four roots of  . Without loss of
generality, we assume ℜ{𝜇1} ≤ ℜ{𝜇2} ≤ ℜ{𝜇3} ≤
ℜ{𝜇4}.

It is shown in Appendix.C.1 that viscous effect is still
the dominant mechanism in determining stability for long
waves, namely ℜ{𝜇4} < 0 for small 𝑘̂ if and only if
J𝑅𝜂K ≤ 0. For 𝑘̂ bounded away from 0, we first consider
the case where the displacing fluid more or equally viscous,
i.e. J𝑅𝜂K ≤ 0. In Appendix.C.2, it is shown
{ℜ{𝜇4} < 0} = {𝑘̂ < 𝑘̂∙}, where 𝑘̂∙ 𝑑𝑒𝑓= 3∕(2𝑅𝑙𝜆). (38)
The plot of ℜ{𝜇4} v.s 𝑘̂ is shown in figure 6 for several
combinations of J𝑅𝜂K, J𝑅𝜆K and 𝛽. By (34)1 and 𝑅𝑙𝜆 ∶=
𝜆𝑙∕𝜆, 𝑘̂ > 𝑘̂∙ is equivalent to 1∕|𝑘∗| < 𝜆𝑙⟨𝑈∗

⟩ from
which we conclude (i) the flow becomes unstable when the
wavelength is shorter than the distance traveled by the fluid
bulk within one relaxation time of the displacing fluid, and
(ii) decreasing the relaxation time of the displacing fluid or
the flow speed has a stabilizing effect. Since this is true for
all J𝑅𝜂K ≤ 0, elastic effect of the displacing fluid plays the
decisive role (along with the flow speed) in causing short
wave instability. This remains to be the case for J𝑅𝜂K > 0.

Now we consider the case where the displaced fluid is
more viscous, namely J𝑅𝜂K > 0. There can arise a third
kind of singular behavior in such case. It is shown in Ap-
pendix.C.3 that if the parameter combination (J𝑅𝜂K, J𝑅𝜆K, 𝛽)
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Figure 6: (a) ℜ{𝜇4} v.s. 𝑘̂ at J𝑅𝜂K = 0,−0.5,−0.9 with fixed 𝛽 = 2 and J𝑅𝜆K = −0.2. The solid dot is located at 𝑘̂ = 3∕(2𝑅𝑙
𝜆),

beyond which the flow becomes unstable. (b)-(d) the same are done with different values of 𝛽 and J𝑅𝜆K.

falls on or below the graph of

𝛽∗(J𝑅𝜂K, J𝑅𝜆K)
𝑑𝑒𝑓
= max

𝑘̂
𝜍(𝑘̂, J𝑅𝜂K, J𝑅𝜆K)

where 𝜍 is given by (63), then there exists 𝑘̂ = 𝑘̂∗ at which
𝜇4 diverges to +∞. The graph of 𝛽∗ is shown in figure 7(a).
The contour 𝛽∗ = 0 is shown in figure 7(b). A few axis-
parallel curves along the surface is shown in figure 7(c),(d).
We call such phenomenon a resonance because the largest
eigenvalue increases very sharply near certain 𝑘̂ = 𝑘̂∗,
which we shall call a (modified) resonating wavenumber.
The supremum of 𝛽∗ is approximately 1.113 obtained in
the limit J𝑅𝜂K, J𝑅𝜆K → 1. It is not surprising that this
limiting value coincides with the findings in [20] because
it degenerates to an air displacing UCM setting. Further, if
only J𝑅𝜆K → 1 (Newtonian displacing UCM), the resonance
also does not occur as predicted in [20]. As an illustration,
we show the resonance at (J𝑅𝜂K, J𝑅𝜆K, 𝛽) = (0.9, 0, 0.11). In
figure 8(b), 𝜇 → ∞ at 𝑘̂ ≈ 2.15 as 𝛽 → 0.11 from above with
fixed (J𝑅𝜂K, J𝑅𝜆K) = (0.9, 0). For smaller 𝛽, for example
𝛽 = 0.05, there will be two resonating wavenumbers, namely
at 𝑘̂ ≈ 1.7 and 𝑘̂ ≈ 3.37 (see figure 8(a)).

The resonance can be avoided if J𝑅𝜂K ≲ 0.797 (𝜂𝑟∕𝜂𝑙 ≲
9), or J𝑅𝜆K ≲ −0.51 (𝜆𝑟∕𝜆𝑙 ≲ 0.32), or 𝛽 ≳ 1.113. Notice
that these are sufficient conditions but not necessary. For
example, if J𝑅𝜂K = 0.9 (𝜂𝑟∕𝜂𝑙 ≈ 19), then the resonance
can be avoided for all 𝛽 > 0 as long as J𝑅𝜆K ≲ −0.389
(𝜆𝑟∕𝜆𝑙 ≲ 0.44) or J𝑅𝜆K ≳ 0.847 (𝜆𝑟∕𝜆𝑙 ≳ 12) (see
figure 7(b)). If these ranges of relaxation time combinations

are not available for an experiment, say only J𝑅𝜆K = 0
(𝜆𝑟∕𝜆𝑙 = 1) is available, then the resonance can still be
avoided by keeping 𝛽 > 𝛽∗ ≈ 0.11. By (34)2, 𝛽 >
𝛽∗ is equivalent to ⟨𝑈∗

⟩ < (8𝛾𝑏2∕(27𝜂𝜆
2
))1∕3∕𝛽1∕3∗ , the

resonance can always be avoided by keeping the flow to be
sufficiently slow (the the quantity inside the parenthesis is
fixed for any given experiment and the value of 𝛽∗ can be
computed numerically (see figure 7(c),(d)).

For 𝛽 > 1.113 so no resonance occurs for all J𝑅𝜂K, J𝑅𝜆K ∈
(−1, 1). It is shown in Appendix.C.3.2 that

{ℜ{𝜇4} < 0} = {𝑘̂◦ < 𝑘̂ < 𝑘̂∙},

𝑘̂∙
𝑑𝑒𝑓
= 3∕(2𝑅𝑙𝜆), 𝑘̂◦

𝑑𝑒𝑓
= (2J𝑅𝜂K∕𝛽)1∕2.

⎫

⎪

⎬

⎪

⎭

(39)

Over the unstable long waveband 𝑘̂ < 𝑘̂◦, ℜ{𝜇4} attains a
maximum 𝜇† at some 𝑘̂ = 𝑘̂† (see figure 9-11). We find both
𝜇† and 𝑘̂† decrease if J𝑅𝜂K decreases, or J𝑅𝜆K decreases, or
𝛽 increases. Since 𝑘̂◦ shifts to the left as J𝑅𝜂K decreases or
𝛽 increases, changing these two parameters in such fashion
does not only make the unstable long wave less unstable
(slower growth) but also has an stabilizing effect. Over the
unstable short waveband 𝑘̂ > 𝑘̂∙, ℜ{𝜇4} increases as 𝑘̂.
J𝑅𝜂K and 𝛽 have rather weak effects on ℜ{𝜇4} (see figure 9).
Increasing J𝑅𝜆K has a more significant effect on ℜ{𝜇4} (see
figure 10) and can stabilize certain unstable short waves (𝑘̂∙shifts to the right).

At last, similar to the special case of UCM displacing
air (§5.1) and UCM displacing Newtonian (§5.2), the stress
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Figure 7: (a): The graph of 𝛽∗(J𝑅𝜂K, J𝑅𝜆K). Resonance occurs when (J𝑅𝜂K, J𝑅𝜆K, 𝛽) belongs to the (closed) volume region bounded
below by the graph. (b): If (J𝑅𝜂K, J𝑅𝜆K) falls inside the region right to the dashed curve given by 𝛽∗ = 0, the resonance can be
avoided by taking 𝛽 > 𝛽∗. For example, any 𝛽 > 𝛽∗ ≈ 0.11 suffices for (J𝑅𝜂K, J𝑅𝜆K) = (0.9, 0). (c) and (d): Several curves along the
surface given in (a) are shown.

Figure 8: (a): 𝜍 v.s. 𝑘̂ at fixed (J𝑅𝜂K, J𝑅𝜆K) = (0.9, 0). The resonance occurs over the curve 𝛽 = 𝜍. For example, if 𝛽 ≈ 0.11, the
resonance occurs at 𝑘̂ ≈ 2.15. This is illustrated in (b), 𝜇4 → ∞ at 𝑘̂ ≈ 2.15 as 𝛽 → 0.11 from above. For smaller 𝛽, the singularity
will split into two (at 𝑘̂ ≈ 1.7 and 𝑘̂ ≈ 3.37 for 𝛽 ≈ 0.05).

associated to 𝜇𝑗 can come singular. For each 𝑗 = 1, 2, 3, 4,
it is given by some some regions in 𝑘̂ − 𝛽 plane whose
boundaries depend on J𝑅𝜂K and J𝑅𝜆K. Due to the complexity
of the roots, no expressions for the boundary curves are
obtained. As a general trend, we find short waves always
suffer from such singular behavior and long waves do not.
This is illustrated for some select combinations of J𝑅𝜂K and
J𝑅𝜆K in appendix §C.4.

6. Conclusions
In [20], the role of elasticity on the formation of fingering

instability is studied in a rectilinear Hele-Shaw cell where an
UCM fluid is displaced by a Newtonian fluid. Bearing the
same purpose, this article further generalizes the previous
results by replacing the Newtonian fluid by another UCM
fluid. A set of reduced equations is first derived in the thin
gap limit through a proper scaling scheme. These equations
are then linearized about the steady state unidirectional flow
and the method of normal mode is then employed, which
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Figure 9: (a), (b): ℜ{𝜇4} v.s. 𝑘̂ with fixed 𝛽 and J𝑅𝜆K. The solid dots 𝑘̂ = 𝑘̂∙ and the empty circles 𝑘̂ = 𝑘̂◦ are given by (39). (c),
(d): same are done for fixed J𝑅𝜂K and J𝑅𝜆K.

Figure 10: (a): ℜ{𝜇4} v.s. 𝑘̂ with fixed 𝛽 = 2 and J𝑅𝜂K = 0.5. As J𝑅𝜆K increases from −0.9 to 0.9, the curve moves in direction
of the arrow. The solid dots 𝑘̂ = 𝑘̂∙ and the empty circles 𝑘̂ = 𝑘̂◦ are given by (39). (b): the same is done with 𝛽 = 5.

in turn leads to an eigenvalue relation in the form of a
quartic equation with the temporal growth rate given by
the roots of the quartic polynomial. In the special case of
UCM displacing air or viscous Newtonian, the polynomial
becomes quadratic or cubic respectively.

The elastic effect of the displacing layer always has
a destabilizing effect and can introduce additional singu-
larities. In the classical Saffman-Taylor case, the flow is
stable to small disturbances of all wavelengths if and only
if 𝜂𝑟∕𝜂𝑙 ≤ 1. If 𝜂𝑟∕𝜂𝑙 > 1, long waves become unstable but
short waves are stabilized due to interfacial tension effect.
In our study, viscous effect is still the dominant mechanism
in determining the long wave stability (stable if 𝜂𝑟∕𝜂𝑙 ≤ 1).
However, the short waves are always unstable (wavelength

shorter than 𝜆𝑙⟨𝑈∗
⟩). This is a result of elastic effect because

it happens for all values of 𝜂𝑟∕𝜂𝑙, and interfacial tension
does not remove this instability. The simplest physical ex-
planation for this destabilizing effect is that the fluids do not
have sufficient time to fully relax (𝐷𝑒 ∼ 𝑂(1)) to dissipate
the elastic energy stored over a short length scale, which
is then transferred to the interface thus creating additional
instability on top of the usual fingering instability induced by
viscosity contrasts. In addition, short wave disturbances also
suffer from up to three types singular behaviors described in
(i)-(iii) below, all of which are associated with elastic effects.
It should be noted such singular behaviors are also found in
[20], but the newly introduced elasticity of the displacing
layer has significant effect on where they happen.
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Figure 11: (a): 𝜇† v.s. 𝛽 at J𝑅𝜂K = 0.3, 0.5, 0.7, 0.9 are shown with fixed J𝑅𝜆K = −0.9. (b),(c),(d): same are done for
J𝑅𝜆K = −0.5, 0.5, 0.9 respectively.

1. There exists infinitely many isolated wavenumbers at
which the velocity disturbance becomes unbounded.
The wavelengths of such singular waves are propor-
tional to 𝜆𝑙⟨𝑈∗

⟩ or 𝜆𝑟⟨𝑈∗
⟩, and all are contained in the

interval (0, 3max{𝜆𝑙, 𝜆𝑟}⟨𝑈∗
⟩∕4). For a typical Hele-

Shaw flow experiment, these singular wavelengths are
on the order of a millimeter or less.

2. The temporal growth rate can be unbounded at certain
wavenumbers if the 𝜂𝑟∕𝜂𝑙 and the 𝜆𝑟∕𝜆𝑙 fall within a
certain range. This singular behavior strongly resem-
bles a resonance phenomenon, however it can always
be avoided by keeping the flow sufficiently slow.

3. The stress becomes unbounded for short waves, which
can happen even for slow flow. The mathematical
origin of this is similar in nature to the one found in
Rayleigh’s eq. or Orr-Sommerfeld eq. in unbounded
domain [13], which is associated with the continuous
part of the eigen-spectrum. Considering the full initial
value problem may be necessary to resolve such issues
but this is beyond the scope of this paper however we
are making effort on this direction. Another possible
reason is that this is simply a flaw of the UCM model.
In its equivalent microscopic description, the polymer
particles are treated as Hookean dumbbells, which
can be infinitely stretched producing singular stress.
Although UCM model does not take into account the
Newtonian part of the stress contributed by the solvent
which is expected to have certain regularizing effect,

our preliminary findings show the singularity remains
even when the Oldroyd-B model is used instead.

The analysis of this paper shows the formidable mathe-
matical challenges that Hele-Shaw flows involving simplest
type of viscoelastic fluids, namely UCM, pose and how to
overcome these to extract relevant information about these
flows. Different types of singularities lurking in these flows
are strongly associated with elasticity, some of which could
be precursors to singular physical phenomena. In particular,
it quite well known in solid mechanics that large stress can
lead to fractures. For the Deborah regime 𝑂(1) considered
here, the fluid becomes more solid-like from which singular
stress is predicted by the analysis. Although linear theory
cannot predict how such singular behavior will evolve, it can
nonetheless indicate the stress will become very large near
the singular parameter regions. As a result, we believe this
has strong connection to the fractures observed in experi-
ments [25, 49, 32, 46].

This paper sets the foundation for solving Hele-Shaw
type flows involving more realistic fluids such as Oldroyd-B
and fluids with other non-Newtonian properties. The analy-
sis perhaps could be generalized to other industrially relevant
flows within a thin domain. Finally, we mention some future
directions in this area that one can undertake. Extending the
analysis of this paper from UCM to Oldroyd-B fluid is of
practical interest. The next natural step up is to consider a
radial geometry. Many more interesting but certainly more
challenging problems can be considered such as including
more non-Newtonian properties, wetting effects, effect of
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secondary flows near the interface, time dependent injection
rate, variable gap size, flexible walls, or perhaps even with
curvatures in the lateral direction, etc. We have mentioned
here just a few possibilities and readers should be able to
envision many other directions in this area.
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A. UCM displacing Air
In the limits 𝑅𝑙𝜂 , 𝑅𝑙𝜆 → 1 and 𝑅𝑟𝜂 , 𝑅𝑟𝜆 → 0, (31) reduces

to (𝑥𝑙, 𝑦𝑙, 𝑧𝑙 are now evaluated at 𝑅𝑙𝜆 = 1)
𝜇𝑧𝑙(𝜇 + 𝑦𝑙)

(𝜇 + 1 − 2𝑘̂∕3)(𝜇 + 𝑥𝑙)
= 𝛽𝑘̂3 + 2𝑘̂. (40)

After some algebra, (40) can be written as (‘ua’ stands for
UCM and Air) 𝑢𝑎 =

∑2
𝑗=0 𝜇

𝑗𝑓 𝑢𝑎𝑗 (𝑘̂, 𝛽) = 0, where

𝑓 𝑢𝑎2 = 𝑠 − 𝑧𝑙, 𝑓 𝑢𝑎1 = 𝑠(𝑀 𝑙 + 𝑥𝑙) − 𝑦𝑙𝑧𝑙,

𝑓 𝑢𝑎0 = 𝑠𝑀 𝑙𝑥𝑙, 𝑠 = 𝛽𝑘̂3 + 2𝑘̂,

𝛽 = 1∕(𝐶𝑎𝐷𝑒2(3⟨𝑈⟩∕2)3), 𝑀 𝑙 = 1 − 2𝑘̂∕3.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(41)

Let 𝜇𝑢𝑎𝑗 = 𝜇𝑢𝑎𝑗 (𝑘̂, 𝛽) be the 𝑗 = 1, 2 two roots of 𝑢𝑎, and
without loss of generality we assume ℜ{𝜇𝑢𝑎1 } ≤ ℜ{𝜇𝑢𝑎2 }.
The following inequalities (numerically obtained) are impor-
tant to later development

𝑧𝑙 < −3, 1 < 𝑥𝑙, 𝑦𝑙,

|𝑀 𝑙
| < 𝑥𝑙, 𝑦𝑙, 𝑥𝑙 < 𝑀 𝑙 + 𝑘̂.

𝑧𝑙 → −3, 𝑥𝑙, 𝑦𝑙 → 1, as 𝑘̂→ 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(42)

A.1. Stable waveband
By definition, the discriminant of 𝑢𝑎 is given by Δ =

𝑠2(𝑀 𝑙 − 𝑥𝑙)2 − 2𝑧𝑙((𝑀 𝑙 + 𝑥𝑙)𝑦𝑙 − 2𝑀 𝑙𝑥𝑙)𝑠 + (𝑦𝑙𝑧𝑙)2.
Numerical result show 0 < (𝑀 𝑙+𝑥𝑙)𝑦𝑙−2𝑀 𝑙𝑥𝑙, thus Δ > 0
because 𝑧𝑙 < 0 < 𝑠. As a result, 𝜇𝑢𝑎1 and 𝜇𝑢𝑎2 are distinct real.
Since 𝑓 𝑢𝑎2 , 𝑓 𝑢𝑎1 > 0 by (42), it must be 𝜇𝑢𝑎1 < 0. On the other
hand, 𝜇𝑢𝑎2 < 0 if and only if 𝑓 𝑢𝑎0 > 0, which is true if and
only if 𝑀 𝑙 > 0, or equivalently {𝜇𝑢𝑎2 < 0} = {𝑘̂ < 3∕2}.
A.2. Stress singularity

It is clear from the beginning part of §5 that 𝜏𝑥𝑥,𝑙 is
assumed a priori to be integrable across the cell gap 𝑦 ∈
(−1, 1). This requires 𝜓 𝑙 given by (23)4 (with 𝑅𝑙𝜆 = 1) to be

Figure 12: In 𝑘̂− 𝛽 plane, the region where  𝑢𝑎(−𝑀 𝑙 − 𝑘̂) < 0
is labeled Ω1 with boundary curve (dashed) 𝜕Ω1 = {𝛽 = 𝜍1(𝑘̂)},
and  𝑢𝑎(−𝑀 𝑙) > 0 over Ω3 with boundary curve (solid)
𝜕Ω3 = {𝑘̂ = 3∕2}. Over Ω2 ∪ Ω3, 0 ≤  𝑢𝑎(−𝑀 𝑙 − 𝑘̂). Over
Ω1 ∪ Ω2,  𝑢𝑎(−𝑀 𝑙) < 0.

non-zero over 𝑦 ∈ [−1, 1], which true if and only if (with
𝑅𝑙𝜆 = 1)

𝜇 ∉ 𝐼, 𝐼
𝑑𝑒𝑓
= [−𝑀 𝑙 − 𝑘̂, −𝑀 𝑙]. (43)

In other words, if 𝜇 = 𝜇𝑢𝑎𝑗 does not satisfy (43), then
the stress associated with 𝜇𝑢𝑎𝑗 is singular. To see this is an
elastic effect, we may express (43) in dimensional forms
(superscript ∗) 𝜇∗ ∉ [−|𝑘∗|⟨𝑈∗

⟩∕2−1∕𝜆𝑙, |𝑘∗|⟨𝑈∗
⟩−1∕𝜆𝑙],

which is satisfied for any finite 𝜇∗ for sufficiently small 𝜆𝑙.
It can be shown using definition and (42) that
{𝑢𝑎(−𝑀 𝑙 − 𝑘̂) < 0} = {𝛽 < 𝜍1(𝑘̂)},

𝜍1
𝑑𝑒𝑓
= 𝑧𝑙

𝑘̂3
𝑀 𝑙+𝑘̂
𝑘̂

𝑀 𝑙+𝑘̂−𝑦𝑙

𝑀 𝑙+𝑘̂−𝑥𝑙
− 2

𝑘̂2
,

⎫

⎪

⎬

⎪

⎭

(44)

and
{0 < 𝑢𝑎(−𝑀 𝑙)} = {𝑘̂ > 3∕2}. (45)
The sets described by (44) and (45) are some regions in 𝑘̂−𝛽
plane, denoted by Ω1 and Ω3 (both open) respectively with
boundary 𝜕Ω1 = {𝛽 = 𝜍1} and 𝜕Ω3 = {𝑘̂ = 3∕2}. In
figure 12,Ω1 andΩ3 are shown. Since𝜇𝑢𝑎1 and𝜇𝑢𝑎2 are always
real and 𝜇𝑢𝑎1 < 𝜇𝑢𝑎2 , there are four possibilities: only one,
both, or neither of 𝜇𝑢𝑎𝑗 belongs to the interval 𝐼 . In particular
(i) 𝜇𝑢𝑎1 ∉ 𝐼 and 𝜇𝑢𝑎2 ∈ 𝐼 . In other words, only the larger root
of 𝑢𝑎 is contained in the interval 𝐼 , which is true if and only
if 𝑢𝑎(−𝑀 𝑙− 𝑘̂) ≤ 0 ≤ 𝑢𝑎(−𝑀 𝑙), or equivalently Ω1∩Ω3.
But this is empty as the two regions are disjoint, as a result
{𝜇𝑢𝑎1 ∉ 𝐼} ∩ {𝜇𝑢𝑎2 ∈ 𝐼} = ∅.
(ii) 𝜇𝑢𝑎1 ∈ 𝐼 and 𝜇𝑢𝑎2 ∉ 𝐼 . This is true if and only if
𝑢𝑎(−𝑀 𝑙 − 𝑘̂) ≥ 0 ≥ 𝑢𝑎(−𝑀 𝑙), or equivalently {Ω2 ∪
Ω3} ∩ {Ω1 ∪ Ω2} = {Ω2}. As a result {𝜇𝑢𝑎1 ∈ 𝐼} ∩ {𝜇𝑢𝑎2 ∉
𝐼} = {Ω2}.
(iii) 𝜇𝑢𝑎1 , 𝜇𝑢𝑎2 ∈ 𝐼 . This can only happen for 𝑢𝑎(−𝑀 𝑙− 𝑘̂) ≥
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0 and𝑢𝑎(−𝑀 𝑙) ≥ 0 (i.e.Ω3). This is also sufficient because
−𝑀 𝑙 − 𝑘̂ is always negative, and 𝜇𝑢𝑎2 ≥ 0 over Ω3 so
that −𝑀 𝑙 − 𝑘̂ < 𝜇𝑢𝑎2 . In addition, 𝜇1 is always negative,
and −𝑀 𝑙 ≥ 0 over Ω3 so that 𝜇𝑢𝑎1 < −𝑀 𝑙. The case
𝜇𝑢𝑎1 ≤ −𝑀 − 𝑘̂ < −𝑀 𝑙 ≤ 𝜇𝑢𝑎2 is not possible because it
would imply at least one of 𝑢𝑎(−𝑀 𝑙 − 𝑘̂) or 𝑢𝑎(−𝑀 𝑙) is
negative. As a result, {𝜇𝑢𝑎1 , 𝜇𝑢𝑎2 ∈ 𝐼} = {Ω3}.
(iv) 𝜇𝑢𝑎1 , 𝜇𝑢𝑎2 ∉ 𝐼 . This can be obtained through set manipu-
lations
{𝜇𝑢𝑎1 , 𝜇

𝑢𝑎
2 ∉ 𝐼} = {{𝜇𝑢𝑎1 ∈ 𝐼} ∪ {𝜇𝑢𝑎2 ∈ 𝐼}}𝑐

={{{𝜇𝑢𝑎1 , 𝜇
𝑢𝑎
2 ∈ 𝐼} ∪ {𝜇𝑢𝑎1 ∈ 𝐼 ∌ 𝜇𝑢𝑎2 }}⋯

∪ {{𝜇𝑢𝑎2 , 𝜇
𝑢𝑎
1 ∈ 𝐼} ∪ {𝜇𝑢𝑎2 ∈ 𝐼 ∌ 𝜇1}}}𝑐

={{Ω3 ∪ Ω2} ∪ {Ω3 ∪ ∅}}𝑐 = {Ω3 ∪ Ω2}𝑐

={Ω1}. (46)

B. UCM displacing Newtonian
In the limit 𝑅𝑟𝜆 → 0, we have 𝑥𝑟, 𝑦𝑟,𝑀𝑟 → 1 and

𝑧𝑟 → −3. As a result, (31) reduces to

𝑅𝑙𝜂
𝜇𝑧𝑙(𝜇 + 𝑦𝑙)

(𝜇 + 1 − 2𝑘̂∕3)(𝜇 + 𝑥𝑙)
− 3𝜇𝑅𝑟𝜂 = 𝛽𝑘̂3 − 2𝑘̂J𝑅𝜂K.

After some algebra, above can be written as (‘un’ stands for
UCM and Newtonian) 𝑢𝑛 =

∑3
𝑗=0 𝜇

𝑗𝑓 𝑢𝑛𝑗 (𝑘̂, J𝑅𝜂K, 𝛽) = 0,
where

𝑓 𝑢𝑛3 = 3(1 + J𝑅𝜂K)∕2,

𝑓 𝑢𝑛2 = 𝑠 + 𝑓 𝑢𝑛3 (𝑀 𝑙 + 𝑥𝑙) + 𝑧𝑙(𝑓 𝑢𝑛3 ∕3 − 1),

𝑓 𝑢𝑛1 = 𝑠(𝑀 𝑙 + 𝑥𝑙) + 𝑓 𝑢𝑛3 𝑀
𝑙𝑥𝑙 + 𝑦𝑙𝑧𝑙(𝑓 𝑢𝑛3 ∕3 − 1),

𝑓 𝑢𝑛0 = 𝑠𝑀 𝑙𝑥𝑙, 𝑠 = 𝛽𝑘̂3 − 2𝑘̂J𝑅𝜂K,

𝛽 = 1
𝐶𝑎𝐷𝑒2(3⟨𝑈⟩∕2)3 , 𝑀 𝑙 = 1 − 2𝑘̂∕3.

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(47)

Denote by 𝜇𝑢𝑛𝑗 = 𝜇𝑢𝑛𝑗 (𝑘̂, J𝑅𝜂K, 𝛽) for 𝑗 = 1, 2, 3 the three
roots of 𝑢𝑛. Without loss of generality, we may assume
ℜ{𝜇𝑢𝑛1 } ≤ ℜ{𝜇𝑢𝑛2 } ≤ ℜ{𝜇𝑢𝑛3 }. The following (numerically
obtained) are important to later development
𝑧𝑙 < −3, 1 < 𝑥𝑙, 𝑦𝑙, |𝑀 𝑙

| < 𝑥𝑙, 𝑦𝑙. (48)
B.1. Stable waveband

By definition, for J𝑅𝜂K ∈ (−1, 1)

𝑓 𝑢𝑛3 ∕3 − 1 < 0 < 𝑓 𝑢𝑛3 . (49)
In the long wave limit 𝑘̂ → 0, we have 𝑥𝑙, 𝑦𝑙 → 1 and
𝑧𝑙 → −3, which in turn gives 𝜇𝑢𝑛1 → −3𝑓 𝑢𝑛3 , 𝜇𝑢𝑛2 → −1
and 𝜇𝑢𝑛3 → 0. Since 𝜇𝑢𝑛1 , 𝜇𝑢𝑛2 < 0 for sufficiently small 𝑘̂ by
continuity, and ∏3

𝑗=1 𝜇
𝑢𝑛
𝑗 = −𝑓 𝑢𝑛0 ∕𝑓 𝑢𝑛3 by Vieta, it must be

(because 𝑓 𝑢𝑛3 > 0) 𝜇𝑢𝑛3 < 0 for small 𝑘̂ if and only if 𝑓 𝑢𝑛0 > 0
for small 𝑘̂. By definition of 𝑓 𝑢𝑛0 and (48), we conclude (i)
if J𝑅𝜂K ≤ 0, then 𝜇𝑢𝑛3 < 0 for small 𝑘̂, i.e. long waves are
stable, and (ii) if J𝑅𝜂K > 0, then 𝜇𝑢𝑛3 > 0 for small 𝑘̂, i.e.
long waves are unstable.

For 𝑘̂ bounded away from 0, the Routh-Hurwitz criterion
states 𝜇𝑢𝑛3 < 0 if and only if
𝑓 𝑢𝑛0 > 0, 𝑓 𝑢𝑛2 > 0, 𝑓 𝑢𝑛2 𝑓

𝑢𝑛
1 − 𝑓 𝑢𝑛0 𝑓

𝑢𝑛
3 > 0. (50)

By definitions and (48)
{𝑓 𝑢𝑛0 > 0} = {𝛽 > 𝜍0 | 𝑘̂ < 3∕2} ∪ {𝛽 < 𝜍0 | 𝑘̂ > 3∕2},

{𝑓 𝑢𝑛2 > 0} = {𝛽 > 𝜍2},

{𝑓 𝑢𝑛2 𝑓
𝑢𝑛
1 − 𝑓 𝑢𝑛0 𝑓

𝑢𝑛
3 > 0} = { > 0},

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(51)
where
𝜍0 =

2J𝑅𝜂K
𝑘̂2

, 𝜍2 = −𝑓3(𝑀 𝑙+𝑥𝑙)+𝑧𝑙(𝑓3∕3−1)
𝑘̂3

+ 𝜍0,

 = 𝑔2𝑘̂6𝛽2 + (𝑔1 − 2𝑔2𝑘̂3𝜍0)𝑘̂3𝛽⋯
+(𝑔2𝑘̂6𝜍20 − 𝑔1𝑘̂

3𝜍0 + 𝑔0),

𝑔2 =𝑀 𝑙 + 𝑥𝑙,

𝑔1 = 𝑓3(𝑀 𝑙 + 𝑥𝑙)2⋯
+𝑧𝑙(𝑓3∕3 − 1)(𝑀 𝑙 + 𝑥𝑙 + 𝑦𝑙),

𝑔0 = (𝑓3(𝑀 𝑙 + 𝑥𝑙) + 𝑧𝑙(𝑓3∕3 − 1))⋯
×(𝑓3𝑀 𝑙𝑥𝑙 + 𝑦𝑙𝑧𝑙(𝑓3∕3 − 1)).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(52)

First J𝑅𝜂K ≤ 0. Since 𝜍0 ≤ 0 by definition, the second part
of the union of (51)1 is empty (as 𝛽 > 0), and the first part
holds for all 𝛽 > 0. In other words, 𝑘̂ < 3∕2 is necessary
for ℜ{𝜇𝑢𝑛3 } < 0. To show this is also sufficient, we need to
verify 𝛽 > 𝜍2 and  > 0 for 𝑘̂ < 3∕2. Since 𝜍0 ≤ 0 and by
(49) and (48) we have 𝜍2 < 0, thus 𝛽 > 𝜍2 for all 𝛽 > 0. By
(49) and (48), 𝑔1, 𝑔2 > 0. On the other hand, 𝑘̂ < 3∕2 (so
that 𝑀 𝑙 > 0) implies 𝑔0 > 0. Since 𝜍0 ≤ 0, we have  > 0
for all 𝛽 > 0. In summary
{ℜ{𝜇𝑢𝑛3 } < 0 | J𝑅𝜂K ≤ 0} = {𝑘̂ < 3∕2}.

Now consider J𝑅𝜂K > 0 (displaced fluid is more viscous). In
this case, it is convenient to write (50) as the union of
{𝛽 > 𝜍0 | 𝑘̂ < 3∕2} ∩ {𝛽 > 𝜍2} ∩ { > 0}, (53)
and
{𝛽 < 𝜍0 | 𝑘̂ > 3∕2} ∩ {𝛽 > 𝜍2} ∩ { > 0}. (54)
First consider (53). Notice {𝛽 > 𝜍0 | 𝑘̂ < 3∕2} ⊂ {𝛽 > 𝜍2}because 𝜍0 > 𝜍2 by (49) and (48). Now we show {𝛽 >
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𝜍0 | 𝑘̂ < 3∕2} ⊂ { > 0}. Since  is quadratic in 𝛽, its
two roots can be easily obtained and given by

𝛽1 =
−𝑔1−(𝑔21−4𝑔0𝑔2)

1∕2

2𝑔2𝑘̂3
+ 𝜍0,

𝛽2 =
−𝑔1+(𝑔21−4𝑔0𝑔2)

1∕2

2𝑔2𝑘̂3
+ 𝜍0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(55)

Since 𝑔2 > 0 by (48),  > 0 for all 𝛽 > 0 if 𝑔21 − 4𝑔0𝑔2 < 0.
If 𝑔21 − 4𝑔0𝑔2 ≥ 0, then 𝜍0 ≥ 𝛽2 for 𝑘̂ < 3∕2 if and only if
(𝑔21 − 4𝑔0𝑔2)1∕2 ≤ 𝑔1, which is true because 𝑔2, 𝑔1, 𝑔0 ≥ 0
by (49) and (48), thus (53) is equivalent to
{𝛽 > 𝜍0 | 𝑘̂ < 3∕2}. (56)
Now consider (54). It can be shown directly using the
definitions that
𝑔21 − 4𝑔0𝑔2 = (𝑓3(𝑀 𝑙 + 𝑥𝑙)2 + 𝑧𝑙(𝑓3∕3 − 1)(𝑀 𝑙 + 𝑥𝑙 − 𝑦𝑙))2⋯

− 4(𝑀 𝑙 + 𝑥𝑙)(𝑓3(𝑀 𝑙 + 𝑥𝑙) + 𝑧𝑙(𝑓3∕3 − 1))𝑓3𝑀 𝑙𝑥𝑙.

Since 𝑘̂ > 3∕2 (so that 𝑀 𝑙 < 0), we have 𝑔21 −4𝑔0𝑔2 > 0 by
(49) and (48). As a result, (54) is equivalent to the union of
{𝛽 < 𝜍0 | 𝑘̂ > 3∕2} ∩ {𝛽 > 𝜍2} ∩ {𝛽 > 𝛽2}, (57)
and
{𝛽 < 𝜍0 | 𝑘̂ > 3∕2} ∩ {𝛽 > 𝜍2} ∩ {𝛽 < 𝛽1}. (58)
Notice |𝛽=𝜍2 = (𝑓3(𝑀 𝑙 + 𝑥𝑙) + 𝑧𝑙(𝑓3∕3 − 1))𝑓3𝑀 𝑙𝑥𝑙

is negative for 𝑘̂ > 3∕2 by (49) and (48). This implies
𝛽1 ≤ 𝜍2 ≤ 𝛽2 for 𝑘̂ > 3∕2, which in turn implies (58) is
empty and (57) is equivalent to {𝛽2 < 𝛽 < 𝜍0 | 𝑘̂ > 3∕2}.
As a result, (50) (provided J𝑅𝜂K > 0) is simply the union of
the last set and (56). In summary
{ℜ{𝜇𝑢𝑛3 } < 0 | J𝑅𝜂K > 0}

={𝛽 > 𝜍0 | 𝑘̂ < 3∕2} ∪ {𝛽2 < 𝛽 < 𝜍0 | 𝑘̂ > 3∕2}.

B.2. Stress singularity
Similar to the special case of UCM displacing air dis-

cussed in §5.1 and Appendix.A.2, the stress associated with
𝜇𝑢𝑛𝑗 is singular if 𝜇𝑢𝑛𝑗 ∈ 𝐼 = [−𝑀 𝑙 − 𝑘̂, −𝑀 𝑙], which
represents some volume regions in the 𝑘̂−𝛽−J𝑅𝜂K space. For
a few select J𝑅𝜂K values, the cross-section of these singular
regions are shown for 𝜇𝑢𝑛1 , 𝜇𝑢𝑛2 and 𝜇𝑢𝑛3 in figure 13. Due
to the complexity of the polynomial coefficients and the
number of parameters involved, no exact expressions of the
boundary curves are obtained. The main finding is as follows

• For sufficiently long waves (small 𝑘̂), 𝜇𝑢𝑛𝑗 ∉ 𝐼 for all
𝑗 = 1, 2, 3 and J𝑅𝜂K and 𝛽.

• For J𝑅𝜂K ≲ 1∕2, 𝜇𝑢𝑛1 ∉ 𝐼 for all 𝛽. For large J𝑅𝜂K and
small 𝛽, there can be multiple disjoint intervals of 𝑘̂
over which 𝜇𝑢𝑛1 ∈ 𝐼 (see figure 13(a)). As 𝛽 becomes
larger, all such intervals shrink in size and eventually
disappear (the threshold 𝛽 value at which this happens
decreases as J𝑅𝜂K decreases).

• For large J𝑅𝜂K and small 𝛽, there can be multiple
disjoint intervals of 𝑘̂ over which 𝜇𝑢𝑛2 ∈ 𝐼 (see
figure 13(b)). Increasing 𝛽 or decreasing J𝑅𝜂K does
not eliminate this and 𝜇𝑢𝑛2 ∈ 𝐼 as 𝑘̂ becomes large
enough.

• For all J𝑅𝜂K and almost all 𝛽, 𝜇𝑢𝑛3 ∈ 𝐼 as soon as 𝑘̂
becomes larger than 3∕2 (see figure 13(c)).

C. UCM displacing UCM
After some algebra, (31) can be rewritten as,  =

∑4
𝑗=0 𝜇

𝑗𝑓𝑗(𝑘̂, J𝑅𝜂K, J𝑅𝜆K, 𝛽) = 0 where

𝑓4 = (𝑅𝑙𝜆𝑅
𝑟
𝜂𝑧
𝑟 + 𝑅𝑟𝜆𝑅

𝑙
𝜂𝑧
𝑙)𝑅𝑙𝜆𝑅

𝑟
𝜆 − 𝑠(𝑅

𝑟
𝜆𝑅

𝑙
𝜆)

2,

𝑓3 = (𝑅𝑟𝜆𝑥̂
𝑙 + 𝑅𝑙𝜆𝑦

𝑟)𝑅𝑙𝜆𝑅
𝑟
𝜂𝑧
𝑟⋯

+(𝑅𝑙𝜆𝑥̂
𝑟 + 𝑅𝑟𝜆𝑦

𝑙)𝑅𝑟𝜆𝑅
𝑙
𝜂𝑧
𝑙 − 𝑠𝑅𝑟𝜆𝑅

𝑙
𝜆(𝑅

𝑟
𝜆𝑥̂

𝑙 + 𝑅𝑙𝜆𝑥̂
𝑟),

𝑓2 = (𝑅𝑙𝜆𝑥̂
𝑙𝑦𝑟 + 𝑅𝑟𝜆𝑥̌

𝑙)𝑅𝑟𝜂𝑧
𝑟⋯

+(𝑅𝑟𝜆𝑥̂
𝑟𝑦𝑙 + 𝑅𝑙𝜆𝑥̌

𝑟)𝑅𝑙𝜂𝑧
𝑙 − 𝑠(𝑅𝑙𝜆𝑅

𝑟
𝜆𝑥̂

𝑙𝑥̂𝑟 + 𝑅𝑟,2𝜆 𝑥̌
𝑙 + 𝑅𝑙,2𝜆 𝑥̌

𝑟),

𝑓1 = 𝑥̌𝑙𝑦𝑟𝑅𝑟𝜂𝑧
𝑟 + 𝑥̌𝑟𝑦𝑙𝑅𝑙𝜂𝑧

𝑙 − 𝑠(𝑅𝑙𝜆𝑥̂
𝑙𝑥̌𝑟 + 𝑅𝑟𝜆𝑥̂

𝑟𝑥̌𝑙),

𝑓0 = −𝑠𝑥̌𝑙𝑥̌𝑟,

𝑥̌𝑙 =𝑀 𝑙𝑥𝑙, 𝑥̌𝑟 =𝑀𝑟𝑥𝑟,

𝑥̂𝑙 =𝑀 𝑙 + 𝑥𝑙, 𝑥̂𝑟 =𝑀𝑟 + 𝑥𝑟.

𝑀 𝑙 = 1 − 2𝑅𝑙𝜆𝑘̂∕3, 𝑀𝑟 = 1 + 2𝑅𝑟𝜆𝑘̂∕3,

𝛽 = 1∕(𝐶𝑎𝐷𝑒2(3⟨𝑈⟩∕2)3), 𝑠 = 𝛽𝑘̂3 − 2𝑘̂J𝑅𝜂K

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(59)
Denote by {𝜇𝑗}4𝑗=1 the four roots of  . Without loss of
generality, we may assume ℜ{𝜇1} ≤ ℜ{𝜇2} ≤ ℜ{𝜇3} ≤
ℜ{𝜇4}. Numerical results show

𝑧𝑙 < 0, 1 < 𝑥𝑙, 𝑦𝑙, 𝑧𝑟 < 0 < 𝑥𝑟.

𝑥𝑟, 𝑥𝑙, 𝑦𝑟, 𝑦𝑙 → 1, 𝑧𝑟, 𝑧𝑙 → −3, as 𝑘̂→ 0.

⎫

⎪

⎬

⎪

⎭

(60)

C.1. Long wave stability
Viscous effect is still the dominant mechanism in de-

termining stability for long waves. If the displacing fluid is
more or equally viscous than the displaced fluid (J𝑅𝜂K ≤ 0),
the flow is stable to sufficiently long wave, and unstable if
the displaced fluid is more viscous (J𝑅𝜂K > 0). This can be
seen by examining the sign of ℜ{𝜇4} for sufficiently small
𝑘̂.

Let 𝑓 ∗
𝑗 s be the limits of 𝑓𝑗s as 𝑘̂ → 0. By definitions

(59) and (60), it is straightforward to show that 𝑓 ∗
4 =

−3(𝑅𝑙𝜆𝑅
𝑟
𝜂 +𝑅

𝑟
𝜆𝑅

𝑙
𝜂)𝑅

𝑙
𝜆𝑅

𝑟
𝜆, 𝑓 ∗

3 = −3(𝑅𝑙𝜆𝑅
𝑟
𝜂 +𝑅

𝑟
𝜆𝑅

𝑙
𝜂 +𝑅

𝑙
𝜆𝑅

𝑟
𝜆),
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Figure 13: The region where 𝜇𝑢𝑛1 ∈ 𝐼 is shown in 𝑘̂ − 𝛽 plane with select J𝑅𝜂K values.

𝑓 ∗
2 = −3(𝑅𝑙𝜆𝑅

𝑟
𝜂 + 𝑅𝑟𝜆𝑅

𝑙
𝜂 + 1), 𝑓 ∗

1 = −3 and 𝑓 ∗
0 = 0.

As a result,  𝑘̂→0
→ ∗, where ∗ = 𝜇(𝑓 ∗

4 𝜇
3 + 𝑓 ∗

3 𝜇
2 +

𝑓 ∗
2 𝜇 + 𝑓 ∗

1 ). Evidently, {𝜇𝑗}4𝑗=1 must converge to the four
roots of ∗, denoted by {𝜇∗𝑗 }

4
𝑗=1. It can be shown {𝜇∗𝑗 }

3
𝑗=1 =

{−1∕𝑅𝑙𝜆, −1∕(𝑅
𝑙
𝜆𝑅

𝑟
𝜂 +𝑅

𝑟
𝜆𝑅

𝑙
𝜂), −1∕𝑅

𝑟
𝜆} and 𝜇∗4 = 0. Since

the limits of 𝜇𝑗 for 𝑗 = 1, 2, 3 are negative as 𝑘̂ → 0, they
remain negative for small 𝑘̂ by continuity. Since ∏3

𝑗=1 𝜇𝑗 <
0 for small 𝑘̂ and ∏4

𝑗=1 𝜇𝑗 = 𝑓0∕𝑓4, the sign of 𝜇4 is the
same as −𝑓0∕𝑓4 for small 𝑘̂. Since 𝑓4 < 0 for small 𝑘̂, the
sign of 𝜇4 is the same as 𝑓0 ∶= −𝑠𝑥̌𝑙𝑥̌𝑟 for small 𝑘̂, which is
the same as that of −𝑠 because 𝑥̌𝑙𝑥̌𝑟 𝑘̂→0

→ 1. By definition of
𝑠, we conclude 𝜇4 < 0 for small 𝑘̂ if and only if J𝑅𝜂K ≤ 0.

For 𝑘̂ bounded away from 0, we will consider J𝑅𝜂K ≤ 0
and J𝑅𝜂K > 0 separately in §C.2 and §C.3.
C.2. Displacing fluid is more viscous: J𝑅𝜂K ≤ 0

By Routh-Hurwitz criterion, ℜ{𝜇4} < 0 if and only if

𝑓3∕𝑓4 > 0, 𝑓1∕𝑓4 > 0,

𝑓0∕𝑓4 > 0, (𝑓3𝑓2𝑓1 − 𝑓 2
1 𝑓4 − 𝑓

2
3 𝑓0)∕𝑓

3
4 > 0.

⎫

⎪

⎬

⎪

⎭

(61)

Since 𝑠 > 0 for J𝑅𝜂K ≤ 0 and 𝑧𝑙, 𝑧𝑟 < 0, it follows from
definition that 𝑓4 < 0, thus (61) becomes
𝑓3, 𝑓1, 𝑓0, 𝑓3𝑓2𝑓1 − 𝑓 2

1 𝑓4 + 𝑓
2
3 𝑓0 < 0. (62)

Since 𝑥̌𝑟 ∶= 𝑀𝑟𝑥𝑟 > 0, and 𝑠 > 0, we have 𝑓0 < 0 ∶⇔
𝑥̌𝑙 > 0. In other words, ℜ{𝜇4} ≥ 0 if 𝑥̌𝑙 ≤ 0. Since 𝑥𝑙 > 0,
𝑥̌𝑙 ∶= 𝑀 𝑙𝑥𝑙 ≤ 0 ⇔ 𝑀 𝑙 ∶= 1 − 2𝑅𝑙𝜆𝑘̂∕3 ≤ 0. As a result,
ℜ{𝜇4} ≥ 0 if 𝑘̂ ≥ 3∕(2𝑅𝑙𝜆). For 𝑘̂ < 3∕(2𝑅𝑙𝜆), numerical
result shows (62) holds (so that ℜ{𝜇4} < 0) for all 𝛽 and
J𝑅𝜆K (provided J𝑅𝜂K ≤ 0), thus the marginal curve is simply
given by 𝑘̂ = 3∕(2𝑅𝑙𝜆).
C.3. Displaced fluid is more viscous: J𝑅𝜂K > 0
C.3.1. Resonance

In Appendix.C.1, it has been established that 𝑓4 < 0
for small 𝑘̂ regardless the values of J𝑅𝜂K, J𝑅𝜆K and 𝛽. If,
as 𝑘̂ increases, 𝑓4 vanishes at some 𝑘̂ = 𝑘̂∗(J𝑅𝜂K, J𝑅𝜆K, 𝛽)(there can be multiple solutions to 𝑓4 = 0 in general but
we consider only the smallest 𝑘̂∗ value), then at least one of
{𝜇𝑗}4𝑗=1 must become unbounded as 𝑘̂ → 𝑘̂∗ (because they
are polynomial roots). Numerical result shows 𝑓3|𝑘̂=𝑘̂∗ > 0
(see Remark below for a justification), thus  can at most
degenerate to a cubic polynomial rather than quadratic at
𝑘̂ = 𝑘̂∗. This implies only one of 𝜇𝑗s will diverge as 𝑘̂ → 𝑘̂∗,
and must diverge along the real line (otherwise there must
be two roots diverging to infinity as complex conjugates but
 cannot degenerate to quadratic). To determine whether it
diverges to −∞ or +∞, we notice 𝑓4 < 0 for 𝑘̂ ∈ (0, 𝑘̂∗) and
𝑓3 > 0 at 𝑘̂ = 𝑘̂∗, thus 𝑓3∕𝑓4 < 0 over 𝑘̂ ∈ (𝑘̂∗ − 𝜖, 𝑘̂∗) for
sufficiently small 𝜖. Since only one of the roots diverges, it
must diverge to +∞ as 𝑘̂→ 𝑘̂−∗ because ∑4

𝑗=1 𝜇𝑗 = −𝑓3∕𝑓4by Vieta (the sum is positive and dominated by the diverging
root near 𝑘̂∗).
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By definition, 𝑓4 ≤ 0 if and only if 𝛽 ≥ 𝜍, where

𝜍
𝑑𝑒𝑓
= (𝑅𝑟𝜂𝑧

𝑟∕𝑅𝑟𝜆 + 𝑅
𝑙
𝜂𝑧
𝑙∕𝑅𝑙𝜆 + 2𝑘̂J𝑅𝜂K)∕𝑘̂3 (63)

As a result, 𝑓4 < 0 for all 𝑘̂ if and only if 𝛽 > 𝛽∗(J𝑅𝜂K, J𝑅𝜆K),
where 𝛽∗ 𝑑𝑒𝑓

= max𝑘̂ 𝜍(𝑘̂, J𝑅𝜂K, J𝑅𝜆K). In other words, 𝜇4 →

+∞ as 𝑘̂→ 𝑘̂∗ if 𝛽 ≤ 𝛽∗.
Remark: It can be shown 𝑓3|𝑘̂=𝑘̂∗ = 𝑅𝑙,2𝜆 𝑅

𝑟
𝜂(𝑦

𝑟 − 𝑥̂𝑟)𝑧𝑟 +
𝑅𝑟,2𝜆 𝑅

𝑙
𝜂(𝑦

𝑙−𝑥̂𝑙)𝑧𝑙|𝑘̂=𝑘̂∗ . The first term is always positive, thus
𝑓3|𝑘̂=𝑘̂∗ > 0 if and only if

𝑅𝑟𝜂∕𝑅
𝑙
𝜂 > −(𝑅𝑟𝜆∕𝑅

𝑙
𝜆)

2 (𝑦𝑙 − 𝑥̂𝑙)𝑧𝑙

(𝑦𝑟 − 𝑥̂𝑟)𝑧𝑟
|

|

|

|𝑘̂=𝑘̂∗
.

The right hand side of the above inequality is a function
of 𝑘̂ and J𝑅𝜆K whose maximum is approximately 2.333,
thus the inequality holds if 𝑅𝑟𝜂∕𝑅𝑙𝜂 ≳ 2.333 (equivalently
J𝑅𝜂K ≳ 0.4). Since 𝑓4 = 0 can only occur for J𝑅𝜂K ≳ 0.797,
thus the inequality holds so that 𝑓3 > 0 whenever 𝑓4 = 0.
C.3.2. Stable waveband

For 𝛽 ≳ 1.113, 𝑓4 < 0 always, thus Routh-Hurwitz
criterion (61) states ℜ{𝜇4} < 0 iff 𝑓3, 𝑓1, 𝑓0, 𝑓3𝑓2𝑓1 −
𝑓 2
1 𝑓4 − 𝑓

2
3 𝑓0 < 0. Since 𝑀𝑟, 𝑥𝑙, 𝑥𝑟 > 0, then by definition

𝑓0 < 0 iff 𝑘̂ ∈ (min{𝑘̂◦, 𝑘̂∙},max{𝑘̂◦, 𝑘̂∙}), where 𝑘̂∙ =
3∕(2𝑅𝑙𝜆) and 𝑘̂◦ = (2J𝑅𝜂K∕𝛽)1∕2. By definition, 𝑘̂◦ < 𝑘̂∙ iff
8𝑅𝑙,2𝜆 J𝑅𝜂K∕9 < 𝛽 and the left hand side of the last inequality
is at most 8∕9, thus it holds for 𝛽 ≳ 1.113. In other words,
the stable wave range (ℜ{𝜇4} < 0) must be contained in the
interval (𝑘̂◦, 𝑘̂∙) because 𝑓0 ≥ 0 otherwise. In fact, numerical
results show the whole interval contains only stable waves,
thus the marginal curves are given by 𝑘̂ = 𝑘̂◦ and 𝑘̂ = 𝑘̂∙.
C.4. Stress singularity

It is clear from the beginning part of §5 that 𝜏𝑥𝑥,𝑙 and
𝜏𝑥𝑥,𝑟 are assumed a priori to be integrable across the cell gap
𝑦 ∈ (−1, 1), which requires 𝜓 𝑙 and 𝜓𝑟 given by (23)4 and
(24)4 to be non-zero over 𝑦 ∈ [−1, 1]. In particular, 𝜓 𝑙 ≠ 0
for 𝑦 ∈ [−1, 1] iff

𝜇 ∉ [𝑊 𝑙
1 , 𝑊

𝑙
2 ],

𝑊 𝑙
1 = −𝑘̂∕3 − 1∕𝑅𝑙𝜆, 𝑊 𝑙

2 = 2𝑘̂∕3 − 1∕𝑅𝑙𝜆.

⎫

⎪

⎬

⎪

⎭

(64)

Similarly, 𝜓𝑟 ≠ 0 for 𝑦 ∈ [−1, 1] iff

𝜇 ∉ [𝑊 𝑟
1 , 𝑊

𝑟
2 ],

𝑊 𝑟
1 = −2𝑘̂∕3 − 1∕𝑅𝑟𝜆, 𝑊 𝑟

2 = 𝑘̂∕3 − 1∕𝑅𝑟𝜆.

⎫

⎪

⎬

⎪

⎭

(65)

As a result, 𝜓 𝑙, 𝜓𝑟 ≠ 0 over 𝑦 ∈ [−1, 1] iff
𝜇 ∉ 𝑊 , 𝑊 = [𝑊 𝑙

1 , 𝑊
𝑙
2 ] ∪ [𝑊 𝑟

1 , 𝑊
𝑟
2 ]. (66)

In other words, if 𝜇 = 𝜇𝑗 does not satisfy (66), then the
stress associated with 𝜇𝑗 is singular. To see this is an effect
of elasticity, we may express (64) in dimensional forms
(superscript ∗) 𝜇∗ ∉ [−|𝑘∗|⟨𝑈∗

⟩∕2−1∕𝜆𝑙, |𝑘∗|⟨𝑈∗
⟩−1∕𝜆𝑙],

which is satisfied for any finite 𝜇∗ if 𝜆𝑙 → 0. Similarly,
dimensional form of (65) is given by 𝜇∗ ∉ [−|𝑘∗|⟨𝑈∗

⟩ −
1∕𝜆𝑟, |𝑘∗|⟨𝑈∗

⟩∕2 − 1∕𝜆𝑟], which is satisfied if 𝜆𝑟 → 0.
Now we show the singular regions for 𝑗 = 1, 2, 3, 4 using

the rheological data from the experiments of [32], where the
authors used six UCM-like fluids with different viscosities 𝜂
and relaxation times 𝜆. A linear fit among the provided data
gives 𝜆̂ = 0.2435𝜂̂ + 1.4678, where 𝜂̂ and 𝜆̂ are the values
of 𝜂 and 𝜆measured in𝑁𝑠∕𝑚2 and 10−1𝑠. According to this
linear relation, we compute 𝜆̂ for fixed 𝜂̂ at 1, 5 and 10 to
obtain
(𝜂̂, 𝜆̂) = (1, 1.7113), (5, 2.6853), (10, 3.9028). (67)
If (𝜂̂𝑙, 𝜆̂𝑙) = (67)1 and (𝜂̂𝑟, 𝜆̂𝑟) = (67)2, then the associated
J𝑅𝜂K and J𝑅𝜆K can be computed. By choosing all possible
combinations from (67), we obtain

(J𝑅𝜂K, J𝑅𝜆K) =

⎧

⎪

⎨

⎪

⎩

−(1∕3, 0.185), −(2∕3, 0.2215),
−(0.82, 0.39), (1∕3, 0.185),
(2∕3, 0.2215), (0.82, 0.39).

(68)

1. For (J𝑅𝜂K, J𝑅𝜆K) given by (68)1, (68)2 or (68)3, we
find for 𝛽 ∈ (0, 100)

• 𝜇1, 𝜇2, 𝜇3 ∉ 𝑊 for all 𝑘̂
• 𝜇4 ∉ 𝑊 only upto 𝑘̂ = 𝑘̂∙ ∶= 3∕(1 − J𝑅𝜆K).

2. For (J𝑅𝜂K, J𝑅𝜆K) given by (68)4, we find
• 𝜇1 ∉ 𝑊 for 𝛽 ∈ (0, 100).
• 𝜇2, 𝜇3 ∉ 𝑊 if 𝛽 ≲ 23. For larger 𝛽 values,
𝜇2, 𝜇3 ∉ 𝑊 only for 𝑘̂ up to some 𝛽 dependent
value. See figure 14a.

• for 𝛽 ≲ 87, 𝜇4 ∉ 𝑊 up to 𝑘̂ = 𝑘̂∙ ∶=
3∕(1 − J𝑅𝜆K) ≈ 3.68. For larger 𝛽 values, there
is another branch over which 𝜇4 ∈ 𝑊 . See
figure 14b.

3. For (J𝑅𝜂K, J𝑅𝜆K) given by (68)5, we find
• 𝜇1 ∉ 𝑊 for 𝛽 ∈ (0, 100).
• 𝜇2, 𝜇3 ∉ 𝑊 if 𝛽 ≲ 10.4. For larger 𝛽 values,
𝜇2, 𝜇3 ∉ 𝑊 only for 𝑘̂ up to some 𝛽 dependent
value. See figure 15a.

• for 𝛽 ≲ 10.4, 𝜇4 ∈ 𝑊 up to 𝑘̂ = 𝑘̂∙ ∶=
3∕(1 − J𝑅𝜆K) ≈ 3.85. For larger 𝛽 values, there
is another branch over which 𝜇4 ∈ 𝑊 . See
figure 15b.

4. For (J𝑅𝜂K, J𝑅𝜆K) given by (68)6, we find
• 𝜇1 ∉ 𝑊 if 𝛽 ≲ 9.3. For larger 𝛽 values, 𝜇1 ∉ 𝑊

only for 𝑘̂ up to some 𝛽 dependent value. See
figure 16a.
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Figure 14: For (J𝑅𝜂K, J𝑅𝜆K) = (1∕3, 0.185), the regions where
𝜇𝑗 ∈ 𝑊 are shown.

Figure 15: For (J𝑅𝜂K, J𝑅𝜆K) = (2∕3, 0.2215), the region where
𝜇𝑗 ∈ 𝑊 is shown.

• 𝜇2, 𝜇3 ∉ 𝑊 if 𝛽 ≲ 4.5. For larger 𝛽 values,
𝜇2, 𝜇3 ∉ 𝑊 only for 𝑘̂ up to some 𝛽 dependent
value. See figure 16b.

• 𝜇4 ∉ 𝑊 for 𝑘̂ up to some 𝛽 dependent value.
See figure 16c.
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