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Abstract

We develop analysis based fast and accurate direct algorithms for several biharmonic
problems in a unit disk derived directly from the Green’s functions of these problems, and
compare the numerical results with the “decomposition” algorithms (see [17]) in which the
biharmonic problems are first decomposed into lower order problems, most often either into
two Poisson problems or into two Poisson problems and a homogeneous biharmonic problem.
One of the steps in the “decomposition algorithm” as discussed in [17] for solving certain
biharmonic problems uses the “direct algorithm” without which the problem can not be solved.
Using classical Green’s function approach for these biharmonic problems, solutions of these
problems are represented in terms of singular integrals in the complex z—plane (the physical
plane) involving explicitly the boundary conditions. Analysis of these singular integrals using
FFT and recursive relations (RR) in Fourier space leads to the development of these fast
algorithms which are called FFTRR based algorithms. These algorithms do not need to
do anything special to overcome co-ordinate singularity at the origin as often the case when
solving these problems using finite difference methods in polar coordinates. These algorithms
have some other desirable properties such as the ease of implementation and parallel in nature
by construction. Moreover, these algorithms have O(log N) complexity per grid point where
N? is the total number of grid points and have very low constant behind this order estimate
of the complexity. Performance of these algorithms is shown on several test problems. These
algorithms are applied to solving viscous flow problems at low and moderate Reynolds numbers
and numerical results are presented.

1 Introduction

In this paper, we consider boundary value problems for the inhomogeneous complex biharmonic
equation

(azaE)QW = f(Z, 2)’ (1)

in the complex z-plane which is the physical z — y plane through the assignment z = x + iy. Note
that the left hand operator of the above equation is the biharmonic operator A2 in the physical
(real) plane except for a factor of 1/16 (i.e., (9,05)* = A?/16), thus the above equation corresponds
to two uncoupled biharmonic equations in the physical plane provided the inhomogeneous term f
does not depend on the solution w and it can be separated into real and imaginary parts. However,
problems associated with these two uncoupled biharmonic equations can be coupled through the
boundary conditions in which case these two coupled problems can be solved simultaneously by
solving the boundary value problem (see the problem (D1) in section 2 below) for the complex
biharmonic equation (1). When the source term f is real and the prescribed boundary values
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are real, we recover the conventional inhomogeneous biharmonic problem in the physical plane.
Thus, the complex biharmonic equation is a more general case and can be used to solve biharmonic
problems in the physical plane as well as in the complex plane.

It should be mentioned that numerical solutions of biharmonic problems in real plane are
constructed by a variety of methods including finite difference [7, 31] (see also references therein),
finite element [8, 11, 12, 29, 32], and integral equation methods [18, 19, 20, 27]. Importance of
solving biharmonic problems in the physical plane can not be over-emphasized as they also arise as
an intermediary step in solving many linear and nonlinear elliptic and parabolic problems such as
problems involving the Navier-Stokes equations and so on; see [21, 24, 30]. The complex biharmonic
problems, even though less common in applications, do arise (see [30, 35]). Because they do not
arise that often, these have not received much attention except in the most recent work of the
authors [17] on the decomposition approach. This paper is a sequel to [17].

There are following two general approaches for solving inhomogeneous biharmonic problems:
(i) the decomposition method in which inhomogeneous biharmonic problems are decomposed into
two Poisson problems and also one homogeneous biharmonic problem in some cases, as
further discussed in the following paragraph. The homogeneous biharmonic problems are solved in
[17] by the direct approach which we discuss in this paper for the first time. The fast algorithms
based on the first approach (i.e., the decomposition method) has been recently addressed in [17];
and (ii) the direct method in which these problems are solved directly without the use of lower
order problems such as Poisson problems. This paper is about fast algorithms based on this direct
method in which the classical Green’s function approach provides integral representations for the
solutions of the biharmonic problems in the complex z-plane (physical plane). Existence of
solutions and their integral representations for four types of biharmonic problems in a unit disk
have been recently provided by Begehr [3, 4, 5, 6]. The boundary and domain integrals involved
in these representations are singular. It is well established (see [2, 10, 13, 14, 15, 17]) by now that
the use of FFT and Recursive Relations (RR) for the evaluation of these singular integrals results
in fast and accurate algorithms. However, it requires analysis in the complex plane and careful
synthesis of various components to develop the RR relations as we will see in this paper.

There are several reasons for the development of fast algorithms based on this direct method.
Firstly, solving homogeneous biharmonic problems using the direct method presented in this paper
requires evaluation of boundary integrals only which can be done rapidly with spectral accuracy as
we will see in section 5. On the other hand, solving these homogeneous problems using the decom-
position method of [17] significantly reduces the order of accuracy (depending on the quadrature
method used) and increase computational time because the method requires evaluation of volume
integrals since one of the two decomposed problems in this method is a Poisson problem (see
[17]). Moreover, as we have seen in Ghosh and Daripa [17], solving two of the four boundary value
problems ((D1) and (D3) problems) by the decomposition method requires solving homogeneous
biharmonic problems which are efficiently done by the method proposed here. Secondly, the algo-
rithms based on the direct method is worth comparing to those ([17]) based on the decomposition
method. The pros and cons of these two different approaches have been discussed later when we
discuss numerical results.

In the FFTRR based method, we expand the integrals in terms of their Fourier series and
derive their radius dependent Fourier coefficients in terms of one dimensional non-singular integrals.
These one-dimensional integrals bear some recursive relations which are at the heart of the low
computational cost of the full algorithms for solving these inhomogeneous biharmonic problems.
There are several such singular integrals which appear in the integral representation of solutions of
these problems. FFTRR based method is applied to each one of these and the resulting formulas are
integrated together in an efficient way that give rise to the fast and accurate algorithms for solving
these biharmonic problems. These algorithms do not need to do anything special to overcome
the co-ordinate singularity at the origin as often the case when solving these problems in polar
coordinates using finite difference methods.

In this paper, we develop such FFTRR based fast algorithms for four different types of bihar-
monic problems inside a unit disk. The problems chosen serve only as examples for many other
complex biharmonic problems (see Begehr [3, 4, 5, 6]) for which similar FFTRR based fast al-
gorithms can be developed, if desired, using the procedure outlined here. The FFTRR formulas
which make up the algorithms given in the section 3 do not need to be translated in real variables



for application of the fast algorithms to solving real biharmonic problems. However, a complex
rewriting of the real biharmonic problem is necessary for application of the fast algorithms. This
is exemplified in section 5 where we solve steady incompressible Navier-Stokes equations in the
physical plane. Many problems in plane elasticity [30, 35] are also naturally formulated as complex
biharmonic problems whose solutions can be computed using the fast algorithms developed in this
paper. It is conjectured that complex biharmonic problems can play an important role in applied
mathematics and classical physics.

The algorithms developed in this paper enjoy many desired properties which include the fol-
lowing: (i) low asymptotic computational complexity: O(log N) per point where N? is the total
number of grid points; (ii) very low value of the constant in this order estimate meaning the ratio
of computational time to (N?log N) is small and weakly dependent of N for large N’; (iii) parallel
by construction; (iv) easy to implement; (v) high order accurate (with further qualification, see
section 4) without additional grid points for the integration of one-dimensional integrals that ap-
pear in these algorithms; and (vi) easily adapted to non-uniform grids as well as to weakly singular
source terms in the inhomogeneous biharmonic equations. All of the properties will be evident
from expositions in this paper except that the last property, namely (vi), falls outside the scope of
this paper and property (iii), which should be transparent, nonetheless has been briefly explained
in section 3.4. based on a desired accuracy: this has been addressed in [17] where we solve the
biharmonic problems by using the decomposition method.

This paper is laid out as follows. In section 2, we present four different types of biharmonic
problems, the integral representations of their solutions arising from Green’s function approach,
and the analysis of these representations using FFTRR method leading to the development of the
basic ingredients for the fast algorithms presented in section 3. Numerical results are presented
in section 4. These algorithms are applied to solving low to moderate Reynolds number fluid flow
problems in section 5. Finally we conclude in section 6. In the appendix, we give the proofs of
various theorems presented in section 2.

2 Biharmonic problems

In this section, we use the direct approach and develop the mathematical foundation of fast al-
gorithms for four different types of biharmonic problems ((D1), (D2), (D3) and (D4), see below)
in a unit disc D = {z € C,|z| < 1} in the complex plane. Each problem is distinguished by a
different boundary condition. Using the classical Green’s function approach, integral representa-
tions of the solutions of these problems have been recently provided by Begehr [5]. These integral
representations involve weakly singular integrals (see the area integrals in Theorems 1, 3, 5, and 7
below in this section) whose analysis for the purpose of fast and accurate evaluation is performed
in this section. The theorems resulting from this analysis to be used in the development of the
fast algorithms given in the section 3 are given below and their proofs are given in the appendix.
We should mention here that the existence of solutions to problems (D2) and (D4) defined below
is given under the assumption that the inhomogeneous term f € L,(D;C),p > 2 (see Begehr [5]).
However, we develop the algorithms for constructing solutions of these problems numerically under
the assumption that is expandable in a Fourier series.

2.1 Dirichlet problem of type (D1)

We first consider the biharmonic equation with Dirichlet-1 (or (D1)) type boundary conditions.
This problem arises in plane elasticity [30].

(8282)20.) = f, in D7
w = ho, on 0D, (D1)
Osw = hq, on OD.

Henceforth we refer to it as the (D1) problem. In this and all problems described below, the
inhomogeneous term f and the boundary data (such as hg and hy for the above problem) associated
with each problem will in general be functions of one or both the variables: z and z. It is worth
mentioning here that this problem can not be decomposed into two Poisson problems only. In



order to develop the fast algorithm in this direct approach, we use the following theorem from
Begehr [5].

Theorem 1. The Dirichlet-1 (D1) biharmonic problem is uniquely solvable for f € Ly(D;C), hy €
C?(0D,C), hy € C(0D,C). Its solution is given by

wlz) = ua(2) + v2(2) + 7a(2) + G (2) )
where
R AN
0@ = g [ OmOF Q
U ) N A SN
we) = S [0 @
e = S om0 )
) = — [[Gaeos@azan c=¢+in (©
D
2 1*262 2 2
Ga(erQ) = o= #Plog| 2|~ (1= [sP)(1 - k), @
1 1 1
gl(zvg) = 7§auGl(zaC) = 1_724—. + 1— EC -1 (8)

Here Gy(z,C) is the Green’s function for the (D1) biharmonic problem but with homogeneous bound-
ary conditions and G1 is the harmonic Green’s function.

We write G f(2)) = Is(z) + I4(2) + I5(z), where

i) = YD T o0 - (g o)
D
o) = =2 [[le- s 1os 1 - lf(c)dsan, (10)
D
) = = [[16-#Ploglc ~ 2l (C)dedn (1)
D

The Fourier coefficients of the solution w(z) to the (D1) biharmonic problem is embedded in the
following theorem. Its proof is given in the Appendix.

Theorem 2. If w(r,a) is the solution of the (D1) biharmonic problem, z = re'®, f(re'®) =
Z Fn(r)e™™, ho(e'®) = Z ane™, and hi(e'®) = Z b,e™, then the Fourier coeffi-

n=—oo n=-—oo n=-—oo
cients wy(r) of w(z) can be written as

wi(r) = I3 n(r) + Iipn(r) + Is n (1) + t2,n(r) + van(r) + 12,0 (1),

where
"m0
anr™, if n ,
R Loty (12)
2 (2)77,71 n -
war) = ¢ TG 2 (13)
0, if n<l,



where (x), = Fg;r(:)"),
biynr!™(1 —1r?), if n#0,
r2n(r) { bi(1—1?), if n=0,
2(1—12) [ folp) p(1 — p) dp if n=
I = 0 ) 5
3n(r) { 0, if n#0.
Moreover, 14, = I(l) If,)L + Lf’,)L + Lf,)L where
100 = {2 hae if n#Q,
' 0, if n=0,
nl E _
18y = 2 L) et i n o
0, if n=0,
3) n+1) fo Fn(p)(rp)" 2 pdp, if n>-—1,
14:”(r) - (n+1) fo falp TP) " pdp, if n<-1,
07 ’Lf n = —1,
@ n 1 fo fn )" pdp, if n>1,
Iy (r) = (n—l) ﬁ) fulp ) " ndp, if n<l,
0, if n=1.

and I, = 1) + I8 + 1) + 5% where
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2.2 Dirichlet problem of type (D2)

if n#0,
if n=0,

if n#0,
if n=020,

if n#-—1,
if n=-1,

if n#1,

if n=1.

(18)

Consider the biharmonic equation with Dirichlet-2 (or (D2)) type boundary conditions. The fol-
lowing theorem is taken from Begehr [5]. This problem is sometimes called Riquier and also Navier
problem. This problem arises in the theory of elasticity, specially in modeling bending of plates

(see [25]).



Theorem 3. The Dirichlet-2 problem for the biharmonic equation given by

(0.0:)%w = f, in D,
w = hy, on 0D,
0,0sw = ho, on 0D.

(D2)

is uniquely solvable for f € L,(D;C),p > 2, hy € C(0D;C), hy € C(0D;C) and the solution is
given by

w(z) = uale) +0s(z) + GF(2),

where
1 d¢

ux(z) = Py aDgl(Z7C)hO(C)?’ (24)

we) = g [ MG ohz@)df (29)

Gf(z) = —7/ G12(2,¢) f(¢)d&dn, (26)

Hy(z0) = (1) [Zglog<1zé>+jglog<1zo+1], (27)

-2 = _
Gra(€) = 16 sPlog| 20| 1= )1 - ¢ [PELZE) o SEEZE ) o

Here G12(2,¢) is the Green’s function for the (D2) biharmonic problem but with homogeneous
boundary conditions and g1(z,¢) in (24) is given by (8).

Substituting the expressions for Ha(z,() from (27) in (25), we obtain the following integral
representation for vs(z).

(s) = g - lefy [ POMC=S gy Loy [ PO g

2ICP2 22
1 d¢
=0 [ 1OF
= o) (2) + 0{?(2) + v§V(2). (29)

Also substituting G12(z, () from (28) in (26) and recalling ¢ = £ + i1, we obtain
Gf(2) = L4(2) + I5(2) + Is(2) + I7(2), (30)

where I4(z) and I5(z) are given before (see (10) and (11)) and

) = 20D // - iy 2= s gy, (31)
() = —%“_—f') // (1—|<I2)Mf(é“)dfdn. (32)
D

We develop fast and accurate algorithms to evaluate the singular integrals appearing above in the
expression of G f(z). Since we assume f is smooth, the integrands in these integrals have removable
singularities. As we will see below, evaluation of the Fourier coefficients of these integrals using the
following theorem (for proof, see the Appendix) leads to evaluation of one-dimensional nonsingular
integrals in the fast algorithm for solving the (D2) biharmonic problem.



Theorem 4. If w(r,a) is the solution of the (D2) biharmonic problem, z = re'®, f(re'®) =
z Fa(r)e™™, ho(e'™) = Z ane™®, and hy(e'™) = Z cn€™®, then the Fourier coeffi-

n—=—oo n=—oo n—=——oo

cients wp(r) of w(r,a) can be written as

wn (1) = Iy n(r) + Is o (1) + Lo n (1) + L7.0(r) + w2 n(r) + v3 0 (7),

where Iy n (1), I5 (1) and ug (1) are same as in Thm. 2 and

2(1—72)rm (n .
Ton(r) = 4 G Jo T P = ) dp, i n>0, (33)
) 0, Zf n < 0,
2(—rT)r7" TQ)T 1 n) 2 .
I7 (1) = (1—n) fo falp (1—p*)dp, Zf. n <0, (34)
0. if n>0,
U3 (r) = nrl if n f 0, (35)
60(177" )a Zf n =0.

Next we consider two biharmonic problems having Neumann type boundary conditions.

2.3 Dirichlet-Neumann problem of type (D3)

The first problem we consider with Neumann type boundary conditions is called the Dirichlet-
Neumannl(D3) biharmonic problem below. This problem arises in radar imaging [1] as well as in
fluid mechanics. The following theorem is taken from Begehr [5].

Theorem 5. The Dirichlet-Neumann (D3) biharmonic problem is given by

(8285)260 =/ in D,
w = hg, on 0D, (D3)
ow =hi, on 0OD,

is uniquely solvable for f € L1(D;C), hg € C?(0D;C), and hy€ C*(0D;C). The integral repre-
sentation of its solution based on classical Green’s function approach [5] is given by

wle) = D [, mo(o) % + B D / (5, Oho(0) S

471 ¢ 47 ¢
aD
1— 2
SE2ED [ ome ———//Gz Qe
i
oD
where
1 1
92(2,¢) = — + — 1,

(1-2¢)2  (1-20)?
and Ga(z,¢), 91(z,C) are given by (3) and (8) respectively. We again remind here that { = £+1in.

We write w(z) as

w(z) = wus(2)+ hs(z) +r3(z) + Is5(2) + 14(2) + I5(2) (36)
where
(1+ 2P d¢

u3(2) T/ 1(2,¢)ho(¢)—= a (37)

oD
me) = S [ onof. (39)

oD

o (=12P) g

() = _4“'3{ AOINGES (39)



The terms I3(z), I4(z) and I5(z) are given in (9), (10), and (11) respectively. Evaluation of the
Fourier coefficients of these integrals using the following theorem (for a proof, see the Appendix)
will lead to the desired fast algorithm for solving the (D3) biharmonic problem.

Theorem 6. If w(r,q) is the solution of the (D3) biharmonic problem defined in Thm. 5, z = re'®,

o0

fret®) = Z fn(r)e™ ) ho(e’) = Z ane™, and hi(e'®) = Z bne™™, then the Fourier

n=—oo n=—oo n=—oo
coefficients wy (1) of w(r,a) can be written as

wi(r) = Is (1) + Iipn(r) + Is (1) + ugn(r) + hs n(r) + 7r3,0(r),

where the Fourier coefficients of the boundary integrals are given by

2 in|, ifn 0
U37n(’l“) = { 14r21”2 " f i 7
5—ao, if n=0,
(=) @in| |n| :
h3 n(T) = { 2 2 ] i Zf " ?é 0
’ a-r?) e
—5—ao, if n=20,

_A=rDy pinl if n#0
TS,n(T) = (1_272) n ) )
—*=—"bo, if n=0.

The Fourier coefficients I3 (1), Iy n(r) and Is () have already been evaluated in Thm. 2.

2.4 Dirichlet-Neumann problem of type (D4)

We now consider a second kind of biharmonic problems called Dirichlet-Neumann2 (D4) biharmonic
problem. The following theorem is taken from Begehr [5].

Theorem 7. The Dirichlet-Neumann2 (D4) biharmonic problem given by

(8285)2’111 = fa in D7
w = hy, on 0D,
O w,z = ho, on 0D, (D4)
ko=5n [ w=(x) ¢
oD

is uniquely solvable for f € L,(D;C),p > 2,hg, ha€ (0D;C) if and only if ifaD hg(()% =
fD f(¢)dédn and the solution obtained directly using the Green’s function is given by

w(@) k(P = 1)+ 5 [ 0z OhOF + 1 [ GulaOmOF
oD oD
-+ [ entorean (40)
D
where g1(z, () is the function defined in (8), and
Gi3(2,() = —|¢ — 2[*log [¢ — z[?
—(1—12% (4 + a ;CZC) log(1 — 2¢) + ( ;CZC) log(1 — zC))

_ w log(1 — 2¢) — w log(1 — z(¢). (41)



We write w(z) as

w(z) = k(|z]* = 1) +ua(2) + V(2) + I(2), (42)
where
1 ¢
uz(z) = Py aDgl(Z7C)h0(<)?’ (43)
Ve = o [ Gt <>hQ<<>d<C 49
() = -+ / s (2, O) F(C)dédn. (45)

We notice here that us(z) is similar to us(z) (see (37)). The other two integrals above, namely
V(z) and I(z), are evaluated as follows. We write V(2) = VI (2) + VA (2) + VO (2) + VW (2)
where

VO =~ [l P loslc - PO G

Ve = —% [ (14 B 0n -0 + Lo -0 ()%,
VO =~ [ 2 g oo L,

vOe) = - OD“‘Z)S‘Zoleg(l—zc)hz(of

Also we write I(z) = I5(z) — Ii(2) — I7(2) + Is(2) + Io(2) 4+ I19(2) where I5(2) is given in (11) and
where

Ié(z) _ (1_|Z| )/D(1_ZC)10g(1_zC)f(C)d§d777

T2 ¢

L2 _ (3
e = UED / a C“log(l@)f(@dfdm

() = =0 2P) /f Jdeds,
Ih(z) = // €= =20 1001 — 1) 5(¢)dzan,

Lo(z) = // €= =20 001 — 20)(¢)dedn.

We now consider the following theorem for the Fourier coefficients of the solution to the (D4)
biharmonic problem but the details for the coefficients are provided in the Appendix.

Theorem 8. If w(r, a) is the solution of the (D4) biharmonic problem mentioned in Thm. 7, and

2z =re', f(re®) = Z fn(r)e , ho( Z ane™™, and ha(e Z Cn€™®, then

the Fourier coefficients wy,(r) of w(r,a) can be written as wy(r) = ug n(r) + Vn(l)( )+ VT@( ) +

V,gg)(r) + V7§4)(r) — Isn(r) = I n(r) — Iz () 4+ Is (1) 4 Ion(r) + Tnon(r), where the Fourier
coefficients of the integrals are given in the Appendix.

Summary: Before we move on to the next section, we summarize some salient features of the
above theorems involving the Fourier coefficients of solutions of four types of biharmonic problems
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discussed above. In the theorems 2, 4, 6, and 8, expressions for the Fourier coefficients of solutions
of the four biharmonic problems are given. They all involve I5 ,,(r) which is explicitly given in the
theorem 2 (see (20) through (23)). As can be seen from these expressions, evaluation of I ,,(r)
requires numerical evaluation of one-dimensional integrals. In the next subsection, we develop some
recursive relations (see (48) and (52)) for these integrals which are at the heart of the fast algorithms
presented in the next section 3. These recursive relations are compactly written using notations
which we introduce first in the subsection below before writing down the recursive relations.

2.5 Recursive Relations

As mentioned above, we introduce below some notations purely for the convenience of devel-
oping the recursive relations (48), (49), (52) and (53) for the singular integral I5(z) which will
be used in the development of the fast algorithms in section 3. We define the following for
(4, k) = (1,1) and (2, 3),

)np—dp, if n>0
)npkdp, if n>0

s§L<r) 205 fulp) (2) dp, i n<0
SO = 201 fule) (8)" L dp,  if n<0
o = 4fy folp) (2)" d,
)y =4S folp)p*log pdp.

For (j,k) = (3,—1) when n > —1 and for (j,k) = (4,1) when n > 1, we define

(]) . B (TL ]i?) p2
pialr) = / fn(p r) 7(n—k) dp,

tﬁL(r) S / Je(0)p dp,

N
=
—
3
=
|

—4 / fr(p)p*log pdp.

Corollary 1. It follows from the notations above that pgj;(O) = pgjzl(l) = sgjzl(O) = sgj,)L(l) =
tEJZL(O) = téjzl(l) =0, for j =1,2,3,4, and for values of n given above.

Corollary 2. Let 0 <ri <rg < ----- <rm =1 Forr;>r;, 1 <i4,5 <M if

. Tj Ra ”p . T p np
AW =9 . =AY Lap, B =2 - L) Eap, 46
wh /”f(p)(p> —dp i /n_f(p)(RB —dp (46)

and T.
A =4 / folo ( ) A Bil=1 [ falolpiogpdp, (47)
where " y
o, if n>0, oy, if n>0,
RA_{TJ', ifﬂ<0, RB_{Tia Z'fn<0a
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then for 1 <1,

J< M andr; <r; <r; we have

P = (2) phe) =B if n>0,
P = (2) b - A2, if >0,
1 A" i .
sintrd = () sia0+ AL, i n<o, )
sshir) = (1) i)+ B, if n<o,
1 r 1 i
) = (2) 850 + 4G},
(D y = {4 g
2,0(7%) 2,0(73)‘*‘ 0,1
and
r? (r; log ritg,)l(rl) + téli(rl)) , ifn =0,
1) =4 72 () + pi () if >0, (49)
r2 (st () + 58 ) if n<0,

In a similar fashion with definitions of Ai{,j%

for IE(,QY)L (r).

Corollary 3.

Let 0 <ry <mrg <

B;g for 1 <14, < M we build the recursive relations

<rm =1and forr; >r;, 1 <i,5 <M if

o T R\ (D) P o T P\
A =2 [ a0 (= d Bih=2 1) (%) dp,
G2 n0(3) e ez e (f)" e @
and N .
A 5 = 4/ f-1(p)p*dp,  BY 5= 4/ f-1(p)p*log pdp. (51)
where ’ s
)y if n>—1, oy, if n>—1,
Ra= { Tj, if n<—1, RB_{ Ti, if n<—1,
then forl=1------ M and r; <r; <r; we have
(n+1) .
Py = (=) P+ B, i n> -,
1\ (nt+1) id )
Py = (2) )+ AL, i >,
A (D) i .
si (i) = (% s (r) — Ay, if n< -1, (52)
A (n+1) .
sy = () TS =BG i n< -1,
3 3 J
téé;m) = tﬁéi,l(rz) — A,
t5)(r) = t5) 1 (r;) = B2,
and
rilogrit{h) (ri) + it (r),  ifn =1,
1) =4 i (P20 + 80 ) if n> -1, (53)
ri (887 (r2) +8$7)1(Ti)) : if n<—1,

Applying similar idea and with similar definitions of An74,

recursive relations for I
,

(4)

4,3

B;{l for 1 < 4,5 < M, we build the

(r). In the case when the inhomogeneous term f and the boundary

conditions are real, the relation f, = f_,, can be exploited to avoid some of the recursive relations.
These recursive relations can be further simplified in this case. For details in the context of such
algorithms for problems involving Poisson’s equation, see Borges and Daripa [10]. Such simplified
recursive relations have been made use of in solving fluid flow problems discussed in Sec. 5.
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2.6 Quadrature Method

We discuss here the quadrature methods employed to compute A;k and B:L’]}c. We use Trapezoidal
rule and Euler-Maclaurin expansion to compute the integrals. Here we ﬁrovide some theorems
from Sidi and Israeli [34] for the Euler-Maclaurin expansion that we have used for computing the
integrals. Let x; = a+1lh, 1 =0,1,.M, h= b’v‘l and M a positive integer. We state the following
theorems.

Theorem 9. If a function f(x) is 2n times differentiable on [a,b] then

b m
[ oz = 13" o + 5 B0 ) = D0 Byl (00
a 1=0 v=1

where

b7 —a)/hl —
Ranl i ooty = [ B2l DI B oy

m
B, are the Bernoulli numbers and B, (z) are periodic Bernoullian function of order v and Z f(z)
i=0
s the summation with the first and the last terms multiplied with %

Theorem 10. If a function f(z) is 2n times differentiable on [a,b] and F(z) = (x—a)® f(z),s > —1
then

— 2n—1

b 1
/ F(z)dz=h Z F(x;) — Z F(2” D(b)n? — Z (= >f(V)(a)hz/+a+1 + pon
@ i=1

where ((t) is the Riemann zeta function for Re(t) > 1 and pa, = O(h*") as h — 0.

In our implementation to compute Ai’jk and Bi’ -k, we ubed m = 1 for each ¢« = 1,2...M and the

first order derivative of the integrands of Al’ . and B "% are computed for v = 1, to incorporate
the correction term as given in the theorems These theorems provide a very high order accuracy
for computing An’Jc and B:l’

3 Fast Algorithms

Recall where problems (D1), (D2), (D3) and (D4) are introduced in the paper. We now build
fast, high order accurate algorithms for solving the biharmonic problems. Below the numerical
algorithms are presented only for problems (D1) and (D2). The algorithms for problems (D3) and
(D3) are similar and can be easily formulated. For the fast algorithms developed below, the unit
disk is discretized into M x N equidistant points, M in the radial direction and N in the angular
direction. Let 0 =71 <ro < ... <7rpr = 1.

3.1 Algorithm for (D1) biharmonic problem

Now we consider the algorithm for the (D1) biharmonic problem. The algorithm is similar for the
(D3) biharmonic problem.
Initialization: Choose M and N. Define K =

Inputs: M, N, ho(e 2mk) hi(e 271r\'k) f(re e ) forl— 1,---,M, fork=1,---,N.

Step 1. Compute the Fourier coefficients a,,, by, f,, using FFT forn=(-K+1),--

Step 2. Compute ug o (r1), v2n(r1), Ton(r), Izn(r), L&n(rl)to obtain Ig( ),14(2) ( ), v2(2),ra2(2)
using (12), (13), (14), (15)7 (16), (17), (18), (19) respectively for n = (=K +1),--- , K, for I =

-M,and for k=1,--- ,4
Step 3. Compute A7 H'l ;v’jl fori=1---,(M—1),forn=(-K+1),--- ,K,and fork=1,--- 4
using (46), (47), (50) (51) in Corollarles 2 and 3.
Step 4. Compute the recursive relations pm (r1), pgjzl(n) t(]) 2 (rn), té{;(rl) forn =0,---,K
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and Si{i(?‘z), Sé{ﬁl(m) forn = (-K +1),---,-1, for j = 1,--- ,4 and for [ = 1,--- , M using
Corollaries 2 and 3 as shown in the following pseudocodes.

Algorithm: Computation of pgle(rl) for j=1,2, pf’,)L(m), pgil,)L(m) using recursive relations.

Set p{/),(r1 =0) = 0;
forn=1,--- /K do
for(=2,--- /M do

j i \" G -
) = (") i) - B

end
end
Set pfr)l(ﬁ =0)=0;
for n=20,--- K do
for [=2,--- , M do

, (n+1) _
o = ()" ) + B
end

end

Set pi’) (r1 = 0) = 0;

for n=2,--- /K do
for [=2,--- M do

. (n—1) _
o0 = ()" B + B
end

end

Algorithm: Computation of pé{fm(rl) for j=1,2, pé?zl(rl), pg%zl(rl) using recursive relations.

Set pg{;(rwle)zo;
forn=1,--- /K do
for!=(M —-1),---,1do

j r j LI+1,
) = (725) P (i) — ALY

end
end
Set pg?,)L(TM =1)=0;
for n=0,---,K do
for I=(M—-1),---,1do
(n+1)
o = (2) " B ) + A
end
end
Set pgil,)i(rM =1)=0;
for n=2,--- K do
for I=(M—-1),---,1do

(n—1)
0 = (25) " B ) + A
end

end

Step 5. Compute I (1), forn = (=K +1),--- ,K, for I =1,---, M using Corollaries 2 and 3.

K
2nnik

Step 6. Finally compute w(rie”¥" ) = Z (ug(ry) + va(ry) + ro(ry) + Is(ry) + La(ry) + Is(ry)) e N
n=—K+1
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Algorithm: Computation of 5(1];7)1(7";) for j=1,2, sf’%(rl), s(le(rl) using recursive relations.

Set sgjgl(rl =0) =0;
forn=—-K,---,—1do
for [ =2,--- ,M do

s = (725) " sthlrion) + A,

Ti—1
end
end
Set sggzl(n =0)=0;
for n=-K,---,—2do

for [=2,--- M do

o\ (ntD) _
0= ()" s - AL
end
end

Set 55‘2(7’1 =0)=0;
forn=—-K,---,0do
for [=2,--- M do
N (n—1) B
‘ SY,%(W) = (ﬁ) S%)L(?”l—l) - Ail,i’l;

end
end

using FFT for k=1,--- N, I=1,--- /M.

3.2 Algorithm for (D2) biharmonic problem

Now we consider the algorithm for the (D2) biharmonic problem. The algorithm is similar for the
(D4) biharmonic problem.

Initialization: Choose M and N. Define K = %

Inputs: M, N, ho(ezwk), hg(ehTik), f(rle%Tik), forl=1,--- ,M, fork=1,---,N.

Step 1. Compute the Fourier coefficients a,, ¢,, f, using FFT forn=(-K +1),--- , K.

Step 2. Compute us (1), vsn (1), Iﬁz(rl), Is 0 (11), I7.n(r1), to obtain I4(2), Is(2),

I7(2) using (12), (35), (16), (17), (18) (19), (33), (34) respectively forn = (—K+1),--- , K, forl =
1,---,M, and for k=1,--- ,4.

Step 8. Compute A:L’f,:rl, B;Z,;H fori=1,---(M-1), forn=(-K+1),--- ,K, and fork=1,--- ,4
using (46), (47), (50), (51) in Corollaries 2 and 3.

Step 4. Compute p{’’ (), pgj"zl(rl) for n=1,,K and s\’ (r1), séle(rl) for n=(-K+

1,.71 1,n
1), =1 t]4(r), t (1), for j=1,---,4and for I = 1,--- , M using Corollaries 2 and 3 with
the following recursive relations as in the previous algorithm with (D1) biharmonic problem.
Step 5. Compute I5 (1), for n = (=K +1),--- ,K and { = 1,--- , M using Corollaries 2 and 3.

Step 6. Finally compute w(rle%) using FFT for k=1,---,N, I=1,---, M.

3.3 Computational Complexity

The asymptotic operation counts for the (D1) biharmonic problem is discussed in Table 1. It is
the same for all other problems. The table shows that the theoretical computational complexity
is of the order of O(log N) per point where N? is the total number of degrees of freedom.

3.4 Parallel Algorithms

The FFTRR-based methods offer good parallelization opportunities. The intrinsic parallelism
in the sequential fast algorithms given in section 3 can be identified in steps 1 and 6 where two
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Algorithm: Computation of 5(2];7)1(7";) for j=1,2, sg’;(m)7 sg’lzl(rl) using recursive relations.

Set séjgl(rM =1)=0;

forn=—-K,---,—1do
fori=(M-1),---,1do

j r "G 1,1+1
sih(r) = (22) " s (i) + BY

end
end
Set sé3,)L(rM =1)=0;
forn=-K,--- ,—2do

for I=(M—-1),---,1do

(n+1)
s = (5) " s - B
end

end
Set sgi)l(rM =1)=0;
for n=-K,---,0do
for [=(M—-1),---,1do

BN
s = (22) " s ) - B

T
end
end

groups of Fourier transforms are evaluated independently for each fixed radius. Consequently, their
computations can be performed in parallel. Recursive relations also offer efficient implementation
of the algorithms by redefining the inherently sequential recurrences present in the sequential
algorithms presented above. These and related communication issues between processors have been
explained in considerable detail through the formulation of FFTRR-based fast parallel algorithms
for the evaluation of singular integrals (see Borges and Daripa [9]) and for the solution of Dirichlet
and Neumann problems for Poisson’s equation (see Borges and Daripa [10]). Parallel versions of
the sequential fast algorithms given in section 3 can be developed using these same principles.
Development of such parallel fast algorithms for the biharmonic problems considered in this paper
falls outside the scope of this paper and will be taken up in the future.

4 Numerical Results

This section consists of two parts: (i) validation of the algorithms and comparing the accuracy
of the method with that of the method based on the “decomposition” method (see [17]); and (ii)
application of these to solving low to moderate Reynolds number steady fluid flow problems within
a disk. Since the algorithm is based on exact analysis, the error in the numerical computation
arises from the evaluation of the one dimensional integrals in the algorithm and the truncation of
the Fourier series. The integrands plog p and p?logp in the integrals (47) and (51) respectively
varies rapidly near the origin where some care is necessary in accurate evaluation of these integrals.
In our implementation, we have found that replacing log p by log (p + €) with ¢ = 0(0.01) when
r; = 0 in these integrals (see (47) and (51) ) improves the overall accuracy of the solutions. In
the future we will explore in detail on even more accurate evaluation of these integrals which will
perhaps help obtain very high order accurate solutions.

Numerical implementations of the algorithms were done in MATLAB and computations were
performed using double precision arithmetic. The algorithms were first tested on several examples
to validate the algorithms and the code. For each type of biharmonic problems ((D1) through (D4)
as described in section 2), the source term and boundary data were generated from the solution
of the problem which was chosen a priori. We show computational results using the following
examples (identified by the chosen solutions) to highlight some of the accuracy issues we noticed
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Algorithm: Computation of t%(rl) for j=12, t§3)71(rl) t(4) 1(71) using recursive relations.

Set tg{())(ﬁ =0)=0;
for [=2,--- , M do

| 0 = (32) ) 45
end
Set tfll(rl =0)=0;
for [=2,--- M do

‘ (3)71(7“1) = tf)fl(rlfl) - Al:11,él§
end
Set 1) (r1 = 0) = 0;
for [=2,--- ,M do

4 _

\tﬁ<>féhvpofAn%

end

Algorithm: Computation of té{%(rl) for j=1,2, tg 11( 1), tg‘g (r7) using recursive relations.

Set t5/)(rar = 0) = 0;

for I=(M—-1),---,1do

| #lh(r) = té{%(ml) + By
end

Set tg?ll(TAf = 1) = 0;
fori=(M-1),---,1do

| 600 = ) - B4

end
Set 54 (rar = 1) = 0;
for I=(M—-1),---,1do
4
| ) = imﬂ> By
end

for the algorithms with these examples. We computationally evaluate the accuracy and complexity
of these algorithms below using the following examples (identified by the chosen solutions).

We show and discuss the numerical solutions of the (D2) problem for the first example, (D1) and
(D3) problems for the second example and (D4) problem for the third example. Tables 2, 3, 4 and
5 show relative errors in the numerical solutions for these problems obtained with the algorithms
of the direct method presented in this paper. These tables also compare these relative errors
with the same obtained with the “decomposition” method presented in Ghosh and Daripa [17].
These tables show that the direct method gives fourth order or better accuracy for one case and
second order or better accuracy for the other cases. In contrast, the “decomposition” method
gives approximate fourth order accuracy for all these cases. The second order accuracy observed
in Tables 2 through 4 is due to lower accuracy in the numerical evaluation of the singular integrals
involving logarithm for Fourier coefficients with index n = 0,—1,1 (see (46), (51)). The order of
accuracy perhaps can be improved with better quadrature methods such as in [22] for numerical
evaluation of these weakly singular integrals. We intend to look into this in the future.
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Table 1: The complexity at each step for the (D1) biharmonic problem.

Step  Operation Count

1 The M discrete Fourier transforms of N data sets contribute
O(MN log N).

2 Computation of I5 ,,, Iy, U2, Von, T2, contribute O(MN).

3 Computation of A;ljﬂ and B;’f';l, i=1,---M-1),n=(-K+
1),---,K, j=1,---,4 contribute O(MN).

4 Computation of each pgfzw pé{,)” sgjzl, sgjﬂ)l, tg{& t;{%, j=1,--,4
contribute O(MN). '

5 Computation I5 (1), | = 1,--- M, n = (K +1),--- , K con-

tribute O(MN). ‘
6 Computation of w(rle%), k=1,---N,0l =1--- , M by FFT
contributes O(MN log N) for M x N grid points.

Table 2: Relative errors for the (D2) Ex.1 in || - ||« using Euler-Maclaurin formula with N = 8.

Direct Method Decomposition Method

M [ 1loo order [ 1loo order
16 | 6.8x107° — 47 x107° —
32 | 28x107% | 46 | 25x10°F 4.2
64 | 1.5x1077 | 42 | 1.5x1077 4.1
128 [ 92x1079 | 41 | 89x10~° 4.1
256 | 5.6 x 10710 | 4.0 [ 55x10°10 4.0
512 [ 3.5 x 10711 | 40 [ 3.4x10711 4.0

Table 6 shows results obtained with these two methods for solving the (D2) homogeneous
biharmonic problem (see section 2.2) with f(z) = 0, hg = 1 and hy = 1. It shows that the
direct method for homogeneous biharmonic problems give spectrally accurate solutions whereas
the “decomposition method” gives only second order accurate solutions. This is due to that fact
that the boundary integrals involved in the direct method are evaluated with spectral accuracy.
However, the domain integrals involved in the “decomposition method” are evaluated using the
Euler-Maclaurin formulae which has finite order of accuracy. Recall that this same homogeneous
biharmonic problem needs to be solved while solving the (D1) and (D3) inhomogeneous biharmonic
problems using the “decomposition method” (see [17]). Therefore the “direct method” is an integral
part of the “decomposition method” for some boundary value problems and hence it is an important
reason to develop the fast algorithms for the direct method which are developed in this paper for
the first time.

Next we compare numerical asymptotic complexity with our theoretical complexity O(N? log N)
where N? is the total number of grid points. Complexity of the algorithms has been evaluated
based on CPU time required to solve biharmonic problems (D2) and (D3) with different values
of N using the Euler-Maclaurin integration scheme. The number of grid points in the radial and
azimuthal directions has been taken to be same, N. From this, we also compute the constant ¢
hidden in the order estimate by dividing the total computation time by N?log N. The CPU time
and the estimate of the constant ¢ for these two problems, (D2) and (D3), have been tabulated in
Table 7 for several values of N. The CPU time versus N2log N and computed values of ¢ versus
N are shown in Fig. 1(a) and Fig. 1(b) respectively. Figure 1(a) shows that the computationally
obtained estimate of the complexity agrees with the theoretical one. Figure 1(b) shows that the
constant hidden behind the order estimate of the complexity is indeed very small for large N
which is another big advantage for these FFTRR based algorithms. Similar results are obtained
for (D1) and (D4) problems. Identical plots as in these figures are obtained when the decomposition
algorithm [17], instead of the direct method of this paper, is used to solve these problems.

Towards this end, it is worth mentioning that CPU time depends on many parameters including
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Table 3: Relative error for the (D1) Ex.2 in || - ||o using Euler-Maclaurin formula with N = 32.

Direct Method Decomposition Method
M [l lloo order Il [loo order
16 [50x1072] — [1.2x1073 -
32 | 12x1072 ] 21 1.0 x 10~* 3.6
64 [ 3.0x1073| 20 [80x107° 3.7
128 | 74x107* ] 2.0 [64x1077 3.6
256 | 1.8 x107* | 20 |52x10°8 3.6
512 | 45x10™° | 2.0 | 4.1x107Y 3.7

Table 4: Relative error for the (D3) Ex.2 in || - ||o using Euler-Maclaurin formula with N = 64.

Direct Method Decomposition Method
M [l lloo order [ |loo order
16 | 4.4 x 1071 — 43 %1073 —
32 [11x107"] 2.0 [38x107% 3.5
64 | 27x1072] 2.0 [26x107° 3.8
128 [ 6.7x103 | 20 |1.8x107© 3.8
256 | 1.7x 1073 | 2.0 [ 13x1077 3.7
512 | 41x107* | 2.0 | 84x107"° 3.9

the computational speed of the processor used, precision of the arithmetics (such as 8-digit, 16-digit
etc.) used, type of programming language (such as Matlab, C, Fortran, python), issues related
to the implementation of algorithms, and code optimization tools used to enhance performance.
However, the computational complexity of a specific algorithm does not depend on these factors
and this is what has been the motivating factor behind our numerical study leading to the Table 7,
Fig. 1(a) and Fig. 1(b). The data in the Table 7 were obtained from computations in a MATLAB
7.9.0(R2009b) version in ASUS A55A series without any kind of Matlab code optimization. The
CPU time reported in the table can be improved by many fold depending on how the above
parameters on which CPU time depends are chosen. Improvement of CPU time by varying these
parameters is altogether a separate topic and falls outside the scope of this paper.

Ti(NogN)

0 05 1 15 2 0 100 200 300 400 500 600
Nlogh x10° N

(a) Plot of CPU timings versus N2log N where N2 (b) Plot of T/(N?log N) versus N where N2 is the
is the total number of points in the discretization of total number of points in the discretization of the
the domain. domain.

Figure 1: Plots of the CPU timings and the constant ¢ = T/(N?log N) for the fast algorithms
applied to the biharmonic problems (D2) and (D3) problems using the Euler-Maclaurin formula in
the direct method. Plots for (D2) and (D3) problems in each of the figures Fig. 1(a) and Fig. 1(b)
are indistinguishable from each other.
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Table 5: Relative error for the (D4) Ex.3 in || - ||s using Euler-Maclaurin formula with N = 32.

Direct Method Decomposition Method
M [l oo order | 1]oo order
16 | 7.0x 1072 — 1.8 x 1071 -
32 [ 1.7x1072 ] 2.0 1.5x107° 3.6
64 | 41x107° [ 21 1.2x10°° 3.6
128 [ 1.0x107% | 2.0 1.0x 1077 3.6
256 | 25 x 1077 [ 2.0 7.8 x 1077 3.7
512 | 6.2x107° [ 2.0 | 58x10°1° 3.7
Table 6: Relative errors for the homogeneous (D2) problem in || - ||oo using Euler-Maclaurin rule
with N = 64.
Direct Method | Decomposition Method
M |- oo I oo order
16 7.2x 10715 72x10°3 -
32 7.2 x 10715 1.4 x 1073 2.4
64 72x10715 [ 3.2x107% 2.1
128 7.2 x 10715 7.2 x107° 2.4
256 | 7.2x107P 1.7 x 107° 2.1
512 7.2 x 10715 5.7 %107 1.6

5 Application to Incompressible Fluid Flows

In this section, we apply these fast, direct algorithms to solve steady, viscous, incompressible
Navier Stokes equation within a circular cylinder as in [28, 23, 19] generated by the tangential
motion of part or all of the boundary and the inflow, outflow of the fluids in which fluid is injected
over one portion and ejected radially over another portion of the boundary of the disc. These types
of problems arise in recirculation of fluids in cavities and in confined ventilation. The governing
equations associated with the steady, viscous, incompressible flow are given by

(u-V)u = —-Vp+V- (R 'Vu) (54)
V.ou = 0, (55)

where p is the pressure, R is the Reynolds number, and u is the velocity. In polar coordinates

(r,0), the velocity is given by u, = %%’, Uy = —%—f in terms of stream function . The vorticty

@ =V x u satisfies ¢ = —As). Taking the curl of both sides of (54), we obtain

A% = —RJ[p,AY], (56)

Table 7: CPU times and estimates for the constant ¢ using Euler-Maclaurin formula for (D2) and
(D3) problems using the direct method.

For the biharmonic problem (D2) | For the biharmonic problem (D3)
M = N | CPU time in sec. c CPU time in sec. c
16 0.41 5.8 x 1077 0.41 5.78 x 107%
32 0.44 1.24 x 1077 0.45 1.27 x 1077
64 0.70 411 x 107° 0.71 417 x107°
128 1.53 1.92 x 10~° 1.52 1.91 x 10~°
256 4.12 1.13x 107° 4.25 1.17 x 107°
512 12.68 775 x 107° 12.81 7.83x10°°
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where J[y, Ay] = %(8r¢89A¢ — 0, AvY097)). Since (0.0:)? = A?/16, it follows that the boundary
value problem associated with the slow viscous flow problem is given by (see also [28, 23])

(8Z65)2¢ = —%JW)J/&E]’ in r< 1a
v = f1(0), on =1, (57)
%{) = f2(0), on r=1,

where boundary data f1(0) and f2(0) come from specific problems to be chosen as we will see below.
Notice that this problem (57) is our (D3) biharmonic problem of section 2.3 except that the right
hand side of the equation (57), is not known a priori. Below, we apply our fast algorithm for this
problem from section 3 to solve (57) subject to various boundary conditions using an iteration
procedure since the inhomogeneous term depends on the solution itself. This iteration procedure
based on the existing body of works (see [19], [28]) is briefly outlined below.

The iteration procedure starts with an initial guess ¥(°) obtained from the solution of Stokes
flow problem given by 1#2)22 = 0 subject to the same boundary conditions as below, and then at
each (k -+ 1)th stage we solve

e (LRI I N
wk-‘rl = fl(ﬁ) on r=1, (58)
aw;k:n = f2(0) on r=1,

using our fast algorithm to the (D3) inhomogeneous biharmonic problem. The vorticity ¢ is ob-
k1 ((a,k
tained through ¢ = —Ay. We continue the iteration until the convergence criterion W <

tol is met. In our computations, the tolerance ‘tol’ is taken to be 3 x 10~*. The Jacobian is ob-
tained using the central difference formula on mesh points inside the disk and either backward or
forward difference for points on the boundary.
For the specific problems discussed below, the above iteration scheme diverges for R > 4. For
R > 4, we use a relaxation factor as in the Gauss-Seidel SOR method (see [28]). We start with
our initial guess as before to obtain (?)(z) and use the fast algorithm for the (D3) problem to
solve for the iterate 1/1(’”‘1)(2) by solving the problem (58). For convergence we use two relaxation
factors o and  for fields ¢ and . To update the values of ¢ and v we use
oV = a1 —a)ell), and Y = BunY + (- Bl

n,l n,l*

The starred quantities denote values obtained at each iterative step. The relaxation factor helps
in convergence and suitable choices for a and [ are taken to be 0.3 and 0.5 respectively. The
convergence is continued until a given tolerance is reached. This iteration is suitable for problems
with moderate Reynolds number and is unstable for problems with high Reynolds number. Next
we consider several specific examples.

We consider first flows generated by rotation of the circumference as in Mills [28] with f;(f) =0
and f2(0) = —(1+cos)/2. Here Reynolds number R = Ur /v where ‘r’ is the radius of the cylinder,
U is the speed of the rotation of the circumference and v is the kinematic viscosity of the fluid.
For studies on similar problems, see [19, 23, 26, 28, 33]. Using the procedure outlined above, the
problem (57) with f1(f) = 0 and f2(6) = —(1 + cos#)/2 is solved numerically using iteration
scheme (58) on 64 x 64 grid points. With tolerance set at 3 x 10~°, the scheme converged in 30
and 62 iterations respectively for R = 30 and R = 64. Plots of computed streamlines are shown in
Fig. 2. The flow pattern is not symmetric about the = axis and the vortex center is shifted away
from the center of the disk. Similar features of the flow have been observed by Imai [23]. Another
similar flow problem but now with f2(f) = — cos @ was also solved by the same scheme using the
same tolerance and the same number of grid points as the above problem. Numbers of iterations
taken to converge were 18 and 32 respectively at R = 16 and R = 45. Plots of streamlines and
vorticity patterns are shown respectively in Fig. 3 and Fig. 4. Sharp change in the vorticity is
observed with increasing Reynolds number. All of these plots in Fig. 2, Fig. 3 and Fig. 4 are in
qualitative agreement with similar plots in Imai [23].

Now we consider the moving wall problem with the boundary condition ¢ (r = 1) = 0, and the
discontinuous boundary condition

o

or (59)

-1, 0Kl <m,
T=17 0, w<60<2nm.
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(a) streamline patterns for R=30 (b) streamline patterns for R=64

Figure 2: Computed streamline patterns with 64 x 64 grid points when f;(f) = 0 and f5(0) =
—(1 4 cosf)/2

(a) streamline patterns for R=16 (b) streamline patterns for R=45

Figure 3: Computed streamline patterns with 64 x 64 grid points when f(6) = 0 and f2(8) = — cos 8

We computed the flow for several values of R in the interval 0 < R < 20 with 128 x 128 grid
points using a tolerance same as in the previous examples. The numbers of iterations were 1 and
27 respectively for R = 0 and R = 10. The plots of streamline patterns are shown in Fig. 5. We
observe a non symmetric flow here with the center of the vortex shifted away from the center of
the disk. These results are in qualitative agreement with those by Mills [28] and Mabey [26].

Next we apply our fast algorithm for (D3) biharmonic problem along with the iteration scheme
discussed above for computing outflow-inflow problem subject to the following boundary data taken
from Mills [28].

1—}—@, a—e<bl<a+e,

o 2 ate<fh<pB—c

S I —1,00={ ° . ’ 60

ol vir ) 1+ 80 g c<h<Bte (60)
0, B+e<f<2mr+a—e

We take a = 0,e = /32 and 8 = 7. The Reynolds number of the flow here is given by R = Ue/v,
where U is the speed and Ue the flow across the arc intercepted by e. Computations were performed
with 128 x 128 grid points using the same tolerance as in the previous examples. Numbers of
iterations to converge were 13 and 20 at R = 0.009 and R = 0.02 respectively. Plots of streamline
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(a) vorticity patterns for R=16 (b) vorticity patterns for R=45

Figure 4: Computed vorticity patterns with 64 x 64 grid points when f1(6) = 0 and f2(8) = — cos @

L L L L
-1 -0.5 0 0.5 1

(a) streamline patterns for R=0 (b) streamline patterns for R=10

Figure 5: Plots of computed streamlines for the moving wall problem with the discontinuous
boundary data (59) using 128 x 128 grid points.

patterns for very low Reynolds number are shown in Fig. 6. This flow has been studied before by
Dennis [16]. To compute flows at higher Reynolds numbers, an inexact Newton iteration (see [19])
is required. Such higher Reynolds number flows using our fast algorithm will be computed in the
future.

6 Conclusions

In this paper, we have developed FFTRR (FFT and recursive-relation) based accurate and fast
algorithms for several biharmonic problems in a unit disc in the complex plane using the “direct”
method as opposed to the “decomposition” method discussed in Ghosh and Daripa [17]. In the
“direct” method, solutions of the biharmonic problems are written directly in terms of Green’s
functions of these problems. The fast algorithms developed here based on the “direct” method
have been implemented using MATLAB programs. Their performance in terms of accuracy and
complexity has been numerically evaluated and presented using several test problems. Computed
values of complexity agree with the theoretical computational complexity: O(log ') per degree
of freedom. These fast algorithms have been applied to solving incompressible slow viscous flow
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(a) streamline patterns for R=0.009 (b) streamline patterns for R=0.02

Figure 6: Plots of computed streamlines for the inflow-outflow problem with the boundary data (60)
using 128 x 128 grid points.

problems at low to moderate Reynolds numbers. The results on these flow problems agree well
with the works of others on similar test problems. Application of these algorithms to solving higher
Reynolds number flows can be done using inexact Newton iteration since this iteration has been
successful in solving higher Reynolds number flows [19]. This is a topic of future research and falls
outside the scope of this paper.
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Appendix: Proofs of The Theorems

In this section, proofs of the theorems stated in section 2 of this paper are sketched.

Proof 1. (Proof of Thm. 2) From (2) we rewrite w(z) as
w(z) = u2(2) + v2(2) + ra(2) + I3(2) + 14(2) + Is(2). We evaluate first,

) = 2 [[¢P+ 12 = 2 = Gaylog 1 - €1 f(C)dsan
D
= L")+ 1P+ 1P () + 1Y(2)
where
10z = -2 / / log1L— =Gl (Qpdedn, 1{7(2) = 2 [ P log 1 - =Gl (Ocn,
19z // Clog |1~ ={1f(Qdedn. 157(2) = 2 [ Clog |1~ (e
Let IS) Z I(l) e and o — 0 = 7. Then
2 27
- / [ 1 / log 1~ 2" dadedy
= 2r? / Fa(p)GS ) (r, p)pdp, (61)
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1 27 B ) (rp)ln" f # 0
where G\ (r —— / log |1 — 2(le """ dr = [n[ yon 62
() === [ logl -] N A )

Substituting (62) in (61) we recover the Fourier coefficients of Iil)(z). Pursuing similar idea we
obtain the Fourier coefficients of If)(z),ff)(z),lf)(z). Now we evaluate Is(z) given by (11).

2
I5(2) = = [ [10g1c ~ 21 (Q)dedn + = [ [ 16 1081¢ = 2170 dgan
D D

_ % // Clog |C — 2| £(C)dedn — %// 2Clog |¢ — 2| f(¢)dedn (63)
D D
— 1) + 10 (2) + I (2) + IV (2). )

Notice the singular integral associated with Iél)(z) are similar (see [17]) and we compute 15(3)(2).

Let 1(3) Z I5 Y (r)e™™ where Iéi{(r) is similarly given by
/ [ =¢r)Qh . ydgdn + / [ =¢r)Qh ), (65)
25
where QL (r, () = % 0% e~ mzlog|¢ — z|da. Forr > p, we have
1 1 o —ina P L 1 imT
Q,,(r,¢) = =/ e re logr — Z (;) M@ da
m#0
_r o 7i(n+1)oc1 d ml 1 71m0 o i(mfnfl)ad
= e ograf—z 2|m| ; e e’
27"10g7’ if n=-—1.
Similarly, we obtain for r < p,
Int+1]
T r —i(n+1)6 ; _
Qu(r.¢) = { g (5) e g, (67)
—2rlogp, if n=-1

Substituting (66), (67) in (65) we have for n > —1,

O / CHOQL(r, O)dedn + / CHOQL(r, C)dedn

Ql

o , (n+1) _.
_ n’f'+ 1 / / pezef(pezﬁ) (B) 671(n+1)0pd9dp

21 » (n+41) ( 9
7 —i(n+1

_M/O ( )(n+1) Z (o / im0,
m— /Tl (;)(M)” > fule / et dodp

m=—0oo

2

o [(8) oo [ 1 (;)W) Lo (69
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Similarly, we evaluate for n < —1 and n = —1 and obtain (22) We evaluate the Fourier Coeffi-

cients of the rest in a similar manner. Now let I3(z z I o ( e ™. Then
I (7’) _ (1_7'2) / Z f / imepd@dp
3.n T L m )
1
=20=r) [ o1 =) folo)ip.
177’ fo ( )dp7 ZfTLZO,
{ 0, if n#0. (69)

Thus we recover (15). Now for the boundary integrals ug(z), va(z) and ro(z) the idea is similar
and hence we skip the details.

Proof 2. (Proof of Thm. 4) We first evaluate the Fourier coefficients Is »(r) of Is(2).

Ton(r) = 55 / [ 1012 e (70)

where  Pu(r,Q) = (2~ 11— () [ e B0
0

2
o F\(m—1) p2r
T LR o B e
m=1 m 0
—7‘2 _ 2 ro)™ .
_ 27‘('(1 )((;Jr\% )(r¢) , if n>0, (71)

Substituting (71) in (70), the formula (33) for I (r) is recovered. Similarly, we obtain Iz ,(r).
The boundary integrals in the expression (29) for vs(z) are similarly evaluated to obtain its Fourier
coefficient given by (35). The calculations are straightforward and we skip the details. This con-
cludes the proof of Thm. /.

As for the proof of Thm. 6, the area integrals I3(z), I4(z), Is(z) are same as before and hence
details are skipped. The approach to evaluate the boundary integrals are also similar as before so
we omit the proof.

Proof 3. (Proof for Thm. 8) We evaluate V (z) first. Now,

d

VO = g [ o= P loglc = PR
1 In| d
- 27 aD(1+r 7Z<72C Z|Z<| hQ(C)?C

= V@) + Vi) + Vi ().

Let ho(e?) = Z cne™. The Fourier coefficients of the boundary integrals Vi(l)(z) fori=1,2,3

n=-—o0o
are easy to compute. These are given by
1472 n : 0 s ifn>—1
1) on 7; Cn, an >0, 1) 2£7L+1) L ’
Vin (r) = f%r’"cn, z:f n <0, Vo (r) = 2(27@0”’ if n<—1,
0, if n=0. 0, if n=-—1.
_2(7:711)6717 an > 1a
1 2—n .
VS(,n) (T) = ﬁcm if n <1,
0, if n=1.
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Similarly we evaluate V752)(r), Vn(3)(r), v, (r) and obtain

(r* = 1)co, ifn=0,
VA ) =9 2opln . (72)
iy 0
30, ifn=20,
_3 ; -1
V& (r) = ;{35017 o Z_f n=1, -3
( ) mcn Cn + 2(,” 1) Cn, Zf n Z 2. ( )
lCTh an = 0’
17Cn if n=-—1
V(4) r)= 41"7"7 " r" . ’ 74
n ( ) mcn—%cn—mcm anS_Q’ ( )
0, if n>0.

Now we evaluate I§(2),15(2), Is(z), I9(z) and I10(z). The Fourier coefficients of I(z),I7(z) are
given by

_2 1—’/" f() fn ,Odp, an:07

Ign(r) = 3&2;}) e o) fulp)pdp,  if n>1 (75)
0 otherwise
72 1770 fo fn pdpa an:()a

I () =q 2= 1) ) [ rp) " fulp)pdp, if < —1 (76)
0 otherwise

The Fourier coefficients of Ig(z) are given by

1 _ 2 27 )
) = S [ 50) [ e mdadeay
7T D 0
— 8(1 - TZ) fol fn(p)pdp7 ifn =0, (77)
0, if m#0.
We write Ig(z) = Iél)(z) + Iéz)(z) where
1 _ _
1) = [ =008 =20 f(Qsan, 1) =~ [ (1= 20)og(1 = 207
Now we evaluate Ié,l,)L (r).
1) 1 2 o 27 B B )
B0) = gz [ [ 1000 [ = 2010801 = 200 drpatp
0
_2f0 fO dea lf?’l:07
= n(n+1 fo dp7 Zf n Z 17 (78)
0, ifn < 0.
Similarly we obtain
p)p*dp, ifn=1,
I)(r) = —,f? k) fo P fa(p)p, i =2, (79)
0, ifn < 1.
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2)

We now write I1o(z) = Il((l))(z) + I{O (z) where

1
Iy (

1

)= / C(—¢2)log(1 — C2)F(Q)dedn, T2 (z) = —= / (1 - ¢2)log(1 — ) £(C)deds.
T2 Jp ™ Jp

Their Fourier coefficients are easily evaluated which are given by

" -2 [y fo(p)od, ifn =0,
IlO,n(r) = 271(7;17_1) fo pg_nfn(p)dpa Zf n S _13 (80)
0, ifn > 0.

1 .
. 2r [ f—l(P)lf)QdPa ifn=-1,
IlO,n(r) = _QW fo plinfn(p)dpa Zf n S _27 (81)
0, ifn > —1.
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