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UNIVERSAL STABILITY PROPERTIES FOR MULTILAYER
HELE-SHAW FLOWS AND APPLICATION TO INSTABILITY

CONTROL∗

PRABIR DARIPA† AND XUERU DING‡

Abstract. With the motivation of understanding the effect of various injection policies currently
in practice for chemical enhanced oil recovery, we study linear stability of displacement processes
in a Hele-Shaw cell involving injection of an arbitrary number of fluid phases in succession. This
work mainly builds upon our earlier study of the three-layer case [P. Daripa, Phys. Fluids, 20 (2008),
112101]. Stability results obtained for an arbitrary number of displacing fluids in succession reduce
to the Saffman–Taylor case when there is only one displacing fluid. The stability results have been
applied here to design injection policies that are considerably less unstable than the pure Saffman–
Taylor case. In particular, two sets of parameters have been obtained that improve stability. Im-
plementation of such injection policies based on the application of the stability results is likely to
improve oil recovery.
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1. Introduction. The displacement of a more viscous fluid by a less viscous
one is known to be potentially unstable in a Hele-Shaw cell. Such flows, first studied
by Hele-Shaw [14], are known as Hele-Shaw flows and have similarities with porous
media flows [2] in the sense that in both of these flows, fluid velocity is proportional
to the pressure gradient. Because of this analogy and the relative ease and accuracy
with which such Hele-Shaw flows can be experimentally studied in comparison to
flows in porous media, Hele-Shaw flows have been studied extensively over many
decades. The instability theory in this context, also known as the Saffman–Taylor
instability [23], is now well developed for single-interface flows. Exact growth rates of
interfacial disturbances for such flows are well known and well documented in standard
textbooks on hydrodynamic stability theory, e.g., Drazin and Reid [10].

Exact known stability results from these past works (see also formulas (1) and
(2) in section 2) imply that increasing the interfacial tension suppresses instability,
whereas increasing the positive viscosity-jump at the interface in the direction of flow
further enforces instability [10]. Based on this understanding, it is common practice
to use a layer of a third fluid with properties that are in between having viscosity
less than that of the displaced fluid and more than that of the displacing fluid, in
the hope that it will suppress the growth of instability that is otherwise present in the
absence of this middle layer [25], [28], [24]. This expectation is justified based on the
application of our understanding of single-interface flows to the multi-interface case
under the assumptions that (i) the effect of interfacial interactions is negligible, and
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(ii) interfacial tensions at two interfaces are similar to the interfacial tension at the
original interface between the displaced and the displacing fluid in the absence of the
middle layer. This makes each of these interfaces less unstable individually due to
reduction in the viscosity-jump across them. However, when interfacial tensions, as
well as viscosity-jumps at two interfaces, are significantly modified due to the middle
layer fluid, it is not easy to correctly predict the outcome of these collective effects on
the overall instability of these flows from simple extrapolation of our understanding
of single-interface flows. This problem becomes even more daunting in case of flows
with an arbitrary number of interfaces.

Such flows involving an arbitrary number of interfaces arise during various flood-
ing schemes in chemical enhanced oil recovery, a subject of intense current interest
due to rising energy demands worldwide in a market of tight supply. To alleviate
this situation, there is ongoing much needed research in the energy resources area.
One such energy resources area is oil recovery. A fractional increase in the rate of
oil recovery from an oil field using new oil recovery technology or even smarter use
of existing technology will have a significant impact worldwide. Economic and geo-
logical uncertainties play a critical role in deciding the producing life of an oil field.
Although there may still be producible oil in a field, economics of water handling and
geological uncertainty of permeability fields and, to a lesser extent, porosity fields
make producing the remaining oil economically very arduous. Currently, early water
breakthroughs (which exacerbate the economics) limit oil recovery ranging from 10%
to 35% depending on the type of reservoir. Typically, after primary production a
waterflood is employed for pressure support and to further sweep away any oil that is
left over, thus decreasing the field oil saturation. However, one potential drawback of
the waterflood is the inability to accurately sweep away the oil due to an inadequate
mobility ratio. Because of this drawback, it is estimated that total residual oil in
matured reservoirs (reservoirs after conventional primary and secondary oil recovery)
worldwide is around 70% of the original oil in place (OOIP). Therefore, it is important
to investigate other alternatives to a waterflood.

These alternative methods are called enhanced oil recovery (EOR) methods. One
such EOR method is the surfactant flood. Surfactants are effective in lowering the
interfacial tension between oil and water to a level that promotes mobilization of
trapped oil drops (see Shah and Schecter [24]). Surfactant floods (see Fathi and
Ramirez [11]) have been used for EOR, and lessons learned from this have been
applied for aquifer remediation (see Pope and Wade [21]). Another such method
is polymer flooding. Polymer floods differ from waterfloods in that polymer floods
rely on reducing mobility contrast between displacing and displaced fluids. Polymer
flooding was attempted in the early 1970s. The idea of using polymer flooding to
improve oil recovery started evolving through the 1970s and is well documented in
various conference proceedings, books, and journal articles [9, 12, 15, 17, 20, 22, 24,
28]. In early 1980s, this polymer flooding process was mathematically formulated and
solved numerically by Daripa et al. [5]. In most field tests with this flooding process,
recovery was less than 10%. It was felt that this failure was perhaps due to (i) a loss of
polymer in the rock matrix of porous media, (ii) polymer degradation, and (iii) a lack
of understanding of some fundamental issues of this technology such as the timing of
the start of this flood in relation to the waterflood that should precede this polymer
flooding process. Before a systematic study could be undertaken to get to the bottom
of all sources of this failure and thereby improve the polymer flooding strategy, interest
in this polymer flooding process waned significantly in most countries, except in China,
partly due to low labor cost. Corlay and Delamaide [1] present a whole history of
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the Daqing polymer flooding project. The Daqing field is the largest oil field in the
People’s Republic of China, with original oil in place exceeding two billion tons.

Combining the above two methods into one that simultaneously reduces capillary
pressure and reduces the mobility contrast is a better alternative perhaps. This al-
ternative technology is called ASP (alkaline surfactant polymer) flooding and helps
in addressing the challenges of recovering oil from subsea and deep-sea reservoirs and
also from the formations where the mobility of the in-situ oil being recovered is sig-
nificantly less than that of the drive fluid used to displace the oil. The alkaline in
ASP is used so that it reacts with the acid components of crude oil and generates
in-situ surfactant which overcomes the surfactant depletion in the liquid phases due
to retention by the rock matrix. ASP flooding for EOR is relatively new and is be-
ing evaluated through laboratory investigations as well as field tests in many places.
Successful results on ASP pilot tests in Cambridge [29], the Daqing and Gudong oil
fields in China [8, 31], and many other oil fields around the globe, including those in
Venezuela [30], have generated intense interest in ASP flooding [31]. The books by
Littman [16] and Sorbie [26] and the articles by Needham and Doe [18], Zhijun and
Yongmei [32], and Taylor and Nasr-El-Din [27] make the case, through all kinds of
review, for ASP usage to improve oil recovery. Field tests are encouraging (recoveries
are 25–30%), but at this recovery rate, economics are marginal at best. Investment
in the basic research of this EOR method by ASP flooding (polymer flooding is a
special case of ASP flooding) will ensure that this method has an important place in
oil production for a long time to come.

Many of the modern EOR chemical flooding schemes use injection of a sequence
of simple-to-complex fluids in succession with the hope of suppressing fingering in-
stability and reducing capillary pressure, and thereby improving oil recovery. All
these injection policies involve motion of an arbitrary number of sweeping interfaces.
Unfortunately, even the basic stability results for flows involving motion of multiple
interfaces, which can be helpful in the smart design of such flooding schemes, are not
available. An attempt to address these challenges has been made in recent years by
undertaking systematic linear stability studies of multilayer Hele-Shaw flows. Review
of some of the key results known in this area will be presented in the next section.
Careful reading of the next section is essential to recognize the significance of the
universal results to be presented in section 4. Section 2 is then followed by section 3
on mathematical formulation. Sections 4 and 6 are about universal stability prop-
erties related to dispersion curves, unstable waves, and neutral waves of multilayer
Hele-Shaw flows. Numerical results and the use of universal stability properties for
the design of smart multilayer injection policies are presented in sections 5 and 7.
These injection policies are based on two sets of parameters which have been derived
in these sections. Finally, present conclusions in section 8.

2. Preliminaries. Two-layer Hele-Shaw flows in which a fluid is displacing an-
other fluid of higher viscosity with both fluid layers extending up to infinity away from
the common interface is the most celebrated case in the context of linear Saffman–
Taylor instability of an interface separating two fluids. If μr is the viscosity of the
displaced fluid, μl (μl < μr) is the viscosity of the displacing fluid, U is the constant
velocity of the rectilinear flow, and the interfacial tension at the interface is con-
stant T , then the growth rate σst of the interfacial disturbance having wavenumber k
is given by

(1) σst(k) =
Uk(μr − μl) − k3T

μr + μl
,



4 PRABIR DARIPA AND XUERU DING

Fig. 1. Three-layer fluid flow in a Hele-Shaw cell.

from which it follows that the maximum growth rate σsm and corresponding dangerous
wavenumber ksm are given by

(2) σsm =
2T

(μr + μl)

(
U(μr − μl)

3T

)3/2

, ksm =

√
U

3T
(μr − μl).

The critical (also known as cut-off) wavenumber for which the wave is neutral (i.e.,
growth rate zero) is given by

(3) kcr =

√
U

T
(μr − μl).

The three-layer Hele-Shaw flow is an extension of this two-layer single-interface Hele-
Shaw flow. The set-up is shown in Figure 1. The fluid upstream (i.e., as x → −∞) has
a velocity u = (U, 0). The fluid in the extreme left layer with viscosity μl extends up
to x = −∞, the fluid in the extreme right layer with viscosity μr > μl extends up to
x = ∞, and the fluid in the middle layer with constant viscosity μ1 (μr > μ1 > μl) is
of finite extent of length L. Thus, this is a flow with two interfaces. Let T0 and T1 be
the interfacial tensions of the leading and the trailing interfaces, respectively. Some
facts about this problem from Daripa [4] will now be mentioned. There are two modes
(eigenvalues) denoted by σ+ and σ− for each wave, and the corresponding dispersion
relations σ+(k) and σ−(k) do not have explicit forms such as (1) in the two-layer case.
However, these can be computed. Plots of these dispersion relations can be found in
Daripa [4]. Exact formulas similar to (2) for the maximum growth rate and the most
dangerous wavenumber are not available. However, an explicit formula for an upper
bound on the maximum growth rate is given by (from Daripa [4])

(4) σ < σu = max

{
2T0

μr

(
U(μr − μ1)

3T0

)3/2

,
2T1

μl

(
U(μ1 − μl)

3T1

)3/2
}
,

and the cut-off wavenumbers k1 and k2 of σ+(k) and σ−(k), respectively, are given by

(5) k1 =
√
U

T0
(μr − μ1) and k2 =

√
U

T1
(μ1 − μl).
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Fig. 2. Plots of dispersion curves σ−(k) and σ+(k) > σ−(k) for the three-layer case when
μ1 = μcr. The parameter values used for these plots are μl = 2, μ1 = 6, μr = 10, T0 = T1 = U = 1,
and L = 1. The viscosity μ1 = 6 is the critical viscosity μcr given by formula (6).

The necessary condition for a mode with wavenumber k to be unstable is k ≤
max(k1, k2) and a sufficient condition is k ≤ min(k1, k2). The two cut-off wavenum-
bers k1 and k2 become equal (called critical wavenumbers and denoted by kcr) when
the middle layer viscosity μ1 takes a specific value (called critical viscosity and denoted
by μcr). These critical values are given by

(6) μcr = μr − T0

T0 + T1
(μr − μl), kcr =

√
U

T0 + T1
(μr − μl).

All waves in the range 0 < k < kcr are unstable when middle layer viscosity μ1 = μcr.
The kcr is the shortest unstable bandwidth kcr. In general, for other values of μ1,
the unstable bandwidth is max(k1, k2), where at least one of the modes is positive.
Figure 2 shows the plots of the two dispersion curves when the middle layer viscosity
μ1 = μcr with the other parameter values μl = 2, μr = 10, T0 = T1 = 1, U = 1, and
L = 1. We see that σ+ = σ− = 0 at k = kcr, as it should be.

In closing this section, there are several observations to be made for the three-
layer case. It will be helpful in conclusion to see the generalization of these to the
multilayer case and much more.

1. Notice the similarity between formula (2) for the maximum growth rate σsm
in the two-layer case and formula (4) for the upper bound σu in the three-layer
case. In the three-layer case, the strict upper bound σu is the maximum of the
modified maximum individual Saffman–Taylor growth rates of two interfaces.
This formula does not depend on L. However, the dispersion curves and the
maximum growth rate depend on L (see Daripa [4]).

2. The cut-off wavenumbers k1 and k2 given by (5) are the same as the individual
cut-off wavenumbers for the two interfaces that one obtains from applying
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the pure Saffman–Taylor formula (3) to two individual interfaces with correct
values of the viscosity across the interfaces used in this formula. An important
thing to notice is that formulas (5) for k1 and k2 do not depend on the length
L of the middle layer.

3. Notice that μcr and kcr given by (6) do not depend on the length L of the
middle layer. Since the individual growth rates of the two interfaces are given
by the Saffman–Taylor formulas in the limit L → ∞, one can easily verify
that the individual Saffman–Taylor growth rate of each of the two interfaces
is zero at k = kcr provided μ1 = μcr.

4. Notice the similarity between formula (3) for the critical (same as cut-off)
wavenumber in the two-layer case and formula (6)2 for the same wavenumber
in the three-layer case. These two formulas, in fact, can be unified into one as

(7) kcr =
√

U

Ttotal
(μr − μl),

where Ttotal is the sum of interfacial tensions of all interfaces. For the pure
Saffman–Taylor case, there is only one mode and hence only one cut-off
wavenumber. In this case, the cut-off wavenumber is also called the critical
wavenumber, though this is not the case in three-layer flows. In three-layer
flows, there are two modes and thus two distinct cut-off wavenumbers k1 and
k2 (see formula (5)) in general unless they become equal, k1 = k2 = kcr when
μ1 = μcr, which (see formula (6)1), if written in terms of Ttotal, becomes

(8) μcr = μr − T0

Ttotal
(μr − μl).

5. In section 4, we will see that in the three-layer case there is another choice for
the (critical) viscosity of the middle layer, namely

√
μr μl, when the unstable

bandwidth will also be shortest as given by (7) provided the interfacial surface
tensions are chosen carefully (special case of (34) with N = 1).

In this paper, we not only show the generalization of the above results to multi-
layer Hele-Shaw flows but also discover new results even in the special case of three-
layer flows. Results related to upper bounds on the maximum growth rate for the
multi-layer Hele-Shaw flows are available from Daripa [3]. These results will be briefly
mentioned in section 8. Next we briefly present the mathematical formulation and
the numerical scheme to solve for the dispersion relations and obtain other analytical
relations.

3. Mathematical formulation. The physical setup consists of rectilinear mo-
tion in a Hele-Shaw cell of many immiscible fluids having different viscosities. The
physical setup for the special case when there are only three fluids is shown in Fig-
ure 1. This case is the building block for flows involving more than three fluids such
as the one sketched in Figure 3 involving N + 1 number of interfaces with N number
of interior layers.

The flow domain is Ω := (x, y) = R
2 (with a periodic extension of the setup in

the y-direction). The fluid upstream (i.e., as x → −∞) has a velocity u = (U, 0) and
constant viscosity μl which occupies the region x < −L in the moving frame (moving
with velocity (U, 0)). Similarly, the fluid in the region x > 0 in the moving frame has
viscosity μr. There are N interior regions of equal length L/N in the interval (−L, 0)
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Fig. 3. Multilayer fluid flow.

(see Figure 3). These regions contain constant viscosity fluids μi, i = 1, 2, . . . , N , such
that viscosity increases in the direction of basic flow, i.e., μr > μ1 > μ2 > μ3 . . . >
μN > μl. Thus, this set-up has (N + 1) interfaces located at x = 0,−L/N, . . . ,−L
with corresponding interfacial tension coefficients denoted by Ti, i = 0, 1, . . . , N .

The fluid flow in each layer is described by the governing equations

(9) ∇·u = 0, ∇ p = −μ u,
Dμ

Dt
= 0,

where ∇ = ( ∂
∂x ,

∂
∂y ) and D

Dt is the material derivative. The first equation (9)1 is the
continuity equation for incompressible flow, the second equation (9)2 is the Darcy’s
law (Darcy [2]), and the third equation (9)3 is the advection equation for viscosity
(Gorell and Homsy [13], Daripa and Pasa [7]). This last equation simply states that
the viscosity is a property of the fluid and thus gets advected by the fluid. Below,
we refer to this model as the Hele-Shaw model (see also Daripa [3], [4], Gorell and
Homsy [13], and Pearson [19]).

The above system (9) admits a simple basic solution, namely, the whole fluid setup
moves with velocity (U, 0) with all its interfaces being planar, i.e., parallel to the y-axis.
The pressure corresponding to this basic solution is obtained by integrating (9)2. In a
frame moving with velocity (U, 0), the above system consisting of all planar interfaces
and all fluid layers is stationary . Here and below, with slight abuse of notation,
the same variable x is used in the moving reference frame. In linearized stability
analysis by normal modes, disturbances (denoted by tilde variables below) in the
moving reference frame are written in the form

(ũ, ṽ, p̃, μ̃) = (f(x), ψ(x), φ(x), h(x))e(iky+σt)(10)

where k is the wavenumber and σ is the growth rate. We then insert this disturbance
form into the linearized disturbance equations obtained from (9) and also into the
linearized dynamic and kinematic interfacial conditions. The details of these calcula-
tions when there is only one interior interface can be found in Daripa and Pasa [6].
Thus, we obtain the following system of N equations, one for each interior region:

fixx − k2fi = 0, (i = 1, . . . , N)(11)
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These equations also hold in the two exterior regions whose solutions due to exponen-
tial decay of eigenfunction in the far field are given by f(x) = f(0) exp(−kx), x > 0,
and f(x) = f(−L) exp(kx), x < −L. Similarly, the interfacial conditions at N + 1
interfaces are written down easily from extending single interface results (see Daripa
and Pasa [6]) where we use the notation λ as the inverse of growth rate, i.e., λ = 1/σ:

− μ1f1
−
x (0) = (μrk − λE0)f1(0)(12)

μifi
+
x (−iL/N) − μi+1fi+1

−
x (−iL/N) = −λEifi(−iL/N), i ∈ [1, N − 1],(13)

μNfN
+
x (−NL/N) = (μlk − λEN )fN (−NL/N),(14)

Above we have used μ0 = μr, μN+1 = μl, and

Ei = k2U(μi − μi+1) − Tik
4, i = 0, 1, . . . , N.(15)

The continuity of eigenfunctions (i.e., f0(0) = f1(0) and fN (−L) = fN+1(−L)) at the
exterior interfaces have already been used in deriving (12) and (14) above. Similar
conditions at (N − 1) interior interfaces give

fi(−iL/N) = fi+1(−iL/N) (i = 1, . . . , N − 1).(16)

The general solution of (11) is fi(x) = Ci exp(−kx)+Di exp(kx) for each interior
domain −iL/N < x < −(i − 1)L/N , i = 1, 2, . . . , N . Substituting the solution into
the boundary conditions (12)–(14) and (16) leads to a matrix equation AX = 0 for
the unknown constant vector X = (C1, D1, . . . , CN , DN ). The matrix A is a square
matrix (2N × 2N) whose entries are denoted by Aij , i, j = 1, 2, . . . , 2N :

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 0 0 · · · 0
A21 A22 A23 A24 0 · · · 0
A31 A32 A33 A34 0 · · · 0

· · · · · ·
0 · · · 0 A2N−2,2N−3 A2N−2,2N−2 A2N−2,2N−1 A2N−2,2N

0 · · · 0 A2N−1,2N−3 A2N−1,2N−2 A2N−1,2N−1 A2N−1,2N

0 · · · 0 0 0 A2N,2N−1 A2N,2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As an example for the case of three intermediate layers Aij we give

A11 = σ(μ1 − μr)k + E0, A12 = −σ(μ1 + μr)k + E0,
A21 = (−σμ1k + E1)e(kL/N), A22 = (σμ1k + E1)e(−kL/N),
A23 = σμ2ke

(kL/N), A24 = σμ2ke
(kL/N),

A31 = −e(kL/N), A32 = e(−kL/N), A33 = e(kL/N), A34 = −e(−kL/N),
A43 = (−σμ2k + E2)e(2kL/N), A44 = (σμ2k + E2)e(−2kL/N),
A45 = σμ3ke

(2kL/N), A46 = −σμ3ke
(−2kL/N),

A53 = −e(2kL/N), A54 = e(−2kL/N), A55 = e(2kL/N), A56 = −e(−2kL/N),
A65 = (σ(μ4 + μl)k − E3)e(3kL/N), A66 = (σ(−μ4 + μl)k − E3)e(−3kL/N).
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The first line of matrix A comes from the boundary condition in (12), the second
and fourth lines are from the boundary condition in (13), the third and fifth lines are
from the boundary condition in (16), and the last line is from the boundary condition
in (14). We notice that in this example, there are no σ terms in the third and fifth lines.
We then conclude that there are no σ in (N − 1) rows of (2N × 2N) matrix A. The
solvability condition, namely, the determinant of matrix det(A) = 0 for a nontrivial
solution, leads to the dispersion relation. Since the highest degree of det(A) = 0 is
(N + 1), there will be (N + 1) roots corresponding to (N + 1) interfaces. These roots
are found numerically to obtain the dispersion relations. These numerically obtained
dispersion relations will be plotted in the sections below as necessary.

4. Universal stability properties. The dispersion curves {σi(k), i = 0, . . . , N}
are computed for some choices of N by solving the (N+1) degree polynomial resulting
from the solvability condition det(A) = 0. These curves are shown later. First we
derive some exact results from analyzing this solvability condition. We notice from
the form of the matrix A and its entries in the previous section that if Ei = 0 for any
one of i = 0, 1, . . . , N , then det(A) will be of the following form:

det(A) = σ(k)a(σ(k)),(17)

where a(σ(k)) is a function of σ and k. Since Ei = k2U(μi − μi+1) − Tik
4 = 0 at

k = ki ≡ √
U(μi − μi+1)/Ti, it follows from the solvability condition det(A) = 0

and (17) that there is one mode σi(k) = 0 at k = ki. In general, each of the modes
σi(k) = 0 at a wavenumber ki is distinct from the others, and thus we have

(18) ki =

√
U(μi − μi+1)

Ti
, i = 0, 1, . . . , N.

These are the cut-off wavenumbers for the (N+1) dispersion curves. Notice that these
cut-off wavenumbers do not depend on L and thus, not surprisingly, correspond to cut-
off wavenumbers for dispersion curves of N+1 individual interfaces determined simply
by applying the pure Saffman–Taylor formula (3) to all these individual interfaces with
correct values of the viscosity across the interfaces used in this formula. If we define

(19) kmax = max(k0, k1, . . . , kN ) and kmin = min(k0, k1, . . . , kN ),

then it is obvious that at least one of the modes is positive if wavenumber k satisfies

(20) k ≤ kmax,

and all modes are positive for a wave satisfying

(21) k ≤ kmin.

Thus inequality (20) is a necessary condition for instability of a mode with wavenum-
ber k, whereas inequality (21) is a sufficient condition for instability of a mode with
wavenumber k. Notice that kmax and kmin are both L-independent.
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Moreover, when E0 = · · · = EN = 0 at the wavenumber k = kcr, that means
k0 = · · · = kN = kcr. In this case, the determinant of matrix A has the following
form (see the matrix A and its entries in the previous section):

det(A) = b(kcr)σN+1,(22)

where b(kcr) is a function of kcr. It is easy to see that the (N + 1) roots of (22) are
all zero, that is,

σi = 0, i = 0, 1, . . . , N.(23)

We can solve for kcr and the “critical” viscosities μ(i)
cr , i = 1, . . . , N for the N layers

from (N + 1) equations Ei = 0, i = 0, 1, . . . , N , or, equivalently, from

(24)

k2
crU(μr − μ1) − T0k

4
cr = 0,

k2
crU(μ1 − μ2) − T1k

4
cr = 0,

· · · · · ·
k2

crU(μN − μl) − TNk
4
cr = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
By adding all the above equations together, below we solve for kcr in terms of vis-
cosities of extreme layers. Then substituting the formula of kcr in each of the above
equations, we obtain the following formulas for theN critical viscosities μ(1)

cr , . . . , μ
(N)
cr .

(25)

kcr =
√

U(μr−μl)
Ttotal

,

μ
(1)
cr = μr − T0

Ttotal
(μr − μl),

μ
(2)
cr = μ

(1)
cr − T1

Ttotal
(μr − μl),

· · · · · ·
μ

(N−1)
cr = μ

(N−2)
cr − TN−2

Ttotal
(μr − μl),

μ
(N)
cr = μ

(N−1)
cr − TN−1

Ttotal
(μr − μl),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where Ttotal = (T0 + T1 + · · · + TN ) is the sum of interfacial tensions of all (N + 1)
interfaces. It is easy to verify that all the above results when N = 1 are in agreement
with the results for the three-layer case given in section 2.

In general, all waves satisfying k < kmax (see (19)1) are unstable since at least one
of the modes is always positive in this range. However, when fluids in N layers have
critical viscosities μcr according to the formulas given above, the unstable bandwidth
is given by kcr. We claim that this is the shortest bandwidth for unstable waves
meaning kcr ≤ kmax, similar to the three-layer case. We show this next. We recall
the following inequality ∑n

i=1Pi∑n
i=1Qi

≤ max
i

Pi

Qi
,(26)

which holds for arbitrary n under the condition Pi > 0, Qi > 0 (i = 1, . . . , n). Using
this inequality with Pi = U(μi − μi+1), Qi = Ti, we obtain

U(μr − μ1) + U(μ1 − μ2) + · · · + U(μN+1 − μl)
T0 + T2 + · · · + TN

≤ max
i

U(μi − μi+1)
Ti

(27)
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Fig. 4. Dispersion relations: growth rates versus wavenumber k. Five-layer parameter values
are viscosity μ = (2, 4, 6, 8, 10), N = 3, T0 = · · · = T3 = 1/2, U = 1, and L = 1. Nine-layer
parameter values are viscosity μ = (2, 3, 4, 5, 6, 7, 8, 9, 10), N = 7, T0 = · · · = T7 = 1/4, U = 1, and
L = 1.

or, equivalently,

U(μr − μl)
Ttotal

≤ k2
max,(28)

where we have used the definition (19)1 for kmax. Since the left side of inequality
(28) is k2

cr, it follows that kcr ≤ kmax, a generalization of the same result from the
three-layer case.

5. Numerical results. It is interesting to observe that the shortest bandwidth
kcr is dependent only on U , (μr − μl), and Ttotal. This means that the critical wave
number kcr will remain the same for an arbitrary number of internal layers, N , pro-
vided U , (μr − μl), and Ttotal are kept fixed regardless of individual nonzero inter-
facial tension values of N + 1 interfaces and the internal N layers’ fluid viscosities
are μ(i)

cr , i = 1, . . . , N given by (25). Figure 4 shows the dispersion plots for five-layer
and nine-layer Hele-Shaw flows, respectively, with the same value for U , the same
total interfacial tension Ttotal, and the same viscosity difference (μr − μl) between
two extreme-layer fluids. Notice that all modes have value zero at k = kcr, as it
should be.

The pure Saffman–Taylor case is a special case of the multilayer case when N = 0
corresponding to no internal layer (layer of finite thickness). From an EOR perspec-
tive, one of the reasons for having several layers with the constant viscosity of each
layer increasing in the direction of basic velocity U is obviously to stabilize the system,
i.e., to have σmax of the multilayer system lower than the pure Saffman–Taylor growth
rate σsm. Notice that we used the words “stabilize the system” here and below to
mean “to make the system less unstable.” In Daripa [3], a family of upper bounds
for the maximum growth rate for the multilayer system has been presented, one of
which is the extension of formulas (4) from three-layer to multilayer. In general, in the
multilayer case with appropriate choices of interfacial tensions and the intermediate
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Fig. 5. The maximum growth rate σmax for multilayer flows with group-1 parameters and the
maximum growth rate for Saffman–Taylor σsm versus the interfacial tension T . The parameter
values are μl = 2, μr = 10, Ti = 1 (i = 0, . . . , N), U = 1, and L = 1.

layer fluids’ constant viscosities, one can get significant improvement in stability over
the pure Saffman–Taylor case. But using the new results given above, we can now a
priori decide on various parameter values to home in on not only a more stabilized
system but also a shortest unstable band kcr. This is what we show next.

As we have seen above, for the shortest unstable bandwidth kcr one can calculate
μ

(i)
cr , i = 1, . . . , N from μr, μl, and Ttotal regardless of the number of interfaces and

their interfacial tensions Ti, i = 0, . . . , N , so long as these add up to Ttotal. But how
does one select Ti, i = 1, . . . , N , and L to design the most stable (least unstable)
multilayer system? Consider the simplest case when all interfacial tensions are the
same, say T0 = T1 = · · · = TN for a given Ttotal from which all μ(i)

cr , i = 1, . . . , N are
computed using formulas (25) for the multilayer system. We call this set of values
for parameters {μ(i)

cr , Ti, i = 1, . . . , N} group-1. Figure 5 shows plots of the maximum
growth rate σmax for the multilayer system and the maximum pure Saffman–Taylor
growth rate σsm against Ttotal. For a given Ttotal, the value of σsm is computed using
the formula (2)1. It is clear that σmax and σsm both decrease with increasing T . The
general trend shows that σmax is smaller than σsm for a fixed total interfacial tension
Ttotal. But with increasing T , the difference between σmax and σsm becomes smaller.
Nonetheless, we see that the multilayer Hele-Shaw flows with group-1 values of the
parameters used above are less unstable than the corresponding pure Saffman–Taylor
case.

According to formulas (25), individual interfacial tension values for given μr and
μl determine the values of {μ(i)

cr , i = 1, . . . , N}. Therefore, the choice of these interfa-
cial tension values is crucial for stabilization under the constraint that Ttotal remains
the same regardless of the number of interfaces so that all these flows have the same
shortest unstable bandwidth kcr (see formulas (25)). Although the multilayer Hele-
Shaw flows with group-1 values of the parameters used above are less unstable than
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the corresponding pure Saffman–Taylor case, it follows from formulas (25) that there
exist infinitely many sets of values for {Ti, i = 1, . . . , N} for the same given Ttotal
(= N + 1 for the example above) because this total interfacial tension can be un-
evenly distributed in infinite ways among N + 1 interfaces. Equidistribution of Ttotal
among N + 1 interfaces as in the previous example may not be the best for stabi-
lization. There may be other, better choices of {Ti, i = 1, . . . , N} for the same given
Ttotal.

6. Universality continued. Below, using intuition and heuristic reasoning we
show another way to choose the set {Ti, i = 1, . . . , N} for some given Ttotal that has no
influence on the choice of {μ(i)

cr , i = 1, . . . , N}, unlike the previous case (see formulas
(25)), and results in a more stable system with shortest unstable bandwidth kcr. We
know that when L → ∞, individual interfacial instabilities should be independent
of each other. Therefore, all (N + 1) dispersion curves σi(k), i = 0, . . . , N , for the
multilayer system should approach (N+1) pure Saffman–Taylor dispersion curves, one
corresponding to each individual interface, when L → ∞. In this limit, the maximum
growth rate σmax = maxi{maxk σi(k)} of the multilayer system can be described by
the pure Saffman–Taylor problem, which is

(29) σsm,max = max
i

{σ(i)
sm},

where σ(i)
sm = maxk σ

(i)
st (k) is the maximum Saffman–Taylor growth rate of the ith

interface. The problem is to find an optimal group of μ(i)
cr and Ti that minimizes the

maximum growth rate σmax of the multilayer system. However, this minimization
problem is approximately equivalent to minimizing the σsm,max defined above by (29)
because the maximum growth rate of the multilayer system decreases exponentially
with L (see Daripa [4]). Therefore, the problem now is to find the values of {μ(i)

cr , i =
1, . . . , N} and {Ti, i = 1, . . . , N + 1} that will minimize the maximum of {σ(i)

sm, i =
1, . . . , N+1}. The solution of this problem becomes easier if all {σ(i)

sm, i = 1, . . . , N+1}
are taken equal. Even though this heuristic reasoning is not exactly a proof, we will
see later that results obtained from this hypothesis provide a remarkable gain in
stabilization compared to group-1. In fact, we can do better than this. We can find
μ

(i)
cr and Ti such that all individual interfacial dispersion curves σ(i)

st (k), i = 1, . . . , N
are identical. Then naturally all {σ(i)

sm, i = 1, . . . , N + 1} will be equal. Thus, next we
select μ(i)

cr , i = 1, . . . , N , and Ti, i = 1, . . . , N , that satisfy the following equations so
that all σ(i)

st (k), i = 1, . . . , N , are equal (see formula (1) for σst(k)):

(30)
Uk(μr − μ1)
μr + μ1

=
Uk(μ1 − μ2)
μ1 + μ2

= · · · =
Uk(μN − μl)
μN + μl

and

(31)
T0k

3

μr + μ1
=

T1k
3

μ1 + μ2
= · · · =

TNk
3

μN + μl
,

so that

(32) σ
(0)
st (k) = σ

(1)
st (k) = · · · = σ

(N)
st (k)
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for all k. Therefore, zeros ki of all dispersion curves σ(i)
st , i = 0, . . . , N , are equal to

each other, i.e.,

(33) k0 = · · · = kN =
√

U

Ttotal
(μr − μl) ≡ kcr.

By solving for μ(i)
cr and Ti from (30) and (31), we get a new group of viscosities and

interfacial tensions for the shortest width of the unstable band. We call this group-2
parameters:

(34)

μ
(1)
cr = μ

N
N+1
r μ

1
N+1
l ,

μ
(2)
cr = μ

N−1
N+1
r μ

2
N+1
l ,

· · · · · ·
μ

(N)
cr = μ

1
N+1
r μ

N
N+1
l ,

T0 =
(μr + μ

(1)
cr )

μr + μl + 2(μ(1)
cr + · · · + μ(N)

cr )
Ttotal,

T1 =
(μ1 + μ

(2)
cr )

μr + μl + 2(μ(1)
cr + · · · + μ(N)

cr )
Ttotal,

· · · · · ·
TN =

(μ(N)
cr + μl)

μr + μl + 2(μ(1)
cr + · · · + μ(N)

cr )
Ttotal,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where Ttotal = (T0 + T1 + · · · + TN ). Note that notations for the viscosities of all inter-
nal layer fluids computed with group-1 formulas (25) are the same as those computed
with group-2 formulas (34). However, this should not cause any problem below as
these are always referred to by their respective groups. Notice that in the three-layer
case (N = 1), the above formulas yield the group-2 critical viscosity of the fluid in
the middle layer as μ(1)

cr =
√
μr μl and the interfacial tensions T0 =

√
μr

μr+μl
Ttotal

and T1 =
√

μl

μr+μl
Ttotal. It is easy to verify that the cut-off wavenumbers k1 and

k2 of both modes in this case are kcr given by (33). It is interesting to notice from
the formulas above that the viscosities of the fluid layers in succession from left to
right in the direction of displacement form a geometric series with geometric ratio
(μr/μl)1/(N+1).

7. Numerical results continued. For given values of Ttotal, μr, and μl, values
of the group-2 parameters μ(i)

cr and Ti are calculated using the above formulas (34).
Using these interfacial tensions Ti, i = 0, . . . , N , viscosities μ(i)

cr , i = 1, . . . , N , of the
interior layer fluids, and given values of U and L, eigenvalues σ(i)(k) are numerically
computed (see section 3). Figures 6 and 7 show the plots of dispersion curves σ(i)(k)
versus wavenumber k for three-, four- and five-layer Hele-Shaw flows when L = 1 and
L = 5, respectively, with Ttotal = 2, U = 1, μr = 10, and μl = 2 fixed. It is clear that
when L increases, all dispersion curves for the multilayer system come closer to each
other. Furthermore, the shortest bandwidth kcr is equal to 2 as predicted by (33).

In what follows, we compare the effect of the two groups of parameters for μ(i)
cr

and Ti, one computed from (25) and the other from (34). Figure 8 shows plots of σmax
versus L in three-, four-, and five-layer Hele-Shaw flows for both groups of parameters.
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Fig. 6. Dispersion curves for (25) when L = 1: Growth rates σ versus wavenumber k for three-,
four-, and five-layer cases. Parameter values are as follows: μ = (2, 4.472, 10), T = (1.382, 0.618)
in the three-layer case; μ = (2, 3.42, 5.848, 10), T = (1.038, 0.607, 0.355) in the four-layer case;
μ = (2, 2.9907, 4.472, 6.6874, 10), T = (0.8281, 0.5538, 0.3704, 0.2477) in the five-layer case. In all
cases, U = 1 and Ttotal = 2.

Plots in both panels show that flow becomes more stable with increasing number of
layers, with all other parameter values fixed. We see, as expected, that the effect of L
quickly saturates with both groups of parameters. Notice the significantly improved
stabilization capacity of the set of values corresponding to group-2 parameters (Fig-
ure 8, right panel) compared to that for the set of group-1 parameters used for plots
in the left panel. Toward this end, we mention that for given Ttotal, μr, and μl, there
is only one set of values for group-2 parameters as opposed to infinitely many set of
values for group-1 parameters because of free variables Ti subject to the condition
that all these interfacial tensions must add up to given Ttotal. Some of these sets of
values from group-1 can even make the system more unstable, but many of these sets
will also stabilize the system. The choice of the set used for the plots in the left panel
of Figure 8 is a typical case. Many experiments with various other choices of the set
from this group-1 with Ttotal, μr, and μl fixed at the values mentioned in the caption
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Fig. 7. Dispersion curves for (25) when L = 5: Growth rates σ versus wavenumber k for three-,
four-, and five-layer cases. Parameter values are as follows: μ = (2, 4.472, 10), T = (1.382, 0.618)
in the three-layer case; μ = (2, 3.42, 5.848, 10), T = (1.038, 0.607, 0.355) in the four-layer case;
μ = (2, 2.9907, 4.472, 6.6874, 10), T = (0.8281, 0.5538, 0.3704, 0.2477) in the five-layer case. In all
cases, U = 1 and Ttotal = 2.

to Figure 8 show that their stabilization capacities do not exceed that shown in the
right panel of Figure 8 with group-2 parameters’ values.

In closing this section, we mention that we have shown the universality of the
formulas such as (5) and (6) for ki, critical viscosity, and critical wavenumber. In
fact, we have discovered another group (34) of critical viscosities for the same criti-
cal wavenumber (6)2. It is worth pointing out that the formula such as (2) for the
maximum growth rate and the most dangerous wavenumber for the pure Saffman–
Taylor case have no universality appeal for the multilayer case. The only univer-
sality related to the growth rate is a generic pattern of the formula for the upper
bound which can be found in Daripa [3] (see formulas (99), (103), and (105) there).
In the special case of three layers (N = 1), these formulas for the upper bound
reduce to (4).
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Fig. 8. Comparison of stabilization capacity of two groups (25) and (34) for the same Ttotal,
U , and L: Plots of the maximal growth rate for σmax versus L for three-, four-, and five-layer cases.
The parameters for the left plot are as follows: μ = (2, 6, 10), T0 = T1 = 1 in the three-layer case;
μ = (2, 4.67, 7.34, 10), T0 = T1 = T2 = 2/3 in the four-layer case; μ = (2, 4, 6, 8, 10), T0 = T1 =
T2 = T3 = 1/2 in the five-layer case. For the right plot: μ = (2, 4.472, 10), T = (1.382, 0.618)
in the three-layer case; μ = (2, 3.42, 5.848, 10), T = (1.038, 0.607, 0.355) in the four-layer case;
μ = (2, 2.9907, 4.472, 6.6874, 10), T = (0.8281, 0.5538, 0.3704, 0.2477) in the five-layer case. In all
cases: U = 1 and Ttotal = 2.

8. Conclusions. In this paper, we have obtained linear stability results that
are universal for multilayer Hele-Shaw flows in the sense that the results hold for
flows involving an arbitrary number of interfaces. To summarize, we list the universal
stability results below:

1. The cut-off wavenumbers ki, i = 0, 1, . . . , N given by (18) are universal,
meaning that they hold for flows with any number of interfaces. Notice two
important facts about this: (i) cut-off wavenumbers are pure Saffman–Taylor
cut-off wavenumbers for individual interfaces; (ii) these cut-off wavenumbers
do not depend on the length, L, of the middle layer. These properties are
universal as well.

2. The unstable bandwidth kmax given by (19)1 is universal as well and does
not depend on L. The shorter bandwidth kmin given by (19)2 which contains
unstable waves having both modes (σ+, σ−) positive is also universal. These
bandwidths also do not depend on L.

3. The critical values μ(i)
cr and kcr given by formulas (25) for group-1 and by

formulas (34) for group-2 are universal as well and do not depend on L.
Since individual growth rates of all interfaces are given by the Saffman–Taylor
formulas in the limit L → ∞, one can easily verify that individual Saffman–
Taylor growth rates of all interfaces are zero at k = kcr provided viscosities of
the fluids in the N interior layers are μ(i)

cr , i = 1, . . . , N (either from group-1
or group-2), and in the case of group-2, the interfacial tensions are Ti given
by (34).

Even though the above stability results do not depend on L, it is important to empha-
size that some stability results depend on L and have been addressed in Daripa [4].
For example, dispersion curves and the maximum growth rate depend on L. This is
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expected, as stability of individual interfaces is coupled nonlinearly as reflected in the
expression of matrix A (see section 3). This system decouples into individual interface
problems only in the limit of L → ∞. The universal stability results derived above
are special considering the fact that the problem is nonlinear and does not decouple
into individual problems for finite values of L, even though it appears that way from
some of the universality results obtained in this paper. The above universality results
should be useful for stabilization and understanding of flow features in unstable mul-
tilayer Hele-Shaw flows. Application of these new results to stabilization of multilayer
Hele-Shaw flows has been demonstrated in this paper.

In closing, we briefly discuss the relevance of our results to chemical EOR. One
can set up the initial data and the parameter values (such as viscosities and interfa-
cial tensions) in a reservoir simulator corresponding to any specific flooding strategy
desired, including the ones based on results obtained in this paper. Then various
quantities of interest such as oil recovered, fractional area swept, etc., resulting from
any specific flooding strategy can be computed using the simulator. This process will
allow evaluation of relative performance of various flooding strategies and test the
merit of our results. However, a few points are worth mentioning since the results of
this paper are based on the Hele-Shaw model, whereas most reservoir simulators are
based on the Buckley–Leverett model. It has been argued in Daripa [4] and in the first
paragraph of section 1 that both of these models will lead to similar results for ho-
mogeneous reservoirs. Our results may be also relevant for heterogeneous reservoirs.
Research into these topics falls outside the scope of this paper.
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