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We perform a linear stability analysis of three-layer radial porous media and Hele-Shaw flows with
variable viscosity in the middle layer. A nonlinear change of variables results in an eigenvalue problem
that has time-dependent coefficients and eigenvalue-dependent boundary conditions. We study this
eigenvalue problem and find upper bounds on the spectrum. We also give a characterization of the
eigenvalues and prescribe a measure for which the eigenfunctions form an orthonormal basis of the
corresponding L2 space. This allows for any initial perturbation of the interfaces and viscosity profile
to be easily expanded in terms of the eigenfunctions by using the inner product of the L2 space, thus
providing an efficient method for simulating the growth of the perturbations via the linear theory. The
limit as the viscosity gradient goes to zero is compared with previous results on multi-layer radial flows.
We then numerically compute the eigenvalues and obtain, among other results, optimal profiles within
certain classes of functions.

Keywords: hydrodynamic stability; radial porous media and Hele-Shaw flows; Saffman–Taylor instabil-
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1. Introduction

Saffman–Taylor instability occurs when a less viscous fluid drives a more viscous fluid in a porous
medium. This phenomenon occurs in many applications including carbon sequestration, filtration,
hydrology and petrology. One important application is oil recovery in which it is common practice
to use water to displace oil. Oil recovery was the application driving the seminal work on this type
of instability in Saffman & Taylor (1958). In order to simplify their experiments, Saffman and Taylor
studied the instability in the context of Hele-Shaw flows—flows between two parallel plates with a
small gap between them. Hele-Shaw flows are a good model of porous media flows because they are
also governed by Darcy’s Law. It is now well known that a positive interfacial viscosity jump in the
direction of rectilinear flow produces an unstable flow with interfacial tension stabilizing short waves.

In applications in which it is advantageous to suppress the instability, one strategy is to use
intermediate fluids that are more viscous than the displacing fluid but less viscous than the displaced
fluid in order to limit the size of the viscosity jumps. This strategy is effective when the interfacial
tension at the interfaces is comparable to that of a two-layer flow. This has been demonstrated in Daripa
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STABILITY RESULTS ON RADIAL HELE-SHAW FLOWS WITH VARIABLE VISCOSITY 295

(2008) in the case of rectilinear flow using upper bounds on the growth rates, which were also used to
give stabilization criteria.

Another approach to limiting the instability is using a variable viscosity fluid as the intermediate
fluid. This can be achieved, for example, in chemical enhanced oil recovery (EOR) in which a polymer is
used to increase the viscosity of the displacing fluid and variable polymer concentration leads to variable
viscosity. A viscosity gradient allows for even smaller viscosity jumps at the interfaces than a constant
viscosity fluid but the layer itself becomes unstable. There are several studies on the stability of multi-
layer variable viscosity porous media and Hele-Shaw flows in a rectilinear geometry. Gorell & Homsy
(1983) first theoretically studied the stability of three-layer flows in such a geometry in which the middle
fluid has variable viscosity. However, they studied the restricted case in which the trailing interface is a
miscible interface with no interfacial tension. Daripa & Pasa (2006) dropped this restriction and studied
the case of three-layer variable viscosity flow with both interfaces immiscible. They used the variational
form of the problem to derive upper bounds on the growth rate of instabilities and demonstrated that
the growth rate can be decreased in comparison to the two-layer layer flow that does not have the
intermediate fluid.

Saffman–Taylor instability is also studied in a radial flow geometry in which there is a point source
in the center of the flow and the fluid moves outward radially with circular interfaces between fluids. In
the context of oil recovery, the radial geometry models the flow near the injection and production well
whereas the rectilinear geometry models the flow far from the wells. Modeling near the well is more
difficult because the well acts as an approximate singularity (source or sink depending on whether the
well is a production well or injection well). This paper advances understanding of such near-well flows
and has direct bearing on oil recovery technologies. Moreover, due to the rich and interesting dynamics
of the interfaces in radial flows, which are still not well understood from a physical standpoint, this topic
has been and will remain of interest in the near future.

Radial flow is one of several cases investigated in Muskat (1934, 1946) for the two-layer problem but
in the case of zero interfacial tension. Paterson (1981) later performed a linear stability analysis for two-
layer radial flow with interfacial tension. There are relatively few works on the stability of ‘multi-layer’
radial flows. Cardoso & Woods (1995) studied the stability of three-layer radial flows in the limiting
case in which the inner interface is completely stable and looked at the break up of the middle layer
into drops. Beeson-Jones & Woods (2015) analyzed general three-layer flows, and Gin & Daripa (2015)
performed a linear stability analysis for an arbitrary number of fluid layers in the radial geometry. In
each of these works, the viscosity of the fluids increases in the direction of the flow, but the viscosity in
each layer is constant.

To date, there are no known studies of multi-layer radial flows with ‘variable’ viscosity. The
development of the theory for radial flow lags behind that of rectilinear flow because of the challenges
due to the time-dependence of the problem. In particular, the curvature of the interfaces, the length of the
middle layer(s) of fluid and the spatially dependent viscosity profile are all time-dependent. Therefore,
the analysis of rectilinear flow in, for example, Daripa & Pasa (2006) does not hold and a novel
approach is required. Previous stability studies of radial Hele-Shaw flows (Cardoso & Woods, 1995;
Paterson, 1981; Kim et al., 2009; Dallaston & McCue, 2013; Anjos et al., 2015; Beeson-Jones & Woods,
2015, 2017) allow for a time-dependent growth rate of instabilities, typically making use of a quasi-
steady-state approximation. Despite this approximation, the stability results have often shown agreement
with both physical and numerical experiments. In what follows, we keep with this tradition and use a
quasi-steady-state approximation to derive an eigenvalue problem that has time-dependent coefficients
and thus time-dependent eigenvalues. Additionally, the eigenvalue problem has eigenvalue-dependent
boundary conditions, which make the study of the eigenvalue problem mathematically interesting and
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296 C. GIN AND P. DARIPA

challenging. The eigenvalues depend on many different parameters including the viscosity profiles of the
fluid layers, the interfacial tension at each interface, the curvature of the interfaces and the fluid injection
rate. Therefore, a numerical exploration of the vast parameter space is necessary. It is also important for
applications in chemical EOR to investigate which viscosity profiles minimize the instability for a given
set of parameters, as is done in Daripa & Ding (2012) in the rectilinear case.

There is also considerable interest in studying viscous fingering in cases where certain parameters
of the flow or geometry are time-dependent. Li et al. (2009) numerically and experimentally studied
radial Hele-Shaw flows with a time-dependent injection rate. Dias & Miranda (2010) used a weakly
nonlinear approach to analytically study both a time-dependent injection rate and a time-dependent gap
width of the Hele-Shaw cell. Zheng et al. (2015) showed through both linear stability analysis and
experiments how to control viscous fingering for a radial Hele-Shaw flow using a multitude of time-
dependent strategies with a particular emphasis on a time-dependent gap width. The results of Zheng
et al. (2015) were recently extended with a more detailed stability analysis in Vaquero-Stainer et al.
(2019). Morrow et al. (2019) used numerical simulations to compare constant versus time-dependent
injection rates in standard, tapered and rotating Hele-Shaw cells. All of these studies were for the case
of a single fluid interface.

There are several physical mechanisms through which a variable viscosity profile can arise in the
context of porous media flows. The simplest model to study incompressible porous media flow is to use
the Hele-Shaw model which is based on the incompressibility condition and the Darcy’s law in each of
the phases. This model does not allow any mixing between the oil and water phases macroscopically
and maintains sharp interfaces between the phases. Another model, called the Buckley–Leverett model,
builds on this Hele-Shaw model by adding a saturation equation, a nonlinear hyperbolic conservation
law with non-convex flux function which allows mixing between the phases (macroscopically) due to
rarefaction waves behind the leading saturation front sweeping the oil ahead (Daripa et al., 1988). The
rarefaction waves create a viscosity profile behind the front with viscosity gradually increasing towards
the moving front. This region with a viscosity profile is usually finite in length, and its length grows
with time. The study of the stability of such composite solutions to conservation laws is relevant for
porous media but less well-developed. An appropriate model for this problem is the one under study
which models the effect of rarefaction waves with a viscosity profile between two interfaces and the
shock front with a material interface having appropriate viscosity jump at the interface. Such a study
was partially carried out in Daripa (2008) in the rectilinear geometry but the present study in the radial
geometry is much harder as mentioned above and is also more relevant for porous media flow.

A variable viscosity profile can also arise in a Hele-Shaw flow when there are particles in the
displacing fluid. Due to shear-induced migration, the particles accumulate near the leading interface.
The non-uniform concentration profile leads to a viscosity profile with the viscosity increasing in the
direction of the flow. It has been shown experimentally that an otherwise stable radial Hele-Shaw flow
can experience viscous fingering due to the viscosity gradient (Tang et al., 2000; Kim et al., 2017; Luo
et al., 2018; Xu & Lee, 2019). The concentration profile, and hence the effective viscosity profile, are
often measured as a function of the radial distance from the injection point in the Hele-Shaw cell (Luo
et al., 2018; Xu & Lee, 2019).

The paper is laid out as follows. In Section 2 we perform a linear stability analysis of a point source
driven three-layer ‘radial’ Hele-Shaw flow in which fluid between the two interfaces has a variable
viscosity profile. We use a time-dependent coordinate transformation to freeze the basic motion of
the two interfaces and derive the associated eigenvalue problem in this new coordinate system. The
growth rate of disturbances in the transformed coordinate system is related to the physical growth of
disturbances of the interfaces in Section 3. Section 4 gives the restriction of the problem to the case
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Fig. 1. The basic solution for three-layer flow.

of constant viscosity. In Section 5, we follow the approach of Daripa & Pasa (2006) to derive upper
bounds on the growth rate using the variational form of the problem. The nature of the eigenvalues
and the completeness of the eigenfunctions are investigated in Section 6. Numerical evaluation of the
eigenvalues and their dependence on certain physical parameters are given in Section 7, and the validity
of the quasi-steady-state approximation is explored. We conclude in Section 8.

2. Preliminaries

We consider a radial Hele-Shaw flow consisting of three regions of incompressible, immiscible fluid.
By averaging across the gap, we may consider a two-dimensional flow domain in polar coordinates,
Ω := (r, θ) = R

2. The least viscous fluid with constant viscosity μi is injected into the center of the
cell at an injection rate, Q. The most viscous fluid, with constant viscosity μo, is the outermost fluid.
The middle layer fluid has a smooth, axisymmetric viscosity profile μ(r) where μi < μ(r) < μo. The
fluid flow is governed by the following equations

∇· u = 0, ∇ p = −μ u,
∂μ

∂t
+ u · ∇μ = 0, forr �= 0. (2.1)

The first equation (2.1) is the continuity equation for incompressible flow, the second equation (2.1) is
Darcy’s Law and the third equation (2.1) is an advection equation for viscosity. Note that Darcy’s Law
for Hele-Shaw flows contains a permeability term K = b2/12, but for the sake of simplicity here we
have scaled viscosity by this term. Therefore, in what follows μ denotes the modified viscosity. We start
with the fluids separated by circular interfaces with radii R1(0) and R2(0), where R1(t) and R2(t) are the
positions of the interfaces at time t. This setup is shown in Fig. 1.

The equations admit a simple basic solution in which all of the fluid moves outward radially with
velocity u := (

ur, uθ

) = (Q/(2πr), 0). The interfaces remain circular and their radii are given by

R1(t) = √
Qt/π + R1(0)2 and R2(t) = √

Qt/π + R2(0)2. The pressure, pb = pb(r), may be obtained
by integrating equation (2.1).

We define the quantity R0(t) = √
Qt/π and define the following coordinate transformation:

ζ = r2 − R2
0(t)

R2
2(t) − R2

0(t)
= r2 − R2

0(t)

R2
2(0)

, α = θ , τ = t. (2.2)
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298 C. GIN AND P. DARIPA

Using the chain rule, the relationship between the partial derivatives in the original coordinate system
and the new coordinate system is as follows.

∂

∂r
= 2r

R2
2(0)

∂

∂ζ
,

∂

∂θ
= ∂

∂α
,

∂

∂t
= ∂

∂τ
− Q

πR2
2(0)

∂

∂ζ
.

The basic solution after the coordinate change is (uζ , uα) = (0, 0) with the interfaces stationary at

ζ = ζ1 := R2
1(0)/R2

2(0) and ζ = 1. μ = μ(ζ ) is now independent of time.
We perturb this basic solution (uζ = 0, uα = 0, pb, μ) by (ũζ , ũα , p̃, μ̃) where the disturbances are

assumed to be small. The linearized equations which govern these disturbances are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ ũζ

∂ζ
+ 1

ζ
∂ ũα

∂α
= 0

∂ p̃
∂ζ

= − R4
2(0)

4(ζR2
2(0)+R2

0(τ ))
μũζ − QR2

2(0)

4π(ζR2
2(0)+R2

0(τ ))
μ̃

∂ p̃
∂α

= − ζR2
2(0)+R2

0(τ )

ζ
μũα

∂μ̃
∂τ

+ ũζ
∂μ
∂ζ

= 0.

(2.3)

We use separation of variables and decompose the disturbances into Fourier modes in the α

coordinate so the disturbances are of the form(
ũζ , ũα , p̃, μ̃

) = (
f (ζ , τ), δ(ζ , τ), ψ(ζ , τ), φ(ζ , τ)

)
einα . (2.4)

Using this ansatz in equation (2.3) yields the following relations:

∂φ(ζ , τ)

∂τ
= −dμ

dζ
f (ζ , τ), (2.5)

∂

∂ζ

{(
ζR2

2(0) + R2
0(τ )

)
μ

∂f (ζ , τ)

∂ζ

}
− n2R4

2(0)

4(ζR2
2(0) + R2

0(τ ))
μf (ζ , τ) (2.6)

= Qn2R2
2(0)

4π(ζR2
2(0) + R2

0(τ ))
φ(ζ , τ).

In the innermost and outermost layers, the viscosity is constant and therefore φ(ζ , τ) ≡ 0. In these
regions, the solution of (2.6) is of the form

f (ζ , τ) = C̃1

(
ζR2

2(0) + R2
0(τ )

) n
2 + C̃2

(
ζR2

2(0) + R2
0(τ )

)− n
2

. (2.7)

2.1 Interface Conditions

Recall that the inner interface in the ζ -coordinate system is located at ζ = ζ1 := R2
1(0)/R2

2(0). Let the
disturbance of this interface be of the form ηi = Cn(τ )einα . The linearized kinematic condition at the
inner interface is given by

C′
n(τ ) = f (ζ1, τ). (2.8)
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The outer interface is located at ζ = 1. If the disturbance of the interface is of the form ηo = Dn(τ )einα ,
then the linearized kinematic condition is

D′
n(τ ) = f (1, τ). (2.9)

The linearized dynamic interface condition at the inner interface is given by

2R2
1(τ )

R2
2(0)

(
p̃+(ζ1) − p̃−(ζ1)

)− ηi
Q

2π

(
μ(ζ1) − μi

) = T1

⎛⎝ηi + ∂2ηi
∂α2

R1(τ )

⎞⎠ ,

where T1 is the interfacial tension (see Gin (2015) for the derivation). Using the ansatz (2.4) and the
system (2.3),

2R2
1(τ )

R2
2(0)

(
μi(f

−)′(ζ1, τ) − μ(ζ1)(f
+)′(ζ1, τ)

) =
{

Qn2

2πR2
1(τ )

(
μ(ζ1) − μi

)− T1
n4 − n2

R3
1(τ )

}
Cn(τ ). (2.10)

When ζ < ζ1, f is of the form given by (2.7). When τ = 0, in order to avoid a singularity when ζ → 0,
f must be of the form f (ζ , τ) = C̃1(ζR2

2(0) + R2
0(τ ))

n
2 . We assume this also to be true for τ > 0. Then

(f −)′(ζ1, τ) = nR2
2(0)

2R2
1(τ )

f (ζ1, τ). (2.11)

Using (2.11) in (2.10),

nμif (ζ1, τ) − 2R2
1(τ )

R2
2(0)

μ(ζ1)(f
+)′(ζ1, τ) =

{
Qn2

2πR2
1(τ )

(
μ(ζ1) − μi

)− T1
n4 − n2

R3
1(τ )

}
Cn(τ ). (2.12)

Combining this with the kinematic interface condition (2.8),

C′
n(τ ) = 2R2

1(τ )

nR2
2(0)

μ(ζ1)

μi
(f +)′(ζ1, τ) + F1

μi
Cn(τ ), (2.13)

where F1 is given by

F1 = Qn

2πR2
1(τ )

(
μ(ζ1) − μi

)− T1
n3 − n

R3
1(τ )

. (2.14)

A similar procedure for the outer interface yields the interface condition

D′
n(τ ) = −2R2

2(τ )

nR2
2(0)

μ(1)

μo
(f −)′(1, τ) + F2

μo
Dn(τ ), (2.15)
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300 C. GIN AND P. DARIPA

where F2 is given by

F2 = Qn

2πR2
2(τ )

(
μo − μ(1)

)− T2
n3 − n

R3
2(τ )

, (2.16)

and T2 is the interfacial tension at the outer interface.

2.2 Eigenvalue problem

To this point we have the following system of equations where the field equations hold in the domain
(ζ1, 1):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂φ(ζ ,τ)
∂τ

= − dμ
dζ

f (ζ , τ),
∂
∂ζ

{(
ζR2

2(0) + R2
0(τ )

)
μ

∂f (ζ ,τ)
∂ζ

}
− n2R4

2(0)

4(ζR2
2(0)+R2

0(τ ))
μf (ζ , τ) = Qn2R2

2(0)φ(ζ ,τ)

4π(ζR2
2(0)+R2

0(τ ))

C′
n(τ ) = 2R2

1(τ )

nR2
2(0)

μ(ζ1)
μi

f ′(ζ1) + F1
μi

Cn(τ )

D′
n(τ ) = − 2R2

2(τ )

nR2
2(0)

μ(1)
μo

f ′(1) + F2
μo

Dn(τ ),

(2.17)

where we have dropped the superscripts “+” and “-”. Using a quasi-steady-state approximation (QSSA)
in which τ (and hence R(τ )) are frozen, the functions φ(x, τ), Cn(τ ) and Dn(τ ) experience short-time
exponential growth satisfying ⎧⎪⎨⎪⎩

∂φ(ζ ,τ)
∂τ

= σ(τ)φ(ζ , τ),

C′
n(τ ) = σ(τ)Cn(τ ),

D′
n(τ ) = σ(τ)Dn(τ ),

(2.18)

for some growth rate σ(τ). Plugging (2.18) into (2.17) and using (2.8) and (2.9), (f , σ) is a solution to
the following eigenvalue problem in the domain (ζ1, 1):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( (
ζR2

2(0) + R2
0(τ )

)
μf ′(ζ )

)′ − n2R4
2(0)

4(ζR2
2(0)+R2

0(τ ))
μf (ζ ) = − Qn2R2

2(0)

4π(ζR2
2(0)+R2

0(τ ))

1
σ(τ)

dμ
dζ

f (ζ ),

2R2
1(τ )

nR2
2(0)

μ(ζ1)f
′(ζ1) =

(
μi − F1

σ(τ)

)
f (ζ1),

− 2R2
2(τ )

nR2
2(0)

μ(1)f ′(1) =
(
μo − F2

σ(τ)

)
f (1).

(2.19)

The eigenvalues of system (2.19) are the time-dependent growth rates of the disturbances of the system.
The QSSA allows for the considerable analysis and computation of growth rates that follows. We
provide an in-depth investigation into the validity of the QSSA in Section 7.4.

3. Relating the growth of interfacial disturbances in the ζ -coordinates with the physical
coordinates

We now relate the growth of the interfacial disturbances in the ζ -coordinates to the same in the physical
coordinate system. We start with the inner interface. Recall that in the transformed coordinates, the inner
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STABILITY RESULTS ON RADIAL HELE-SHAW FLOWS WITH VARIABLE VISCOSITY 301

interface was disturbed by Cn(τ )einα . Therefore, it is located at ζ = ζ1 + Cn(τ )einα . Thus, the position
of the interface in the physical coordinates is

r =
√

ζR2
2(0) + R2

0(t) =
√

(ζ1 + Cn(τ )einα)R2
2(0) + R2

0(t).

Expanding about ζ = ζ1,

r = R1(τ ) + R2
2(0)

2R1(τ )
Cn(τ )einα + O(C2

n(τ )).

If we write the disturbance in the physical coordinates as An(t)e
inθ (that is, the interface is located at

r = R1(t) + An(t)e
inθ ), then, within linear approximation,

An(t) = R2
2(0)

2R1(τ )
Cn(τ ). (3.1)

This implies that

A′
n(t)

An(t)
= C′

n(τ )

Cn(τ )
− Q

2πR2
1(t)

. (3.2)

Following the same process, the growth rate of the disturbance of the outer interface is

B′
n(t)

Bn(t)
= D′

n(τ )

Dn(τ )
− Q

2πR2
2(t)

, (3.3)

where the outer interface is located at r = R2(t) + Bn(t)e
inθ .

4. Constant Viscosity Fluids

We now consider the case in which all of the fluids have constant viscosity, first for two-layer flows
and then for three-layer. We do this to demonstrate that the variable viscosity formulation can recover
previous results in the constant viscosity limit. Through this process, we also present some new results
on three-layer constant viscosity flows.

When there are only two fluids (i.e. one interface located at r = R(t)), the above analysis holds with
the coordinate transformation

ζ = r2 − R2
0(t)

R2(0)
.

In the new coordinates, the basic solution has the interface fixed at ζ = 1. Let μi denote the viscosity of
the inner fluid and μo denote the viscosity of the outer fluid. Analogous to equations (2.9) and (2.10),
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302 C. GIN AND P. DARIPA

the kinematic interface condition is

D′
n(τ ) = f (1, τ), (4.1)

and the dynamic interface condition is

2R2(τ )

R2(0)

(− μo(f
+)′(1, τ) + μi(f

−)′(1, τ)
) =

{
Qn2

2πR2(τ )

(
μo − μi

)− T
n4 − n2

R3(τ )

}
Dn(τ ), (4.2)

where T is the interfacial tension and Dn(τ ) is the amplitude of the disturbance of the interface with
wave number n. Also, as stated in the derivation of the interface conditions above,

f (ζ , τ) = C̃1

(
ζR2(0) + R2

0(τ )
) n

2
, ζ < 1,

and

f (ζ , τ) = C̃2

(
ζR2(0) + R2

0(τ )
)− n

2
, ζ > 1.

Using these in equations (4.1) and (4.2) gives the two-layer growth rate

σ := D′
n(τ )

Dn(τ )
= Qn

2πR2(τ )

μo − μi

μo + μi
− T

μi + μo

n3 − n

R3(τ )
. (4.3)

This is an expression for the growth rate of the disturbance of the interface in the ζ -coordinate system.
This problem can be solved in the original r-coordinate system, and the result is a classic one (Paterson,
1981). Paterson’s result, using the notation in this paper, is that a disturbance with wave number n and
amplitude Bn(t) has the growth rate

B′
n(t)

Bn(t)
= Qn

2πR2(t)

μo − μi

μo + μi
− T

μo + μi

n3 − n

R3(t)
− Q

2πR2(t)
. (4.4)

The relationship between equations (4.3) and (4.4) is consistent with the comparison of the growth rates
in the two different coordinate systems given by equation (3.3).

We now turn to three-layer flows in which the fluid in the middle layer also has constant viscosity,
μ1. This situation has been investigated in Beeson-Jones & Woods (2015) and Gin & Daripa (2018),
and it has been found that the magnitudes of interfacial disturbances An(t) and Bn(t) are governed by
the following system of ODE’s

d

dt

(
An(t)
Bn(t)

)
= Mr

1(t)

(
An(t)
Bn(t)

)
, (4.5)
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where Mr
1(t) is the 2 × 2 matrix with entries given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Mr

1(t)
)

11
=

{
(μo+μ1)−(μo−μ1)

(
R1
R2

)2
}

F1

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

− Q
2πR2

1
,

(
Mr

1(t)
)

12
= 2μ1

(
R1
R2

)n−1
F2

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

,

(
Mr

1(t)
)

21
= 2μ1

(
R1
R2

)n+1
F1

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

,

(
Mr

1(t)
)

22
=

{
(μ1+μi)+(μ1−μi)

(
R1
R2

)2
}

F2

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

− Q
2πR2

2
.

(4.6)

We recall equation (3.1), which compares the interfacial disturbance of the inner interface in the
r-coordinates and the ζ -coordinates and also consider the corresponding equation for the outer interface:

An(t) = R2
2(0)

2R1(τ )
Cn(τ ), Bn(t) = R2

2(0)

2R2(τ )
Dn(τ ). (4.7)

Equations (4.5) and (4.7) give the matrix equation

d

dt

(
An(t)
Bn(t)

)
= Mr

1(t)
R2

2(0)

2
R−1

(
Cn(τ )

Dn(τ )

)
, (4.8)

where (
R = R1 0

0 R2

)
. (4.9)

Taking derivatives of (4.7) and rewriting the resulting equations in matrix form, we obtain

d

dt

(
An(t)
Bn(t)

)
= R2

2(0)

2
R−1 d

dτ

(
Cn(τ )

Dn(τ )

)
− R2

2(0)

2
R−1Q

(
Cn(τ )

Dn(τ )

)
, (4.10)

where

Q =
⎛⎝ Q

2πR2
1

0

0 Q
2πR2

2

⎞⎠ . (4.11)

Combining (4.8) and (4.10),

d

dτ

(
Cn(τ )

Dn(τ )

)
= Mζ

1(τ )

(
Cn(τ )

Dn(τ )

)
, (4.12)
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where Mζ
1 = RMr

1R−1 + Q. The entries of Mζ
1(τ ) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Mζ

1(τ )
)

11
=

{
(μo+μ1)−(μo−μ1)

(
R1
R2

)2
}

F1

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

,

(
Mζ

1(τ )
)

12
= 2μ1

(
R1
R2

)n
F2

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

,

(
Mζ

1(τ )
)

21
= 2μ1

(
R1
R2

)n
F1

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

,

(
Mζ

1(τ )
)

22
=

{
(μ1+μi)+(μ1−μi)

(
R1
R2

)2
}

F2

(μ1−μi)(μo−μ1)
(

R1
R2

)2+(μ1+μi)(μo+μ1)

.

(4.13)

There are several important facts about the relationship between the matrices Mζ
1 and Mr

1:

1. It was demonstrated in Gin & Daripa (2015) that Mr
1 can have complex eigenvalues. However,

it is shown in the next section (Section 5) that the problem in the ζ -coordinates has real growth
rates. This analysis holds even for constant viscosity. Therefore, Mζ

1 has real eigenvalues.

2. Mζ
1 can also be expressed as Mζ

1 = R
(
Mr

1 + Q
)

R−1. Since a similarity transformation does

not change eigenvalues, the eigenvalues of Mζ
1 are the eigenvalues of Mr

1 + Q where Q is
a diagonal matrix. Thus it is this diagonal matrix Q which, when added to Mr

1, converts the
complex eigenvalues to real and leaves real eigenvalues real.

3. Both Mr
1 and Mζ

1 have real eigenvalues when F1 and F2 defined respectively in (2.15) and (2.17)
have the same sign. Define the matrices:

E =
(

R1

√|F1| 0
0 R2

√|F2|
)

, F =
( √|F1| 0

0
√|F2|

)
(4.14)

then EMr
1E−1 and FMζ

1F−1 are real symmetric matrices. Therefore, Mr
1 and Mζ

1 are similar
to real symmetric (i.e. self-adjoint) matrices and have real eigenvalues. However, the argument
breaks down when F1 and F2 have opposite signs because EMr

1E−1 and FMζ
1F−1 are not

symmetric. This shows that the complex eigenvalues of Mr
1 can only occur when F1F2 ≤ 0.

5. Upper Bounds

We follow a process similar to Daripa & Pasa (2006) in order to derive an upper bound on the growth
rate. First we take an inner product of (2.19)1 with f . Using integration by parts along with the boundary
conditions (2.19)2 and (2.19)3 and solving for σ yields

σ = 2πnR2
2(0)F1|f (ζ1)|2 + 2πnR2

2(0)F2|f (1)|2 + Qn2R2
2(0)I1

2πnR2
2(0)μi|f (ζ1)|2 + 2πnR2

2(0)μo|f (1)|2 + 4π I2 + πn2R4
2(0)I3

, (5.1)
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where

I1 =
∫ 1

ζ1

μ′(ζ )

ζR2
2(0) + R2

0(τ )
|f (ζ )|2dζ , (5.2)

I2 =
∫ 1

ζ1

(
ζR2

2(0) + R2
0(τ )

)
μ(ζ )|f ′(ζ )|2dζ , (5.3)

I3 =
∫ 1

ζ1

μ(ζ )

ζR2
2(0) + R2

0(τ )
|f (ζ )|2dζ . (5.4)

Note that all terms in (5.1) are real. Therefore, ‘σ is real for all wave numbers.’ This is a product of
the change of variables from the r-coordinates to the ζ -coordinates. It is shown in Gin & Daripa (2015)
that the growth rate can be complex for constant viscosity flows in the r-coordinates.

When σ > 0, we may ignore the positive term containing I2 in the denominator and get

σ <
2πnR2

2(0)F1|f (ζ1)|2 + 2πnR2
2(0)F2|f (1)|2 + Qn2R2

2(0)I1

2πnR2
2(0)μi|f (ζ1)|2 + 2πnR2

2(0)μo|f (1)|2 + πn2R4
2(0)I3

.

We use the following inequality

N∑
i=1

Aixi

N∑
i=1

Bixi

≤ max
i

{
Ai

Bi

}
, (5.5)

which holds for any N if Ai > 0, Bi > 0 and xi > 0 for all i = 1, ..., N. By using this inequality with
N = 3,

σ < max

{
F1

μi
,

F2

μo
,

Q

πR2
2(0)

I1

I3

}
.

But

I1

I3
<

supζ∈(ζ1,1)μ
′(ζ )

inf
ζ∈(ζ1,1)

μ(ζ )
<

sup
ζ∈(ζ1,1)

μ′(ζ )

μi
.

Therefore,

σ < max

{
F1

μi
,

F2

μo
,

Q

πR2
2(0)

1

μi
sup

ζ∈(ζ1,1)

μ′(ζ )

}
. (5.6)
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Using the definitions of F1 and F2 given by (2.14) and (2.16),

σ < max

{
Qn

2πR2
1(τ )

(
μ(ζ1) − μi

μi

)
− T1

μi

n3 − n

R3
1(τ )

,

Qn

2πR2
2(τ )

(
μo − μ(1)

μo

)
− T2

μo

n3 − n

R3
2(τ )

,
Q

πR2
2(0)

1

μi
sup

ζ∈(ζ1,1)

μ′(ζ )

}
, (5.7)

which is the modal upper bound for a wave with wave number n. We can find an absolute upper bound
for all wave numbers by taking the maximum of the first two terms over all values of n. The absolute
upper bound is

σ < max

{
2T1

μiR
3
1(τ )

(
QR1(τ )

6πT1
(μ(ζ1) − μi) + 1

3

) 3
2

,

2T2

μoR3
2(τ )

(
QR2(τ )

6πT2
(μo − μ(1)) + 1

3

) 3
2

,
Q

πR2
2(0)

1

μi
sup

ζ∈(ζ1,1)

μ′(ζ )

}
. (5.8)

6. Characterization of the Eigenvalues and Eigenfunctions

Using λ = 1/σ , the eigenvalue problem (2.19) can be written as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( (
ζR2

2(0) + R2
0(τ )

)
μf ′(ζ )

)′ −
(

n2R4
2(0)

4(ζR2
2(0)+R2

0(τ ))
μ − Qn2R2

2(0)

4π(ζR2
2(0)+R2

0(τ ))
μ′λ

)
f (ζ ) = 0,(

μi − λF1

)
f (ζ1) − 2R2

1(τ )

Rn2
2(0)

μ(ζ1)f
′(ζ1) = 0,(

μo − λF2

)
f (1) + 2R2

2(τ )

Rn2
2(0)

μ(1)f ′(1) = 0.

(6.1)

This is a Sturm–Liouville eigenvalue problem with eigenvalue-dependent boundary conditions. Because
the boundary conditions depend on the eigenvalues and are not the natural boundary conditions, the
classic Sturm–Liouville theory cannot immediately be applied. In what follows, we examine conditions
for which the properties of regular Sturm–Liouville problems hold and determine a function space for
which the operator is self-adjoint.

Note that F1 and F2 are positive for small values of n and negative for large values of n (see equations
(2.14) and (2.16)). In particular, both F1 and F2 are positive when

n < min

{√
QR1(τ )

2πT1
(μ(ζ1) − μi) + 1,

√
QR2(τ )

2πT2
(μo − μ(1)) + 1

}
. (6.2)

From the upper bound (5.6), we can see that as long as the viscosity gradient μ′(ζ ) is not too large, the
maximum value of σ will occur when F1 and F2 are positive. For this range of wave numbers and for
monotonically increasing viscosity profiles, we have the following characterization of the eigenvalues
and eigenfunctions.
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Theorem 6.1 Let F1, F2, Q, n, μi, μo > 0. Let μ(ζ ) be a positive, strictly increasing function in
C1([ζ1, 1]). Then the eigenvalue problem (6.1) has a countably infinite number of real eigenvalues that
can be ordered

0 < λ0 < λ1 < λ2 < ...

with the property that for the corresponding eigenfunctions,
{
fi
}∞

i=0, fi has exactly i zeros in the interval
(ζ1, 1). Additionally, the eigenfunctions are continuous with a continuous derivative.

Proof. The fact that there are a countably infinite number of real eigenvalues that can be ordered and
corresponding eigenfunctions with the prescribed number of zeros is proven in (Ince, 1956, p. 232–233)
in Theorem I and Theorem II using

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = ζ1, b = 1, K(x, λ) = (
xR2

2(0) + R2
0(τ )

)
μ(x),

G(x, λ) = n2R4
2(0)

4(xR2
2(0)+R2

0(τ ))
μ(x) − Qn2R2

2(0)

4π(xR2
2(0)+R2

0(τ ))
μ′(x)λ,

α = 2R2
1(τ )

Rn2
2(0)

μ(ζ1), α′ = μi − λF1,

β = 2R2
2(τ )

Rn2
2(0)

μ(1), β ′ = μo − λF2.

The regularity of the eigenfunctions comes from the existence theorem of (Ince, 1956, p. 73). We saw
from equation (5.1) that σ is real for all n, and a closer look at each term in (5.1) shows that if F1, F2 > 0
and μ(ζ ), μ′(ζ ) > 0, then all terms are positive and σ > 0. �

6.1 Self-Adjointness and Expansion Theorem

We rewrite equation (6.1) as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−
( (

ζR2
2(0) + R2

0(τ )
)
μf ′(ζ )

)′ +
(

n2R4
2(0)

4(ζR2
2(0)+R2

0(τ ))

)
μf (ζ ) = Qn2R2

2(0)

4π(ζR2
2(0)+R2

0(τ ))
μ′λf (ζ ),

−
(

− μi
F1

f (ζ1) + 2R2
1(τ )

Rn2
2(0)F1

μ(ζ1)f
′(ζ1)

)
= λf (ζ1),

−
(

−μo
F2

f (1) − 2R2
2(τ )

Rn2
2(0)F2

μ(1)f ′(1)

)
= λf (1).

(6.3)

This is of the form

⎧⎪⎪⎨⎪⎪⎩
Tf := 1

r

{
− (pf ′)′ + qf

}
= λf , ζ1 < ζ < 1,

− (β11f (ζ1) − β12f ′(ζ1)
) = λ

(
α11f (ζ1) − α12f ′(ζ1)

)
,

− (β21f (1) − β22f ′(1)
) = λ

(
α21f (1) − α22f ′(1)

)
,

(6.4)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(ζ ) = (
ζR2

2(0) + R2
0(τ )

)
μ(ζ ),

q(ζ ) = n2R4
2(0)μ(ζ )

4(ζR2
2(0)+R2

0(τ ))
,

r(ζ ) = Qn2R2
2(0)μ′(ζ )

4π(ζR2
2(0)+R2

0(τ ))
,

β11 = − μi
F1

, β12 = − 2R2
1(τ )

Rn2
2(0)F1

μ(ζ1),

α11 = 1, α12 = 0,

β21 = −μo
F2

, β22 = 2R2
2(τ )

Rn2
2(0)F2

μ(1),

α21 = 1, α22 = 0.

(6.5)

Given the same assumptions as in Theorem 6.1, we have the following theorem from Walter (1973).

Theorem 6.2 Let F1, F2, Q, n, μi, μo > 0. Let μ(ζ ) be a positive, strictly increasing function in
C1([ζ1, 1]). Let p(ζ ), q(ζ ) and r(ζ ) be defined by (6.5). Let

L2
r (ζ1, 1) =

{
f (ζ )

∣∣∣ ∫ 1

ζ1

|f (ζ )|2r(ζ )dζ < ∞
}

,

and define the operator T on L2
r (ζ1, 1) by

Tf := 1

r

{
− (pf ′)′ + qf

}
.

Define the measure:

ν(M) :=

⎧⎪⎪⎨⎪⎪⎩
nR2

2(0)F1
2 , for M = {ζ1}∫

M r(ζ )dζ , for M ⊂ (ζ1, 1)

nR2
2(0)F2

2 , for M = {1}.
(6.6)

We consider the Hilbert space H := L2([ζ1, 1]; ν). Consider the operator A with domain

D(A) = {f ∈ H|f , f ′ absolutely continuous in(ζ1, 1), T ∈ L2
r (ζ1, 1)}, (6.7)

and defined by

(Af )(ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

lim
ζ→ζ1

(
μi

F1
f (ζ ) − 2R2

1(τ )

Rn2
2(0)F1

μ(ζ1)f
′(ζ )

)
, ifζ = {ζ1}

(Tf )(ζ ), ifζ ∈ (ζ1, 1)

lim
ζ→1

(
μo

F2
f (ζ ) + 2R2

2(τ )

Rn2
2(0)F2

μ(1)f ′(ζ )

)
, ifζ = {1}.

(6.8)
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Then (f , λ) satisfies (6.3) if and only if Af = λf . A is a self-adjoint operator on H and for any u ∈ H,

u =
∞∑

k=0

fk

∫ 1

ζ1

u(ζ )fk(ζ )dν, (6.9)

where the fk are the eigenfunctions of A.

7. Numerical Results

We now investigate the growth rate of disturbances by numerically computing the eigenvalues of
the eigenvalue problem (6.1). This eigenvalue problem has time-dependent coefficients and boundary
conditions which depend on the eigenvalues. Thus the dispersion relation for this problem depends on
time. The eigenvalues are computed using a pseudo-spectral Chebyshev method. The eigenvalues λ are
then inverted to find the growth rates σ . Recall that for a given wave number n, there are infinitely many
eigenvalues. In the results that follow, σ refers to the maximum over all eigenvalues. Because we are
considering a circular domain, which is 2π -periodic, the wave number n only takes on integer values.
However, in order to show smooth curves in the plots and make clear how σ varies with n, we plot
the dispersion relation for all values of n. σmax refers to the maximum over all eigenvalues and over all
wave numbers. For consistency, we often use the same parameter values throughout our results. Unless
otherwise stated, μi = 2, μo = 10, T1 = T2 = 1 and Q = 10. Therefore, the inner and outer layer fluids
have constant viscosity 2 and 10 respectively for all our studies here. The viscosity profile of the middle
layer fluid, however, is a free variable which can be taken as constant or variable in our studies below.
In the rest of the paper, we will characterize the flow by the viscosity of the middle layer.

7.1 Constant versus Variable Viscosity

We begin by comparing the growth rate of disturbances for a constant viscosity profile with that for a
variable viscosity profile. In Fig. 2a, the dispersion relations at a fixed time (τ = 0) are plotted for four
different viscosity profiles shown in Fig. 2b. The constant viscosity case is given by the solid (black)
line and the viscosity of the middle layer fluid is μ = 6. The stability of three-layer constant viscosity
flows has been studied extensively in Gin & Daripa (2015, 2018). Note that there is a maximum growth
rate and that short waves are stable due to interfacial tension. For comparison, three linear viscosity
profiles are considered. The dotted (red) line corresponds to a linear viscosity profile with μ(R1) = 5.9
and μ(R2) = 6.1, the dashed (blue) line corresponds to μ(R1) = 5 and μ(R2) = 7, and the dash-dot
(green) line corresponds to μ(R1) = 4 and μ(R2) = 8. There are several important features to notice.
First, the dispersion relation for each of the variable viscosity profiles has a local maximum for a wave
number that is similar to the maximum for the case of a constant viscosity profile. For profiles with
smaller viscosity jumps at the interfaces, the local maximum is smaller. Therefore, this local maximum
can be attributed to the instability of the interfaces due to the positive viscosity jump. The second thing
to notice is that short waves are unstable for variable viscosity profiles, even when the viscosity profile
is nearly constant (see the dotted line). As the gradient of the viscosity profiles increase, the growth rate
of short waves also increases. Therefore, the short wave behavior is dominated by the instability of the
middle layer fluid itself due to the viscosity gradient. The final observation which can be drawn from
the dispersion relations is that the maximum growth rate can be smaller for a variable viscosity profile
than it is for a constant viscosity profile with constant viscosity equal to the average of the values of
viscosity at the two interfaces in the middle layer of the variable viscosity profile. Also shown in Fig. 2a
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310 C. GIN AND P. DARIPA

Fig. 2. A comparison of dispersion relations for four linear viscosity profiles. (a)The dispersion relations (σ versus n) at time
τ = 0 as curves and the associated upper bounds given by equation (5.7) as markers of the same color. (b) The associated viscosity
profiles. The parameter values are Q = 10, μi = 2, μo = 10, T1 = T2 = 1, R1(0) = 20 and R2(0) = 30.

are the modal upper bounds given by equation (5.7) associated with each of the four viscosity profiles.
The upper bounds for each viscosity profile are the same color as the corresponding dispersion relation.
The qualitative shapes of the modal upper bounds match the dispersion relations, but the upper bounds
are not sharp. This is due to ignoring the I2 term in equation (5.1) and using the inequality (5.5) in the
derivation of the upper bounds. There is a possibility that these upper bounds can be improved.

7.2 Optimal Profile

In Section 7.1, it is shown that some particular variable viscosity profiles are less unstable (i.e. have
a smaller maximum growth rate) than a particular constant viscosity profile. This leads to some more
general questions: Are there variable viscosity profiles that are less unstable than all constant viscosity
profiles? What is the optimal viscosity profile?

The question of the optimal viscosity profile is a difficult one so we start by using some simplifying
assumptions. First, recall that the viscosity profile and the growth rate are both time-dependent. In this
section we only consider the growth rate at time τ = 0. This is reasonable because it is advantageous to
control the instability at early times. Therefore, for the present discussion the term “optimal” refers to the
viscosity profile that minimizes the maximum growth rate σmax at time τ = 0. The second simplification
is that we first consider only viscosity profiles in the middle layer that are linear at time τ = 0. Note that
linear profiles are uniquely determined by the values μ(R1) and μ(R2). Other types of viscosity profiles
will be considered later in this section.

Fig. 2a shows the value of σmax for each linear viscosity profile such that the viscosity of the middle
layer is between μi and μo. The optimal viscosity profile in this case is μ(R1) = 3.41 and μ(R2) = 5.09.
Note that all possible constant viscosity profiles have been considered as a subset of the set of linear
viscosity profiles. Therefore, the fact that the optimal profile is not constant shows that variable viscosity
profiles can be used to reduce the instability of a flow. The dispersion curve for the optimal viscosity
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STABILITY RESULTS ON RADIAL HELE-SHAW FLOWS WITH VARIABLE VISCOSITY 311

Fig. 3. (a) The value of σmax for each linear viscosity profile which is defined by the values μ(R1) and μ(R2). The optimal
profile is μ(R1) = 3.41 and μ(R2) = 5.09 and its dispersion relation is given in (b). The parameter values are Q = 10, μi = 2,
μo = 10, T1 = T2 = 1, R1(0) = 20 and R2(0) = 30.

profile shown in Fig. 2b approaches the value indicated by the dotted horizontal line as n → ∞. The
two local maxima in this plot have the same value as this limit. This is because the optimal viscosity
profile is the one which balances the instabilities of the interfaces with the instability of the middle layer.

Next we investigate the optimal viscosity profile under several different values of interfacial tension.
Plots of σmax versus the different linear profiles is given in Fig. 4. Figure 4a has the smallest value
of interfacial tension with T1 = T2 = 0.25. The optimal viscosity profile has endpoint viscosities of
μ(R1) = 3.20 and μ(R2) = 5.65. Figure 4b uses T1 = T2 = 1 and is a repeat of Fig. 3a. As noted above,
the optimal profile is μ(R1) = 3.41 and μ(R2) = 5.09. Figure 4c has the largest values of interfacial
tension with T1 = T2 = 4. The optimal linear viscosity profile is μ(R1) = 3.47 and μ(R2) = 4.53. The
trend is that larger values of interfacial tension correspond to optimal viscosity profiles with a smaller
viscosity gradient. This is because, as mentioned previously, the optimal viscosity profile is the one
which balances the instabilities of the interfaces with the instability of the middle layer. A larger value
of interfacial tension decreases the instability of the interfaces so the gradient of the middle layer must
also decrease in order to match the interfacial instability.

In the case of chemical EOR by polymer flooding, the viscosity profile of the middle layer fluid is
determined by the concentration of polymer. The use of large quantities of polymer can be expensive so
it is useful to explore which viscosity profile minimizes the instability (i.e. σmax) given a fixed amount
of total polymer. Assuming that there is a linear relationship between the concentration of polymer and
the viscosity, this can be viewed as minimizing the instability for a fixed value of average viscosity. The
results of this type of optimization are given in Fig. 5. The value of σmax for all linear viscosity profiles
is plotted in Fig. 5a using the same parameter values as Fig. 3a. For each possible average viscosity
between μi and μo, the profile which minimizes σmax was found and is marked by an ‘x’ in Fig. 5a.
The viscosity profile can be identified by its slope a = (μ(R2) − μ(R1))/(R2 − R1). The slopes of the
optimal profiles are plotted versus the average viscosity of the middle layer in Fig. 5b.
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312 C. GIN AND P. DARIPA

Fig. 4. Plots of σmax for all linear viscosity profiles for three different values of interfacial tension: (a) T1 = T2 = 0.25, (b)
T1 = T2 = 1 and (c) T1 = T2 = 4. Other parameter values are Q = 10, μi = 2, μo = 10, R1(0) = 20 and R2(0) = 30.

Fig. 5. Plots of the optimal linear viscosity profile for a fixed value of average viscosity of the middle layer fluid. (a) The value
of σmax versus the different linear viscosity profiles with x’s to denote the optimal profiles. (b) A plot of the slope of the optimal
profile versus the average viscosity. The parameter values are Q = 10, μi = 2, μo = 10, T1 = T2 = 1, R1(0) = 20 and
R2(0) = 30.

When the average viscosity of the middle layer fluid is μi = 2, the optimal viscosity profile is
constant at μ ≡ 2 (note that this is the only profile considered since we are taking μi ≤ μ(r) ≤ μo
for R1 ≤ r ≤ R2). Therefore there is no viscosity jump at the inner interface and no instability in
the layer itself. All of the instability occurs due to the jump in viscosity at the outer interface. As the
average viscosity increases from there, the jump at the inner interface of the optimal viscosity profile
remains zero while the viscosity gradient increases in order to decrease the viscosity jump at the outer
interface. Eventually, as the average viscosity nears μ = 3, a point is reached in which the gradient
stops increasing as illustrated by the flat portion of the graph in Fig. 5b. During this time, the viscosity
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Fig. 6. (a) Plots of the dispersion relations for the optimal viscosity profiles, which are (i) linear with respect to r, (ii) exponential
with respect to r, (iii) logarithmic with respect to r, (iv) linear with respect to ζ and (v) exponential with respect to ζ . (b) Plots of
the corresponding viscosity profiles.

jump at the inner interface increases while the viscosity jump at the outer interface decreases. The point
at which the slope begins to increase again corresponds to the optimal viscosity profile over all values
of average viscosity. After this point, the addition of polymer to increase viscosity would be detrimental
to the stability of the system.

To this point, only linear viscosity profiles have been considered, but many other viscosity profiles
can also be used. The optimization procedure used for linear viscosity profiles in Fig. 3a has been
repeated for several other types of viscosity profiles in Fig. 6. In addition to a viscosity profile which
is linear at time τ = 0, viscosity profiles which are initially exponential and logarithmic are also
considered. Recall that the viscosity profile changes with time in the r-coordinates. Therefore, it may
be useful to consider viscosity profiles in the ζ -coordinate system because they will remain fixed in
time. Therefore, we also consider viscosity profiles which are linear and exponential with respect to
ζ . A profile which is linear with respect to ζ is quadratic with respect to r and a profile which is
exponential in ζ is proportional to er2

. Figure 6a shows the dispersion relations of the optimal viscosity
profiles of each type. The profile which is exponential in r is the most unstable while the profile which
is exponential in ζ is the least unstable. The corresponding optimal viscosity profiles are plotted in
Fig. 6b. Notice that the profile which is least unstable, the one which is exponential in ζ , has both the
smallest value of μ(R1) and the largest value of μ(R2). Therefore, it has the smallest viscosity jumps at
the interfaces.

7.3 Time dependence

In the previous sections, we considered the growth rate only at time τ = 0. However, it is also important
to understand how the growth rate changes with time. As time increases and the interfaces move
outward, there are several physical factors at play. The curvature of the interfaces decreases which
works to destabilize the flow while the velocity of the interfaces decreases which works to stabilize the
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314 C. GIN AND P. DARIPA

flow. Gin & Daripa (2015) studied constant viscosity flows and found that the above two competing
effects lead to non-monotonic behavior of the maximum growth rate. These results are in the original
r-coordinate system. However, the maximum growth rate of disturbances in the ζ -coordinate system is
a monotonic function of time for constant viscosity flows. We demonstrate this analytically.

For two-layer constant viscosity flows, the growth rate in the ζ -coordinates (see equation (4.3)) is

σ = Qn

2πR2

μo − μi

μo + μi
− T

μo + μi

n3 − n

R3 ,

where R(τ ) is the radius of the interface. Taking a derivative with respect to n and setting it equal to
zero gives nmax = √

QR/(6πT)(μo − μi) + 1/3. The most dangerous wave number is an integer value
that is either the ceiling or floor of this number. Plugging this into (4.3) gives an upper bound on the
maximum growth rate over all wave numbers.

σmax = Q

2πR2

√
QR

6πT
(μo − μi) + 1

3

(
μo − μi

μo + μi

)

− T

μo + μi

√
QR

6πT
(μo − μi) + 1

3

(
QR

6πT
(μo − μi) − 2

3

)
1

R3
.

Taking the derivative with respect to R gives

∂σmax

∂R
= −

T
(

Q
πT (μo − μi)R + 2

) (
Q
πT (μo − μi)R + 4

)
12R4(μi + μo)nmax

.

If μo > μi then this expression is negative for all R. Therefore, σmax is a strictly decreasing function of
R and hence time τ in the ζ -coordinates.

For three-layer variable viscosity flows, there is an additional factor which affects the stability. The
interfaces get closer together which makes the variable viscosity profile steeper and works to destabilize
the flow. Despite this fact, the numerical results that follow show that σmax is a decreasing function
of time. This can be illustrated by the upper bound given by (5.9). The first two terms are strictly
decreasing functions of R1 and R2 (and therefore of τ ) while the third term is independent of time.
Therefore, the upper bound is a decreasing function of time. In Fig. 7, the dispersion relation is plotted
at several different times for a typical variable viscosity flow. Initially, the inner interface is at R1 = 20.
As time increases, it moves outward. Note that the maximum value of σ decreases with time. However,
the difference is more pronounced near the maximum value, which is mostly affected by the stability of
the interfaces, than for short waves which are mostly affected by the layer instability.

In order to shed more light on this time-dependent behavior, we investigate how σmax and the most
dangerous wave number nmax evolve in time. Figure 8a is a plot of σmax versus R1, and Fig. 8b is a
plot of nmax versus R1. Notice first that σmax is a decreasing function of time and nmax is an increasing
function of time. The fact that nmax increases with time is a well-known fact for constant viscosity flows
(Cardoso & Woods, 1995). Also observe that there is a critical value R∗

1 such that for R1 > R∗
1, σmax is

constant and nmax is infinite. This is the point at which the layer instability comes to dominate the flow.
For R1 < R∗

1, the instability of the interfaces dominates and the behavior or σmax and nmax is similar to
what happens for constant viscosity flow. For R1 > R∗

1, the layer is more unstable than the interfaces,
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Fig. 7. Several plots of the dispersion relation σ versus n at different times, as represented by the location of the inner interface.
Parameter values are Q = 10, μi = 2, μo = 10, μ(R1) = 5, μ(R2) = 7, T1 = T2 = 1, R1(0) = 20 and R2(0) = 30.

Fig. 8. Plots of (a) the maximum growth rate σmax versus the radius of the inner interface R1 and (b) the most dangerous wave
number nmax versus the radius of the inner interface R1. The parameter values are Q = 10, μi = 2, μo = 10, μ(R1) = 5,
μ(R2) = 7, T1 = T2 = 1, R1(0) = 20 and R2(0) = 30.

and therefore the short wave instability dominates and σmax = limn→∞ σ(n). This behavior mimics
what we see from the upper bound (5.9) in which the two terms related to the interfaces are decreasing
functions while the term related to the layer instability is constant.
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7.4 Validation of QSSA

In Section 2, we invoke the QSSA which assumes that the basic solution changes slowly in comparison
to the growth of the disturbances. We now examine the validity of that assumption. Consider a two-
layer constant viscosity flow in which the growth rate of a disturbance with wave number n is given by
equation (4.3). The maximum growth rate over all wave numbers can be written as

σmax = 2T

(μo + μi)R
3

(
QR

6πT
(μo − μi) + 1

3

) 3
2

.

The expression for the position of the interface is R(τ ) = √
Qτ/π + R(0)2. In particular, R ∝ √

τ .
Therefore, σmax ∝ τ−3/4 for τ � 1. In comparison, the interfacial position of the basic solution changes
at a rate

1

R

dR

dτ
= Q

2πR2
∝ τ−1.

Therefore, for large τ the disturbances will grow faster than the basic solution. For three-layer variable
viscosity flow, the QSSA has a more solid foundation. Recall from the previous subsection that the
interfacial instability dominates at early times, but the instability of the middle layer dominates at later
times. The upper bound (5.8) demonstrates that the layer instability is bounded by a constant term that
depends only on μ′(ζ ). This is further validated by the region of Fig. 8a in which σmax is constant.
Therefore, for variable viscosity flows the interfaces will be moving very slowly at later times while the
growth of disturbances remains constant.

Figure 9 is a numerical comparison of the growth rate of disturbances σmax and the rates of change
of each individual interface of the base flow. The parameters used are the same as in Fig. 8 and therefore
the solid curve is the same as the curve in Fig. 8a. Notice that the growth rate of the disturbances is
always greater than the rate of change of the interfaces, but that this is especially true for later times.
The late time behavior will be true even if the interfaces are stabilized by very large interfacial tension.

7.5 Variable Injection Rate

Recently Beeson-Jones & Woods (2015) and Gin & Daripa (2018) explored the idea of using a variable
injection rate Q(t) to stabilize multi-layer constant viscosity flows. In these works, the maximum
injection rate which results in a stable flow is investigated. Unfortunately, there is no injection rate
which stabilizes a variable viscosity flow because short waves are always unstable. However, as an
analogy, we can find the maximum injection rate that keeps the growth rate under a certain threshold.
Figure 10 shows the maximum injection rate such that the maximum growth rate is below 0.001 for a
certain constant viscosity flow and a certain variable viscosity flow. The constant viscosity flow has a
viscosity of μ = 6 in the middle layer while the variable viscosity flow has a linear viscosity profile
with μ(R1) = 5 and μ(R2) = 7. The variable viscosity flow allows for the fluid to be injected more
quickly while maintaining the same level of instability.

8. Conclusions

The stability of three-layer radial porous media flows with variable viscosity is an important issue
in many applications. This work is the first to address this topic. First, the linear stability problem

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/2/294/6175327 by Texas A&M

 U
niversity Libraries user on 17 February 2023



STABILITY RESULTS ON RADIAL HELE-SHAW FLOWS WITH VARIABLE VISCOSITY 317

Fig. 9. Plots of the maximum growth rate σmax and the rates of change of the interfaces of the basic flow. All parameter values
are the same as Fig. 8: Q = 10, μi = 2, μo = 10, μ(R1) = 5, μ(R2) = 7, T1 = T2 = 1, R1(0) = 20 and R2(0) = 30.

Fig. 10. Plots of the maximum injection rate that results in a value of σmax ≤ 0.001 for a constant viscosity flow with μ = 6 and
a variable viscosity flow with μ(R1) = 5 and μ(R2) = 7. Other parameter values are μi = 2, μo = 10, T1 = T2 = 1, R1(0) = 20
and R2(0) = 30.

is formulated resulting in an eigenvalue problem with time-dependent coefficients and eigenvalue-
dependent boundary conditions. This derivation requires an appropriate change of variables that fixes the
positions of the interfaces and the viscosity profile of the middle layer fluid. Several important analytical
aspects of the eigenvalue problem are studied. First, upper bounds on the spectrum are derived using a
variational approach. Then it is shown that for a certain bandwidth of wave numbers, there is a countably
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infinite set of positive eigenvalues, and the corresponding eigenfunctions are complete in a certain L2

space.
The eigenvalues have been computed numerically in order to investigate the effect of various

parameters on the stability of variable viscosity flows. The following are some of the key numerical
results: (i) Variable viscosity flows can reduce the maximum growth rate by reducing the jumps in
viscosity at the interfaces, but short waves become unstable; (ii) Short wave instability is dominated
by the viscosity gradient in the layer while long and intermediate wavelengths are dominated by the
instability of the interfaces; (iii) The optimal viscosity profile is the one which balances the interfacial
instability with the instability of the layer; (iv) increasing interfacial tension decreases the viscosity
gradient of the optimal viscosity profile; (v) A viscosity profile which is exponential with respect to ζ

is optimal among the types of profiles considered; (vi) σmax is a decreasing function of time. This is
due to the instability of the interfaces decreasing with time while the layer instability remains relatively
unchanged; and (vii) Variable viscosity flows allow for faster injection without making the flow more
unstable.

There are several directions for future work in this area. Theorem 6.2 gives a way to numerically
simulate the motion of the interfaces based on the linear theory. Any initial perturbation of the interfaces
and viscous profile can be expanded in terms of the complete set of orthonormal eigenfunctions
using equation (6.9). This could then be compared with full nonlinear simulations and experiments
of multilayer radial Hele-Shaw flows with variable viscosity. Another direction is to expand the scope
of Theorem 6.2 to all wave numbers and parameter regimes. Finally, a weakly nonlinear analysis, such
as Miranda & Widom (1998) for two-layer flows with constant viscosity, or fully nonlinear stability
analysis could be performed on this system.
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