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In this work, we present several computational results on the complex biharmonic problems. First, we
derive fast Fourier transform recursive relation (FFTRR)-based fast algorithms for solving Dirichlet- and
Neumann-type complex Poisson problems in the complex plane. These are based on the use of FFT,
analysis-based RRs in Fourier space, and high-order quadrature methods. Our second result is the appli-
cation of these fast Poisson algorithms to solving four types of inhomogeneous biharmonic problems in
the complex plane using decomposition methods. Lastly, we apply these high-order accurate fast algo-
rithms for the complex inhomogeneous biharmonic problems to solving Stokes flow problems at low
and moderate Reynolds number. All these algorithms are inherently parallelizable, though only sequen-
tial implementations have been performed. These algorithms have theoretical complexity of the order
O(log N) per grid point, where N2 is the total number of grid points in the discretization of the domain.
These algorithms have many other desirable features, some of which are discussed in the paper. Numeri-
cal results have been presented which show performance of these algorithms.

Keywords: complex Biharmonic equation; complex Poisson equation; fast algorithms; stokes equations;
incompressible flows; FFT; recursive relations; numerical implementation in Matlab.

1. Introduction

Biharmonic problems arise in many fields of classical physics and engineering, including the theory of
elasticity, slow viscous flows, sedimentation and so on. They also arise as an intermediary step in solving
some linear and nonlinear elliptic and parabolic problems such as problems involving the Navier–Stokes
equations and so on; see Guazzelli & Morris (2012), Love (1927) and Muskhelishvili (1977). Therefore,
there has been extensive research on the development of efficient numerical algorithms to solve such
problems using various methods such as finite difference/finite element methods; see Bjorstad (1983),
Braess & Peisker (1986), Cheng et al. (2000), Lai (2005), Monk (1987) and Peisker (1988), and integral
equation methods; see Greenbaum et al. (1992), Greengard & Kropinski (1998), Greengard et al. (1996),
Kropinski (1999) and Mayo (1992), to name a few of the methods.

To the best of our knowledge, however, there are no solvers to-date of the boundary value problems
for the inhomogeneous biharmonic equation

(∂z∂z̄)
2ω= f (z, z̄),

in the complex z-plane which is the physical x − y plane through the assignment z = x + iy. We refer
this equation as the complex biharmonic equation below. When the source term f is real and prescribed
boundary values are real, we recover the conventional inhomogeneous biharmonic problem in the phys-
ical plane. Thus, the complex biharmonic equation is a more general case, and can be used to solve
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many problems in the plane including problems in plane elasticity and Stokes flow. Here the problems
are in the physical plane, and can as well be solved with many other fast solvers for real biharmonic
equation. However, many problems in plane elasticity (see Muskhelishvili, 1977; Wang et al., 1991)
are formulated as complex biharmonic problems whose solutions can be computed using the fast algo-
rithms developed in this paper. Our effort in developing these algorithms is forward-looking, and we
hope that they find applications in a variety of areas including Stokes’s flow. It is conjectured here
that this equation can play an important role in applied mathematics, in particular in fluid dynamics
and elasticity theory, analogous to the role of Cauchy–Riemann equations in two-dimensional potential
flow.

In this paper, fast algorithms for the complex inhomogeneous biharmonic problems are built from
using the decomposition method in which each of these problems is decomposed into two ‘complex’
Poisson problems, and also one complex homogeneous biharmonic problem in some cases as we will
see later. Our algorithms for the Poisson problems are derived from analysis of singular integral rep-
resentations of their solutions based on classical Green’s function approach. Such representations for
the complex Poisson problems were made available only very recently, as recently as the year 2008,
by Begehr (2007b). The use of quadrature methods to compute the complex singular integrals in these
representations is computationally very expensive for large-scale problems and has poor accuracy. The
asymptotic complexity of straightforward implementation of the quadrature method is usually O(N2)

per grid point, where N2 is the total number of grid points in the discretization of the domain which is
taken to be the unit disk. In order to reduce this complexity and to obtain high-order accurate solutions,
we first develop fast Fourier transform recursive relation (FFTRR)-based fast complex Poisson solver.
This makes use of the FFT and analysis-based RRs in the Fourier space resulting in a complexity of the
order O(log N) per grid point. This complexity is a significant improvement over O(N2) per grid point.
This FFTRR-based approach to solving ‘complex problems’ involving Cauchy–Riemann and Beltrami
equations (Daripa, 1992, 1993) and real Poisson problems (Borges & Daripa, 2001) has been introduced
earlier by one of the authors (P.D.). We summarize some features of these algorithms.

(1) The algorithms have very low computational complexity: O(log N) per grid point.

(2) The constant hidden behind the order estimate of computational complexity of these algorithms
is also very small as shown in this paper.

(3) The RRs allow one to define higher-order integration methods in the radial direction without the
inclusion of additional grid points.

(4) The order of accuracy of the solution primarily depends on the numerical integration scheme
of one-dimensional integrals involved in the RRs of these fast algorithms. It is second (third)-
order when trapezoidal (Simpson’s) integration formulae are used. The order of accuracy can be
increased using Euler–Maclaurin formulas for integration as shown in this paper. The complexity
estimate of these algorithms is independent of the order of accuracy.

(5) These algorithms are parallelizable by construction (see Borges & Daripa, 2000, 2001).

(6) A prior selection of the number of grid points based on desired accuracy.

(7) These algorithms are easily implemented.

These algorithms for the complex Poisson and the complex inhomogeneous biharmonic problems
have been implemented using MATLAB. The Matlab code has been tested using some canonical
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examples, and most of the features of the algorithms mentioned above have been validated. Using our
fast biharmonic solver, steady-state solutions of Navier–Stokes equations have been computed within
a disk for a variety of boundary conditions at low and moderate Reynolds numbers. The accuracy of
these solutions have been validated against known solutions of these problems in the literature. Numer-
ical results are also presented, validating the error estimate and its use in a prior selection of mesh
size based on a prescribed error. This has been done for the Poisson problems and the extension to
biharmonic case is straightforward.

The paper is then laid out as follows. In Section 2, we define the Dirichlet and Neumann problems
for Poisson equations in the complex plane and present integral representations of their solutions. Some
theorems along with their proofs and RRs resulting from the analysis of these integral representations
are given in this section. Similar development of the integral representations, RRs and theorems with
regard to the four biharmonic problems are given in Section 3. These theorems and RRs are used to
develop the fast algorithms for Poisson and biharmonic problems which are presented along with their
computational complexities in Section 4. The MATLAB code encapsulating these algorithms has been
used to perform some numerical calculations. Numerical results on the validation and accuracy check
of these algorithms from computation of some canonical Poisson and biharmonic problems are given
in Section 5. In Section 6, a crude but useful error estimate for the fast Poisson algorithms is given.
Numerical results are presented validating the error estimate and its use in a prior selection of mesh
size based on a prescribed error. In Section 7, these biharmonic algorithms have been applied to solving
steady Navier–Stokes equations inside the unit disk at low and moderate Reynolds numbers. Numerical
results are presented there. Finally, we conclude in Section 8.

2. Complex Poisson problems

In this section, we describe the mathematical formulation similar to the previous works of Daripa and
collaborators (Daripa, 1992, 1993; Borges & Daripa, 2001) for the FFT and RR-based fast and high-
order accurate algorithms to solve complex Poisson problems in the unit disc in the complex plane.
This is necessary in order to build fast and high-order accurate algorithms for the complex inhomo-
geneous biharmonic problems which is discussed in Section 3. We should mention here that the
existence of solutions to problems (P1) and (P2) defined below is given under the assumption that
the inhomogeneous term f ∈ L1(D; C) (see Begehr, 2007a). However, we develop the algorithms for
constructing solutions of these problems numerically under the assumption that f is expandable in a
Fourier series. This is a stronger restriction than the original theorem, and hence justified.

2.1 Dirichlet problem for the complex Poisson equation in the unit disk

The Dirichlet problem for the complex Poisson equation in the unit disc D = {z ∈ C, |z| � 1} in the
complex plane is given by

∂z∂z̄ω= f (z, z̄) in D, ω= γ on ∂D. (P1)

Note here that f in general is a function of both the variables z and z̄. Below, for the sake of convenience,
we write f (z) even though it is a function of both the variables. This problem is uniquely solvable for
f ∈ L1(D; C), γ ∈ C(∂D; C) (see Begehr, 2007a). If u is the solution of the homogeneous problem,

∂z∂z̄u = 0 on D, u = γ − v on ∂D, (2.1)
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where v satisfies the equation
∂z∂z̄v = f , (2.2)

then the solution of the problem (P1) is given by

ω= u + v. (2.3)

A principal solution of (2.2) is obtained using standard Green’s function method (see Greenberg, 1971;
Borges & Daripa, 2001; Begehr, 2007b) and can be written as

v(z)= 4
∫∫

D
G(z, ζ )f (ζ ) dξ dη, (2.4)

where

G(z, ζ )= 1

2π
log |ζ − z|, (2.5)

is the free space Green’s function for the Laplace equation.
Specifically, we expand ω(.) the solution of problem (P1), in terms of Fourier series, and derive

the Fourier coefficients of the associated singular integrals in terms of RRs utilizing one-dimensional
integrals in the radial direction. To demonstrate this, we evaluate the singular integral v(z = r eiα);
0<α � 2π (see Borges & Daripa, 2001).

Theorem 2.1 If v(z) is the principal solution of the (P1) problem and f (r eiα)=∑∞
n=−∞ fn(r) einα with

z = r eiα , then the Fourier coefficients vn(r) are given by

vn(r)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
∫ r

0
ρ log rf0(ρ) dρ + 4

∫ 1

r
ρ log ρf0(ρ) dρ if n = 0,

−2
∫ r

0

(ρ
r

)n ρ

n
fn(ρ) dρ − 2

∫ 1

r

(
r

ρ

)n
ρ

n
fn(ρ) dρ if n> 0,

2
∫ r

0

(
r

ρ

)n
ρ

n
fn(ρ) dρ + 2

∫ 1

r

(ρ
r

)n ρ

n
fn(ρ) dρ if n< 0.

(2.6)

Proof. We introduce the following notations below:

B(σ , r)= {z ∈ C : |z − σ |< r}, B̄(σ , r)= {z ∈ C : |z − σ | � r}.

Ωr
0 = B(0, r), Ωr+ε

r−ε = B(0, r + ε)− B(0, r − ε), Ω̆r+ε
r−ε =Ωr+ε

r−ε − B(z, ε).

Hence,

v(z)= 2

π

∫∫
D

log |ζ − z| f (ζ ) dξ dη= 2

π
lim
ε→0

∫∫
Ωr−ε

0

log |ζ − z| f (ζ ) dξ dη

+ 2

π
lim
ε→0

∫∫
Ω̆r+ε

r−ε
log |ζ − z| f (ζ ) dξ dη + 2

π
lim
ε→0

∫∫
Ω1

r+ε
log |ζ − z| f (ζ ) dξ dη. (2.7)

Let

Iε = 2

π

∫∫
Ω̆r+ε

r−ε
log |ζ − z| f (ζ ) dξ dη.
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Then

|Iε | � 2

π
sup
ζ∈Ω̆r+ε

r−ε

(| f (ζ ) log |ζ − z||)(π(r + ε)2 − π(r − ε)2)� 8 sup
ζ∈Ω̆r+ε

r−ε

| f (ζ )|ε| log ε|.

Therefore, the second integral in (2.7), namely limε→0 Iε = 0. This simplifies the representation of
v(z = r eiα) in (2.7) whose Fourier coefficients vn(r) are now given by

vn(r)= 1

π2
lim
ε→0

∫ 2π

0
e−inα

(∫∫
Ωr−ε

0

log |ζ − z| f (ζ ) dξ dη +
∫∫

Ω1
r+ε

log |ζ − z| f (ζ ) dξ dη

)
dα. (2.8)

Then it follows that

vn(r)=
∫∫

Ωr
0

f (ζ )Qn(r, ζ ) dξ dη +
∫∫

Ω1
r

f (ζ )Qn(r, ζ ) dξ dη, (2.9)

Qn(r, ζ )= 1

π2

∫ 2π

0
e−inα log |ζ − z| dα. (2.10)

For z = r eiα , ζ = ρ eiθ , r>ρ, we have

Qn(r, ζ )=

⎧⎪⎪⎨
⎪⎪⎩

− 1

π |n|
(ρ

r

)|n|
e−inθ if n |= 0,

2

π
log r if n = 0.

Similarly, for r<ρ we have

Qn(r, ζ )=

⎧⎪⎪⎨
⎪⎪⎩

− 1

π |n|
(

r

ρ

)|n|
e−inθ if n |= 0,

2

π
log ρ if n = 0.

For n> 0, we have∫∫
D

f (ζ )Qn(r, ζ ) dξ dη=
∫∫

Ωr
0

f (ζ )Qn(r, ζ ) dξ dη +
∫∫

Ω1
r

f (ζ )Qn(r, ζ ) dξ dη

= −2
∫ r

0

(ρ
r

)n ρ

n
fn(ρ) dρ − 2

∫ 1

r

(
r

ρ

)n
ρ

n
fn(ρ) dρ. (2.11)

Similar calculation for n< 0, n = 0, respectively, yields

vn(r)= 2
∫ r

0

(
r

ρ

)n
ρ

n
fn(ρ) dρ + 2

∫ 1

r

(ρ
r

)n ρ

n
fn(ρ) dρ, (2.12)

v0(r)= 4
∫ r

0
ρ log rf0(ρ) dρ + 4

∫ 1

r
ρ log ρf0(ρ) dρ. (2.13)

�
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The solution u of the homogeneous problem (2.1) is obtained using the Poisson integral formula and
with z = reiα , it is given by

u(r,α)= 1

2π

∫ 2π

0
φ(θ)K(r,α − θ) dθ .

Here K(ρ, θ) is the Poisson kernel and φ(θ)= γ (θ)− v(θ) on ∂D. If φn are the Fourier coefficients of
φ(θ), then the Fourier coefficients un(r,α) of u(z) are given by (see Borges & Daripa, 2001)

un(r)= r|n|φn. (2.14)

Using (2.6) and (2.14), the solution ω of the Dirichlet problem (P1) is obtained from its Fourier coeffi-
cients ωn = un + vn (see (2.3)). As shown in the next section, development for the Neumann problem is
similar and the computation of solution of the Neumann problem involves the same integrals as in (2.6).

2.2 Neumann problem for the complex Poisson equation in the unit disk

We consider here the complex Poisson equation with Neumann boundary condition in the unit disk D
in the complex plane. The integral representation of the solution of this problem is given in Begehr
(2007a). Our fast algorithm is derived from analysis of the integrals involved in this representation. The
following theorem taken from Begehr (2007a) gives this representation.

Theorem 2.2 The Neumann problem for the complex Poisson equation defined by

∂z∂z̄w = f in D, ∂νw = g on ∂D, (P2)

f ∈ L1(D; C), g ∈ (∂D; C), (1/2π i)
∫
∂D w(z)(dz/z)= k ∈ C, is uniquely solvable iff

1

4i

∫
∂D

g(ζ )
dζ

ζ
=
∫

D
f (ζ ) dξ dη. (2.15)

The solution is given by

w(z)= k + 1

4π i

∫
∂D

G3(z, ζ )g(ζ )
dζ

ζ
− 1

π

∫∫
D

G3(z, ζ )f (ζ ) dξ dη, (2.16)

where
G3(z, ζ )= log |(1 − zζ̄ )(ζ − z)|−2 (2.17)

is the Green’s function for the Neumann problem and k is an arbitrary constant.

We rewrite
w(z)= k + uN

1 (z)+ IN
1 (z)+ v(z), (2.18)

where

uN
1 (z)= − 1

π i

∫
∂D

log |1 − zζ̄ |g(ζ )dζ

ζ
, IN

1 (z)=
2

π

∫∫
D

log |1 − zζ̄ | f (ζ ) dξ dη, (2.19)

and v(z) is given by (2.4). Using the approach given in Daripa (1992), we analyse the integrals involved
in the formula (2.16) to design the fast algorithm. Towards this end, we expand the solution w(·) in terms
of Fourier series, and express its radius dependent Fourier coefficients in terms of Fourier coefficients
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of the boundary data g and of the inhomogeneous term f , the latter appearing as integrands of one-
dimensional integrals. This is embodied in the following theorem proof of which can be easily obtained.

Theorem 2.3 If w(r,α) is the solution of the Neumann problem in Theorem 2.2, z = r eiα , f (r eiα)=∑∞
n=−∞ fn(r) einα , and g(eiα)=∑∞

n=−∞ gneinα , then the Fourier coefficients wn(r) can be written as

wn(r)= kδn0 + uN
1,n(r)+ IN

1,n(r)+ vn(r), (2.20)

where

δn0 =
⎧⎨
⎩

0 if n |= 0,

1 if n = 0,
uN

1,n(r)=

⎧⎪⎨
⎪⎩

gn
r|n|

|n| if n |= 0,

0 if n = 0,

(2.21)

IN
1,n(r)=

⎧⎪⎨
⎪⎩

−2
∫ 1

0
fn(ρ)

(rρ)|n|

|n| ρ dρ if n |= 0,

0 if n = 0,

(2.22)

and expressions for vn(r) are given in Theorem 2.1.

Both the problems (Dirichlet and Neumann) thus require evaluations of the integrals (2.6). To
improve upon the computational complexity for solving these problems, the integrals in (2.6) are eval-
uated using RRs which are derived next.

2.3 Recursive relations

We develop some RRs below. We discretize the unit disc into M × N grid points with M equidistant
points in the radial direction and N equidistant points in the angular direction. We define the following
integrals:

p1,n(r)= −2
∫ r

0

(ρ
r

)n ρ

n
fn(ρ) dρ, p2,n(r)= −2

∫ 1

r

(
r

ρ

)n
ρ

n
fn(ρ) dρ if n> 0,

s1,n(r)= 2
∫ r

0

(
r

ρ

)n
ρ

n
fn(ρ) dρ, s2,n(r)= 2

∫ 1

r

(ρ
r

)n ρ

n
fn(ρ) dρ if n< 0,

t1,0(r)= 4
∫ r

0

(ρ
r

)
f0(ρ) dρ, t2,0(r)= 4

∫ 1

r
ρ log ρf0(ρ) dρ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

Corollary 2.4 It follows that p1,n(0)= p2,n(1)= s1,n(0)= s2,n(1)= t1,0(0)= t2,0(1)= 0.

Corollary 2.5 Let 0 = r1 < r2 < · · ·< rM = 1 and rj > ri, 1 � i, j � M . Define

Ai,j
n = 2

∫ rj

ri

(
RA

ρ

)n
ρ

n
fn(ρ) dρ, Bi,j

n = 2
∫ rj

ri

(
ρ

RB

)n
ρ

n
fn(ρ) dρ (2.24)

and

Ai,j
0 = 4

∫ rj

ri

(
ρ

rj

)
f0(ρ) dρ, Bi,j

0 = 4
∫ rj

ri

ρ log ρf0(ρ) dρ, (2.25)
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where

RA =
{

ri if n> 0,

rj if n< 0,
RB =

{
rj if n> 0,

ri if n< 0.

Then for 1 � i, j, l � M , rl < ri < rj and using Corollary 2.4 we have the following RRs:

p1,n(ri)=
(

rl

ri

)n

p1,n(rl)− Bl,i
n , p2,n(ri)=

(
ri

rj

)n

p2,n(rj)− Ai,j
n if n> 0,

s1,n(ri)=
(

ri

rl

)n

s1,n(rl)+ Al,i
n , s2,n(ri)=

(
rj

ri

)n

s2,n(rj)+ Bl,j
n if n< 0,

t1,0(ri)=
(

rl

ri

)
t1,0(rl)+ Al,i

0 , t2,0(ri)= t2,0(rj)+ Bi,j
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.26)

and

vn(rl)=

⎧⎪⎪⎨
⎪⎪⎩
(rl log rl)t1,n(rl)+ t2,n(rl) if n = 0,

p1,n(rl)+ p2,n(rl) if n> 0,

s1,n(rl)+ s2,n(rl) if n< 0.

(2.27)

Proof. Simple algebraic manipulation of the relations in (2.23–2.25) proves the above result in
Corollary 2.5. �

Corollary 2.6 For rj > ri, 1 � i, j � M , and using the RRs we have

vn(rl)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rl log rl

(
l∑

i=2

(
ri

rl

)
Ai−1,i

n

)
+

M−1∑
i=l

Bi,i+1
n if n = 0,

−
l∑

i=2

(
ri

rl

)n

Bi−1,i
n −

M−1∑
i=l

(
rl

ri

)n

Ai,i+1
n if n> 0,

l∑
i=2

(
rl

ri

)n

Ai−1,i
n +

M−1∑
i=l

(
ri

rl

)n

Bi,i+1
n if n< 0.

(2.28)

Proof. Algebraic manipulation of the relations in (2.26) yields Corollary 2.6. �

3. Biharmonic problems

In this section, we describe the mathematical foundation for the fast algorithms to solve complex in-
homogeneous biharmonic equations with four types of boundary conditions (see Begehr, 2007a). Each
of these four problems is uniquely solvable under conditions that are mentioned in the sections below.
This has been established by Begehr (2008). Solutions of two (see problems (D2) and (D4) in Sec-
tions 3.2 and 3.4) of these four problems are based on decomposing each of these two problems into two
complex Poisson problems, whereas each of the remaining two problems (see problems (D1) and (D3)
in Sections 3.1 and 3.3) require solutions of two complex Poisson problems and one complex homo-
geneous biharmonic problem. We should mention here that the existence of solutions to problems (D1),
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(D3) and (D4) defined below is given under the assumption that the inhomogeneous term f ∈ L1(D; C)

(see Begehr, 2007a). However, we develop the algorithms for constructing solutions of these problems
numerically under the assumption that f is expandable in a Fourier series. This is a stronger restriction
than the original theorem, and hence justified.

3.1 Dirichlet problem of type (D1)

The first problem for the biharmonic equation, we consider is the following Dirichlet (D1) problem (to
be called (D1) biharmonic problem henceforth).

(∂z∂z̄)
2ω= f in D,

ω= h0 on ∂D,

ωz̄ = h1 on ∂D,

⎫⎪⎬
⎪⎭ (D1)

which is uniquely solvable (see Begehr (2008)) for f ∈ L1(D; C), h0 ∈ C2(∂D, C) and h1 ∈ C(∂D, C).
The solution to this problem is based on the decomposition of the problem into two complex Poisson
problems (3.1)1, (3.1)2, and a complex homogeneous biharmonic problem (H1) which is a homogeneous
version of the biharmonic problem (D1). We write ω=ω1 + ω2, where ω1 and ω2 satisfy

(∂z∂z̄)u = f in D,
u = 0 on ∂D,

}
(∂z∂z̄)ω1 = u in D,
ω1 = h0 on ∂D.

}
(3.1)

(∂z∂z̄)
2ω2 = 0 in D,

ω2 = 0 on ∂D,
ω2z̄ = h1 − ω1z̄ = h′

1 on ∂D.

⎫⎬
⎭ (H1)

Thus, the method of solving the above biharmonic problem (D1) involves the following steps: (i) Solve
the complex Poisson problem (3.1)1 using the method of Section 2 to obtain u(z) which is an input for
the complex Poisson problem (3.1)2; (ii) Then solve the complex Poisson problem (3.1)2 to obtain ω1(z)
in D and ω1z̄ on ∂D which is required in the boundary data of the (H1) problem defined above; (iii) Then
finally solve the (H1) biharmonic problem to obtain ω2 as described below. Finally, combining these two
solutions ω1 and ω2, we obtain solution ω(z) of the (D1) biharmonic problems.

The solution to the (H1) problem is given by the following boundary integral (see Begehr, 2007a).

ω2(z)= (1 − |z|2)
2π i

∫
∂D

g1(z, ζ )h′
1(ζ ) dζ̄ , g1(z, ζ )= 1

1 − zζ̄
+ 1

1 − z̄ζ
− 1.

Using similar approach as before, this boundary integral is also analysed using Fourier series of the
integrands that lead to design of fast algorithms. The result of this analysis is embodied in the following
theorem. We omit the proof here because it can be easily obtained.

Theorem 3.1 If ω2(r,α) is the solution of the (H1) problem for z = r eiα in the unit disc and if
h′

1(e
iα)=∑∞

n=−∞ bn einα , then the nth Fourier coefficient ω2,n(r) of ω2(r, ·) can be written as

ω2,n(r)=
{

−b1+nr|n|(1 − r2) if n |= 0,

−b1(1 − r2) if n = 0.
(3.2)
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We discuss the design of the fast algorithm for the construction of solution of the complex bi-
harmonic problem 3.1 in Section 4.3.

3.2 Dirichlet problem of type (D2)

We consider here the second Dirichlet (D2) biharmonic problem (to be called (D2) biharmonic problem
henceforth). This problem is sometimes called Riquier and also Navier problem.

(∂z∂z̄)
2ω= f in D,

ω= h0 on ∂D,
∂z∂z̄ω= h2 on ∂D.

⎫⎬
⎭ (D2)

This problem has boundary conditions different from the (D1) harmonic problem given above, and
is uniquely solvable (see Begehr, 2008) for f ∈ L2(D; C), h0 ∈ C(∂D; C) and h2 ∈ C(∂D; C). We note
here that this (D2) biharmonic problem can be decomposed into the following two complex Poisson
problems.

(∂z∂z̄)u = f in D,
u = h2 on ∂D,

}
(∂z∂z̄)ω= u in D,
ω= h0 on ∂D.

}
(3.3)

These are Dirichlet (P1) type complex Poisson problems discussed in Section 2.1. The fast Poisson
algorithm discussed in Section 4.1 based on the theory of Section 2.1 is used twice in succession, first
for solving (3.3)1 for u and then for solving (3.3)2 for ω.

3.3 Dirichlet–Neumann problem of type (D3)

The third problem for the biharmonic equation we consider is the following Dirichlet–Neumann (D3)
problem (to be called (D3) biharmonic problem henceforth).

(∂z∂z̄)
2ω= f in D,

ω= h0 on ∂D,
∂νω= h1 on ∂D.

⎫⎬
⎭ (D3)

This problem is uniquely solvable for f ∈ L1(D; C), h0 ∈ C2(∂D; C), and h1∈ C1(∂D; C). The method
for solving (D3) biharmonic problem is the same as for the problem (D1) (see Section 3.1), except that
problem (H1) there is replaced by following (H2) problem.

(∂z∂z̄)
2ω2 = 0 in D,

ω2 = 0 on ∂D,
∂νω2 = h1 − ∂νω1 = h′

1 on ∂D.

⎫⎬
⎭ (H2)

The solution to the (H2) problem is given by the following boundary integral (see Begehr, 2007a).

ω2(z)= − (1 − |z|2)
4π i

∫
∂D

g1(z, ζ )h′
1(ζ )

dζ

ζ
.
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Theorem 3.2 If ω2(r,α) is the solution of the (H2) problem in D, and h′
1(e

iα)=∑∞
n=−∞ bn einα , then

the Fourier coefficients ω2,n(r) of ω2(r, ·) can be written as

ω2,n(r)=

⎧⎪⎪⎨
⎪⎪⎩

− (1 − r2)

2
r|n|bn if n |= 0,

− (1 − r2)

2
b0 if n = 0.

(3.4)

Proof. The proof is similar to the proof of Theorem 3.1. �

3.4 Dirichlet–Neumann problem of type (D4)

The fourth problem for the biharmonic equation we consider is the following Dirichlet–Neumann (D4)
problem (to be called (D4) biharmonic problem henceforth).

(∂z∂z̄)
2w = f in D,

w = h0 on ∂D,
∂νwzz = h2 on ∂D.

⎫⎬
⎭ (D4)

This problem is also uniquely solvable for f ∈ L1(D, C), h0, h2∈ (∂D; C) iff

1

4i

∫
∂D

h2(ζ )
dζ

ζ
=
∫

D
f (ζ ) dξ dη.

This problem can similarly be decomposed into two Poison problems as follows:

(∂z∂z̄)u = f , in D,
∂νu = h2, on ∂D,

}
(∂z∂z̄)w = u, in D,
ω= h0, on ∂D.

}
(3.5)

As before, the fast Poisson algorithm discussed in Section 4.1 is used twice in succession, first for
solving the complex Neumann Poisson problem (3.5)1 for u and then for solving the complex Dirichlet
Poisson problem (3.5)2 for ω.

4. Fast algorithms

We first build FFT and RRs-based fast algorithms for the complex Poisson problems in Section 4.1,
followed by the description of the fast algorithms for the biharmonic problems in Section 4.3. It is
worth recalling discretization of the unit disk D using M × N grid points, M in the radial direction and
N in the azimuthal direction.

4.1 Fast algorithm for the complex Poisson problems

We first consider the (P1) problem.
Initialization: Choose M and N = 2n, where n is an integer. Define K = N/2.
Inputs: M , N , γ (e2π ik/N ), f (rl e2π ik/N ), l ∈ [1, M ], k = 1 · · · N and n ∈ [−K + 1, K].
Step 1. Compute the Fourier coefficients γn, and fn(rl), n ∈ [−K + 1, K], l ∈ [1, M ].
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Step 2. Compute Ai,i+1
n , Ai,i+1

0 , Bi,i+1
n , Bi,i+1

0 for i ∈ [1, M − 1], n ∈ [−K + 1, K] using (2.24)1, (2.24)2,
(2.25)1, and (2.25)2.
Step 3. Using (2.26) in Corollary 2.5, compute the RRs as shown in the flowchart.

Set p1,n(r1 = 0)= 0,
for n = 1, . . . , K
for l = 2, . . . , M

p1,n(rl)= (
rl−1

rl
)np1,n(rl−1)− Bl−1,l

n
end
end

Set p2,n(rM = 1)= 0
for n = 1, . . . , K

for l = (M − 1), . . . , 1
p2,n(rl)= ( rl

rl+1
)np2,n(rl+1)− Al,l+1

n
end
end

Set s1,n(r1 = 0)= 0
for n = −K, . . . , −1

for l = 2....M
s1,n(rl)= ( rl

rl−1
)ns1,n(rl−1)+ Al−1,l

n
end
end

Set s2,n(rM = 1)= 0
for n = −K, . . . , −1

for l = (M − 1), . . . , 1
s2,n(rl)= (

rl+1

rl
)ns2,n(rl+1)+ Bl,l+1

n
end
end

Set t1,0(r1 = 0)= 0,
for l = 2, . . . , M

t1,0(rl)= (
rl−1

rl
)t1,0(rl−1)+ Al−1,l

0
end

Set t2,0(rM = 1)= 0
for l = (M − 1), . . . , 1

t2,0(rl)= t2,0(rl+1)+ Bl,l+1
0

end

Step 4. Compute vn(rl) for n ∈ [−K + 1, K], l ∈ [1, M ] using (2.27).
Step 5. Compute un(rl), n ∈ [−K + 1, K], l ∈ [1, M ] using (2.14).
Step 6. Finally, compute ω(rl e2π ik/N ) by inverting (vn(rl)+ un(rl)) using FFT.

The sequential algorithm for the (P2) problem is similar.

4.2 Algorithmic complexity

The computational complexity of the above fast algorithm for the complex Poisson equation in the unit
disc is presented below.
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Step Operation count

1 Computation of γn and fn by (M + 1) times application of FFT, each time to N data points
contributes O(MN log N)

2 Computation of Ai,i+1
n,1 and Bi,i+1

n,1 , i ∈ [1, M − 1] contributes O(MN)
3 Computation of p(1)1,n(rl), p(1)2,n(rl), s(1)1,n(rl), s(1)2,n(rl), t(1)1,0(rl), t(1)2,0(rl), l ∈ [1, M ] contributes O(MN)
4 Computation vn(rl), l ∈ [1, M ] contributes O(MN)
5 Computation un(rl), l ∈ [1, M ] contributes O(MN)
6 Computation of ω(rl e

2π ik
N ), k ∈ [1, N] using FFT contributes O(MN log N)

We see from above that the algorithm has complexity of the order O(MN log N) for a total of M × N
degrees of freedom (i.e., number of grid points). Thus, it has computational complexity of the order
O(log N) per degree of freedom. For the Neumann problem also, it is easy to see that the complexity
remains the same.

4.3 Fast algorithms for the complex inhomogeneous biharmonic problems

For (D2) and (D4) biharmonic problems, we apply the above fast Poisson algorithm for the (P1)
problem twice in succession. Since the algorithms for biharmonic problems (D1) and (D3) are similar,
below we outline the steps of the fast algorithm for solving (D1) biharmonic problem and skip the
details for (D3) biharmonic problem.
Initialization: Choose M and N = 2n where n is an integer. Define K = N/2.
Inputs: M , N , h0(e2π ik/N ), f (rl e2π ik/N ), l ∈ [1, M ], k ∈ [1, N] and n ∈ [−K + 1, K].
Step 1. Compute the Fourier coefficients h0,n(rl), fn(rl), n ∈ [−K + 1, K], l ∈ [1, M ].
Step 2. Compute un(rl), n ∈ [−K + 1, K], l ∈ [1, M ] using the Poisson algorithm.
Step 3. Compute the Fourier coefficients un(rl), n ∈ [−K + 1, K], l ∈ [1, M ] using FFT.
Step 4. Compute ω1,n(rl), n ∈ [−K + 1, K], l ∈ [1, M ] using the Poisson algorithm.
Step 5. Compute the ω2,n(rl), n ∈ [−K + 1, K], l ∈ [1, M ] using Theorem 3.1.
Step 6. Finally, compute ω(rl e

2π ik
N ) by inverting (ω1,n(rl)+ ω2,n(rl)) using FFT.

It is easy to see that this algorithm has the same computational complexity, since it uses our fast
complex Poisson solver twice in succession.

5. Numerical results

In this section, numerical results obtained using above fast Poisson and biharmonic algorithms on
several problems are presented and discussed. Numerical implementation of these fast algorithms were
done in MATLAB, and computations were performed using double precision (16 digit) arithmetics. We
have implemented the trapezoidal, Simpson’s and Euler–Maclaurin formulas (Sidi & Israeli, 1988) for
numerical integration, and determined the accuracy of the fast solvers. Euler–Maclaurin formulas are
used with two points-based numerical integration of one-dimensional integrals that appear in the fast
algorithms discussed in Sections 4.1 and 4.3. Computations have been performed for several values of
M and N . In all the examples to be presented below, the source terms f and all boundary data associated
with the Poisson and biharmonic problems have been taken to be C∞ functions, so that the solutions of
these problems are also C∞. Since the fast algorithms use Fourier expansions of the source term and of
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the solutions of these problems in the azimuthal direction with grid size 2π/N , the solvers have expo-
nential rate of convergence in the grid size 2π/N . It has been found more than sufficient to use N = 32
as the solutions of these problems using our algorithms have been found to remain the same within
machine round-off error for N > 32 with M fixed. Therefore, the order of accuracy of the solutions has
been determined for several increasing values of M by evaluating relative errors in L∞ norm. The error
and order of accuracy for several values of M using different numerical integration schemes will be
shown below. We first show the performance of our algorithms on complex Poisson problems followed
by complex biharmonic problems.

5.1 The complex Poisson problem

We consider Dirichlet (P1) and Neumann (P2) complex Poisson problems (see Section 2) with appro-
priate inhomogeneous terms f and boundary conditions, so that the solutions of both the problems are
given by

ω(z)= z3/2z̄5/2 + iz5/2z̄3/2, (5.1)

which is refereed to as Example 1 in the rest of this paper. Example 2 which has been taken from Borges
& Daripa (2001), the solution is given by

ω(r, θ)= 3 er(cos θ+sin θ)(r cos θ − (r cos θ)2)(r sin θ − (r sin θ)2)+ 5. (5.2)

For Example 1, Table 1 shows relative error and order of accuracy in azimuthal grid size (1/(M − 1))
for several increasing values of M with the value of N fixed at 64. Similar results are shown in
Table 2 for Example 2. These tables show the fourth-order accuracy in the azimuthal grid size of the
algorithms. This is a marked improvement over second-order accuracy of the fast Poisson solver of
Borges & Daripa (2001), where trapezoidal and Simpson’s integration formula were used. Therefore, in
these tables we do not show the results with trapezoidal and Simpson’s rules.

5.2 The complex biharmonic problem

Now we consider complex inhomogeneous biharmonic problems with different boundary conditions
and apply the Algorithm 4.3 to solve them. We should recall from Section 3 that four problems (D1),
(D2), (D3) and (D4) discussed there can be grouped into two classes from the view point of their solution
procedure: Group 1 consisting of problems (D1) and (D3), and Group 2 consisting of problems (D2)

Table 1 Relative errors and orders of accuracy of the Poisson solvers for Example 1 (see
solution (5.1)) using Euler–Maclaurin formula and N = 64

Dirichlet Poisson problem (P1) Neumann Poisson problem (P2)

M ‖ · ‖∞ Order of accuracy ‖ · ‖∞ Order of accuracy

16 3.7 × 10−5 — 3.49 × 10−5 —
32 2.03 × 10−6 4.18 1.26 × 10−6 4.79
64 1.19 × 10−7 4.09 6.78 × 10−8 4.21
128 7.21 × 10−9 4.05 4.34 × 10−9 3.97
256 4.43 × 10−10 4.02 2.8 × 10−10 3.96
512 2.75 × 10−11 4.01 1.78 × 10−11 3.97
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Table 2 Relative errors and orders of accuracy of the algorithms for
Example 2 (see solution (5.2)) using Euler–Maclaurin formula and N = 64

Dirichlet Poisson problem (P1)

M ‖ · ‖∞ Order of accuracy

16 3.63 × 10−4 —
32 5.26 × 10−6 4.95
64 2.39 × 10−7 4.46
128 5.03 × 10−9 4.78
256 2.99 × 10−10 4.07
512 1.82 × 10−11 4.03

Table 3 Relative error for f (z)= 12(z̄ + iz) using Euler–Maclaurin formula for the
biharmonic problem (D1) with N = 64

Trapezoidal Euler–Maclaurin

M ‖ · ‖∞ Order ‖ · ‖∞ Order

16 3.4 × 10−2 — 1.2 × 10−3 —
32 6.7 × 10−3 2.3 6.9 × 10−5 4.1
64 3.2 × 10−3 1.1 4.8 × 10−6 3.9
128 9.2 × 10−4 1.8 3.4 × 10−7 3.8
256 2.2 × 10−4 2.1 2.1 × 10−8 4.0
512 5.8 × 10−5 1.9 1.7 × 10−9 3.6

and (D4). Each of the group 1 problems require solution of a homogeneous biharmonic problem in their
solution procedure by decomposition method, whereas each of the Group 2 problems do not require this
(see Section 3). Therefore, we show results for only one problem from each of these two classes.

First, we consider the biharmonic problems (D1) and (D2) with f (z)= 12(z̄ + iz), and their respec-
tive boundary conditions h0 = z + iz̄, h1 = 3 + 2iz̄2 (for (D1) problem) and h0 = z̄ + iz, h2 = 6(z̄ + iz)
(for (D2) problem). The trapezoidal and Euler–Maclaurin formulas have been used for numerical integ-
ration in the radial direction for several values of M with N = 64. A second-order convergence using
trapezoidal rule and a fourth-order convergence using Euler–Maclaurin rule are observed in both of
these tables (Table 3 and 4).

Computations have been performed with many more source and boundary terms on all four problem
types, and similar results on the error and order of accuracy have been observed. We just show one more
set of results obtained with a different set of source (f ) and boundary data, but with biharmonic problems
(D3) and (D4). The source term taken for both the problems is given by f (z, z̄)= 72(z2z̄ + zz̄2), and
their respective boundary conditions are given by h0 = z + iz̄, h1 = 7z + 7z̄ for (D3) and h0 = z̄ + z,
h2 = 60z̄ + 60z for (D4). The source term used here is symmetric: f (z, z̄)= f (z̄, z), as opposed to the
one used before where it was not symmetric. Table 5 shows the relative errors and order of accuracy
obtained with Euler–Maclaurin formulas (trapezoidal results are similar as before) for both of these
problems which support that these biharmonic algorithms give fourth-order accuracy results.

Next we compare numerical asymptotic complexity with our theoretical complexity O(N2 log N),
where N2 is the total number of grid points. Numerical complexity has been calculated based on CPU
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Table 4 Relative error with f (z)= 12(z̄ + iz) using Euler–Maclaurin formula for the
biharmonic problem (D2) (see (D2)) with N = 64

Trapezoidal Euler–Maclaurin

M ‖ · ‖∞ Order ‖ · ‖∞ Order

16 2.7 × 10−2 — 3.7 × 10−4 —
32 7.1 × 10−3 1.9 1.7 × 10−5 4.39
64 1.8 × 10−3 1.9 1.1 × 10−6 3.95
128 4.5 × 10−4 2.0 6.6 × 10−8 4.05
256 1.14 × 10−4 1.9 4.2 × 10−9 3.97
512 2.8 × 10−5 2.1 2.6 × 10−10 4.01

Table 5 Relative error for f (z)= 72(zz̄2 + z2z̄) using Euler–Maclaurin formula for
the (D3) and (D4) problem with N = 64

For the biharmonic problem (D3) for the biharmonic problem (D4)

M ‖ · ‖∞ Order ‖ · ‖∞ Order

16 4.3 × 10−3 — 6.4 × 10−5 —
32 3.8 × 10−4 3.5 7.6 × 10−6 3.1
64 2.6 × 10−5 3.8 4.6 × 10−7 4.0
128 1.8 × 10−6 3.8 2.7 × 10−8 4.1
256 1.3 × 10−7 3.7 1.6 × 10−9 4.1
512 8.4 × 10−9 3.9 1.02 × 10−10 4.0

Table 6 CPU timings and estimates for the constant c using Euler–Maclaurin
example for (D2) and (D4) problems

For the biharmonic problem (D2) For the biharmonic problem (D4)

M = N CPU time c CPU time c

16 0.23 3.24 × 10−4 0.25 3.52 × 10−4

32 0.27 7.61 × 10−5 0.28 7.89 × 10−5

64 0.43 2.52 × 10−5 0.45 2.64 × 10−5

128 1.54 1.94 × 10−5 1.55 1.95 × 10−5

256 8.53 2.35 × 10−5 8.55 2.35 × 10−5

512 58.61 3.58 × 10−5 58.79 3.58 × 10−5

time required to solve two benchmark problems, namely biharmonic problems (D2) and (D3), for differ-
ent values of N using Euler–Maclaurin integration scheme. The number of grid points in the radial and
azimuthal directions have been taken to be same, N , which is the correct way to estimate of the com-
plexity numerically for the purpose of comparison with the theoretical one. From this, we also compute
the constant, c hidden in the order estimate by dividing the total computation time by N2 log N . The
CPU timings and the estimate of the constant c for these two problems, (D2) and (D3), have been tabu-
lated in Table 6 for several values of N . The CPU timings versus N2 log N is plotted in Fig. 1(a), which
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Fig. 1. Plots of the CPU timings and the constant c = T/(N2 log N) for the fast algorithms applied to the biharmonic prob-
lems (D2) and (D3) problems using the Euler–Maclaurin formula. Plots for (D2) and (D3) problems in each of the (a) and (b)
are indistinguishable from each other. (a) Plot of CPU timings versus N2 log N , where N2 is the total number of points in the
discretization of the domain. (b) Plot of T/(N2 log N) versus N , where N2 is the total number of points in the discretization of the
domain.

is consistent with the theoretical complexity. More importantly, this figure shows that the constant c
hidden behind the complexity estimate is very small (note that the abscissa of the plot is scaled up by
10−5), which is further confirmed by the plot of computed values of c versus N in the Fig. 1(b). This is
another significant advantage that these fast algorithms offer.

6. Error estimate for the singular integrals

For a given problem and choice of integration formula for the one-dimensional integrals in the fast
algorithm, free parameters available to control the numerical error are M and N . The goal here is to
show how M is determined a priori from prescribed values of N and maximum desired error εp in the
solution of the problem. For this, we choose the principal solution v(z) defined by the singular integral
(2.4). We first show below the estimate for the error ε in its numerical evaluation of v(z) by the fast
algorithm.

Lemma 6.1 For nonzero r and infinitely differentiable function f in D, if each integral in step 2 of the
fast algorithm (see Section 4.1) is computed with an error bound δ, then the error ε in the numer-
ical evaluation of the principal solution v(z), defined by the singular integral (2.4), is bounded by
2δ(M − 1)(K + 2)/K, where N is the total number of points in the azimuthal direction, M is the total
number of points in the radial direction and K = N/2.

We provide some notations here before going to the proof. For ri < ri+1, the error in computing
the integral (n/2)Ai,i+1

n , (n/2)Bi,i+1
n , Ai,i+1

0 , Bi,i+1
0 are given by εi,i+1

1,n , εi,i+1
2,n , εi,i+1

1,0 , εi,i+1
2,0 and (Ai,i+1

n )app,
(Bi,i+1

n )app are the approximate values of Ai,i+1
n , Bi,i+1

n , respectively. It follows from the RRs (2.26) in
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Section 2.3.

p1,n(rl)= −
l∑

i=2

(
ri

rl

)n

Bi−1,i
n , p2,n(rl)= −

M−1∑
i=l

(
rl

ri

)n

Ai,i+1
n , n> 0,

s1,n(rl)=
l∑

i=2

(
rl

ri

)n

Ai−1,i
n , s2,n(rl)=

M−1∑
i=l

(
ri

rl

)n

Bi,i+1
n , n< 0,

t1,0(rl)=
M−1∑
i=l

Ai−1,i
0 , t2,0(rl)=

M−1∑
i=l

Bi,i+1
0 .

Next we give the proof of the lemma.

Proof. Recall from Corollary 2.4 that p2,n(rM = 1)= s2,n(rM = 1)= t2,0(rM = 1)= 0. It follows from
Theorem 2.1 that for z = rl e2π ij/N , l = 2, 3, . . . , M , j = 1, 2, . . . , N

v(rl e2π ij/N )=
K∑

n=−K+1

(vn(rl)) e2πnij/N =
K∑

n=1

(p1,n(rl)+ p2,n(rl)) e2πnij/N

+
−1∑

n=−K+1

(s1,n(rl)+ s2,n(rl)) e2πnij/N + (rl log rl)t1,0(rl)+ t2,0(rl)

=
K∑

n=1

(
−

l∑
i=2

(
ri

rl

)n

(Bi−1,i
n )app

)
e2πnij/N +

K∑
n=1

(
−

M−1∑
i=l

(
ri

rl

)n

(Ai,i+1
n )app

)
e2πnij/N

+
−1∑

n=−K+1

(
l∑

i=2

(
rl

ri

)n

(Ai−1,i
n )app

)
e2πnij/N +

−1∑
n=−K+1

(
M−1∑
i=l

(
ri

rl

)n

(Bi,i+1
n )app

)
e2πnij/N

+
l∑

i=2

rl log rl[(A
i−1,i
0 )app] +

M−1∑
i=l

[(Bi,i+1
0 )app] + ε,

where

|ε| �
K∑

n=1

2

n

l∑
i=2

(
ri

rl

)n

|εi−1,i
2,n | +

K∑
n=1

2

n

M−1∑
i=l

(
rl

ri

)n

|εi,i+1
1,n | +

−1∑
n=−K+1

2

n

l∑
i=2

(
rl

ri

)n

|εi−1,i
1n,1 |

+
−1∑

n=−K+1

2

n

M−1∑
i=l

(
ri

rl

)n

|εi,i+1
2,n | +

l∑
i=2

|rl log rl|εi−1,i
1,0 | +

l∑
i=2

|εi,i+1
2,0 |.

We have for 2< i< l, ri < rl and for l< i<M , rl < ri. If each integral is computed within an error
bounded by δ, where

δ = max
i,n,ρ

{
|εi−1,i

1,0 |, |εi,i+1
2,0 |, |εi−1,i

2,n |, |εi,i+1
1,n |, |εi,i+1

2,n |, |εi−1,i
1,n |

}
. (6.1)
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Then

|ε| �
K∑

n=1

2δ

n
(M − 1)+

K∑
n=1

2δ

n
(M − 1)+

−1∑
n=−K+1

2δ

n
(M − 1)+

−1∑
n=−K+1

2δ

n
(M − 1)+ 2δ(M − 1)

= 2δ(M − 1)+ 4δ(M − 1)

(
K∑

n=1

1

n
−

K−1∑
n=1

1

n

)
= 2δ(M − 1)(K + 2)

K
. (6.2)

This concludes the proof of the lemma. Therefore, for |ε|< εp we have

2δ(M − 1)(K + 2)

K
< εp, (6.3)

from which an estimate for minimum value of M can be obtained as shown below through two ex-
amples. In the case of trapezoidal rule, it follows from (6.1) that δ in (6.3) is given by

δ = max
i,n,ρ

(Δr)3

12

{
∂2

∂ρ2

(
ρfn(ρ)

(
ri+1

ρ

)n)
,
∂2

∂ρ2

(
ρfn(ρ)

(
ρ

ri

)n)
,
∂2

∂ρ2
(4ρ log ρf0(ρ))

}
. (6.4)

�

6.1 Examples

The above estimate has been validated using many examples. We give below only two simple case
studies.

Problem 6.2 We consider the function f (z)= 12z̄. Hence,

fn(ρ)=
{

12 if n = −1,

0 if n |=−1.

Therefore, it follows from (6.4)

δ = max
i,n,ρ

(Δr)3

12

{
∂2

∂ρ2

(
12ρ3

ri+1

)
,
∂2

∂ρ2
(12riρ)

}
= 6(Δr)3. (6.5)

It follows from (6.3) and (6.5)

(M − 1)2 >
12(K + 2)

εpK
. (6.6)

Problem 6.3 We consider the function f (z)= 6zz̄2. Hence,

fn(ρ)=
{

6ρ3 if n = 1,

0 if n |= 1.

Therefore, it follows from (6.1)

δ= max
i,n,ρ

(Δr)3

12

{
∂2

∂ρ2

(
12ρ3

ri+1

)
,
∂2

∂ρ2

(
6ρ5

ri

)}
= 10(Δr)3. (6.7)
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(a) (b)

Fig. 2. The point-wise error inside the disk for two problems. This is a colour plot on screen. (a) Error plot for with f (z)= 12z̄,
N = 64, M = 256. (b) Error plot with f (z)= 6z2 z̄, N = 64, M = 128.

It follows from (6.3) and (6.7)

(M − 1)2 >
20(K + 2)

εpK
. (6.8)

For the above two problems, we have numerically evaluated v(z) (see (2.4)) inside the disk using
the fast algorithm using minimum values of M determined by the above estimates ((6.6) for problem 1
and (6.8) for problem 2) for several choices of εp, and also evaluated v(z) exactly since exact integration
of the singular integral (2.4) is possible for both the problems, thereby obtained numerical errors in the
computed values of v(z) for both the problems. We have found that the numerical error in the computed
values of v(z) inside the disk at all grid points is always less than the prescribed error εp for the problems.
For brevity, we show only two figures.

For a prescribed error εp = 0.0001 and N = 64 for problem 1, we obtain M = 358 from the theo-
retical estimate (6.6). Figure 2 shows point-wise error plot inside the disk for this problem when
N = 64, M = 256. We see that the error does not exceed this prescribed error. Similarly for problem
2, for a prescribed error εp = 0.001 and N = 64, we obtain M = 147 from the theoretical estimate (6.8).
Figure 2(b) shows point-wise error plot inside the disk for this problem when N = 64, M = 128. We
see that the error is less than the prescribed error. Note for both problems, the numerical error is within
prescribed errors with values of M less than the estimates.

7. Application to low and moderate Reynolds number flow

We apply our fast algorithms for the biharmonic problems to study steady and viscous incompressible
flows inside a cylinder. Such flows have been studied by many (see Mills, 1977, for example). The
practical application of these types of problems arises in recirculation of fluids in cavities and in confined
ventilation (see Mills, 1977). The governing equations for such flows are given by

(u · ∇)u = −∇p + ∇ · (R−1∇u), ∇ · u = 0, (7.1)
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where p is the pressure, R is the Reynolds number and u is the velocity. The velocity components (ur, uθ )
in terms of stream function ψ are given by

ur = 1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (7.2)

The scalar vorticity ϕ satisfies the Poisson equation ϕ = −Δψ . Taking curl of both sides of (7.1) gives

Δ2ψ = −RJ[ψ ,Δψ], (7.3)

where the Jacobian J[ψ ,Δψ] = (1/r)(∂rψ∂θΔψ − ∂rΔψ∂θψ). For R → 0, equation (7.3) is the homo-
geneous biharmonic equation. In terms of generalized derivatives, Δ2 = (∂z∂z̄)

2/16. Therefore, a typi-
cal flow problem inside the cylinder for prescribed boundary values of ψ and ∂ψ/∂r is then given by
(see Kuwahara & Imai, 1969; Mills, 1977)

(∂z∂z̄)
2ψ = − R

16
J[ψ ,ψzz̄] in r< 1,

ψ = f1(θ) on r = 1,

∂ψ

∂r
= f2(θ) on r = 1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.4)

where the Reynolds number R = Ur/ν based radius r of the cylinder, U is the speed of rotation of the
part of the cylinder wall and ν is the kinematic viscosity of the fluid. With slight abuse of notation, we
use above the same notation ψ when ψ(x, y) is written as a function of z = (x + i y) and z̄ = (x − i y).
The problem (7.4) above is the biharmonic problem (D3) (see Section 3), except that the inhomogeneous
term in the biharmonic equation (7.4)1 depends on the solution itself. Therefore, the problem (7.4) is
solved using an iteration scheme in which the fast algorithm discussed in Section 4.3 is used to solve
the (D3) biharmonic problem at every iteration until some suitable convergence criterion is met.

We apply this iterative method and the fast algorithm developed in previous sections to specific
fluid flow problems which will validate the application potential of our algorithms. We first consider
slow creeping Stokes flows when R → 0. In this case, the above problem (7.4) reduces to the (D3)
homogeneous biharmonic problem. This is first solved using our fast algorithm discussed in Section 4.3.
The solution of this zero Reynolds number problem serves as an initial guess to solve the problem (7.4)
for flows with nonzero Reynolds number. In particular, we are first interested in flows with low Reynolds
number, for which we follow a simple iteration method described in Greengard & Kropinski (1998) and
Mills (1977).

We start with an initial guess ψ(0) obtained from the solution of Stokes flow, and then at each
(k + 1)th stage we solve

ψ
(k+1)
zz̄zz̄ = − R

16
J[ψ(k),ψ(k)

zz̄ ] in r< 1,

ψk+1 = f1(θ) on r = 1,

∂ψ(k+1)

∂r
= f2(θ) on r = 1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.5)
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using the fast algorithm for the inhomogeneous biharmonic problem (D3) as mentioned above. The
vorticity ϕ is obtained from ϕ = −Δψ using numerical approximation of the Laplacian. The Jacobian
is obtained using the central difference formula on mesh points inside the disk and backward difference,
forward difference for points on the boundary. We continue the iteration until the convergence criterion
(‖ψk+1‖ − ‖ψk‖)/‖ψk+1‖< tol is met for some suitable choice for the value of the tolerance. In our
case, we used tol = 3 × 10−4.

In our numerical experiments, the above iteration method failed for Reynolds number beyond 4.
This is well known as others have also experienced the same problem with this iteration method (Mills,
1977; Greengard & Kropinski, 1998) in the past. Therefore, we modify our iteration method for R> 4.
We use a relaxation factor as in the Gauss–Seidel SOR method (see Mills, 1977). We start with our
initial guess as before to obtain ψ(0)(z) and use the fast algorithm to compute the iterate ψ(k+1)(z). For
convergence, we use two relaxation factors α and β for fields ϕ and ψ . To update the values of ϕ and
ψ , we use

ϕ
(k+1)
n,l = αϕ

�(k+1)
n,l + (1 − α)ϕ

(k)
n,l , ψ

(k+1)
n,l = βψ

�(k+1)
n,l + (1 − β)ψ

(k)
n,l .

The starred quantities denote the values obtained at each iterative step. The relaxation factor helps in
convergence, and suitable choices for α and β are taken to be 0.3 and 0.5, respectively. The iteration
is continued until tolerance is met. This iteration method works for problems with moderate Reynolds
number, but becomes unstable for problems with high Reynolds number. Similar performance of this
iteration method has been observed in Mills (1977). Results on several flow problems are discussed
below.

The flow problem we solve has boundary data f2(θ)= cos θ sin θ and f1(θ)= 0, taken from
Greengard & Kropinski (1998). The flow problem is solved for two values of R: 10 and 150. The
number of iterations required to obtain converged solution within a tolerance = 3 × 10−4 is 4 at R = 10
and 26 at R = 150, respectively. Streamline plots at R = 10 and R = 150 are shown in Fig. 3(a,b),
respectively. Similar plots for vorticity are shown in Fig. 4(a,b), respectively. The flow pattern is
symmetric about x- and y-axes, as it should be due to the same symmetry in the boundary data
f2(θ). The plots agree with those obtained by Greengard & Kropinski (1998). This flow was investi-
gated for 0 � R � 150. Significant change in the vorticity pattern is observed with increasing Reynolds
number.

Now we consider the moving wall problem with boundary condition ψ(r = 1)= 0, and discontinu-
ous boundary condition

∂ψ

∂r
=
⎧⎨
⎩

−1, 0 � θ < π ,

0, π � θ < 2π .
(7.6)

This flow problem was solved for 0 � R � 20. The computed streamline patterns at R = 0 and R = 10
are shown in Fig. 5(a,b), respectively. Nonsymmetric flow patterns are observed here, and the centre
of the vortex is seen shifted to the direction of the flow. The number of iterations required at R = 10 is
27. For computation of this flow problem, the number of grid points used is taken more (see the figure
caption) than for the other problems due to the presence of discontinuity in the boundary condition of
this problem (see (7.6)). This problem has also been studied by Mills (1977) and Mabey (1957), and our
results are in excellent agreement with their results.
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Fig. 3. Streamline patterns for flows with f1(θ)= 0, and f2(θ)= cos θ sin θ . Computations have been performed with parameter
values N = 64, M = 64 using the fast Algorithm 4.3 in a (D3) biharmonic problem. This is a colour plot on screen. (a) Streamline
patterns for R = 10. (b) Streamline patterns for R = 150.
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Fig. 4. Level sets of vorticity for flows with f1(θ)= 0, and f2(θ)= − cos θ sin θ . Computations have been performed with
parameter values N = 64, M = 64 using the fast Algorithm 4.3 in a (D3) biharmonic problem. This is a colour plot on screen.
(a) Level sets of vorticity for R = 10. (b) Level sets of vorticity for R = 150.

Next we show our results on the following outflow inflow problem (taken from Mills (1977)), in
which ψ is prescribed on the boundary as a piecewise continuous data.

∂ψ

∂r
= 0, 0< θ < 2π , (7.7)
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Fig. 5. Streamlines for flows with f1(θ)= 0 and discontinuous f2(θ) given by (7.6). Computations have been performed with
parameter values N = 128, M = 129 using the fast Algorithm 4.3 in a (D3) biharmonic problem. This is a colour plot on screen.
(a) Streamline patterns for R = 0. (b) Streamline patterns for R = 10.
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Fig. 6. Streamlines for flows with f1(θ)= 0 and discontinuous f2(θ) given by (7.8). Computations have been performed with
parameter values of N = 128, M = 65 using the fast algorithm 4.3 in a (D3) biharmonic problem. This is a colour plot on screen.
(a) streamline patterns for R = 0.009. (b) Streamline patterns for R = 0.02.

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + (θ − α)

ε
, α − ε < θ < α + ε,

2, α + ε < θ < β − ε,

1 + (β − θ)

ε
, β − ε < θ < β + ε,

0, β + ε < θ < 2π + α − ε.

(7.8)
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In our computation, α= 0, ε = π/32, β = π and R = Uε/ν is the Reynolds number, where U is the
speed and Uε the flow across the arc intercepted by ε. The number of iterations required to compute this
flow at R = 0.009 and R = 0.02 is 13 and 20, respectively. Computed streamline patterns at R = 0.009
and R = 0.02 are shown in Fig. 6(a,b), respectively, which agree very well with that obtained by Dennis
(1975).

8. Conclusions

We have developed FFTRR-based fast and high-order accurate algorithms for solving the complex
Poisson and the complex inhomogeneous biharmonic problems. Algorithms based on these same prin-
ciples have been developed before by Borges & Daripa (2000, 2001), Daripa (1992, 1993) and Daripa
& Mashat (1998) for other types of elliptic problems. For ease of reference in the future for algo-
rithms based on these principles, we have named these algorithms for the first time in this paper
as FFTRR-based algorithms. These algorithms have many desirable features which are listed in the
Section 1. These algorithms for the complex Poisson problems have been applied here to solve four
classes of inhomogeneous complex biharmonic problems using the decomposition methods, result-
ing in efficient and accurate fast biharmonic solvers. These biharmonic solvers have been applied to
solve steady, incompressible slow viscous flow problems for low to moderate Reynolds number within
circular cylinders. The computational results agree very well with the existing results on these prob-
lems. These algorithms can also be applied to solving similar problems in arbitrary domains using
domain embedding technique (Badea & Daripa, 2001, 2002, 2003, 2004), which is a topic of future
research.

In closing, we mention the fast method for rectangular domains developed by Ben-Artzi et al.
(2008). There are even more fourth-order accurate methods for solving Poisson’s equation on regular
regions with the same O(log n) operation count per mesh point, where the constant behind the com-
plexity estimate is small. Performance and various other features of the algorithms proposed here need
to be compared with that of a variety of other fourth-order accurate methods that have been developed
by many in the past for solving the biharmonic equation on a disk with uniform meshes with the same
asymptotic O(log n) operation count per mesh point. This is a topic of future research and falls outside
the scope of this paper.

On theoretical ground, one can easily see that these algorithms, similar to other algorithms devel-
oped by Borges & Daripa (2000, 2001), Daripa (1992, 1993) and Daripa & Mashat (1998), offer several
distinct advantages over the existing ones with similar accuracy and complexity: (i) analytical methods
(i.e., exact RRs) in conjunction with FFT provides accurate and computationally efficient algorithms;
(ii) these algorithms allow a priori selection of the uniform mesh sizes from prescribed desired error
in the solution (see Section 6); (iii) compared with methods based on discretization of the PDE over
regular mesh in polar coordinates, there is no need for any special treatment near coordinate singularity
at the origin; (iv) solutions locally near any ring in the disk can be computed without computing solu-
tions everywhere else. This property is built into the algorithms and will be exemplified in the future;
(v) the algorithms automatically simplifies tremendously when solving the real biharmonic equation
with boundary data real (i.e., when inhomogeneous term f and the boundary conditions are real). This
can be easily worked out by using the fact that fn = f−n for real f ; (vi) these FFTRR-based algorithms
by their very construction allow construction of exact explicit solutions of a certain class of problems,
in particular when Fourier coefficients of the source term f can be written explicitly as a function of the
radial coordinate. This can be easily seen by analyzing the algorithms given in this paper. This will be
exemplified in the future.
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