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ABSTRACT
We consider two problems in complex fluids: (i) thickening

of thin films in the Landau-Levich problem [1] of dip coating and
in motion of long bubbles in capillary tubes [2]. In both of these
problems, thickening of thin films is observed experimentally in
the presence of interfacial surfactants which has been confirmed
experimentally. Considering small concentration of insoluble
surfactants at the interfaces with a small variation of it along the
interfaces, we theoretically prove these thickening effects using
lubrication theory and boundary layer methods. In the case of
Landau-Levich problem of dip coating, we obtain a formula for
an upper bound in terms of the Marangoni and Capillary number
which is then used to show that the upper bound in the “clean”
case (without surfactant) is less than the lower-bound in the “sur-
factant” case. For the slowly and steadily moving long bubble
in a capillary tube, the thickening of the thin film left behind the
moving front by the presence of surfactant is based on first ob-
taining a formula of the film thickness in terms of Marangoni
number and concentration of interfacial surfactant. A compar-
ison with Bretherton’s “clean” case then shows the thickening
effect of surfactant. References [3] and [4] have many details
on these problems including many references. We are currently
studying extension of these results for the complex fluids, spe-
cially polymeric fluids, and also studying the fingering problem
in complex fluids in a Hele-Shaw cell.

INTRODUCTION
Interests in fluid flow problems involving thin films arise for

many reasons which we use to classify all such problems in two
broad categories: (i) problems in which thin films, whether made
artificially or naturally, serve some useful purpose and problems
are designed with that purpose in mind; and (ii) problems in
which thin films arise as a secondary effect when the original
problems are actually designed with some other primary pur-

pose in mind. In both of these classes problems, thickness ofthe
thin-film and its dependence on flow parameters are more often
a subject of interest. Experimentally and numerically, it has been
found that, in general, thickness of the thin-film in most of these
problems is proportional to the two-third power to the Capillary
numberCa = Uµ/γ whereU is some problem specific velocity
(see below),µ is the fluid viscosity andγ is the surface tension.
Moreover, experimental and numerical studies have shown that
thickness of the thin-films increases in the presence of interfacial
surfactant (see an exhaustive list of references in [3] and [4]).
Effect of interfacial surfactant is to decrease the surfacetension
and hence to increase the thickness of the thin-film if we were
to ignore the effect of Marangoni force. Without ignoring this
effect, thickening effect of the surfactant has been provedin [3]
and [4]. In this paper, we briefly outline the similarity between
these two broad categories of problems in terms of mathematical
formulations and point out some of the key results that provethe
thickening effect of interfacial surfactants.

In all these thin film problems, the flow region extends be-
yond the thin film. The flow region is usually divided into three
regions following boundary layer type of approach: interior re-
gion, transition region and exterior region. The exterior region
is usually the thin film and the interior region is the region of
rapid change in flow features. The flow in the transition region in
all these thin-film problems is modeled using lubrication theory
which is usually solved numerically matching its solution to so-
lutions of exterior and interior regions. We theoreticallyanalyze
these equations in the context of two specific problems without
any recourse to numerical computation and prove the thickening
effect of interfacial surfactant on the thin-film. The two problems
are: Landau-Levich-Derjaguin (LLD for short) dragout coating
probelm which falls within the category (i) discussed at thebe-
ginning of this section; and the motion of long bubbles in hori-
zontal capillary tubes which falls within category (ii) again dis-
cussed at the beginning of this section.
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LLD DRAGOUT COATING PROBLEM
Landau-Levich-Derjaguin (LLD) dragout coating probelm

is a classical problem involving dip coating flows on an infinite
flat substrate which is withdrawn from an infinite liquid bath.
Figure 1 below shows the set-up of this problem. Here and be-
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FIGURE 1. Sketch of thedrag-out coating problem with coordinates

low all dimensional variables are denoted with an overbar and
dimensionless variables without an overbar. Consider a vertical
flat plate being pulled out from a horizontal bath of an incom-
pressible fluid. Thex-axis is downward in the direction of gravity
force with y-axis perpendicular to the plate as shown in Fig. 1.
The plate velocity(U ,0) is vertically upward and its equation
is taken to bey = 0. Equation of the free surface of the liq-
uid bath far from the plate isx = 0. The film thickness at finite
(negative)x on the plate is denoted byh and the (constant) film
thickness far up on the plate is denoted byHc (= hLLD ) for the
clean case andHs for the case with surfactant. We denote by
u the velocity component in thex−direction, byp the pressure,
and byy = h(x) the free surface of the liquid film forx < 0. The
surfactant concentration on the free surface is denoted byΓ and
γ(Γ) denotes surface tension which depends onΓ. TheΓ∞ and
γ∞ are the corresponding values far up on the plate for the sur-
factant case,γc = γ(Γ = 0) denotes the constant surface tension
for the clean case. Note thatγ∞ = γc if Γ∞ = 0.

Introduce dimensionless variables:(u,v) = (u,v)/U , x =
x/lc, y = y/lc, p = plc/γc, h = h/lc. As shown in [3], the fol-
lowing equations define the lubrication model for the flow in the
transition region:

Ca ·uyy = px −1, & py = 0, for x < 0, 0 < y < h(x). (1)

p = −hxx, & Ca ·uy = γx, on y = h(x). (2)

u = −1, on y = 0, (3)

whereCa = Uµ/γ∞ and γ in (2) is normalized byγ∞. Below,
dimensionless thickness of the thin-film in the clean (surfactant)
case is denoted byHc (Hs). From an analysis of the above equa-
tions, it has been shown in Daripa [3] that Hc <

√

Ca,&Hs >
√

Ca. Since the strict upper bound for the clean case is also the
strict lower bound for the surfactant case, it follows that surfac-
tant thickens the thin film in the Landau-Levich problem.

LONG BUBBLES IN HORIZONTAL CAPILLARY TUBES
We consider here slow steady motion of a long bubble in a

horizontal capillary tube of radiusr filled with a liquid of viscos-
ity µ . The bubble velocity is denoted byU and the fluid inside
the bubble is of negligible viscosity. The flow is consideredaxi-
symmetric. The Figure 2 shows the set-up. It has been observed
experimentally [2] that an almost stagnant thin-film is left behind
between bubble and the tube wall as it moves forward. Thus, this
thin-film is generated not by design but as a secondary effect
unlike the LLD problem discussed above where the primary pur-
pose is to deposit a thin film on the substrate being dragged out
of a liquid bath.
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FIGURE 2. The bubble in the capillary tube. The transition region
BC is matched with the constant film thickness region CD and with the
constant curvature region AB.

Similar to the LLD problem, the thickness of the thin-film
here is determined by similar boundary layer approach where
bubble interface is decomposed into three regions: the front
meniscusAB, the transition regionBC (see Figure 2) and the
region of thin-filmCD. This problem differs from the LLD prob-
lem in that the front meniscus here has constant curvature. The
equations in the transition region here (see [4]) are similar to the
ones given above for LLD-case. Using an analysis of these equa-
tions, it is shown in [4] thatbS > bC + 3r

2 MΓ(xB) wherebC is the
thickness for the clean case,bS is the thickness when interfacial
surfactant is present,M is the Marangoni number andΓ(xB) sur-
factant concentration at a generic pointB in the region BC. This
proves the thickening effect of surfactant.
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