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Abstract

We study the singularly perturbed (sixth-order) Boussinesq equation recently in-
troduced by Daripa and Hua [Appl. Math. Comput. 101 (1999) 159]. Motivated by their
work, we formally derive this equation from two-dimensional potential flow equations
governing the small amplitude long capillary-gravity waves on the surface of shallow
water for Bond number very close to but less than 1/3. On the basis of far-field analyses
and heuristic arguments, we show that the traveling wave solutions of this equation are
weakly non-local solitary waves characterized by small amplitude fast oscillations in the
far-field. We review various analytical and numerical methods originally devised to
obtain this type of weakly non-local solitary wave solutions of the singularly perturbed
(fifth-order) KdV equation. Using these methods, we obtain weakly non-local solitary
wave solutions of the singularly perturbed (sixth-order) Boussinesq equation and pro-
vide estimates of the amplitude of oscillations which persist in the far-field. © 2002
Elsevier Science Inc. All rights reserved.

Keywords: Capillary-gravity waves; Singularly perturbed Boussinesq equation; Weakly non-local
solitary waves; Asymptotics beyond all orders; Pseudospectral method

1. Introduction

The study of wave propagation on the surface of water and, in particular,
solitary waves has been a subject of considerable theoretical and practical
importance for over a century and a half. In 1872, Boussinesq [12] derived a
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model equation for propagation of water waves from Euler’s equations of
motion for two-dimensional potential flow beneath a free surface by intro-
ducing appropriate approximations for small amplitude long waves. This
equation is now known as the classical Boussinesq equation. Later, Korteweg—
deVries [25] derived a simpler model equation, now known as the classical KdV
equation, by using far-field analysis in addition to Boussinesq’s approxima-
tions (see [24] for more detail). Both the Boussinesq and KdV equations pos-
sess solitary wave solutions. The Boussinesq equation describes bi-directional
wave propagation, whereas, the KdV equation describes uni-directional wave
propagation.

The problem of existence of solitary wave solutions to the full non-linear
water wave equations with or without surface tension has been the subject of
considerable investigations in the last two decades. The solutions to the full
water wave equations are characterized by the non-dimensional surface tension
parameter 7, called the Bond number. This parameter is defined as follows:
t=TI/pgh}, where I is the surface tension coefficient, p is the density of the
water, g is the acceleration due to gravity and 4, is the height of the undis-
turbed water surface.

The existence of solitary wave solutions to the full non-linear water wave
equations without surface tension effects has been proved by Amick and To-
land [6] and Beale [8]. Hunter and Vanden-Broeck [23] solved the full non-
linear water wave equations with surface tension effects included numerically.
Their computed solitary wave solutions for 7 > 1/3 agreed with the KdV
solitary waves. But, they were unable to compute solitary wave solutions for
0 <7< 1/3. On the basis of their computations, they concluded that the
classical KdV equation is perhaps not a good model for the full water wave
equations for 0 < 7 < 1/3. Later, through the analyses of full non-linear water
wave equations, Amick and Kirchgassner [3,4] and Sachs [29] proved the ex-
istence of solitary wave solutions to the water wave problem for t > 1/3, and
Beale [9], Sun [32], Sun and Shen [33] and Vanden-Broeck [34] proved the non-
existence of solitary wave solutions and existence of generalized solitary wave
solutions with oscillatory tails to the water wave problem for 0 < t < 1/3.

Hunter and Scheurle [22] derived a new model equation, namely the sin-
gularly perturbed (fifth-order) KdV equation, to describe the uni-directional
propagation of small amplitude long capillary-gravity waves on the surface of
shallow water for 7 T 1/3 (i.e. Bond number t is less than but very close to 1/3).
The solutions they found were arbitrary small perturbations of KdV solitary
waves. These were not classical solitary waves because of the presence of small
amplitude fast oscillations at distances far from the core of the waves and
extending up to infinity. These waves are known as weakly non-local solitary
waves.

The fifth-order KdV equation has gained much popularity over last decade.
With various objectives in mind, this equation has been studied analytically by
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Akylas and Yang [2], Amick and McLeod [5], Amick and Toland [7], Benilov
et al. [11], Boyd [14], Byatt-Smith [16], Eckhaus [19,20], Grimshaw and Joshi
[21], Kichenassamy and Olver [26] and Pomeau et al. [28], and numerically by
Boyd [15]. Their work suggests the non-existence of classical local solitary wave
solutions and the existence of weakly non-local solitary wave solutions for this
equation. The corresponding non-local internal solitary waves for mode
number greater than 1 were studied analytically by Akylas and Grimshaw [1]
and numerically by Vanden-Broeck and Turner [35].

A perturbation procedure (techniques of asymptotics beyond all orders) for
obtaining the estimate of the amplitude of the oscillatory tails associated with
the weakly non-local solitary wave solutions of the fifth-order KdV equation
was devised by Grimshaw and Joshi [21] and Pomeau et al. [28] (see also [14])
following the related work by Kruskal and Segur [27], Segur and Kruskal [30]
and Segur et al. [31]. They showed that the amplitude of the oscillation is ex-
ponentially small that lies beyond all orders of the usual long wave expansion.
Akylas and Yang [2] using the method of Fourier transform and a perturbation
analysis in the wave number domain estimated this exponentially small am-
plitude of the tail oscillations. In this method, the amplitude of the far-field
oscillations is determined easily without the need for asymptotic matching in
the complex plane, as required in the techniques of asymptotics beyond all
orders. Boyd [15] computed these weakly non-local solitary waves numerically
using the Newton—-Kantorovich pseudospectral (collocation) method based on
the rational Chebyshev and radiation basis functions. The numerical estimate
of the amplitude of tail oscillations were compared with the analytical estimate
obtained by Pomeau et al. [28]. He has called these weakly non-local solitary
waves as ‘nanopteron’ and also drawn attention to their prevalence in a variety
of physical systems. A detailed account of various asymptotic methods and
their applications to weakly non-local solitary waves and related topics can be
found in a recent review article by Boyd [13].

In this paper, we provide detailed analytical and numerical studies of the
singularly perturbed (sixth-order) Boussinesq equation

My = N + (1) e F Mo + € M (1.1)

where € is a small parameter. This equation was originally introduced by
Daripa and Hua [18] as a regularization of the classical (illposed) Boussinesq
equation which corresponds to e = 0 in Eq. (1.1).

The classical Boussinesq equation possesses solitary wave solutions. How-
ever, as an initial value problem (IVP), it suffers from severe short wave in-
stability. The linearized version of this equation admits solutions of the form
e’ with short wave instability ¢ ~ k> as k — oo. A consequence of this short
wave instability is possible non-existence of classical solutions to this equation
for arbitrary initial data except for some isolated solutions such as the classical
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solitary wave solutions. Another consequence of this short wave instability is
difficulty in constructing good approximate solutions of even known solutions
[17,18]. These facts seriously cast doubts on the real utility of this Boussinesq
equation in spite of its frequent appearance in most books on non-linear waves
and water waves (e.g., [24,36]) as a model equation for bi-directional propa-
gation of small amplitude long-waves.

Daripa and Hua [18] attempted to compute the approximate solutions of the
illposed Boussinesq equation using the regularized sixth-order Boussinesq
equation (1.1) subject to initial data of solitary wave type. However, for small
€, their computations resulted in solutions which behave like solitary waves at
their cores and oscillations of small amplitude at their tails. So, their computed
solutions had the behavior of weakly non-local solitary wave solutions of the
fifth-order KdV equation [2,15,21,22,28], and full non-linear water wave
equations for 0 < 7 < 1/3 [9,32-34].

In this paper, we construct the weakly non-local solitary wave solutions of
the regularized sixth-order (singularly perturbed) Boussinesq equation (1.1) in
the form of traveling waves by using various analytical and numerical
methods originally devised to obtain this type of weakly non-local solitary
wave solutions of the fifth-order (singularly perturbed) KdV equation. We
also obtain the estimate of the amplitude of the oscillatory tails associated
with these weakly non-local solitary waves. The layout of the paper is as
follows.

In Section 2, we address the physical relevance of the sixth-order (singularly
perturbed) Boussinesq equation (1.1) in the context of water waves. In par-
ticular, we show that this equation actually describes the bi-directional prop-
agation of small amplitude and long capillary-gravity waves on the surface of
shallow water for Bond number t less than but very close to 1/3. In Section 3,
we use a regular perturbation analysis to find an approximate traveling wave
solution of this equation in the core region. Also on the basis of far-field an-
alyses and heuristic arguments, we show that, unlike the classical solitary
waves, the traveling wave solutions of this equation do not vanish to zero at
infinity. Instead, they possess small amplitude fast oscillations at infinity. In
Section 4, using the technique of asymptotics beyond all orders [27,30,31], we
estimate this exponentially small amplitude of the tail oscillations by following
closely the approach of Grimshaw and Joshi [21] and Pomeau et al. [28]. In
Section 5, we use the method of Fourier transform coupled with a perturbation
analysis in the wave number domain as in [2] to obtain an estimate of this
exponentially small amplitude of the far-field oscillations. In Section 6, we
compute the weakly non-local solitary waves numerically using the Newton—
Kantorovich pseudospectral (collocation) method based on the rational
Chebyshev and radiation basis functions as in [15]. The analytical and nu-
merical results are presented and compared in Section 7. The discussions and
concluding remarks are given in Section 8.
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2. Physical relevance of the sixth-order Boussinesq equation

Before focusing on the nature of traveling wave solutions of the sixth-
order Boussinesq equation, we briefly comment on the physical relevance of
this equation in the context of water waves. Below we show that this
equation actually describes the bi-directional propagation of small amplitude
and long capillary-gravity waves on the surface of shallow water for Bond
number t less than but very close to 1/3 (i.e., t 1 1/3). In particular, we
present a formal derivation of this equation from two-dimensional po-
tential flow equations for water waves in the limit 7 1 1/3 through an
asymptotic series expansion for small amplitude and long wavelength as in
[24,36].

Let A(x,t) = ho + an(x, t) represent the free water surface (where 4, is the
height of undisturbed water surface, #(x,¢) is the surface wave showing the
mean disturbance on the undisturbed water surface, and «a is the amplitude of
the surface wave), z = 0 represent the bottom topography, and ¢ denote the
potential function. Under scaling

laiogT“ o, (2.1)

I ; b
s e

Vgho
where [ is the wavelength of surface wave and g is the acceleration due to

gravity, the governing equation and boundary conditions for water waves (see
[24,36]) are given by

x — Ix, z — hyz, t—

B+ .. =0, (2.2)
with

¢.=0 atz=0, (2.3a)

n + o, —%d@ =0 atz=1+ay, (2.3b)

la

2 p

Max

¢ +n—pr——s
1+ o2pr2)*?

1
¢,+§oc¢i+ =0 atz=1+4ay,  (2.3c)

where o = a/hy is the amplitude parameter, f§ = (4y/ l)2 is the wavelength pa-
rameter, and © = I'/pgh? is the surface tension parameter or the Bond number.
Here I is the surface tension coefficient.

The linearized version of the above equation admits solutions of the form
Ae™=i! provided the following dispersion relation holds (see [36]).

2
w? = Z—%[(l + Tk2H2)kh tanh (ko)) (2.4)
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where ¢y = /ghy. In the long wavelength limit (f < 1, i.e., khy < 1), we have
1 1/2 2 (17
CU C0k2|:1<3 T>k2hg+§(§ )k4hgﬁ<ﬁ'€>k6hg
17 [ 62 818
—‘v‘m(m—’f)k}lo—-“]. (2.5)

This indicates that the leading order dispersion term in the equation for # is of
the order ((1/3) — t)k?hZ, or equivalently of the order ((1/3) — 1)p. Therefore
the leading order dispersion term is O(f) if < ((1/3) — 1)< (1/3), i
((1/3) —17) = O(1). On the other hand, the leading order dispersion term is
O(p?)if ((1/3) — 1) = O(pB) which will be true when t 1 1/3. However, the non-
linear term is always of the order o, irrespective of the value of the Bond
number 7. A balance between non-linear and dispersive effects (which is nec-
essary to model a solitary wave) requires that o = O(f) when ((1/3) — 1) > p,
and o = O(f*) when ((1/3) — 1) = O(f).

We now derive the necessary sixth-order Boussinesq equation for # from
Egs. (2.2) and (2.3a)—(2.3c) by suitably eliminating ¢ from these equations
under the limiting conditions

(;1>K1[3 and o =K, asf—0, (2.6)

with non-zero constants K; and K, are fixed. In doing so, we seek a solution for
the potential function ¢ in the form (see [24,36])

¢ 2OO: k sz aZkf (2.7)

i)l P
— Ox

where f = f(x,¢) is the value of potential function ¢ at z = 0. Expression (2.7)
suggests the fact that the horizontal velocity ¢, is of O(1), where as, the vertical
velocity ¢, is of O(f). The potential function ¢ satisfies the Laplace equation
(2.2) and the bottom boundary condition (2.3a). Substituting expansion (2.7) in
the free surface conditions (2.3b) and (2.3¢) and rearranging the series, we
obtain

0 1+a 2k Q%+l
o, 3 (-1 gt O

2 @K G
Sy (L) R
2V T e =0 28)

and
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i (14 w,,)Zk 62k+1f o i L (1 + Om)2k 62k+1f
s k) onr 2| 26) o
S ge(Ltan)™ o2y 24 2132
; 2k+1) ax2k+2 +’7_ﬂ'“7xx[l+a ﬁn)c} :0

(2.9)

Substituting Eq. (2.6) in Egs. (2.8) and (2.9), and retaining terms only up to
O(f?), we obtain

I
120

B

n, + KZﬁznfo + (1 + KZﬁzn)fxx - g.f.;(xxx f’(xmv + O(ﬁ ) 0 (210)

and

p B ﬁ

ﬁ - Efxxt + ﬂfnxxxt + ﬁ

L= +Kifn, +O(F)=0. (2.11)

Differentiating Eq. (2.11) with respect to x and letting u = f, (horizontal
velocity at the bottom z = 0), we have system (2.10) and (2.11) in the form

2

o+ = Lt Ko ), st + O =0 212)
and
N+ — gn - gut + K B+ Ko e, + guxm +O(f*) = 0.
(2.13)
From Egs. (2.12) and (2.13), we see that
n+u.=0(f) and n, +u =O(p) (2.14)

and

nt b =0(F) and o tu- L, Lu o) @)

6
After obtaining (0/0f)(Eq. (2.12)) — (0/0x)(Eq. (2.13)) and then using the
lower-order approximations (2.14) and (2.15) to alter the higher-order deriv-
ative terms, we find
2 i 3\
Ny — KZﬁ 17 + ” - Klﬁ Myox — E”xxxxxx + O(ﬁ ) =0. (216)

XX
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We need to eliminate u from Eq. (2.16). From Eq. (2.14a), we have

u:—/jmdﬁom). (2.17)

o0

Using Eq. (2.17), we have Eq. (2.16) in the form

! ) S
a— 2 p— _
2 17 + < [oo 17[ dx) ‘| Kl ﬁ nwoc 45 nxxxxxxx

XX

=0, (2.18)

Ny = Nix — K2182

where we have dropped O(f®) from the equation. This equation is one version
of the sixth-order Boussinesq equation appropriate for the approximate de-
scription of the bi-directional propagating small amplitude long capillary-
gravity waves on the surface of shallow water for = T 1/3. Another version will
be introduced below. At first sight, Eq. (2.18) looks rather complicated. But if
we use the co-ordinate transformation

1 5 /’“ ) 1
X=—|x+K x,t)dx |, T=——t 2.19
e (v [t = (2.19)
and substitute
3K
N = TZ (n—K:Bn%), (2.20)
then Eq. (2.18) becomes
Nrr — Nyx — ﬁz(Nz)XX - ﬁzNXXXX - GZﬁzNXXXXXX =0, (2~21)

where 2 = (1/45K?). From Eq. (2.6), it is to be noted that 7 1 1/3 can hold
true in the limit K; — oo and B — 0. Moreover, we see that €2 can be con-
sidered a small parameter independent of the wavelength parameter f.

Since the parameter associated with the sixth-order term in Eq. (2.21) is
relatively small compared to the other terms, it will be worthwhile to study this
equation for small values of the parameter € with f = 1. Eq. (1.1) can be re-
covered from Eq. (2.21) if we write (7, x, ) instead of (N, X, T) with = 1.

2.1. Connection with the fifth-order KdV equation

The fifth-order KdV equation [22] can be derived from the sixth-order
Boussinesq equation (2.21) by using the following far-field co-ordinate trans-
formations:

E=X—-T and 1©=pT. (2.22)

The transformation (2.22) describes a wave which changes slowly in a reference
frame moving with velocity one (the non-dimensional shallow water velocity).
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The leading order terms in the transformed equation correspond to the fol-
lowing fifth-order KdV equation

1

1
Ne+ NN: 2 Noss + =
AN T ook

7NV Negeee = 0. (2.23)

If we further use the change of variables

E—>i T N — ON, (2.24)

V25 5V28°
then Eq. (2.23) reduces to the desired canonical form:
N; + NN; + Nee; + € Negeze = 0, (2.25)
which appears as Eq. (2.29) in Hunter and Scheurle [22]. Here €* = 25/45K;.

3. Analyses of the problem

Since Eq. (1.1) has solitary wave solutions for ¢ = 0, the natural question
arises whether Eq. (1.1) also admits solitary wave solutions for small values of
e. Therefore, we seek a traveling wave solution of equation (1.1) in the form

nx, 1) = nlx - ct), 3-1)

where c is the phase speed (velocity) of the wave. Substitution of Eq. (3.1) in
Eq. (1.1) and using x for the new variable x — ¢t yields

(1 - cz)’/’xx + (n2>xx + Myxxx + Eznxxxxxx = 0. (32)

The question now becomes whether Eq. (3.2) admits solutions which decay
exponentially to zero as x — Foo for any small positive value of e. Since we are
interested in bounded solutions of Eq. (3.2) asx — o0, on integrating Eq. (3.2)
twice and taking the constants of integration as zero, we obtain

(1 _02)']+’72+’7xx+627]xm =0. (33)

3.1. Core analysis: regular perturbation method

We seek the solution of Eq. (3.3) in the form of a regular asymptotic ex-
pansion
n=tg+ e+,

C:C()+62C1+"'

(3.4)

Substitution of expansions (3.4) in Eq. (3.3) yields the following O(¢°) and
O(€?) equations:
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(1= c§)no + 1 + Mo = 0 (3.5)
and

(1 - C(Z))”h - 20001170 + 2’701/’1 + Mixx + Noxxex = 0. (36)
The solitary wave solution of Eq. (3.5) is given by

1y = 67°sech? (px), (3.7)

where 7 is related to ¢y by

v is a free parameter characterizing the width of the solitary wave (3.7). For the
solution of Eq. (3.6) to exist, we must have the following compatibility con-
dition:

—2¢oer = (1 = &), (3.9)
which gives
A
I/ (3.10)
V1442
The solution of Eq. (3.6) is then given by
5
m = =107 + 5. (3.11)
Thus, the solutions of # and ¢ are given by
5
17:<1_10"/262+"')7]0+(§€2+"')n3+"'7 (312)
and
2 8*
c=%|VI+4r+e —=+---|. (3.13)
1 + 492

If we use y to characterize the core solitary wave, then Eq. (3.13) provides an
approximate relation between the phase speed ¢ and y. From Eq. (3.13) we see
that

A — 1 rdy? +E4) (3.14)

It is to be noted here that expansion (3.4) can be continued to arbitrarily higher
order. The general term 7, in Eq. (3.4) will be an (n + 1)th order polynomial in
1o- Since 7, is symmetric about x = 0 and decays down to zero exponentially at
tail ends (i.e., as x — +00), the form of solution (3.12) implies that » will also
be symmetric about x =0 and will decay down to zero exponentially as
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x — Fo00. So, by the method of regular asymptotic analysis, we only get ex-
ponentially decaying solution in the far-field. However, as we will see below in
Section 3.2, the far-field analysis contradicts this.

3.2. Far-field analysis: heuristic arguments

If we assume that 7 is small in the far-field x — +o0, then Eq. (3.3) linearizes
to

1—=cAn+n, +en,., =0 asx— Foo. (3.15)
Eq. (3.15) has solutions of the form # = exp(ipx) provided
ept—pt=(cF-1). (3.16)

Since ¢ > 1, Eq. (3.16) has two real roots (which correspond to the oscillatory
behavior of 5 at infinity) and two purely imaginary roots (which correspond to
decaying and growing behavior of # at infinity). For a local solitary wave, only
the root which corresponds to the decaying behavior of 5 at infinity is ac-
ceptable. This then implies the necessity of three independent boundary con-
ditions on 5 as x — oo, with three more as x — —oo, leading altogether to the
necessity of six independent boundary conditions on 7 for a fourth-order dif-
ferential equation (3.15). Therefore, we cannot force # to vanish at both x — oo
and x — —oo. There will be an oscillatory behavior at least on one side at
infinity.

The real (p,) and imaginary (p;) roots of Eq. (3.16) are, respectively, given by

,_L+[l+4e(2-1)]"
r 2¢2

:612+(c2_1)—62(c2—1)2+--- (3.17)

and

, L[l +4&( - 1)
A= 2¢2
2 202 2 2 402 3

=—(c"=1)+€e(c—1) —ge(c—l) +--- (3.18)
Here we note that the real roots are large and the imaginary roots are finite for
small e. If we use y to characterize the wave, we must express p; and p; in terms
of y. Substituting the expression for ¢ — 1 given by Eq. (3.12) in Egs. (3.17)
and (3.18), we obtain

1
2 )2
D; ~€2—|—4/ (3.19)
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and
Therefore, for n to be bounded, it must be of the form

n = A+ cos (gx) + A, sin (gx) as x — %00, (3.21)
€ €

where 4,+ and 4,+ are some e-dependent unknown constants and g = |p;|e.
From Eq. (3.17) or (3.19), it follows that ¢ — 1 as ¢ — 0. So, the frequency of
oscillations |p;| = (¢/€) — (1/€) as e — 0, and hence, the far-field oscillations
are very fast. It is clear from Eq. (3.21) that, in general, there will be oscillatory
behaviors on both the sides at infinity. Also, the amplitude of oscillations on
either ends may be different. By combining the sine and cosine terms via
trigonometric identities, we can write Eq. (3.21) in the form

n=A, sin(%(x—{—d)ﬁ) as x — too. (3.22)

Here A and ¢ are, respectively, the amplitude and phase shift constant of the
oscillatory tails as x — +oo. For symmetric weakly non-local solitary wave
solutions, 4. =A_ =4 and ¢, = ¢_ = ¢. In Sections 4-6, we will obtain es-
timates of the amplitude 4 of the tail oscillations through various analytical
and numerical methods.

Note: If we change the sign of the sixth-order derivative term from ‘positive’
to ‘negative’ in the singularly perturbed (sixth-order) Eq. (1.1), then the
characteristic equation (i.e. the analog of Eq. (3.16) for the corresponding
linearized fourth-order ordinary differential equation) in the far-field becomes

eptrpt = (2 -1). (3.23)
All fours roots of Eq. (3.24) are purely imaginary. They are
, 14 [1—4&(E-1)]"
Pip= 22
:-(&-g+ﬂ&-ﬁ+§&&-ﬁ+n- (3.24)

and

, 1l [1-4&( - 1)]"
P34 = 2¢e2

:—l—&-[(cz—1)—|—62(02—1)2+---]. (3.25)

&2
We see that, two roots will cause the solutions to be unbounded in the far-field,
while the other two will cause the solutions to vanish there. This is true for
each of the far-field. Therefore, only four far-field boundary conditions
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(two on each side) are required in order to have local solitary wave solutions
of the fourth-order equation (3.3) with fourth-order term negative which is
feasible.

4. Perturbation analysis in the complex plane

In this section, we will construct a solution of Eq. (3.3) which behaves like
the solution (3.12) in the core region and solution (3.22) in the far-field by using
the technique of asymptotics beyond all orders [21,27,28,30,31]. We will also
show that the amplitude of the far-field oscillations is exponentially small that
lies beyond all orders in the regular asymptotic expansion of form (3.4) or
(3.12).

Since n,(x) given by Eq. (3.7) is singular in the complex x-plane at
x==%2n+1)in/2y (n=0,1,2,...), the core solution 7n(x) given by Eq. (3.12)
cannot describe the actual behavior of the solution of Eq. (3.3) in the neigh-
borhood of these singular points. In fact, the perturbation term €7, cannot
be considered as of lower order than the other terms in Eq. (3.3) in the
neighborhood of these singular points. So, it is important to consider the
solution structure of Eq. (3.3) near these singular points. To do this, we need
to consider a rescaling through which the small parameter € is removed from
the highest derivative term in Eq. (3.3). This problem is called the inner
problem.

We consider the singularity closest to the real axis in the upper half-plane.
We introduce the following inner variables y and #;:
in

% +ey and ;=€ (4.1)

X =
The subscript i refers to the inner problem. When Eq. (4.1) is substituted in
Eq. (3.3), we obtain

E(1 =) +nf + m, +n,, =0. (4.2)

Now neglecting the term containing the small parameter €2, we have the inner
problem as

m+ m, +n,, =0. (43)

To find the solution of the original problem (3.3), we need to solve the inner
problem (4.3) and connect the asymptotic behavior of the inner solution at
large distances to that of the core (outer) solution (3.12) by matching their
asymptotic behaviors in a region where they both make sense.

To the leading order, the asymptotic behavior of n, near the singularity
in/2y is given by
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6
1, = —6y°cosech? (yey) ~ “oF

5 asey — 0. (4.4)
€y)

Therefore, to the leading order, the asymptotic behavior of the outer solution
(3.12) near the singularity in/2y will be given by

1 6 90
r=| —=+= 0. 4.5
Hence, it should be matched to a solution of the inner problem with the as-
ymptotic behavior
6 90
m~——+— asly —oo (or|y>1). (4.6)
o
In view of Eq. (4.6), the solution of the inner problem (4.3) is constructed as an
asymptotic series in 1/)? of the form

6 90 O~ a
niz__2+_4+27 as [y| = oo (or |y| > 1). (4.7)
y y n=3 y

When Eq. (4.7) is substituted into Eq. (4.3), the coefficients of y~>"*4 give

n—1

(2n—2)(2n = 1)(2n)(2n + Va1 + (20 +4)(2n = 3)a, + Y _ axyir

=0 fornz=3, (4.8)

with a¢; = —6 and a, = 90. So, a,’s can be obtained from Eq. (4.8) recursively.
As n — oo, the non-linear term in Eq. (4.8) becomes less important. Therefore,
an asymptotic formula for a, correct up to O(1/n?) is given by

(2n—2)(2n —1)(2n)(2n + Da,—1 + 2n+4)(2n — 3)a,
~ 0 for large n. (4.9)

Eq. (4.9) recursively gives

_@n+1)(2n-1)

> Gy a) (= DK for large n, (4.10)

where K is some constant. The value of K is obtained by computing the exact
values of a, from Eq. (4.8) for some large values of » and matching it with the
asymptotic formula (4.10). The value of K was found to be 59.91.

With the coefficients a,’s given by Eq. (4.8) for all » > 3 and by Eq. (4.9) or
(4.10) for large n, the asymptotic series solution (4.7) of the inner problem (4.3)
diverges for all y. However, it can still be summed using the method of Borel
summation [10]. So, we express #;(y) in the form of a Laplace transform (see
also [28,21] given by
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() :/ODOV(])%)e”dp, (4.11)

where V' (s) is an unknown function. The integration path in Eq. (4.11) extends
from 0 to oo in the half-plane Re p > 0. We can also rewrite the expression
(4.11) for n;(y) in the forms

() :y/ooo Vis)e ds = /03c V'(s)e ¥ ds, (4.12)

where, without loss of any generality, we have assumed that 7 (0) = 0. V'(s)
denotes the derivative of V(s) w.r.t. s. The integration path in Eq. (4.12) ex-
tends from 0 to oo in the half-plane Re(sy) > 0. The first identity in Eq. (4.12)
is obtained from Eq. (4.11) by substituting p = sy. The second identity follows
from the first through integration by parts (or, more directly through the
properties of Laplace transform).

We can find the unknown function ¥V (s) or V'(s) by substituting the as-
ymptotic series (4.7) in Eq. (4.12) and taking the inverse Laplace transform
which yields

Vi(s)= ansz” and V'(s) = Zan,,sz”*l, (4.13)
n=1 n=1
where
b, = ~(2n+1)(2n71)(—1)"£ for large (4.14)
" T 2nt2)2n+ 4) n gen. '

It is readily established that the series (4.13) for ¥ (s) and V’(s) converges for
|s| < 1 (so the radius of convergence is unity) and has a singularity at s = +i.
However, the singularity of V(s) and V’(s) at s = +i and the non-linear term in
the ordinary differential equation (4.3) would imply that V(s) and V'(s) will
also have singularity at s = +2i,+3i,..., so on. If y = —1Y,Y € R,, then the
integrand V7 (p/y) becomes singular at p = +kY,k = 1,2,... The singularities at
p = +kY lie exactly on the integration path in Eq. (4.11), and therefore, it has
to be deformed clockwise to avoid the singularity, as shown in Fig. 1.

We now study the behavior of ¥ (s) in the neighborhood of the singularity at
s=+ki, k=1,2,... Since b, =~ (—1)"K/2n as n — oo (by Eq. (4.14)), we see
that 7 (s) behaves like K In(1 +i(s/k)) in the neighborhood of the singularity at
s = +ki. Therefore, we have

. D P .
V ~KIn 1+1) as = — +ki. 4.15
( ky y #15)

Ify=—-1Y,Y € R,, and p — kY_, then the value of the above logarithm will be
real, and we will have Eq. (4.15) in the form

V%Kln(l—]%) as p— kY. (4.16)
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Imp
X = point of singularity
R D 5
A rd X >
_Y 0 Y Re p
branch cut

Fig. 1. Deformation of the integration path around the branch cut of the singularity at p =Y in a
clockwise direction. The point of singularity p = Y lies on the real axis in Re p > 0.

But, if y= —1Y,Y € R, and p — kY., then the value of the above logarithm
will be complex, and since we deform the integration path in clockwise direc-
tion near the singularity, we will have equation (4.15) in the form

VzK[ln(i_ )_in] as p — kY,. (4.17)
kY

Therefore, when y is purely imaginary and negative (i.e., y = —1Y,Y € R,), the
integrand in Eq. (4.11), in the neighborhood of the singularity at
p=+kY k=1,2 ..., 1s obtained as

Per—p(P)er
(5)er=r(v):

_ﬁ P =
Kln(l kY)e for p=kY_,

Kln(k%—l

~

(4.18)
)e’” —inKe™? for p=FkY,.

Therefore, from Eq. (4.11), we have #;(y) as

n(y) = ni(—=iY) QﬁPV/ V(%’)eﬂdp—inKZe”. (4.19)

0 k=1
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The integral in Eq. (4.19) is the Cauchy principal value (PV) integral which
excludes the contributions from the singularities at p = kY, k =1,2,... The
leading contribution from the singularities comes from the singularity at p = Y
which is equal to —inKe™". For large Y (i.e., [y| > 1), the Cauchy principal
value integral must agree with the asymptotic series (4.7) with y = —iY, and
hence, we obtain

o0

1) = m(—i0) = S ik 3 e, (4.20)

Y2n

n=1

It is clear from Eq. (4.20) that, an exponentially small correction in the inner
solution appears in the asymptotic series of the inner solution beyond all or-
ders. Therefore, there should be a corresponding exponentially small correction
in the outer solution which will appear in the algebraic asymptotic series of the
outer solution beyond all order. When we match the inner solution (4.20) to the
outer solution, we obtain the solution of Eq. (3.3) as

n) = ) + € () +-~-—“:—2K 3 exp [—k(zn +i§>} (4.21)

k=1

When x is purely real, 5(x) should be real. Therefore, the correct matching will
lead to

K & . [k
1)~ o(x) + () o+ S e sin <"> (422)

=1 €

Therefore, the symmetric traveling wave solution of the singularly perturbed
(sixth-order) Boussinesq equation (1.1) has small amplitude oscillatory be-
havior at its tail ends which is explicitly given by

K & o . [k
n(x) ~ 77;—2 > e ¢/ sin (%) as x — Foo. (4.23)
k=1

The dominant term in the above sum is (nK/€?)e~™/29 sin(|x|/¢). It is worth
pointing out that the frequency of oscillation of the oscillatory tails is of O(1/¢)
which is same as predicted in the far-field analysis of Section 3.2.

5. Perturbation analysis in the Fourier domain

In this section, we will construct the oscillatory tails and estimate their
amplitudes by using the method of Fourier transform coupled with a pertur-
bation analysis in the Fourier domain as in [2].

The form of solution (3.12) implies that # — 0 as x — do0. So, taking the
Fourier transform of Eq. (3.12), we obtain
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= (1= 102€ 4 g+ (58/24 )i+ (5.1)
where the Fourier transform of #(x) is defined by

1 o0

5| n(x)e * dx. (52)

=
Il

From Eq. (3.7), the Fourier transform of #, is given by
L [~ :
o = 7 / 6y*sech’ (yx)e ™ dx
= 3kcosech(nk/2y). (5.3)

By the convolution theorem, we have the Fourier transform of »} as

it [ " oDk — 1ydl

=9 /OO I(k — Icosech(m//2y)cosech(n(k — 1)/2y)d!
= 3k(;cozo+ 4y*)cosech(mk/2y). (5.4)
Thus, by the help of Egs. (5.3) and (5.4), we have Eq. (5.1) in the form
i = (3k + 15k /2 + - - -)cosech(mk /2y)

= % 1 (k)cosech(mk /2ey), (5.5)
where
k=ke and f(k)=23k+15*/2+--- (5.6)

Now taking the Fourier transform of the differential equation (3.3), we
obtain
[(1—02)—k2+62k4]ﬁ(k)+/ A(Dik —1)dl = 0. (5.7)

—00

By the help of Egs. (5.5) and (5.6), Eq. (5.7) becomes

[62(1 ARy 124} £k

R S)f k=1
+ sinh (2—})6> /_OO Sinh(ni/zye) sinh(7(

— (5.8)

di
/;—1)/2))6)
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It can be easily shown that

s1nh<nl€> /°° S (k= Dl
2pe ~ sinh(nl/2ye) sinh(n(k — 1)/2y¢)

- z/kf(i)f(zz ~Ddl ase—0. (5.9)

Thus, to the leading order in €, Eq. (5.8) can be approximated to the following
Volterra integral equation for f'(k):

K (k> — —|—2/f k—1)d [=0. (5.10)
We express the solution of f(k) as a power series
k) = mel?”’“. (5.11)
m=0

Comparing Eq. (5.11) with Eq. (5.6), we get by = 3 and b, = 15/2. Now we
need to obtain b,, for m > 2. Substituting Eq. (5.11) in Eq. (5.10), we obtain

mekz'"” Zb 3 +2Z Zb Bo-r / Pk — )™ dl = 0.

m=0 m=0 r=0
(5.12)
It can be easily shown that
k S . 2m —2r+ 1)12r + 1)!
Pt — fym gy = L e 5.13
/o (=1 @m+3)! (5.13)

With the help of Eq. (5.13), (5.12) becomes

(2m—2r+1)1(2r+1
me 1k2m+3 Zb k2m+'§+2zz m— ;+ 3 r+ ) b bm rk2m+3 0.
m=0 r=0 m+

(5.14)
Equating the coefficients of k*"** to zero, we obtain by = 3,b, = 15/2, and

B [(Zm —1)(2m +6)
(2m+3)(2m+2)

:| bm + bmfl

m—1
2m = 2r+ 1)1(2r+ 1)!
2 b.b,_, =0, = 2. 5.15
+ Z 2m—|—3) " (5.15)

As m — oo, the non-linear term in Eq. (5.15) becomes less important. So, we
obtain
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by~b,.1~C as m— oo, (5.16)

where C is a constant. The value of C can be obtained by evaluating the values
of b,, from Eq. (5.15) up to some large values of m. The value of C is found to
be 29.96. So, C = K/2, where K = 59.91, as obtained in Section 4. Thus, the
series (5.11) for f'will be convergent for |l€| < 1 and will have pole singularities
at k = +1. Therefore, we will have

N Kk

K~—— ask— =+l
S (k) 20— ) -
R S S (5.17)
4(k¥1)

Then in view of Egs. (5.5) and (5.17), # will have pole singularities at k = =+1,
and we will have

K . .
i &~ —————cosech(nk/2y¢) as k — *l1
de(k ¥ 1)

Q

K
- h 2 +1
Ty cosech(nk/2y) as k — *1/e
K
~ —7/2pe
:F262(k$ 1/e€) ¢

where we have used the following asymptotic relations:

as k — +1/e, (5.18)

2e7™% ask — 1/e,

—2e7™7 ask— —1/e. (5.19)

cosech(nk/2y) =~ {
Taking the inverse transform of #(k), we have

n(x) =PV /_x ﬁ(k)ei’“dk+/

00 Coiye

(k) e dk + / (k) e dk, (5.20)

Ciye

where C_;;. and Cj/ represent the integration path (half circles) near the sin-
gularity at —1/e and 1/, respectively, as shown in Fig. 2. The first integral in
Eq. (5.20) is the Cauchy principal value integral which must agree with the
asymptotic expansion (3.4) or (3.12). By the residue theorem, we have
Eq. (5.20) in the form

n(x) %no(x)—l—ezm(x)—i—n-—gexp [— (%g)] (exp [—i)ﬂ —exp {13)
(5.21)

Eq. (5.21) is the required non-local solitary wave solution of the sixth-order
(singularly perturbed) Boussinesq equation (1.1). Thus, we have the far-field
oscillation in the form
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Y
x = point of singularity
— > , e
-1k 0 1/e X

Fig. 2. Deformation of the integration path around the singularities at k = —1/e and k = 1/ein a
clockwise direction.

nK T . |x]

X)~—exp|—|=—||sin| — as x — Foo. 5.22
n(x) ~ = p[ (2%)} <€> ¥ (5.22)

This estimate agrees with the estimate (4.23) to leading order.

6. Newton—Kantorovich equation and pseudospectral method

In this section, we will obtain a numerical solution for the reduced traveling
wave ordinary differential equation (3.3) of the singularly perturbed (sixth-
order) Boussinesq equation (1.1) which will behave like the core solitary wave
solution (3.12) near x = 0 and far-field oscillatory solution (3.22) as x — +oo.
For this, we will derive the Newton—Kantorovich equation for the differential
equation (3.3) and describe a pseudospectral (collocation) method to solve this
equation iteratively by using a combination of rational Chebyshev and radi-
ation basis function. Since the method is described in detail in Boyd [15], we
only present an outline of the method here.

Since Eq. (3.3) is non-linear, it is solved iteratively. Suppose 7 (x) is the
solution at ith iterate and 61" (x) is a correction to #”(x) such that

n(x) =" (x) + on"(x), (6.1)

satisfies Eq. (3.3). Substituting Eq. (6.1) in Eq. (3.3) and linearizing the LHS,
we get the following linear inhomogeneous ODE (known as Newton—Kant-
orovich equation) for the iterative scheme
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(1 =*) +20D) o0 + o0 + Eon)
=—[(A=) + 10" + 1 + Eng]- (6.2)

The Newton—Kantorovich iteration procedure is repeated until the correction
on(x), or equivalently, the RHS of Eq. (6.2) becomes negligibly small. The
iteration procedure requires an initial guess. For small values ¢, the core soli-
tary wave solution (3.12) is taken as the initial guess which depends on the
phase speed ¢ through its dependence on the core solitary wave width pa-
rameter y. For a given value of ¢, y is obtained as the positive real root of
Eq. (3.14). Eq. (3.3) can also be solved for larger values of e. In this case,
the method of continuation (see [15]) is used to find a suitable initial guess,
since use of solution (3.12) as an initial guess may not yield a convergent so-
lution. In continuation method, we start finding the solution of Eq. (3.3) for a
small value of ¢, as described above. Then for an increased value of ¢, the
converged solution for the previous value of € is used as the initial guess.

We now describe the pseudospectral (collocation) method to solve the
Newton—Kantorovich equation (6.2). The spectral basis functions for the
pseudospectral method are chosen suitably a combination of rational Cheby-
shev and radiation basis function to get correct core solitary wave and far-field
oscillatory behaviors. So, following Boyd [15], if we write the solution at ith
iterate as

n(x) = al @, (x) + Braalx; 47), (6.3)

n
n=1

then the correction to the solution at ith iterate will be given by
' (x) =Y 0al @, (x) + 04 Prag 4 (x;47). (6.4)
n=1

Here, A is the amplitude of the tail oscillations which is obtained as a part of
the solution along with the spectral coefficients a,, n=1,2,...,N — 1. The
spectral basis functions @,(x), n=1,2,...,N —1 and @.4(x;4) are con-
structed as follows (see also [15])

®,(x) = TBy,(x) — 1
=cos[2ncot ' (x/L)] — 1, L=2/y (6.5)
and
Praa(x;4) = H(x)en (x;4) + H (=x)1 (—x; 4). (6.6)

Since the rational Chebyshev functions TB,,(x) are even and asymptote to 1 as
x — £oo, the basis functions @,(x) are even and decay down to zero at tail
ends. Thus, the series Zﬁy—l a,®,(x) gives the right behavior of the symmetric
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core solitary wave with peak at x = 0. The oscillatory behavior of the solution
at tail ends is visualised by the radiation basis function ®,,4(x;4) through its
dependence on cnoidal function #,,(x,4) and smoothed step function H(x)
which are discussed below.

The cnoidal function 7, (x,4) agrees with the form of the far-field solution
(3.22) to the leading order in A. Therefore, it describes the far-field more ac-
curately. Also, it is another approximate solution of the differential equation
(3.3) for all x, not only in the far-field x — 400 (see [15] for more discussion).
Using Stokes series approximations and cnoidal matching, and following Boyd
[15], we obtain the corresponding cnoidal function for the differential equation
(3.3) as

€

Nen(x;.4) = Asin (q (x + 4))) + 42 [Cl + C; cos (2€q(x + d)))]
+ A*Cssin (3?q(x + ¢>)> +0(4Y (6.7)

and
q=qo+A*q+0(4"), (6.8)
where
4Gy —20y)
— (1 + 42" _ (G —26)
90 ( + 6'))) ) q>2 2q8_q0

€ €

A S—
2q5—q3) 7 (30gf — 643)
4
€

~ 48(50q5 — 15} +43)°

¢ = (6.9)

Cs

The phase shift constant ¢» = 0 corresponds to the case in which both the core
solitary wave and the oscillatory tails are in phase.

The smoothed step function H(x) is suitably chosen in order to have the
asymptotic behavior H(x) ~ 1 as x — oo and H(x) ~ 0 as x — —oo. For sim-
plicity, as in [15], we choose

H(x) = % [1 + tanh (p(x + ¢))]. (6.10)

Since we are interested in obtaining symmetric non-local solitary wave solution
of Eq. (3.3) with peak at x =0, we choose the N spectral grid (collocation)
points all on positive real axis given by

x, = Lcot|[(2n — 1)n/4N], n=1,2,...,N. (6.11)
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At ith iterate, n, A and s are known. We need to compute the corre-
sponding corrections 4% and da'’s from the Newton-Kantorovich equation
(6.2). Substituting the spectral series (6.4) into the Newton-Kantorovich
equation (6.2) and demanding that the residual vanish at N collocation points
deﬁned above we obtam the matrix equation JE = F, where E = [5a§i),
oal’, - oal) 049", F=[F" FY ... F1" and J = [nj] 1s the Jacobian
matrlx of the resultlng system of equations. Explicitly J and E® for
n=1,2,...,N are expressed as

[((1 — Cz) + Zn(l))¢j + (]Sj‘xx + Ezd)j‘xxxx} |x:x,,
forj=1,2,...,N —1,

g0 = (6.12)
[((1 —C ) + 27] )d)radA + (bradAA:r + € (:bradAxxxx] |x =X,
for j =N,
and
F;l(i) = [((1 - Cz) + ’7(1))’7<l) + ’7&) + Ezny(ci)xx] |)c:x,,' (613)

The various derivatives of the basis functions involved in the calculation of
Jacobian matrix J through Eq. (6.12) and RHS column vector F through Eq.
(6.13) can be obtained explicitly. The matrix equation JE = F is solved for
5a(li),5a§i), e ,5a§\1})_1,6A("> using a direct numerical method such as Gaussian
elimination with partial pivoting. Then the spectral coefficients are corrected
through a/*V = 4% +6a? n=1,2,...,N —1 and 4™ =49 + 54", Then
the new solution, new Jacobian matrix and new RHS vector are evaluated
using the updated values a*!’s and 40*). Then the matrix equation is
solved again. The iteration procedure is continued until the maximum (L,.)
norm of the vector E, or equivalently, F becomes negligibly small. Also, the
final/converged spectral coefficients are stored to consider as the initial guess
for computing solution for the next higher value of the perturbation pa-
rameter e.

7. Numerical results

The amplitude A of the oscillatory tails obtained through the analytical
estimate (4.23) or (5.22) for different values of the perturbation parameter €
and phase speed c is shown in Table 1. It is observed that, the amplitude A4 of
the oscillatory tails is exponentially small as compared to the amplitude of the
core which is approximately equal to 6y or 1.5(c> — 1). Also it decreases ex-
ponentially fast as the value of € and ¢ decreases.

The numerical results are obtained for phase shift constant ¢ = 0 and various
values of the perturbation parameter ¢ and phase speed c. However, the results
are presented with respect to a combined (group) parameter €*(c> — 1). The
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Analytical estimate of the amplitude A of the oscillatory tails for different values of the pertur-
bation parameter ¢ and phase speed ¢
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e\c 1.05 1.10 1.15 1.20 1.25
0.0025  0.430405E—-80 0.206454E—-54 0.640770E—-43 0.520739E-36 0.293631E-31
0.0100  0.433390E-38 0.295349E-25 0.162456E-19 0.458033E—-16 0.107685E—-13
0.0225  0.301413E-24 0.106437E—-15 0.704676E—12 0.138968E—-09 0.523737E-08
0.0400  0.209484E—17 0.529839E—-11 0.383407E—-08 0.199358E—-06 0.300032E - 05
0.0625  0.238900E—-13 0.310892E-08 0.594467E—-06 0.138618E—-04 0.120067E —-03
0.0900  0.112281E-10 0.201547E—-06 0.158387E—-04 0.216081E—-03 0.129365E —02
0.1225  0.861493E—-09 0.374824E—-05 0.155859E—-03 0.144863E—-02 0.665788E —02
0.1600  0.214244E-07 0.321447E-04 0.828458E-03 0.577118E—-02 0.217482E-01
0.2025  0.252448E-06 0.165261E—03 0.293416E—-02 0.163294E-01 0.527304E -01
0.2500  0.176862E—05 0.595707E—-03 0.784714E—-02 0.364899E -01 0.104153E + 00
0
2+
4+
=
& -6
=0
=
8- — numerical |
— — - analytical
210 t i
12 I I I I
0.00 0.05 0.10 0.15 0.20 0.25
2, 2
e(c -1

Fig. 3. Comparison of the numerically computed amplitude (solid lines) of the oscillatory tails with
that of the analytical estimate (dashed lines).

numerically computed amplitude of the oscillatory tails is compared with the
corresponding analytical estimate in Fig. 3. This figure shows the variation of
2624 with the group parameter €*(c> — 1). It is observed that the numerically
computed amplitude of the far-field oscillations agrees well with the analytical
estimate for small values of €?(c? — 1). However, for larger values of *(¢*> — 1),
there is a small discrepancy between the two estimates which is expected since
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— —  £(-1)=0.0
0.3 - g(c-1)=0.1 .

Zszn(xle)
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-0.1

x/e

Fig. 4. The plots for travelling wave solutions of the singularly perturbed (sixth-order) Boussinesq
equation for €2(c? — 1) = 0.1 and *(c* — 1) = 0.0.

the analytical estimate is based on the asymptotic analysis for e < 1. Also, it is
to be noted that the amplitude decreases exponentially fast as the value of
€2(c* — 1) decreases.

Fig. 4 shows the numerically computed symmetric weakly non-local solitary
wave solution of the sixth-order (singularly perturbed) Boussinesq equation
(1.1) for €*(¢* — 1) = 0.1. For this moderate value of €2(c* — 1), the oscillatory
tail is clearly visible. However, the oscillatory tail is very (exponentially) small
in comparison to the amplitude of the core solitary wave which is centered on
the origin x = 0. The core in the neighborhood of x = 0 is best described by the
solution (3.12). As the value of €*(c? — 1) decreases, the oscillatory tails de-
crease and collapse almost into the local solitary wave solution of the classical
Boussinesq equation, as seen in the left-hand side graph of Fig. 5. The oscil-
latory tails are there, but are so small that they are invisible in comparison to
the peak of the wave. However, if we zoom near the tails, the oscillations are
clearly visible as seen in the right-hand side graph of Fig. 5.

8. Discussions and concluding remarks

In Daripa and Hua [18], a singularly perturbed (sixth-order) Boussinesq
equation was introduced as a dispersive regularization of the ill-posed classical
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Fig. 5. The plots for travelling wave solutions of the singularly perturbed (sixth-order) Boussinesq

equation for €>(c>—1)=0.05 and €*(c?—1) =0.0. The left-hand side graph of the figure shows the full
plot, where as, the right-hand side graph of the figure shows the zoomed plot near theoscillatory tail.

(fourth-order) Boussinesq equation. In this paper, we showed the physical
relevance of this equation in the context of water waves. In particular, we
derived this equation from two-dimensional potential flow equations governing
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the shallow water waves under gravity using an asymptotic series expansion in
the limit of small amplitude (i.e., « < 1) and long wavelength (i.e., f < 1) with
o= O(ﬁz) as f§ — 0 and Bond number 7 less than but very close to 1/3 (i.e.,
7 1 1/3). Thus, this equation is valid up to O(ﬁz), meaning that it can serve as a
better model than the classical fourth-order (illposed) Boussinesq equation to
describe bi-directional wave propagation on the surface of shallow water. Also
it is established that the singularly perturbed (fifth-order) KdV equation
derived by Hunter and Scheurle [22] can be recovered from this singularly
perturbed (sixth-order) Boussinesq equation by using a suitable far-field
co-ordinate transformation as discussed in Section 2.1.

Motivated by the numerical work of Daripa and Hua [18] where they
obtained weakly non-local solitary wave solutions of the regularized sixth-
order Boussinesq equation subject to the initial data of solitary wave type, we
analyzed this equation to find the traveling wave solutions. On the basis of
far-field analyses and heuristic arguments, we established that, unlike the
classical solitary waves, the traveling wave solutions of this regularized sixth-
order Boussinesq equation cannot vanish in the far-field. Instead, such waves
must possess small amplitude fast oscillations at distances far from the core
of the waves extending up to infinity. This behavior confirms the numerical
prediction of Daripa and Hua [18]. So, the traveling wave solutions of this
equation have the behavior of the weakly non-local solitary wave solutions of
the singularly perturbed (fifth-order) KdV equation [2,15,21,22,28]), and the
full non-linear water wave equations for 0 < 7 < 1/3 [9,32-34].

We reviewed various analytical (see [2,21,28] and numerical (see [15])
methods originally devised to obtain this type of weakly non-local solitary
wave solutions of the fifth-order (singularly perturbed) KdV equation. Using
these methods, we obtain the weakly non-local solitary wave solutions of
the regularized sixth-order (singularly perturbed) Boussinesq equations and
provide the estimate of the amplitude of oscillations which persist far from
the core solitary wave. The analytical estimate of the amplitude agreed with
that of the numerical estimate for small values of the perturbation param-
eter e. Also, although the analytical estimate of the tail oscillations is similar
to that obtained by Akylas and Yang [2], Grimshaw and Joshi [21] and
Pomeau et al. [28] for the fifth-order KdV equation, the estimate in the
present case is different from their estimates because of the different estimate
of the constant K and different relation between the phase speed ¢ of the
wave and the core solitary wave width parameter 7.
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