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Abstract

We consider an ill-posed Boussinesq equation which arises in shallow water waves

and nonlinear lattices. This equation has growing and decaying modes in the linear as

well as nonlinear regimes and its linearized growth rate r for short-waves of wave-

number k is given by r � k2. Previous numerical studies have addressed numerical

di�culties and construction of approximate solutions for ill-posed problems with short-

wave instability up to r � k, e.g. Kelvin±Helmholtz �r � k� and Rayleigh±Taylor �r ����
k
p � instabilities. These same issues are addressed and critically examined here for the

present problem which has more severe short-wave instability. In order to develop

numerical techniques for constructing good approximate solutions of this equation, we

use a ®nite di�erence scheme to investigate the e�ect of this short-wave instability on the

numerical accuracy of the exact solitary wave solution of this equation. Computational

evidence is presented which indicates that numerical accuracy of the solutions is lost

very quickly due to severe growth of numerical errors, roundo� as well as truncation.

We use both ®ltering and regularization techniques to control growth of these errors

and to provide better approximate solutions of this equation. In the ®ltering technique,

numerical experiments with three types of spectral ®lters of increasing order of regu-

larity are performed. We examine the role of regularity of these ®lters on the accuracy of

the numerical solutions. Numerical evidence is provided which indicates that the reg-

ularity of a ®lter plays an important role in improving the accuracy of the solutions. In

the regularization technique, the ill-posed equation is regularized by adding a higher
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order term to the equation. Two types of higher order terms are discussed: (i) one that

diminishes the growth rate of all modes below a cuto� wavenumber and sets the growth

rate of all modes above it to zero; and (ii) the other one diminishes the growth rate of all

modes and the growth rate asymptotically approaches to zero as the wavenumber ap-

proaches in®nity. We have argued in favor of the ®rst type of regularization and nu-

merical results using a ®nite di�erence scheme are presented. Numerical evidence is

provided which suggests that regularization in combination with the most regular (C2

here) spectral ®lter for small values of the regularization parameter can provide good

approximate solutions of the ill-posed Boussinesq equation for longer time than possible

otherwise. Some of the ideas presented here can possibly be utilized for solving other ill-

posed problems with severe short-wave instabilities and may have an important role to

play in numerical studies of their solutions. Ó 1999 Elsevier Science Inc. All rights

reserved.
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1. Introduction

In this paper, we are interested in the numerical study of the ill-posed
Boussinesq equation

utt � �p�u��xx � uxxxx; �1:1�
with p�u� � u� u2 and subject to some restricted class of initial data, u�x; 0�
and ut�x; 0� to be discussed later. The corresponding linearized PDE has de-
caying as well as growing modes, ert�ikx, with the dispersion relation about a
constant state, uc, given by

r� � �k
����������������������
k2 ÿ p0�uc�

p
: �1:2�

Without any loss of generality, we have used waves with wavelength 2p in the
dispersion relations. (Thus, the wavenumber k in Eq. (1.2) actually refers to
�2p=L�k whenever this problem is considered in a domain of length L.) The
equilibrium states in the elliptic region (i.e. p0�uc� � 1� 2uc < 0� are unstable
to all modes and the states in the hyperbolic region are unstable to modes
jkj > ������������

p0�uc�
p

. Since the growth rate, i.e. the real part of r�, is a monotonically
increasing function of the wavenumber, there is no wavenumber with maximal
rate of stability. According to the dispersion relation (1.2) short-wave insta-
bility is given by

r � k2 as k !1: �1:3�
It should be noted that the well-posed Boussinesq equation di�ers from

Eq. (1.1) only in the sign of the term containing uxxxx. The well-posed equation
is easy to solve numerically [9] and does not concern us in this paper. More-
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over, we are interested only in the hyperbolic regime of this equation and thus
we are not interested in this paper numerical issues in the subcritical (i.e.
p0�uc� � 1� 2uc < 0� or critical regimes (i.e. p0�uc� � 1� 2uc � 0�.

Di�culty in solving the ill-posed equation (1.1), analytically and numeri-
cally, arises due to severe short-wave instability (1.3). In general, classical so-
lutions of this equation with arbitrary initial data are not expected to exist for
positive time except for some special choices of initial data. Using inverse
scattering technique, Deift et al. [4] have implicitly constructed solutions of
Eq. (1.1) without the term uxx, some global and some that blow up in ®nite
time. (The term uxx in Eq. (1.1) can be removed by replacing u by uÿ 1

2
.) Except

for arbitrary constants, only other C1 solutions known to exist for this
equation are of soliton-type (singlet as well as doublet) [5,10]. The solitary
wave solution is given by [5,10]

us�x; t� � A sech2
��������
A=6

p
�xÿ ct � x0�

n o
� bÿ 1

2

� �
; �1:4�

where A is the amplitude of the solitary wave, b is a free parameter and c �
� �����������������������

2�b� A=3�p
is the speed of the solitary wave. Solitary wave corresponding

to b � 1
2

and x0 � 0 which are convenient for numerical purposes in this paper
is given by

us�x; t� � A sech2
��������
A=6

p
�xÿ ct�

n o
: �1:5�

The ill-posed Boussinesq equation (1.1) commonly describes propagation of
small amplitude long waves (long compared to the amplitude of the wave) in
several physical contexts including shallow water under gravity [16] and one
dimensional nonlinear lattices [17]. Asymptotic expansion of appropriate
physical equations in some small parameter in k usually gives rise to the ill-
posed Boussinesq equation within some order of approximation. For example,
in Appendix A we describe brie¯y from Ref. [16] the origin of this equation in
the context of shallow water waves. Usually, as in the case of water waves, this
equation is physically relevant only for small k and breaks down for large k.
Therefore severe growth rate of waves with large k may not appear to be an
important issue. However, these short-waves will enter into the calculation due
to numerical error as well as due to nonlinearity of the equation. Therefore
accurate computation of even physically relevant solutions of this equation is
not possible without circumventing numerical di�culties due to this short-wave
instability. The truncation and roundo� errors during machine computations
introduce spurious perturbations at all scales, small and large. These small
scale perturbations which grow very rapidly cause signi®cant di�culty in
constructing good approximate solutions of this equation. Such di�culties also
occur for other ill-posed problems such as Kelvin±Helmholtz instability [7] and
Rayleigh±Taylor instability [2]. However, short-wave instabilities are less
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severe for these �r � ���
k
p

for Kelvin±Helmholtz and r � k for Rayleigh±Tay-
lor) cases. Therefore it is somewhat more challenging and interesting to asses
the level of numerical di�culties that this severe short-wave instabilities pose.
Our aim in this paper is to explore ways to circumvent these di�culties in order
to obtain good approximate solutions of this equation subject to appropriate
initial data. Hope is that this will allow further numerical studies of this and
other severely ill-posed equations and their solutions.

It may be worth mentioning here that, in the weakly nonlinear limit, shallow
water wave equation (A.7) for long waves (see Appendix A) reduces to the well
known Korteweg±de Vries (KdV) equation [16]

ut � uux � uxxx � 0: �1:6�
The di�erence between this equation and the Boussinesq equation is that the
latter allows bidirectional waves while KdV only unidirectional waves.

At this point we would like to mention a loose analogy between Boussinesq
equations (ill-posed as well as well-posed) and isothermal equations of
¯uid ¯ows [12,13]. The Boussinesq equation (1.1) can be viewed as a degenerate
case of the following 2� 2 system of ®rst order equations with � � 0 and
d � ÿ1,

ut ÿ vx � 0; vt ÿ �p�u��x � duxxx � �vxx: �1:7�
This system describes isothermal ¯uid ¯ows with speci®c volume u, velocity v,
pressure law p�u�, viscosity coe�cient � and capillary coe�cient d [12,13].
Therefore, Boussinesq equations also describe the isothermal inviscid ¯uid ¯ow
in one dimension with quadratic pressure law and a capillarity coe�cient which
is positive for the well-posed Boussinesq equation �d � 1� and negative for the
ill-posed Boussinesq equation �d � ÿ1�. The ill-posedness of Eq. (1.1) can be
viewed as a result of this negative capillarity. It should not be confused with the
surface tension e�ect in the context of water waves. As discussed before and in
Appendix A, the ill-posed Boussinesq equation arises out of asymptotic ex-
pansion of shallow water equations which contain no surface tension e�ect (see
also [16]). The system (1.7) with positive capillary coe�cient and various cubic
pressure laws including van der Waals pressure law has been studied as models
of dynamic phase transition by A�ouf and Ca¯isch [1] and Slemrod [12,13]
among others. The hyperbolic region of the quadratic pressure law of the
Boussinesq system has the same qualitative feature as the van der Waals
pressure law at high enough temperature. It appears that the Boussinesq sys-
tem due to its exact soliton-type solutions and simplicity may be useful in
numerical study of conservation laws of mixed type.

The ill-posed Boussinesq equation (1.1) which arises in various contexts as
discussed above may not always have a sound physical basis for explaining
phenomena at small scales. However, we believe that mathematical and com-
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putational di�culties associated with the study of this equation can be more
generic than it appears to be and may occur in other physical and mathematical
contexts. Moreover, numerical methods which will allow construction of good
approximate solutions of such severely ill-posed problems are not known and
are not easy to construct without proper understanding of the e�ect of such
short-wave instability on the accuracy of the numerical solutions. The Bous-
sinesq equation (1.1) provides a simple case of severely ill-posed nonlinear
problems which also has exact traveling wave solutions. These exact solutions
can be used during machine computations to develop appropriate numerical
methods that can be useful not only for solving this equation but possibly other
ill-posed problems as well. Numerical experiments can then possibly be per-
formed with these numerical methods to investigate further the mathematical
properties of this and other similar imposed problems.

The paper is laid out as follows. In Section 2 we present a ®nite di�erence
scheme which is second order accurate in time and space. We present a line-
arized stability analysis of this scheme and derive its dispersion relation. Mesh
sizes based on good approximation of the analytical dispersion relation by the
numerical one are obtained. These mesh sizes are then used in single and
double precision calculation and results are presented to show the dangerous
e�ect of machine roundo� error on the accuracy of numerical solutions. We
compute error estimates of the numerical solutions to provide numerical evi-
dence of convergence of the numerical schemes. In Section 3, we apply the
numerical scheme with three ®lters of increasing order of regulatory to show
that the spurious errors introduced by ®nite digit arithmetics of machine
computation can be controlled to a considerable extent by appropriate choice
of ®lters. We present a new ®lter which is twice continuously di�erentiable and
present in detail application procedure of this ®lter. Numerical results with this
®lter are presented to justify its usefulness in the numerical construction of
approximate solutions of ill-posed problems. In Section 4, we present viscosity-
like and surface-tension like regularization techniques by adding higher order
terms to Eq. (1.1). We carry out their linearized stability analysis and derive
their dispersion relations. There we argue based on linearized stability analysis
and physical consideration that surface-tension-like regularization is more
appropriate and is likely to give better approximate solution. Moreover, it is
easier to implement surface-tension-like regularization than the viscosity-like
regularization. The numerical scheme of Section 2 is then extended for the
regularized equation with surface-tension-like regularization. Linearized sta-
bility analysis of this scheme is carried out and numerical results with this
scheme are presented. We ®nd that these numerical solutions for modest values
of regularizing parameters can also provide very good approximations to so-
lutions of the ill-posed Boussinesq equation (1.1). In Section 5, we summarize
and discuss our ®ndings and mention some problems which are areas of future
research.
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2. Numerical scheme

2.1. Finite di�erence scheme

Eq. (1.1) is solved numerically in a ®nite domain, a6 x6 b, for t > 0. We use
®nite di�erence method with uniform grid spacings h in x and s in t. Using vn

j to
denote the approximate value of u�x; t� at x � a� jh; t � ns and using usual
®nite di�erence operators D� and Dÿ to denote forward and backward dif-
ferences, Eq. (1.1) can be approximated by the Finite Di�erence Equation
(FDE).

D�t Dÿt vn
j

s2
� D�x Dÿx �p�vn

j ��
h2

� �D
�
x Dÿx �2�vn�1

j � vnÿ1
j �

2h4
; �2:1�

for s > 0 and 0 < j < N�06 j < N in case of periodic domain) where
bÿ a � Nh. The truncation error is E�h; s� � O�h2� �O�s2�.

Following A�ouf and Ca¯isch [1], we use the following fourth order accu-
rate boundary conditions to estimate boundary conditions v�aÿ h; ns� and
v�b� h; ns�, for n P 0.

v�aÿ h; ns� � ÿ 3

2
v�a; ns� � 3v�a� h; ns� ÿ 1

2
v�a� 2h; ns� ÿ 3v0�a; ns�h;

�2:2�

v�b� h; ns� � ÿ 3

2
v�b; ns� � 3v�bÿ h; ns� ÿ 1

2
v�bÿ 2h; ns� � 3v0�b; ns�h

�2:3�
and the following third order accurate initialization to estimate
v�jh; s�; 06 j6N

v�:; s� � v�:; 0� � v0�:; 0�s� v00�:; 0� s
2

2
�O�s3�; �2:4�

where v�:; s� and v0�:; s� are given, and v00�:; s� can be obtained directly from
using the Boussinesq equation (1.1).

We computed numerical solutions in the interval �a; b� with
a � ÿ128; b � 128, subject to the following initial conditions

u�x; 0� � us�x; 0�; ut�x; 0� � us
t �x; 0� �2:5�

and the boundary conditions

u�a; t� � us�a; t�; u�b; t� � us�b; t�; t > 0; �2:6�
where us�x; t� is given by (1.5). The computations were performed in single (7
digit arithmetic) and double (15 digit arithmetic) precisions. Below we often use
the notations `sp' for `single precision' and `dp' for `double precision'.
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Our choice of the computational domain �ÿ128; 128� allows the physical
boundaries to be well-away from the support of the solitary wave so that ap-
proximate numerical solutions remain almost periodic within machine preci-
sion. The lack of periodicity of the numerical solutions or/and the
inappropriateness of the use of Fourier ®ltering are not relevant issues during
the relatively short time intervals of computation that are involved here. This,
in a way, is very convenient as it allows us to focus solely on the numerical
di�culties associated with the severe short wave instability of this problem.
The numerical results that are reported in this paper involve time interval
during which the movement of the solitary wave is so small compared to the
computational interval that the approximate numerical solutions reported here
remain periodic within an error of the size of the machine precision. Therefore
Fourier ®ltering that we use in Section 3 remains appropriate for all our
computations in this paper.

2.2. Linearized stability of the FDE about any constant state uc.

Any constant state, u � uc, is a solution to both the PDE and the FDE.
Denoting the perturbation about the constant state, uc, by ~vn

j , and then lin-
earizing the FDE about this constant state we obtain

D�t Dÿt ~vn
j

s2
� �p0�uc��

D�x Dÿx ~vn
j

h2
� �D

�
x Dÿx �2�~vn�1

j � ~vnÿ1
j �

2h4
: �2:7�

With ~vn
j � qneinj in Eq. (2.7) (where q � ebs, n � kh; k is the wavenumber and

real part of b is the growth rate), the dispersion relation for the numerical
scheme is

1ÿ 8r2 sin4 n
2

� �
q2 � 2 2k2p0�uc� sin2 n

2
ÿ 1

� �
q� 1ÿ 8r2 sin4 n

2

� �
� 0;

�2:8�
where r � s=h2 and k � s=h.

The dispersion relations (1.2) for the linearized Boussinesq equation and
Eq. (2.8) for the linearized FDE are qualitatively similar in the sense that there
are neutral, growing and decaying modes in both the FDE and the PDE if uc, h
and s satisfy the following relations:

k26 1

p0�uc� and r <
1

2
���
2
p : �2:9�

The ®rst of these conditions is the usual CFL condition which ensures that
the numerical scheme has only decaying modes in the absence of uxxxx term in
Eq. (1.1). This is consistent with the corresponding exact dispersion relation,
i.e. Eq. (1.2) without the k2 term. The second of these condition is slightly
stringent than the usual stability condition, r < 1

2
, associated with the numerical
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scheme for the parabolic heat equation. Eq. (1.1) without the hyperbolic term
is a higher order parabolic equation than the heat equation and it has stable as
well as unstable modes (see Eq. (1.2)). The condition r < 1

2
ensures that our

numerical scheme without the hyperbolic term will also have stable and un-
stable modes. Modes with in®nite growth/decay rate are allowed by the re-
quirement r < 1

2
. We prefer to avoid these modes. This is accomplished by

making this criterion more stringent as in Eq. (2.9). For our later numerical
purposes it is convenient to rewrite Eq. (2.9) in terms of s and h.

h6 2
���
2
p������������

p0�uc�
p and

s
h2
<

1

2
���
2
p : �2:10�

Numerical scheme (2.1) should preferably use values of grid sizes s and h
which satisfy (2.10) allow discrete dispersion relation, i.e. the plot of growth
rate ln jqj=s versus the wavenumber k, best approximate the continuous dis-
persion relation over as wide range of the spectrum as possible. Fig. 1 shows
the plot of growth rate versus the wavenumber for the PDE and FDE for
several choices of h and s all of which are consistent with inequalities (2.9). In
our numerical experiments below u�x� takes values between 0.0 and 0.5 for all
x. The value of uc in this range has little e�ect on the dispersion relation. Fig. 1
shows the case when uc � 0:0. The plot for the case when uc � 0:5 is almost
identical. Eq. (1.1) remains hyperbolic for values of u in this range.

Fig. 1 shows that agreement between theoretical and numerical dispersion
relations is better with s � 0:085 than with much smaller time step s � 0:01
with a mesh spacing size h � 0:5. Numerical solutions at time level t � 1 for
these choices of s are compared against the exact solutions at the same time
level in Fig. 2. Numerical results have been obtained in double digit arithmetics
so that the roundo� error is negligible. Fig. 2 shows that numerical results with

Fig. 1. Dispersion relation for the PDE and FDE: growth rate ln jqj=s versus wavenumber k for

three choices of h and s when uc � 0:0.
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smaller time step are better than the ones with the larger time step even though
the numerical dispersion relation corresponding to the larger time step better
approximates the exact numerical dispersion relation (see Fig. 1). Many other
computations with these time step sizes also support this observation. This
seemingly paradoxical behavior has a very simple explanation: time integration
of large truncation error associated with the larger time step size more
than o�sets any advantage in accuracy o�ered by the superior dispersion
relation.

2.3. Linearized growth of truncation and roundo� errors

Here we adopt the analysis similar to that of Krasny [7]. Under the dy-
namics of the numerical scheme (2.1), an error of magnitude a�0� in a Fourier
mode with wavenumber k linearly grows to a�t� in time t given by

Fig. 2. Comparison of numerical and exact solutions at the time level t � 1. The calculations were

done in double precision (15 digit arithmetics) with h � 0:5 and time step sizes (a) s � 0:085; (b)

s � 0:01.
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t � 1

x�t� ln
a�t�
a�0� ; �2:11�

where x�t� is the linearized growth rate of the Fourier mode. For appropriate
choices of h and s, the numerical dispersion relation can be approximated by

x�k� � c�k�k2; �2:12�
where c�k� is some function of k. For c�k� � 1 as k !1, we have the linearized
dispersion relation of the PDE in this limit. If a�0� � 10ÿd and a�t1� � 10ÿp for
the fastest growing Fourier mode in the numerical scheme, then it follows from
Eq. (2.11) and Eq. (2.12) that

t1 � h
p

� �2

�d ÿ p� ln 10; �2:13�

where we have used k � O�N=2�, the wavenumber of fastest growing mode
participating in the numerical scheme with N number of grid points, and c�k� �
1 due to moderately good agreement between numerical and exact dispersion
relations for certain choices of h and s in Fig. 1. Similar arguments would give
t1 � O�h� for KH (see also [7]), and t1 � O� ���hp � for RT types of instabilities.
The arguments leading up to Eq. (2.13) here is similar to that used by Krasny
[7] for KH instability.

Eq. (2.13) shows that errors in the high wavenumber mode grow more rap-
idly with decreasing mesh sizes. Such severe growth or error in the high wave
number modal amplitudes can cause signi®cant loss of numerical accuracy in
the computed solutions as seen in Fig. 3. For example, an initial error of
magnitude 10ÿ7 (such errors are likely in single precision calculation) will in-
crease to a value of 10ÿ5:5 in a single time step when s � 0:085 and h � 0:5, the
parameter values corresponding to numerical dispersion relation that best ap-
proximates the exact dispersion relation (see Fig. 1). In reality, this error can be
even larger due to nonlinear ill-posedness of the Boussinesq equation. Such an
ampli®cation of machine roundo� error in a single time step can cause serious
di�culties in advancing the solutions correctly any further. Therefore the time
step sizes must be chosen smaller than this so that postprocessing of data after
each or few time steps will make it possible to reduce the spurious e�ects of
roundo� error. A smaller choice of s, of course, entails a tradeo� between the
error in the numerical solution due to disagreement between numerical and
theoretical dispersion relations and the error in the numerical solution due to
catastrophic growth of spurious errors in a single time step. Below we exemplify
in some detail the numerical di�culties due to short-wave instabilities.

The results in Fig. 3 shows the e�ect of roundo� error on the numerical
accuracy of the solution (here the e�ect of truncation error on the solution is
kept negligibly small by integrating the solution for short time). Fig. 3(a) and
3(b) show numerical and exact solutions at the time level t � 1 with mesh sizes
h � 1 and h � 0:5 respectively. Numerical computations have been performed

168 P. Daripa, W. Hua / Appl. Math. Comput. 101 (1999) 159±207



in single precision. We see in these plots that very accurate solutions are ob-
tained with h � 1:0 suggesting that the e�ect of truncation error on the solution
at t � 1 is small. The e�ect of truncation error on the numerical solution at t �
1 is even smaller with smaller time step size h � 0:5 in Fig. 3(b). However, these
®gures show that numerical solutions get even worse with small time step size
h � 0:5 even though the truncation error is smaller. Smaller mesh size here
causes participation of higher wavenumber modes. Short-wave instability
causes rapid growth of spurious perturbations in these mode introduced by
roundo� errors resulting in severe deterioration of numerical solutions as seen
in this ®gure. In general, any gain in the accuracy of numerical solutions due to
smaller mesh sizes is quickly lost due to these instabilities. This brings com-
putations to a halt sooner or later depending on the mesh size and the machine
precision used.

The truncation error can cause signi®cant loss in the accuracy of numerical
solutions when calculations are carried out for longer time. For example,

Fig. 3. Comparison of numerical and exact solutions at the time level t � 1. The calculations were

done in single precision (7 digit arithmetics) with di�erent mesh size (a) h � 1; (b) h � 0:5.
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advancing the numerical solution in Fig. 3(a) further deteriorates the accuracy
of the numerical solution in Fig. 4(a) and higher machine precision calculation
does not improve the solution either as seen in Fig. 4(b). In fact, numerical
solutions obtained in single (Fig. 4(a)) and double (Fig. 4(b)) precision cal-
culations appear to be almost the same. This is due to the fact that the dete-
riorating e�ect of roundo� error on the accuracy of numerical solutions in
single precision calculation is almost negligible compared to that of the trun-
cation error. Also notice in Fig. 4(c) that all Fourier modes participating in the
calculations here have amplitudes greater than the roundo� error of single
precision calculation.

Above example does not show that calculations on a higher precision ma-
chine can improve the accuracy of numerical solutions. This is due to the fact
that roundo� error is not the cause of inaccuracies in numerical solution at t �
3:5 in Fig. 4.

The inaccuracies in the numerical solution shown in Fig. 3(b) is due to
roundo� error as discussed earlier and can be considerably improved with
higher precision calculation as seen in Fig. 5(a) and 5(b). Fig. 5(a) and 5(b)
compare numerical solutions obtained in single and double precisions respec-
tively with mesh size h � 0:5. Fig. 5(c) shows that all participating modes have
amplitudes greater than roundo� error of double precision (15 digit arithme-
tics) calculations and approximately half of these participating modes with
high wavenumber have amplitudes less than the roundo� error of single pre-
cision (7 digit arithmetics) calculations. Therefore, initial amplitudes of these
high wavenumber modes are severely contaminated with spurious perturba-
tions introduced by machine roundo� error in single precision calculations.
Such contamination is relatively much less in double precision calculation as is
evident from Fig. 5(c).

In summary, Figs. 3±5 show that numerical construction of good approxi-
mate numerical solutions for long time requires proper control of truncation as
well as roundo� errors. We have seen and argued above that as we keep re-
®ning the mesh size, truncation error becomes less of a problem and roundo�
error becomes more of a serious problem to the construction of a good ap-
proximate solution. In other words, growth rate of short waves restricts the
accuracy of numerical solutions that can be obtained from ®nite precision
machine calculations. Unless the data are perturbed so as to suppress the
spurious e�ects of roundo� error or the dispersion relation is modi®ed in a
clever way, computation of good approximations to long-time solutions is
di�cult. According to Tikhonov and Arsenin [14], the ®rst of these methods is
known as ®ltering method and the second of these methods is known as reg-
ularization method. Before we discuss, implement and show the performance
of these methods in the Sections 3 and 4, we provide numerical evidence of
convergence of the numerical scheme (2.1) in the following section.
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Fig. 4. Comparison of numerical and exact solutions at the time level t � 3:5. The calculations were

done in (a) single precision (7 digit arithmetics); (b) double precision (15 digit arithmetics) with h � 1

and s � 0:01. (c) log10jak j versus k where jak j is the amplitude of the Fourier mode with wave-

number k.
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Fig. 5. Comparison of numerical and exact solutions at the time level t � 1. The calculations were

done in (a) single precision (7 digit arithmetics); (b) double precision (15 digit arithmetics) with h �
0:5 and s � 0:01: (c) log10jak j versus k where jak j is the amplitude of the Fourier mode with

wavenumber k.
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2.4. Numerical evidence of convergence of the numerical scheme (2.1)

A consequence of the short-wave instability of the numerical scheme (2.1) is
that the scheme is linearly unstable. Linearly unstable numerical methods for
non-linear ill-posed problems may, however, converge. For example point
vortex method for the vortex sheet problem, even though unstable, converges
up to the time of singularity formation (see [6]). Therefore it makes sense to
investigate whether the scheme (2.1) converges or not so that we have some
con®dence in the numerical results presented in this work.

We have seen that spurious error introduced by machine roundo� error
increases with decreasing mesh size. Therefore, it is di�cult to numerically
investigate whether the numerical scheme converges or not under mush re-
®nement unless we either ®nd a way to completely eliminate the roundo� error
or study the convergence issues up to a mesh size which is large enough not to
cause any signi®cant roundo� error and then extrapolate the behavior of the
error in the limit of zero mesh size. The ®rst method, i.e. complete elimination
of roundo� error regardless of the mesh size, is not practical when computa-
tions are carried out on ®nite precision machines and/or algorithms. The sec-
ond method involves studying the error in the numerical solution as a function
of mesh size until mesh size is small enough to cause severe growth of spurious
perturbations introduced by roundo� error. Therefore right at the outset we
must emphasize the experimental nature of this investigation. One can at best
draw inferences from numerical data whether the scheme converges or not
from this study. Even though this is not a rigorous proof of convergence of the
numerical scheme, we believe that it is worth presenting the results of such a
numerical study of the convergence issue.

Numerical estimates of L2 and L1 errors obtained in single and double
precision computations are shown in Tables 1 and 2. Table 1 shows these errors
only up to t � 0:8 because inaccuracies in the numerical solutions due to short-
wave instabilities seem to be insigni®cant up to t � 0:8 at which time this error
starts a�ecting the accuracy of the numerical solutions. In fact, some deterio-
ration in the convergence is already evident in this table at t � 0:4; 0:6; 0:8
when h � 0:5, indicating the spurious e�ects of short-wave instabilities rather
than failure of convergence of the numerical scheme. This is borne out by the
values of these error estimates in Table 2 where calculations are done in double
precision. The deteriorating e�ects of the severe short-wave instabilities on the
convergence properties is now felt only at t � 0:8 when h � 0:5 as seen in this
table. Even though accurate computations can be carried out for longer time, we
have shown these estimates up to the same time level as that in Table 1 for
making a relative comparison of accuracies between single and double precision
calculations. We believe there is enough evidence here which lead us to con-
jecture that scheme (2.1) converges for, at least, some ®nite time.
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Table 2

The L2 and L1 error estimates of numerical solutions with s� 0.01 and di�erent mesh size com-

puted in double precision without using any ®lter

Time h L2 L1

0.2 4 9.07128D ÿ 04 1.00982D ÿ 03

2 1.99150D ÿ 04 2.37155D ÿ 04

1 3.17012D ÿ 05 7.73340D ÿ 05

0.5 1.10894D ÿ 05 3.07712D ÿ 05

0.4 4 3.66214D ÿ 03 4.08854D ÿ 03

2 8.00849D ÿ 04 9.60164D ÿ 04

1 1.32570D ÿ 04 3.15757D ÿ 04

0.5 4.61196D ÿ 05 1.27284D ÿ 04

0.6 4 8.08277D ÿ 03 9.06725D ÿ 03

2 1.75622D ÿ 03 2.13037D ÿ 03

1 3.02742D ÿ 04 7.10144D ÿ 04

0.5 1.08596D ÿ 04 2.94058D ÿ 04

0.8 4 1.38824D ÿ 02 1.56783D ÿ 02

2 2.99005D ÿ 03 3.69034D ÿ 03

1 5.39595D ÿ 04 1.25239D ÿ 03

0.5 2.31716D ÿ 04 5.47905D ÿ 04

Table 1

The L2 and L1 error estimates of numerical solutions with s� 0.01 and di�erent mesh size com-

puted in single precision without using any ®lter

Time h L2 L1

0.2 4 9.08077E ÿ 04 1.01055E ÿ 03

2 2.00957E ÿ 04 2.37433E ÿ 04

1 3.26335E ÿ 05 7.71827E ÿ 05

0.5 1.46031E ÿ 05 3.59437E ÿ 05

0.4 4 3.66029E ÿ 03 4.08557E ÿ 03

2 8.08060E ÿ 04 9.62798E ÿ 04

1 1.36048E ÿ 04 3.14642E ÿ 04

0.5 7.78139E ÿ 05 1.69918E ÿ 04

0.6 4 8.08421E ÿ 03 9.06416E ÿ 03

2 1.77333E ÿ 03 2.13871E ÿ 03

1 3.11524E ÿ 04 7.08568E ÿ 04

0.5 7.50095E ÿ 04 1.64950E ÿ 05

0.8 4 1.38888E ÿ 02 1.56757E ÿ 02

2 3.02184E ÿ 03 3.70655E ÿ 03

1 5.52833E ÿ 04 1.25026E ÿ 03

0.5 1.39851E ÿ 02 3.18297E ÿ 02
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3. The ®ltering method

According to Tikhonov and Arsenin [14], the ®ltering method of con-
structing approximate solution of ill-posed evolution problems involves se-
lective perturbation of the initial data so that a good approximate solution can
be obtained. The choice of correct amount of perturbation is nontrivial and
usually depends on the type of problem and the method used to solve the
problem. Since one of the causes of the poor numerical solution here is the
growth of spurious perturbations introduced by machine roundo� error, per-
turbations of the numerical data at various discrete time steps will be chosen
here so as to suppress and possibly eliminate the growth of spurious pertur-
bations.

We perturb the data using spectral ®lters in the following way. The ampli-
tude of nth Fourier mode of a numerical solution before and after the use of a
®lter U�n� are denoted by an and ~an respectively where

~an � anU�n�: �3:1�
Two conventional spectral ®lters, U1�n� and U2�n�, that we have used in ad-
dition to one more to be constructed and discussed later are>

U1�n� �
an ÿ bn

an
; n6 nc;

0; n > nc

(
�3:2�

and

U2�n� �
janj2 ÿ jbnj2
janj2

; n6 nc;

0; n > nc:

8<: �3:3�

The cuto� point nc is the smallest wavenumber with amplitude anc
� 10ÿm

where m is the computational noise level and is determined by the machine
representation of initial condition's Fourier spectrum. Below, we call `m' the
®lter level or `¯' in short. Thus ¯� 5 below means that nc is such that anc

�
10ÿ5: We have performed numerical experiments with various ®lter levels even
though only few cases will be discussed later for conciseness.

These ®lters set the amplitudes of all modes with wavenumbers n > nc to
zero and modify the amplitudes of all other modes for nonzero values of the
parameter bn in these ®lters. The choice of bn should be carefully made so that
perturbation of the amplitudes of these modes is minimal and the regularity
properties of the ®lter is as best as possible. The second condition here is an
experimental fact which seem to suggest, as we will see below, that better ap-
proximate solutions can be obtained with better smoothness properties of the
®lter in Eq. (3.1). We have performed numerical experiments with following
choices of the function bn: (i) bn � 0, and (ii) bn � anc

� a�nÿ nc�. In the ®rst
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case, U1�n� � U2�n� and the e�ect of these ®lters is to set the amplitudes of all
modes with wavenumbers n > nc to zero without a�ecting the other modal
amplitudes. Due to this sudden discontinuity in the Fourier spectrum at n � nc,
we refer to this ®lter as `sharp ®lter'. Notice that in the second case, i.e. when
bn � anc

� a�nÿ nc�; the ®lter remains continuous but changes the amplitudes
of all modes with n < nc unlike the ®rst case. This change can be kept very
small by a choice of very small nonzero values of the coe�cient a in the def-
inition of bn above.

Fig. 6 shows the numerical solution at t � 1:7 computed with s � 0:01; h �
0:5 and sharp ®lter U1 at ®lter level 5. The numerical solution is compared
against the exact solution in this ®gure. Switching the ®lter from U1 to U2 in
this computation hardly changes the numerical results signi®cant enough to
warrant its display. The undesirable oscillations that we see in these numerical
solutions with ®lter U1 or U2 can be eliminated as we will see later with the
choice of a more regular ®lter. Numerous numerical experiments with various
levels of these ®lters and choices of the parameters in these ®lters indicate that
the continuous ®lter U2 discussed above perform marginally better than the
sharp ®lter in most cases and there is a need for new ®lters which will allow
construction of better approximate solutions than the ones obtainable with
these ®lters.

3.1. The construction of a new ®lter

The spectrum ~a�n� given by Eq. (3.1) with U�n� � U1�n� is a discontinuous
function and the one with U�n� � U2�n� is a continuous function of n for
nonzero values of bn as discussed above. We construct a new ®lter U � U3

Fig. 6. Comparison of exact solution with the numerical solution obtained by using ®lter U1 at the

time level t � 1:7. The calculations were done in single precision (7 digit arithmetics) with h � 0:5,

s � 0:01 and ®lter level 5.
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which is twice continuously di�erentiable and gives a modi®ed spectrum ~an �
anU3�n� which is also twice continuously di�erentiable. This new ®lter U3 is
de®ned as follows

U3�n� �
1; n < nc;

1ÿ g�n̂�; nc < n < n2;

0; n > n2;

8><>: �3:4�

where n̂ is de®ned as

n̂ � nÿ nc

n2 ÿ nc

�3:5�
and the function g�x� which is a C2 function is chosen as

g�x� �
4:5x3; 0 < x < 1

3
;

ÿ9x3 � 13:5x2 ÿ 4:5x� 0:5; 1
3
< x < 2

3
;

1ÿ 4:5�1ÿ x�3; 2
3
< x < 1:

8><>: �3:6�

Even though any n2 > nc is allowed, it is preferred that n2 be within few
wavenumbers of nc. In the equations above, n2 P nc is chosen so that it has the
lowest modal amplitude (see Fig. 7(b)). Notice that application of this ®lter
does not change the amplitudes of Fourier modes for n < nc and the Fourier
amplitudes decays monotonically to zero as wavenumber increases from nc to
n2. Moreover, the modi®ed spectrum is in®nitely di�erentiable everywhere ex-
cept at n � nc and n � n2 where it is twice continuously di�erentiable. Con-
struction of ®lters with the same properties as U3 except for better continuity
properties at n � nc and n � n2 is straightforward and requires more compli-
cated form of the function g�x�: It is helpful to show the Fourier spectrums
before and after the application of some of these ®lters. Fig. 7(a) and 7(b) show
the e�ects of the ®lters U1 and U3 on the Fourier spectrum of a typical numerical
solution at t � 0:6. These ®gures clearly show that these two ®lters suppress the
high wavenumber modes. Logarithmic scale of the ordinate in Fig. 7(a) does
not make it possible to show the zero values of all ®ltered Fourier modes with
wavenumber greater than nc. Our numerical experiments with these ®lters in-
dicate that computations can be carried out with this new ®lter U3 for longer
time without any undesirable small scale ripples in the numerical solution. In
Section 3.2 we present some of these numerical solutions with ®lter U3.

3.2. Application of the new ®lter U3

Fig. 8(a) compares the exact solution with the numerical solution at t � 1
obtained with the ®lter U � U3 at ®lter level 5 in single precision calculation. A
comparison of their Fourier spectrums are made in Fig. 8(b). The numerical
results shown here have been obtained with mesh spacing sizes h � 0:5 and
s � 0:01, the ones also used to obtain the numerical results shown in Fig. 5(a).
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Comparison of these results with the ones in Fig. 5(a) where no ®lter is in use
shows the e�ectiveness of this new ®lter in eliminating the spurious e�ect of
roundo� error.

Fig. 9(a) shows the numerical solution at t � 1:7 obtained in double preci-
sion calculations with no ®lter in use. A comparison of this numerical solution
with the exact solution in this ®gure clearly shows the spurious small scale
ripples, which is rather severe, in the numerical solution. Fig. 9(b) shows the
numerical solution obtained using the ®lter U3 in single precision at the same
time level. These numerical solutions in Fig. 9 should be compared with the
numerical solution shown in Fig. 6 which was obtained with the sharp ®lter U1

at ®lter level 5 at the same time level. It is quite clear that numerical results
obtained with ®lter U3 are superior to the ones obtained with no ®lter or with
®lters of lower order regularity such as U1 or U2.

Fig. 7. E�ectiveness of the ®lters (a) U1; (b) U3 in suppressing spurious growth of roundo� errors.

Fourier spectra of the numerical solutions at t � 0:6 before and after the use of the ®lters are

shown. The computations use h � 0:5, s � 0:01 at ®lter level 5. The Fourier spectrum of the exact

solution is also shown here for comparison purposes.
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It appears from our numerical experiments that smoother ®lters allow
construction of good approximate numerical solutions for longer time. For
example, continuation of the numerical solution shown in Fig. 9 for longer
time breaks down soon after t � 4 due to development of small oscillations.
Fig. 10(a) and 10(b) show the numerical solutions at the time level t � 2 and
t � 4; respectively. Small oscillations are evident in Fig. 10(b). In general, it is
my contention that better is the smoothness properties of the ®lter, longer is the
time for which the good approximations to the classical solutions of the ill-
posed problem can be numerically constructed.

3.3. E�ect of ®lter levels

Through extensive numerical experiments we have found that best ap-
proximate solutions with the grid sizes discussed above are obtained with ®lter

Fig. 8. (a) Comparison of numerical and exact solutions at the time level t � 1. The calculations were

done in single precision (7 digit arithmetics) with h � 0:5, s � 0:01 and the ®lter U3 at ®lter level 5.

(b) log10jak j versus k at the same time level where ak is the Fourier mode with wavenumber k.

P. Daripa, W. Hua / Appl. Math. Comput. 101 (1999) 159±207 179



level 5 in single precision and ®lter level 6.5 in double precision. However,
double precision calculations with ®lter level 6.5 are marginally better than
with ®lter level 5. Therefore, calculations with ®lter level 5 have only been
shown. It may seem that use of ®lter level even higher than 6.5 in double
precision calculations should give better solutions for longer time. However,
this is not the case here for following reasons.

Usually, a ®nite number of modes should be su�cient for numerical con-
struction of a good approximate classical solution of the Boussinesq equation.
Any attempt to improve the accuracies of the numerical solutions by retaining
more than a certain number of modes may actually deteriorate the accuracy of
solutions due to catastrophic short-wave instability. Therefore, ®lter level
should be carefully chosen so as to completely suppress nonessential high
wavenumber modes. Of course, this is usually di�cult without some a priori

Fig. 9. Comparison of numerical and exact solutions at the time level t � 1:7. The calculations were

done in (a) double precision (15 digit arithmetics); (b) single precision (7 digit arithmetics) with ®lter

U3 at ®lter level 5. All the computations use h � 0:5, s � 0:01.
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Fig. 10. Comparison of numerical and exact solutions at time levels (a) t � 2; (b) t � 4. (c) t � 4 in

the entire computational domain. The calculations were done in single precision (7 digit arithme-

tics) with ®lter U3 at ®lter level 5, h � 0:5, and s � 0:01.
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knowledge of the solution itself. In most practical cases, some numerical
experiments will be necessary to be able to choose an ®lter optimal level for
best approximate solutions. Finally, it is important to be aware of the fact that
®lter plays no role unless ®lter level is larger than the smallest amplitude of the
modes participating in the numerical computations. Moreover, it may not al-
ways be prudent to choose a ®lter level closer to the machine precision as this
may allow growth of spurious errors in many of the nonessential high wave-
number modes.

4. Regularization methods

We brie¯y describe two regularization techniques. The Boussinesq equation
(1.1) is modi®ed in these regularization techniques by adding appropriate
higher order terms to the right-hand side of the equation as discussed below.
As we will see below, these modi®cations do not change the equilibrium states
uc or their characterization as elliptic or hyperbolic states. Therefore, the states
with p0�uc� < 0 remain elliptic and states with p0�uc� > 0 remain hyperbolic in
these regularized equations.

Below we carry out linearized stability analysis of these regularized equa-
tions and derive their dispersion relations. We further argue based on linear-
ized stability analysis and physical consideration that surface-tension-like
regularization is more appropriate and is likely to give better approximate
solution. Moreover, it is easier here to implement the ®nite di�erence scheme
with surface-tension-like regularization than with viscosity-like regularization.
The numerical scheme of Section 2 is extended below for the regularized
equation with surface-tension-like regularization and linearized stability anal-
ysis of the scheme is presented. Numerical results with this scheme are then
presented. We ®nd that numerical solutions for modest values of regularizing
parameters with appropriate ®lter can provide signi®cantly better approxi-
mations to solutions of Eq. (1.1) than the ones obtained by ®ltering method
alone. Below we give more details on these issues.

4.1. First regularization technique

A simple way to regularize is to modify the Boussinesq equation (1.1) as
follows,

utt � �p�u��xx � uxxxx � duxxxxxx; d > 0: �4:1�

Below this equation is referred as MPDE1. The linearized pde corresponding
to this regularized equation has decaying as well as growing modes, ert�ikx; with
the dispersion relation about the constant state, uc, given by
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r� � �k
����������������������������������
k2 ÿ p0�uc� ÿ dk4

p
; d > 0: �4:2�

It follows from this dispersion relation that there are no decaying or growing
modes, ert�ikx, unless

4p0�uc�d < 1: �4:3�
The choice of d must satisfy Eq. (4.3) so that the dispersion relation (4.2) is

qualitatively similar to that for the original Boussinesq equation which has
both growing and decaying modes. A simple calculation shows that the equi-
librium states, uc, in the elliptic as well as hyperbolic region are unstable to
modes with wavenumbers in the interval �k1; k2� where k1 and k2 are given by

k2
1;2 � �1�

�������������������
1ÿ 4p0d�

p
=2d: �4:4�

The mode with the highest growth rate has wavenumber km�d� where

k2
m � �1�

�������������������
1ÿ 3p0d�

p
=3d: �4:5�

Note that km�d� ! 1 as d! 0 which is consistent with the original Boussinesq
equation.

Since all modes with wavenumber k P k2 have zero growth rate, the ill-
posedness of the PDE is not present in this regularized equation. In the limit
d! 0, the MPDE1 reduces to PDE (1.1) and the dispersion relation (4.2) of
the MPDE1 reduces to that of the PDE. Therefore we have some con®dence
that the smooth solutions of the MPDE1 may converge to the smooth solu-
tions of the PDE.

It is worth noting that for a ®xed choice of d > 0, the dispersion relation
(4.2) of the MPDE1 is identical to that of the PDE in the long wave �k ! 0�
approximation and is given by

r� � �k
�����������������
ÿp0�uc�;

p
as k ! 0: �4:6�

These long waves travel at a speed � ���������������ÿp0�uc�
p

regardless of the value of d in
MPDE1. This also follows directly from the PDE and MPDE1 since in this
long wave approximation only the ®rst term in these equations is signi®cant.
Therefore solutions of the MPDE1 and the PDE will not di�er much if the
initial data is a long wave perturbation about the constant equilibrium state.

There is only a ®nite number of modes which actually participate in a nu-
merical calculation. Usually the highest wavenumber, kn, that participates in a
numerical calculation with n grid points is O�n� (approximately n=4). Accurate
numerical simulation of the regularized Boussinesq equation (MPDE1) is
possible if enough grid points are used so that

kn > k� � akm �4:7�
for some suitable choice of a > 1. A special choice of k� is k2. For choice of
k�P k2; the numerical scheme (2.1) will be able to resolve all modes which are
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dynamically important (according to our linearized analysis). It follows from
Eqs. (4.5) and (4.7) that

d >
2

3

a
kn

� �2

1ÿ p0

2

a
kn

� �2
 !

: �4:8�

Eqs. (4.3) and (4.8) give the following allowable values of d which are de-
pendent on the choice of k� made in Eq. (4.7),

2

3

a
kn

1ÿ p0

2

a
kn

� �2
 !

< d <
1

4p0
: �4:9�

Allowable values of d for a choice of k� � k2 in Eq. (4.7) are given by

1

kn

� �2

1ÿ p0

kn

� �2
 !

< d <
1

4p0
: �4:10�

In Eq. (4.10), right inequality ensures that regularized and ill-posed Boussinesq
equations have modes which are qualitatively similar and the inequality en-
sures that instabilities of the shortest waves which the grid can resolve are mild
so that numerical solution is not contaminated with the spurious growth of
roundo� error. For a speci®c choice of d, left inequality in Eq. (4.10) gives an
estimate of the upper bound of the mesh size (mesh size is O�1=kn�). On the
other hand, for a ®xed mesh size, however small, reliable numerical solution of
the regularized equation is possible if d > d� where d� is the left inequality in
Eq. (4.10) which is approximately �1=kn�2 for small enough grid size or
equivalently very large number of grid points. For choices of d < d�, ®ltering
will be necessary to eliminate the growth of spurious perturbations of short
wave amplitudes.

4.2. Finite di�erence scheme of MPDE1

The MPDE1 (4.1) is solved numerically using extension of the ®nite di�er-
ence method discussed in Section 2.1, i.e. in a ®nite domain, a6 x6 b; for t > 0
with uniform grid spacing h in x and s in t. The ®nite di�erence approximation
to MPDE1 is then given by

D�t Dÿt vn
j

s2
� D�x Dÿx �p�vn

j ��
h2

� �D
�
x Dÿx �2�vn�1

j � vnÿ1
j �

2h4

� d
�D�x Dÿx �3�vn�1

j � vnÿ1
j �

2h6
;

�4:11�
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for s > 0 and 0 < j < N�06 j < N in case of periodic domain) where bÿ a �
Nh: The truncation error is E�h; s� � O�h2� �O�s2�: Below this Eq. (4.11) is
referred as MFDE1. For non-periodic domain we need the same boundary
conditions and initialization given in Section 2.1. In addition, we also need two
more fourth order accurate boundary conditions since regularized equation is
of higher order than the original Boussinesq equation. These two extra
boundary conditions for n P 0 are given by

v�aÿ 2h; ns� � ÿ12v�a; ns� � 16v�a� h; ns�
ÿ 3v�a� 2h; ns� ÿ 12v0�a; ns�h;

�4:12�

v�b� 2h; ns� � ÿ12v�b; ns� � 16v�bÿ h; ns� ÿ 3v�bÿ 2h; ns�
ÿ 12v0�b; ns�h: �4:13�

The MFDE1 (4.11) is solved in an interval ÿ128 < x < 128 as before for
various choice of d and subject to initial data us�x; 0� (see Eq. (1.5)) with am-
plitude of the solitary wave A � 0:5: The boundaries are carefully chosen so
that they are far away from the support of the solitary wave for the duration of
the computation.

4.3. Linearized stability of the MFDE1 about the constant states

Denoting the perturbation about the constant state, uc; by ~vn
j ; and then

linearizing the MFDE1 about this constant state we obtain

D�t Dÿt ~vn
j

k2
� �p0�uc��

D�x Dÿx ~vn
j

h2
� �D

�
x Dÿx �2�~vn�1

j � ~vnÿ1
j �

2h4

� d
�D�x Dÿx �3�~vn�1

j � ~vnÿ1
j �

2h6
:

�4:14�

With ~vn
j � qneinj in Eq. (4.14). (where q � ebs; n � kh; k is the wavenumber and

real part of b is the growth rate), the dispersion relation for the numerical
scheme is

Aq2 � 2Bq� A � 0; �4:15�
where

A � 1ÿ 8r2 sin4 n
2
� 32dh2 sin6 n

2
; B � 2k2p0�uc� sin2 n

2
ÿ 1; �4:16�

where k � s=h; r � s=h2 and h � s=h3. Numerical scheme (4.11) should pref-
erably use values of grid size s and h which allow the dispersion relation versus
the wavenumber k, best approximate the continuous dispersion relation over as

P. Daripa, W. Hua / Appl. Math. Comput. 101 (1999) 159±207 185



wide range of the spectrum as possible. Fig. 11 shows the plot of growth rate
against the wavenumber k for two values of d when uc � 0: We have chosen
h � 0:5 and s � 0:01 so that numerical results of this regularized equation can
be compared with those we have discussed in Sections 2 and 3. It is evident
from Fig. 11 that all modes with wavenumber k P k2 have zero growth rate
which completely eliminates the short wavelength instabilities. It is important
to notice from Eqs. (4.2) and (4.3) that the constant state uc � 0 is neutrally
stable for d > 0:25. Therefore the dispersion relations in this ®gure has been
shown for choices of d < 0:25 only.

4.4. Numerical results

We illustrate the e�ect of regularizing term by presenting numerical solu-
tions of the regularized Boussinesq equation for several values of d. First we
should note from Eqs. (4.4) and (4.5) that most unstable wavenumber km and
the cuto� wavenumber k2 are O�1= ���

d
p � as d! 0. Moreover, it follows from

Eqs. (4.2) and (4.5) that growth rate of the most unstable wave is given by
r�km� � O�1=d� as d! 0. Therefore numerical di�culties due to machine
roundo� error that we have discussed in Section 2 for the case d � 0 should
also occur for small values of d when computations are carried out with suf-
®cient number of mesh points. As before, these di�culties for small values of d
can be overcome up to some ®nite time using either higher precision cal-
culations or ®ltering techniques. We ®rst provide some calculations when
d � 0:05; h � 0:5 and s � 0:01: For comparison purposes and clarity of
exposition of these numerical results, we ®rst show a single precision calcula-
tion with d � 0:

Fig. 11. Dispersion relation for MPDE1 and MFDE1: Growth rate versus wavenumber k for

uc � 0:0, h � 0:5, s � 0:01 and two choices of d.
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Fig. 12 compares the computed solutions of the ill-posed Boussinesq
equation in 7 digit arithmetics (i.e. single precision) with its exact solutions at
two successive time levels. As previously discussed in Section 2, small scale
ripples in the computed solution at t � 1 in Fig. 12(b) is due to ampli®cation of
the amplitudes of short waves spuriously introduced by the machine roundo�
error. This is seen in Fig. 12(c) where we have plotted logarithm of the Fourier
coe�cients' amplitudes against wavenumbers for these computed solutions. It
is worth recalling from Section 2 that Fourier coe�cients of the initial data
(solitary wave) decay monotonically with wavenumber. However we see in
Fig. 12(c) that all participating modes with amplitudes smaller than 10ÿ7 in
single precision calculation are replaced by roundo� error of the order of 10ÿ7.
The errors in the amplitudes of these short-waves which are many thousand-
fold higher than their correct amplitudes get ampli®ed at later times by the
severe short-wave instability causing violent small scale oscillations to appear
at t � 1 as seen in Fig. 12(c).

Figs. 13 and 14 show the numerical solutions of the regularized Boussinesq
equation at successive time levels that were obtained in single and double
precision calculations respectively. These computations use d � 0:05; h � 0:5
and s � 0:01. In these ®gures, numerical solutions for these time sequences
have also been compared with exact solutions of the ill-posed Boussinesq
equation. The computed solutions of the regularized equation (4.1) for earlier
times have not been shown in these ®gures because these solutions not only
contain no irregularities but also compare very well with the exact solutions
us�x; t� of the ill-posed equation (1.1).

Very small irregularities that appear in the numerical solution at t � 1:7 in
Fig. 13(b) is largely due to ampli®cation of spurious perturbation in the am-
plitudes of short waves introduced by machine round o� error and not due to
small nonzero value of d. This is seen in Fig. 13(c) where we have plotted
logarithm of the Fourier coe�cients' amplitudes against the wavenumbers. We
should recall that Fourier coe�cients of the initial data decay monotonically
with wavenumber. However we see in Fig. 13(c) that all participating modes
with amplitudes smaller than 10ÿ7 in single precision calculation are replaced
by roundo� error of the order of 10ÿ7. The errors in the amplitudes of these
short-waves which are many thousand-fold higher than their correct ampli-
tudes get ampli®ed at later times due to their severe growth rate at such a small
value of d. This causes the irregularities in the numerical solution shown in
Fig. 13(b). However, these irregularities could have been much worse if it were
not for the small value of the regularizing parameter d. A comparison of the
numerical solutions in Figs. 12 and 13 show this. A comparison of the Fourier
spectrums of these solutions in Fig. 12(c) and Fig. 13(c) clearly show the e�ects
of nonzero values of d in reducing the growth rate of the short-wave compo-
nents of roundo� error and thereby providing better approximate solutions of
the ill-posed Boussinesq equation.
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Fig. 12. Computed solutions of the ill-posed Boussinesq equation at time levels t � 0:8 and t � 1:0.

The calculations use h � 0:5, s � 0:01 and were done in single precision (7 digit arithmetics). (c)

Logarithm � log10� of the Fourier coe�cients' amplitudes against the wavenumber k for the initial

data and the computed solutions.
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Fig. 13. Computed solutions of the regularized Boussinesq equation at time levels t � 1:7 and

t � 2:0. The calculations use h � 0:5, s � 0:01, d � 0:05 and were done in single precision (7 digit

arithmetics). (c) Logarithm � log10� of the Fourier coe�cients' amplitudes against the wavenumber

k for the initial data and the computed solutions.
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Fig. 14. Computed solutions of the regularized Boussinesq equation at time levels t � 1:7 and

t � 2:0. The calculations use h � 0:5, s � 0:01, d � 0:05 and were done in double precision (15 digit

arithmetics). (c) Logarithm � log10� of the Fourier coe�cients' amplitudes against the wavenumber

k for the initial data and the computed solutions.
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Higher precision calculations provide even better approximate solutions
due to less roundo� error. In this regard, single precision calculations of
Fig. 13 should be compared with the double precision calculations of Fig. 14
where all participating modes have amplitudes larger than the machine pre-
cision and therefore no irregularities appear in the numerical solutions. This
further supports our earlier contention that the irregularities of Fig. 13(b) is
due to the roundo� error and not due to nonzero value of d � 0:05. For
reasons discussed earlier, e�ect of roundo� error for even higher precision
calculations here is marginal unless computations are carried out on ®ner
mesh sizes.

We have seen in Section 3 that an alternative to using high precision cal-
culations to improve numerical accuracy is to use ®ltering technique with lower
precision calculations. We have experimented with the three ®lters discussed
earlier in Section 3 and have found the ®lter U3 to perform the best at ®lter
level 5 in single precision calculations. We recall that this ®lter replaces all the
Fourier modes having amplitudes less than 10ÿ5 with modi®ed values of am-
plitudes less than 10ÿ5 such that the modi®ed spectrum, i.e. Fourier modes'
amplitudes versus the wavenumber curve, is a rapidly decaying C2 function.
E�ect of this ®lter is to set most of these Fourier modes' amplitudes to zero
except a very few ones closest to the cuto� wavenumber whose amplitudes
rapidly decay to zero from 10ÿ5. Single precision calculations using this ®lter
are shown in Fig. 15. This should be compared with single and double preci-
sion results of Figs. 13 and 14. A comparison of the Fourier spectrums of these
solutions in these ®gures show the e�ectiveness of the ®lter in suppressing the
growth of spurious perturbations introduced by machine precision. Moreover,
we see considerable improvements in the accuracy of the computed solutions
using this ®lter.

Numerical experiments for various choices of d indicate that good ap-
proximate solutions of the ill-posed Boussinesq equation can be obtained with
rather large values of d. Fig. 16 shows that numerical solutions with d � 0:25
are signi®cantly better approximations to the exact solutions of Eq. (1.1) than
those we obtained earlier with the ®ltering technique alone. It is worth recalling
that the null state for the regularized equation is neutrally stable exactly at
d � 0:25.

Fig. 17 shows the case when d � 0:125. Here the numerical solutions at two
time levels are shown only. The oscillations in the numerical solution at t � 4
in 17(b) quickly grow and does not allow any meaningful solution for later
times to be computed. Fig. 18 shows the other extreme when d � 1. The shift is
more severe and oscillations occur at the right-hand side (not left-hand side as
we saw in Fig. 17(b)) of the solitary wave. We do not know whether these
oscillations are properties of the solutions of the regularized equation or are
purely a result of numerical artifacts such as phase error. We do not seek to
resolve this issue here and hope to consider this issue in our future work.
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Fig. 15. E�ect of the ®lter U3 on the computed solutions of Fig. 14: single precision (7 digit

arithmetics) calculations with ®lter level at 10ÿ5.
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Fig. 16. Comparison of numerical solution of MFDE1 and exact solution of PDE at di�erent time

levels (a) t � 2; (b) t � 4; and (c) t � 8. The calculations were done in single precision (7 digit

arithmetics) with h � 0:5, s � 0:01 and d � 0:25:
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However, we should notice that these oscillations is the least when d � 25.
Lastly, Table 3 gives error estimates of the numerical solutions of the FDE in
double precision, the FDE with the ®lter U3 at the ®lter level 5 in single pre-
cision and the MPDE1 with three di�erent d in single precision. For an ap-
proximate solution at large times, the MFDE1 with d � 0:25 appears to be the
best choice.

4.5. Convergence issues

The ®nite di�erence scheme (4.11) has been numerically tested for conver-
gence with respect to mesh re®nement for ®xed nonzero values of d as well as
with respect to d approaching zero for small but ®xed values of mesh size. We

Fig. 17. Comparison of numerical solution of MFDE1 and exact solution of PDE at two time levels

(a) t � 2; and (b) t � 4. The calculations could not be continued upto t � 8 (see text). The calcu-

lations were done in single precision (7 digit arithmetics) with h � 0:5, s � 0:01 and d � 0:125:
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Fig. 18. Comparison of numerical solution of MFDE1 and exact solution of PDE at di�erent time

level (a) t � 2; (b) t � 4; and (c) t � 8. The calculations were done in single precision (7 digit

arithmetics) with h � 0:5, s � 0:01 and d � 1:
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®nd that the scheme converges with respect to the regularizing parameter as
well as with respect to the mesh size.

Fig. 19 shows numerical solutions of the regularized equation at t � 1 for
various choices of d. Notice that e�ect of these large values of d is very mild on
the solution which we observed earlier also. Calculations were done in double
precision with N � 1024 �h � 0:25� grid points and time step s � 0:01. L2 error
norms of these numerical solutions were calculated with respect to the exact
known solitary wave solution of the ill-posed Boussinesq equation (i.e. when
d � 0 in the regularized equation). Fig. 20 shows the plot of this error against d
which shows that numerical solution of the numerical scheme converges as
d! 0. In this ®gure, the error at d � 0 corresponds to the error between the
numerical and exact solutions of the ill-posed Boussinesq equation.

Fig. 21 shows numerical solutions of the regularized equation at t � 4 for an
increasing sequence of number of grid points. Calculations were done in double
precision with d � 0:25 and time step s � 0:01. L2 error norms of these nu-
merical solutions for various choice of number of grid points were calculated
with respect to the computed solution on the ®nest mesh which corresponds to
N � 1024 �h � 0:25� here. Fig. 22 shows the plot of this error against N.
Figs. 21 and 22 provide su�cient numerical evidence convergence of the nu-
merical scheme under mesh re®nement. This has also been tested for few other
values of d.

Table 3

The L2 and L1 error estimates of numerical solutions of the FDE in double precision, the FDE

with the ®lter U3 at the ®lter level 5 in single precision and the MFDE1 with three di�erent d in

single precision. All calculations were done with h � 0.5 and s� 0.01

Method Time L1 L2

FDE (dp) 1.7 0.21603 0.39146

FDE with U3 (sp) 1.7 2.69880E ÿ 03 4.46981E ÿ 03

2 5.97778E ÿ 03 8.72710E ÿ 03

4 8.21868E ÿ 02 0.196108

MFDE1 d� 1(sp) 1.7 2.61988E ÿ 02 7.39563E ÿ 02

2 2.87347E ÿ 02 8.45163E ÿ 02

4 4.75305E ÿ 02 0.139917

8 7.32211E ÿ 02 0.255077

MFDE1 d� 0.25 (sp) 1.7 1.10226E ÿ 02 2.71939E ÿ 02

2 1.23671E ÿ 02 3.14813E - 02

4 1.84338E ÿ 02 4.80555E ÿ 02

8 2.98752E ÿ 02 8.51296E ÿ 02

MFDE1 d� 0.125 (sp) 1.7 8.54304E ÿ 03 1.71588E ÿ 02

2 9.79367E ÿ 03 2.09691E ÿ 02

4 8.30005E ÿ 02 0.183358
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Fig. 19. Solution of the regularized equation at t � 1 for d � 0:25; 0:15; 0:0: Calculations use

double precision arithmetics (15 digits), h � 0:5 and s � 0:01:
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4.6. Second regularization technique

For the sake of completeness, it is worth pointing out another regularization
technique. The ill-posed Boussinesq equation can also be regularized the fol-
lowing way

utt � �p�u��xx � uxxxx � duxxxxxxtt; d > 0: �4:17�
We will refer this equation as MPDE2. The linearized pde corresponding to
this regularized equation has decaying as well as growing modes, ert�ikx, with
the dispersion relation about the constant state, uc, given by

r� � �k

����������������������
k2 ÿ p0�uc�

1� dk6

r
: �4:18�

Fig. 23 shows the growth rate against the wavenumber for several values of
d and a ®xed value of uc � 0:0. The criterion of instability of the equilibrium
states, uc, for this regularized equation is the same as that for the PDE: states in
the elliptic region (i.e. p0�uc� < 0� are unstable to all modes and states in the
hyperbolic region are unstable to modes jkj > ������������

p0�uc�
p

. It follows from dis-
persion relation (4.18) that there is a wavenumber km�d� which has a maximal
rate of instability r�km� and km�d� ! 1 as d! 0 which is consistent with the
original Boussinesq equation. From the dispersion relation (4.18) it follows
that for a ®xed value of d,

r � � 1

k
���
d
p ! 0; as k !1; �4:19�

Fig. 20. Plot of the L2 error norm of the numerical solutions at t � 1 against d. Calculations use

double precision arithmetics (15 digits), h � 0:5 and s � 0:01. Errors have been calculated with

respect to the exact known solitary wave solution of the ill-posed Boussinesq equation.
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Fig. 21. Solutions of the regularized equation at t � 4 for mesh size h � 2; 1; 0:5: Calculations use

double precision arithmetics (15 digits), s � 0:01 and d � 0:25.
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which removes the catastrophic short-wave instability present in the ill-posed
Boussinesq equation (1.1). In the limit d! 0, the MPDE2 reduces to the PDE
and dispersion relation (4.18) of the MPDE2 reduces to that of the PDE.
Therefore we have some con®dence that the solutions of the MPDE2 may
converge to the solutions of the PDE.

It is worth noting that for a ®xed choice of d > 0, the dispersion relation
(4.18) of the MPDE2 is asymptotically identical to that of the PDE in the long
wave �k ! 0� approximation. This can also be inferred directly from the
MPDE2 since only the ®rst term in this equation is then signi®cant. Therefore

Fig. 22. Plot of the L2 error norm of the numerical solutions at t � 4 against number of grid points.

Calculations use double precision arithmetics (15 digits), s � 0:01 and d � 0:25. Errors have been

calculated with respect to the numerical solution when N � 1024.

Fig. 23. Dispersion relation for MPDE2: Growth rate versus wavenumber k for uc � 0:0 and two

choices of d.
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solutions of the MPDE2 and the PDE may not di�er much if the initial data
are a long wave perturbation about the constant equilibrium state.

If for some suitable a > 1; kn > akm is the largest wavenumber that partic-
ipates in a numerical scheme for a particular choice of d; then according to the
dispersion relation participating short-waves will have small growth rate.
Therefore, the numerical scheme will produce numerical solutions which are
less likely to be contaminated with machine roundo� error. As d! 0, both km

and kn approach in®nity which may cause catastrophic growth of spurious
perturbations if computations are carried out on small enough mesh size. In
general, ®ltering as well as regularization will be necessary for numerical
computation of good approximate solutions of the ill-posed equation in the
limit d! 0.

It is evident from the dispersion relation here that the regularization term in
Eq. (4.17) reduces the growth rates of all short waves such that growth rate of
short waves vanishes asymptotically which is very reminiscent of the damping
usually provided by viscosity in ¯uid ¯ow contexts. Even though this regu-
larization reduces the spurious e�ect of roundo� error, it may cause signi®cant
attenuation of the solutions, a fact not unusual with viscosity like damping.
Therefore, this alternative regularization, even though a viable alternative, is
unlikely to be superior to the surface-tension like regularization of the ®rst
method we discussed earlier in detail. Hence we have not implemented this
method, as mentioned right in the beginning of this section. This regularization
method is mentioned here for the sake of discussion and may be implemented
by any of the readers, if so desired.

5. Summary

A ®nite di�erence scheme for solving an ill-posed Boussinesq equation has
been proposed and numerically investigated. The scheme is then used to ex-
emplify the di�culties of computing good approximate solutions of this
equation due to catastrophic short-wave instabilities; and to develop appro-
priate ®ltering and regularization methods in order to deal with these numer-
ical di�culties. Numerical results indicate that the scheme is convergent and
growth of errors can be controlled with suitable ®ltering and regularization
techniques. A rigorous proof of the convergence of the numerical scheme is a
topic of future work.

The ®nite di�erence scheme that we have proposed here is suitable for
studying initial value problems with arbitrary boundary data. However, it may
be worth pointing out that this scheme may su�er from some amount of phase
error. Spectral ®ltering technique that we have used here is ideal for periodic
data and may require some modi®cation for its use with nonperiodic data
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which is as yet another topic of research. For our choices of time and space
intervals in the examples presented, the support of solitary wave remains for
most examples far away from the boundaries and the data remains periodic
within an error of the order of machine precision. Therefore, use of spectral
®ltering to address issues related to the control of growth of error due to short-
wave instability is justi®ed.

Numerical di�culties in computing good approximate solutions can arise
due to truncation as well as roundo� errors. We have shown that loss of nu-
merical accuracy is largely due to truncation error when amplitudes of the
participating modes are greater than the roundo� error (see Fig. 4). However,
roundo� error becomes a major source of numerical di�culty when some of
the high wavenumber participating modes have amplitudes much smaller than
the roundo� error (see Fig. 5). In this situation, these modes are misrepre-
sented during computation with an amplitude of the order of roundo� error
which is signi®cantly higher than the actual amplitudes of these modes in a
relative sense. For example, the ratio of roundo� error to the amplitude of the
highest participating mode in Fig. 5 is approximately 107! A relative error of
such a high magnitude gets ampli®ed by the severe short-wave instability
during computation resulting in signi®cant loss of accuracy within a very short
time. Increasing machine precision can improve the numerical solutions under
these circumstances only up to a point until some high wavenumber partici-
pating modes attain amplitudes smaller than the roundo� error. Even if the
roundo� error is brought under control with high precision arithmetics, the
error in the high wavenumber modes due to truncation error which gets am-
pli®ed signi®cantly by the severe short wave instability of this problem can
seriously deteriorate the accuracy of the numerical solution as we have seen in
Fig. 4. Finer mesh sizes may reduce the truncation error but may exacerbate
the numerical di�culties due to new high wavenumber modes that come into
play. Therefore construction of good approximate solutions requires control of
both of these types of error.

We have used two common techniques often used in constructing approxi-
mate solutions to ill-posed problems: ®ltering techniques and regularization
techniques (see [14]). In ®ltering technique, the data are appropriately perturbed
so that the numerical solution of this modi®ed problem is a better approxi-
mation to the solution of the original problem. The practice of perturbing the
data by locally averaging the solution in physical space is most common e.g.
Rayleigh±Taylor [15], porous media ¯ow [3]. However, the data can also be
perturbed by modifying its Fourier spectrum. Most often modi®cation of the
data in physical space is somewhat ad hoc and therefore whenever possible, it is
preferable to appropriately modify the Fourier spectrum of the data. Moreover,
there are at least two advantages to this: (i) spurious oscillations due to the
roundo� and truncation errors appear sooner in Fourier space than in physical
space allowing earlier control of these errors; and (ii) suitable ®lters can be
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constructed and applied at appropriate ®lter level to selectively control roundo�
and truncation errors. Therefore we have chosen to apply the ®ltering technique
in Fourier space. Use of Spectral ®ltering technique has also been partly mo-
tivated by its success in works of Krasny [7,8] and Shelly [11].

We have experimented with three types of ®lters with increasing order of
regularity and have found that best results were obtained with the ®lter which
is most regular. We introduced a new ®lter U3 (see Eq. (3.4)) which is a twice
continuously di�erentiable function of the wavenumber k. This new ®lter has
the property that the modi®ed spectrum after its application remains twice
continuously di�erentiable. Choice of ®lter level is also crucial. With appro-
priate choice of ®lter level, ®ltered computations can be remarkably better than
higher precision un®ltered computations (see Fig. 10 and 9(a)). We have found
that such an optimal choice of ®lter level should be somewhat higher (sometime
signi®cantly higher as in our double precision calculation where ®lter level 5 to
does better than ®lter level 12) than the machine precision level. This eliminates
many high wavenumber modes which may contaminate the solutions by am-
plifying roundo� errors in these modes rather than improving the accuracy of
these solutions.

In regularization technique the equation, instead of the data, is appropri-
ately perturbed so that the numerical solution of this modi®ed equation is a
better approximation to the solution of the original problem. We have shown
two ways to perturb the equation by adding a higher order derivative term to
the equation. In one approach, it completely eliminates all waves beyond a
certain cut-o� wavenumber which depends on the small parameter in the
highest order derivative term in the equation. This kind of damping is similar
to the one usually provided by surface tension. In the other approach, it mildly
dampens the growth rate of most waves in such a way that growth rate decays
asymptotically to zero with wavenumber. This damping is similar to the one
usually provided by viscosity. We have argued in favor of surface-tension-like
regularization and extended the ®nite di�erence scheme of the original equa-
tion for solving the regularized equation with this kind of regularization. The
calculations seem to indicate that appropriate choices of parameter values in
the regularized equations can provide good approximate solutions of the ill-
posed Boussinesq equation at least up to some ®nite time. Our results indicate
that better approximate solutions are obtained with regularization than with
®ltering technique alone. Regularization with ®ltering further improves the
accuracy of the solutions.

It is worth pointing out that we are not aware of any numerical work on this
ill-posed problem. This present numerical work illustrates only some of the
di�culties associated with this equation. In closing we should mention some of
the interesting problems which may be worth considering as areas of future
work: (i) rigorous convergence proof of the ®nite di�erence schemes presented
in this work; (ii) a study of the structural stability of the solitary wave solution;
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(iii) a study of the issues discussed in this paper using other numerical
methods such as spectral method; (iv) a systematic numerical study of ap-
propriate initial value problems for the ill-posed and regularized Boussinesq
equations; and (v) A numerical study of blow-up and formation of singularities
in this equation.
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Appendix A. Shallow water theory: Long waves

We brie¯y describe how the ill-posed Boussinesq equation (1.1) arises in the
context of water waves. In doing so, we closely follow Chapter 13 of [16]. If
time is denoted by t, the space coordinates by �x; y; z�, the gravitational ac-
celeration acting in negative y direction by g, the density of ¯uid by q, the
pressure in the water by p, the velocity potential in the water by / introduced
through the velocity u � r/ due to irrationality, surface of the water wave by
y � g�x; z; t�; and the bottom of constant depth by y � ÿh0, then the following
equations describe the motion of water in a region X subject to an appropriate
initial data.

D/ � 0; in X;

p ÿ p0

q
� ÿ/t ÿ

1

2
�jr/j�2 ÿ gy; in X;

gt � /xgx � /zgz � /y ; on y � g�x; z; t�;
/t �

1

2
�jr/j�2 � gg � 0; on y � g�x; z; t�;

/y � 0; on y � ÿh0:

�A:1�

The e�ect of surface tension has been neglected in the above equations. The
linearized version of the above system about an initially rest state of water
support waves of the form (see [16])

g � Aeik�xÿixt; / � Y �y�eik�xÿixt �A:2�

with the dispersion relation given by x2 � gk tanh kh0 where k is the magnitude
of the wave vector k i.e. k � jkj. Therefore the initial value problem associated
with the system (A.1) is linearly well-posed.
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It should be noted that the dispersive e�ects drop out in the long wave
approximation due to the fact that x2 � gh0k2; as kh0 ! 0 and therefore all
long waves in the linear regime travel at the same phase speed c0 �

�������
gh0

p
. The

nondispersive e�ects in this linear regime within long wave approximation
inhibit wave breaking phenomena. Wave breaking phenomena can be captured
by incorporating higher order e�ects of the long wave approximation. One of
the ways this is achieved is by setting up a more formal expansion of the system
(A.1) in the small parameter �kh0�2 or equivalently in �h0=l�2 where l is the
wavelength. As derived in [16] in some detail, a nonlinear approximation to
system (A.1) which is correct up to the order O�kh0�4 is given by the following
system for one-dimensional waves traveling in the x direction with u being the
¯uid velocity in this x direction. Below we have used h � h0 � g.

ht � �uh�x � 0; ut � uux � ghx � 1

3
c2

0h0hxxx � 0: �A:3�
The linearized version of the system (A.3) about the rest state is given by

gtt ÿ c2
0gxx ÿ

1

3
c2

0h2
0gxxxx � 0; �A:4�

which has the dispersion relation

x2 � c2
0k2 ÿ 1

3
c2

0h2
0k4: �A:5�

It should be noticed that under the scaling t! �h0=
�������
3c0

p �t and x! �h0=
���
3
p �x;

Eq. (A.4) reduces to

gtt � gxx � gxxxx: �A:6�

This is the linearized version of the ill-posed Boussinesq equation (1.1) which
incorporates the quadratic nonlinearity of Eq. (A.3).

The dispersion relation (A.5) shows that the system (A.3) is linearly ill-posed
and waves with �kh0�2 < 3 are ampli®ed. To make the study of this equation
computationally feasible, an understanding as to how to bring the spurious
growth of errors under control as well as some sort of meaningful modi®cation
of this equation are required.

One well-posed variants of Eqs. (A.3) and (A.4) favored by Boussinesq [16]
are respectively

ht � �uh�x � 0; ut � uux � ghx � 1

3
h0hxtt � 0 �A:7�

and

gtt ÿ c2
0gxx ÿ

1

3
h2

0gxxtt � 0 �A:8�
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with the dispersion relation given by

x2 � c2
0k2

1� �1=3�k2h2
0

: �A:9�

These equations follow directly from the lowest order approximations (e.g.
replace gxx by gtt=c2

0 in Eq. (A.4)) and do not modify the long-wave dispersion
relation.

The problem with Eq. (A.8) is that it does not allow, at least in an obvious
manner, understanding of Eq. (A.4) or its solutions. Moreover, it has never
been shown that the solutions of Eq. (A.8) in any way approximate solutions of
Eq. (A.4). It is intuitively more appropriate to regularize Eq. (A.4) in a way that
retains its long wave dispersion relation, provides good approximate solutions
of Eq. (A.4) when these exist (see Section 4) and provides a hope give to better
insight into this equation and its solutions in the some appropriate limit of the
regularizing parameter. To achieve these goals it is also essential to explore
possible ways, if any, to control the severe growth of numerical errors (see
Section 3). Important mathematical issues related to this equation which can-
not be answered analytically can possibly then be addressed by computation.
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