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Abstract

We consider the problem of displacement processea three-layer fluid in a Hele—Shaw cell modeling
enhanced processes of oil recovery by polymer flooding. The middle layer sandwiched between water and oll
contains polymer-thickened water. We provide lower bounds on the length of the intermediate layer and on the
amount of polymer in the middle layer for stabilizing tleading front to a specified level. We also provide an
upper bound on the growth rate ofstabilities for a gien viscous profile of the middle layer.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In oil recovery by secondary displacement processes, a viscous oil in a porous medium is displaced
by the injection of another less viscous immiscible fluid, usually water. The sharp interface (a contact
discontinuity), within the Hele—-Shaw model approximation, separating oil and water suffers from
Saffman—Tayloinstability [1] which is one of the sources of poor oil recovery as the moving unstable
interface fails to sweep the oil efficiently before the interface breaks at the production well, thereby
producing water instead of oil at breakthrough. The surface tension reduces the instability only to some
extent which isnot sufficient to improve oil recovery. In order to contain this instability to a meaningful
level for improving oil recovery process before breakthrough, various tertiary displacement processes
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are employed. One of these processes involves displacing oil first with some polymer-thickened water
(to be called ‘polysolution’ henceforth) followed by pure water. Such polymer-flooding processes have
been addressed and studied in the 1980s by Gorell and H&@jreyd Darpa et al. B—5. Morerecently,

they havebeen studied by Carasso andR#&—5|.

The polymer-flooding processes basically involve three-layer fluid with an intermediate layer (to be
called the ‘I.L." henceforth) of finite thickness containing polysolution. The viscosity of the polysolution
depends on the concentration of polymer. A uniform distribution of polymer gives an I.L. of polysolution
of uniform viscosity. Thus the polysolution is less viscous than oil but more viscous than water. On the
other hand, a non-uniform distribution of polymer concentration gives an I.L. with variable viscosity. The
effects of constant as well as variable viscosity I.L. in stabilizing porous media and Hele—Shaw flows
have been studied in great detail numerically by Daripa eBab|[ The effect of a variable viscosity I.L.
in stabilizing Hele—Shaw flows has been studied by Gorell and Hojsand Caraso and Psg p—§.

These studies concentrate on computing the growth rate of instabilities for a given length of the I.L. and
a specified viscosity pofile in the I.L.

In this work, we first provide an upper bound on the interfacial growth rate of instabilities in the
presence of an |.L. We then make use of this upper bound to provide lower bounds on the length of the
I.L. and the amount of polymer required for suppressing the Saffman—Taylor instabilities to a prescribed
level. We also provide the corresponding viscosity of the polysolution at the leading front displacing the
fluid as well as the bounds on the admissible viscosity profiles of the polysolution in the intermediate
layer. In Sedion 2, we review thebasics of the problem formulation from the literature but within a
framework that helps in a concise detiegm and presentain of our results ifSections 3and4. We
discuss the relevance of our results and finally conclu@eiction 5

2. Preliminaries
2.1. The basic equations for the polymer model

The model we consider here within the Hele—Shaw approximation consists of three regions in the
planeOx1Yy;: a near-half-plane of water (region 1) stretchingto— —oo, a similarone of oil (region 2)
stretching tox; — oo, with a thin layer of polysolution in between (region 3). The polysolution in the
intermediate layer I.L. (region 3) sssumed to have a variable viscosit{x1, y1, t), while u1 andu;
are thecongant viscosities of the water and oil phases respectively. The fluid velacity of the water
phase upstreanx; — —oo, is considered to bgU, 0), and the pessure islenoted byP. The rdevant
equations for this flow are then given by

ou v
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with o in Eq. ) defined agt = w11 in region 1 andu = w2 in region 2. The first equation above is the
continuity equation, the second the Darcy law, and the third arises from the fact the polymer is merely
advected by the aqueous phase and the polymer concentration is an invertible function of the viscosity.
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A basic sdution of the above systeni)—(3) in the (X1, y1) coordinates is given by
u=u, v =0, u = po(xq — Ut), (4)
X1
P=-U / w(s—Ut)ds = Py(xq, t). (5)
X

0
In (4), the functionug is anarbitrary basic viscosity profile which is a function @ — Ut) only. This
function will be assumed to have all the properties stated belovw &g, y1,t). The above alution
allows one to consider the intermediate region I.L. of lenigftwhich at the initial moment is on the
left of the aigin. Thus, the regiox; < Ut — L is filled with water, the .LLUt — L < x;3 < Ut
with polysolution, and the regior; > Ut with oil. The three-layer fluid system is moving with the
water \elodty U. Two planar interfaces exist, one @t = Ut — L (water—polysolution) and the other
atx; = Ut (polysolution—oil). The variable viscosity(x1, y1, t) in the I.L. layer at any tim¢ > 0 has
the following ploperties: (i)d/dx1 > 0 (i.e. viscosity increases monotonically from the left interface at
X1 = —L to the right interface at; = 0 in the intermette region), (ii)uz > miny, (X1, t) > w1, and
(i) ;1 < maxg, (X1, t) < po. Theseproperties ofw in the |.L. are asumed to be part of the model.

In a moving framex = x; — Ut, y = yi, the waterpolysolution part is contained in the region
—L < x < 0, and the interfaces arexat= —L, andx = 0. In order to study linear stability of the basic
soluions @) and 6) in the moving frame, we consider an initial disturbance which slightly displaces the
planar interfaces at = —L, x = 0 to non-planar configurations. We consider the perturbed solutions

ux,y,t)y =U +e€l, vX,y,t)=€v, PXYy,t)=PX)+€ep, n=poX) +ea, (6)

wheree is a small parameter. We write Eq4) (through @) in the almve moving frame and then
subditute (6) in these nodified equations. We equate to zero the coefficients of the small parameter
€ to obtain the following lirarized equations far, p, and:

ad v

— 4+ — =0, ,YER, 7
ax 3y Xy e (7)
ap . _ dp N

_— = = — _— = — R

™ AU — o, 3y oD, X,y €R, (8)
o _duo

— —_— = —L R

8t+udx 0, <x<0 (9)

We sudy the temporal evolution of arbitrary perturbations by the method of normal modes. Hence,
we consider a typical wave component of the form

(@, B, i) = (F(X), ¥ (X), p(x))elvTot (10)

wherek is a real axial wavenumber, angd is the growth rate Wwich could be complex. We substitute
(10) in (7) through 0), andobtain equations involving (x), ¥ (x), and¢ (x). By appropriately cross-
differentiating these equations fdr(x), ¥ (x), ¢ (x), we obtain the following equation fof (x) in the
intermediate region-L < X < 0,

U
—(wo fx)x + K2uof = kz;(uo)x f,  xe(-L,0), (11)

which governs the linear stability of the basic solutidhdnd 6). Above am below, we us¢henotation
fy =df/dx.
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Two boundary conditions required to solve the above equation are obtained from the conditions that
hold at the interfaces. At each of these interfaces, the following conditions must hol®]jsee [

(@) Kinematic condition: Fluid particles on both sides of an interface must move with the interface
without the two fluids occupying the same point at the same time and without a cavity forming
between the fluids. This is equivalent to the statement that the velocity of the fluid particles normal to
the interface is continuous across the interface and is equal to the material derivative of the interfacial
disturbance.

(b) Dynamic condition: The jump in normal stress of the fluid across an interface is balanced by the
surface tension force at the interface.

From these conditions, after some manipulations (8e®f their derivation) we obtain

Uk? k4
g (—L) fx(=L) = f(-L) {mk +—lm1 - ng (—L)1+ 7} : (12)
_ Uk?2 B Tk*
ug (0) fx(0) = f(0) {—uzk + 7[“2 — 1o (O] — 7} , (13)
whereT, S are the surface tension coefficientsxat= 0 andx = —L interfaces respectively, and

supersapts ‘—’ and ‘4’ denote the “right” and “left” limit values respectively. The dispersion relation
associated with solvindl@) subject to (2) and (L3) depends on the viscosity profileg(x), —L < X <

0, and hence allows calculation of the optimal viscosity profile, i.e., the visgogiiyr which the growth
rateo is smallest over all modes.

Without the intermediate region (i.e., with zero polymer concentratiog()) is a step function with
jump atx = 0 andL — oo. In this case, Eq.11) becomesfyy + k*f = 0, —oco < x < 0, which
has solutionf (x) = AKX, —c0 < X < 0 that decays to zero in the far field. Using this solution with
the relevant boundary conditior18), one obtains the well known dispersion relation for the two-layer
Sdfman—Taylor instability:

3
os = (u2 — 1)Uk — Tk ’ (14)
M2+ 11
where subscripts’ stands for Saffman-dylor instability. The maximum growth ratey, is associated
with wavenumbekgy, which is given by

2(p2 — 1)U 1 /(u2—uU
=0 (Ksm) = ——————Kgm, ksm = —=,/ ——————. 15
Osm 0( sm) 3(M2+M1) sm sm \/é T ( )
We useosm andkgm, to obtain the following non-dimensional quantities:

. 20

= e X)) = po(¥) /1, K =K/ (V3Ksm), 1h = pa/u1,

(16)
X* = v/3ksmX, L*=+3keml, f*x)= f(x)/U, A1*=1/c".

In the case of zero polymer concentration, the relationd#) &nd (L5) imply that the growh rate aikes

a maximum (non-dimensional) valugl,, at a wavenumbed,,.

1

~038 K= 17)

*

2
(op = —
sm 3\/:—_3
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Below we consider the case of continuous viscosity across the water—polysolution intexface atl .
Werecall here that the polysolutioninthe .1 < X < 0, is an aqueous phase with polymer dispersed

in it in such a way that the polymer concentration, and hence the viscosity, increases monotonically
from x = —L to x = 0. Now, if we set up the model so that polymer concentration starts with zero
concentration from the left interface, then essentially we have water on either side of the Iacatioh

which, in this special case, can be called a “pseudo-interface”. Therefore, there cannot be any surface
tension aik = —L. Therefore, it is physically consistent here to consider that the surface temgiaoté

only on the polysolution—oil interface at = 0 where wewill have different liquid even if viscosities

on either side were to be same. The linear stability of the polysolution—oil interface for the above set-up
of the model is governed by the following Sturm-Liouville problem (omittijg

—(ufox + Keuf = Ak2Buxf, x e (~L,0)
f(0) = (ra + b) f (0), (18)
fy(—=L) = kf (=L),

with

{a = KB{uz — n(0) — K2(uz — 1}/n(0) (19)
b= —kuz/u(0), B =(u2+1/(uz—D.

The two boundary conditions i) are scaled versions of dynamic boundary conditidi®y &and (L3)
usingS=0andu; = /,Lg(— L). Note hat eigenvalug, which isthe inversef the growh rate (seeX6)),
appears in one of the boundary conditions which make this problem for a gi®mon-trivial to solve

for thedispersionrelationo (k) or for the upper bound of the growth rate. However, a numerical approach

to obtaining the upper bound of the growth rate is feasible, which we address next. To this end, we note
that total amount of polyme€, without any loss of generality, is defined by the following formula:

0
C =f w(X) dx. (20)
-L

2.2. Estimate of the growth rate
A finite-difference apmximation of the problem defined b8 and (L9) (see f]) leads to

wheref = (fg, f1,..., fn), fi & f(X), xi = —ih,h = L/N,i =0,1,...,N, andXap, for which
the discrete systen2) has exct solutions, is the numerical approximationiofThe corresponding
approximate value of the growth rate is denotedby = 1/1ap. Gerschgorin’s localization theorem
gives localization of eigenvalues of the matrixM from whichone obtains the inequalities (se& for
detals)

2 —bh "
ah ’ B/

b
~a < Aap = 1/oap < < Aap = 1/oap. (22)

Since

—%‘ = Hk 10) = L 11y — (0 — KRG — 1)), (23)
2
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the left ineuality of (22); and inequality 22), yield

|
which leads to the following upper bouig, for the growthrateo,p such that O< oap < om:

ﬂu{} i

om=|}ﬂa;<{H(k,M<0)), —1,2,...,(N =1, (25)

where a prime denotes a partial derivative with respeet andu; ~ u(Xi). At K = kyn, H(K, 1 (0))
attains its maximum valu€ (1. (0)) = Maxgqy{H (K, £(0))} given by

2B (u2— p(0)%/? 2= (0
R TR e /N PR ) )

Hence Eq.25) becomes

(27)

om = 15'?/;?\‘{1 { F(u(0)),

ﬁu{}

Note from (23) and @4) that he unstable modes{y(k) > 0) have wavenumbers € (0O, ker)
with kg < ke whereke = /[u2 — n(0)]/[u2 — 1], which in dimensional form becomes. =

,/%(uz — 1(0)). In thelimit of 1 (0) — w1 (two-layer case)k; is same as the crital wavenumber for
the two-layer case (seelp)) and thereford, = k¢ in this limit which supports our estimate, < k¢
for the threelayercase.

The convergence of the solutions @flf to the exact solutions of18) and (L9) has ben poved in [7]
and therefore the above inequalities and the estim@®sa(sohold for the exact value of the growth
rate.

Below, we consider only those viscosity profiles in the intermediate region for which the following
relationholds:

B/ < F(u(0)). (28)
Then the fdlowing estimate ob, follows from (27) and @8):
om = F(u(0)). (29)

An improvement in stabilityequires that the upper boung, of thegrowth rate for this three-layer
fluid case be less than thatsf,) for the two-layer (Saffman—Taylor) case. This then implies that

2
= F(u( —, 30
Om < Osm (M())<3\/§ (30)
which, together withZ6), in turn implies
Buz — n(0))%/?
p2+/ (2 — 1)

Remark 1. Whenu(0) = u2, om — 0 andhenceu’ = 0 (see 28)), implying that the viscosity is
constant afu, in the middle layer which violates the cambity requirement for the viscosity at the
interfacex = —L. Thus the value oft(0) = u» is not admissible any more for viscosity profiles subject

< 1 (31)
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to the constraintd8). Herceforth, we consider values of(0) € [1, u2) excluding the possibility of
n(0) = ua.

Remark 2. In this remark, all variables appear in dimesrsal form. If the middle layer has a constant
viscosityu = uc such thatus < uc < uo, then the upper boung.,, on the growth rat of the leading
interface will be given by the Saffman—Taylor-type formulae within a very good approximation, at least
for largeL. Therdore, we can write (replace; in (15)1 with uc)

2 (n2—pe)¥?U32
O =
M7 33 motpc T
This should be compared with the upper boung given above for the variable viscosity profile
constrained by48) (see alsottie next section). Below, we use the new notatigy for thedimensional

form of the upper bound,. It then fllows from using £6);1 in (29) and thengoing back to the
dimensional form usingl) that

2 (u2—n(0)¥2U32
loJ = .
"M 33 w2 T

Therefore, a measure of control of the instability of the leading interface by using variable viscosity
rather than constant viscosity is given by the ratio of above two bounds, which simplifies, after using the
formula 32) and @3) for these bounds, to

onm _ (M2+Mc> (Mz —M(O))3/2 (34)
Ocm H2 M2 — e '

For thecase whem. = 1 (0) which corresponds to the use of significantly more polymer in the constant
viscosity case than in the variable viscosity case, it is expected on physical grounds that the leading
interface will be much less unstablor the onstant viscosity case than for the variable viscosity case,
i.e.,ocm < onm, Which isborne out by the above formul@4), because whem. = 1 (0), the above
formula gives

onm _ (1+ &0)) o1 (35)

Ocm Mn2

For thecase whem. = w1, which is more akin to the case for polymer flooding because it corresponds
to the use of no polymer in the constant viscosity case and a finite amount of polymer in the variable
viscosity case, it is then expected on physical grounds that the leading interface will be more unstable
for the mnstant viscosity case than for the variable viscosity casegig.> onm, Which isalso borne

out by the above formul&), because whep. = w1, the alove formula 85) gives

Onm _ (1+ E) (MZ — M(O)>3/2’ (36)

(32)

(33)

Ocm n2 n2 — K1

which is usually a small number, much less than one, in most circumstances with water vigesity (
much less than the oil viscosity $) and the Vscosity. (0) much closer to the oil viscosity. For example,
with wo/p1 = 10 andw(0)/u1 = 9 whichare realistic in many cases (sé@)| the above formula36)
givesonm/ocm =~ 0.04 which amounts to a 25-fold reduction in the growth rate of the leading interface!
Therefore, it is possible to contain the leading interface instability significantly by polymer flooding the
intermediate layer in an appropriate manner.
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3. Improved restrictionsfor u(0)

The esimate @5) holds only for the “interior” values of the viscosity in the intermediate region.
Therefore we consider the restrictiazgf in the fdlowing form:

1w (2)/u(2) < F(u(0)/8, -L<z<O. (37)
By integration of the above relation fare (—L, x), we have
w(x) < exp{(x +L) F(p;(O))} , x € (—L,0). (38)

This relation is obtained usingetcontnuity of the uscosty atx = —L, i.e., u(—L) = 1. Using the
above inequality in 20) and integrating, we obtain the following lower bound for the “optimal” injection
length L in terms ofC andw (0):

B CF(u(0) }
L I 1t. 39
> ram" (39)
The inequdity (38) alsoholds atx = 0 in the intermethte layer (seed,7]) which then leads to
w(0) < exp{ L F(p/;(O)) } . (40)
From this we obtain
B
L I 0)}, 41
= ) n{(0)} (41)

which is a “second” lower bound on the optimal injection length in termg @ only, unlike the first
bound given in 89). However, the inequality39), in conjunction with @1), is usetll for obtaining a
lower bound on the amouf of polymer which we show below.

The relations39) and @1) are used to obtain lower bounds @handL in terms ofu (0). If the amount
of polymerC sdisfies

C = p{n(0) — 1}/F (n(0)), (42)

then

P In{CF(M(O)) +1}> e n(u ). *

F(r(0) B ~ F(u(0)
which in conjunction with 89) and @1) gives

L > B |n{CF(“(O))+1} zL
F (1 (0)) B F (1 (0)

Therefore the lower bound9) of L is compatible with41) if C satisfies42). The reations 30), (42)
and @4) give direct estimates far, C andL in terms ofu (0). Thus, for a desired level of improvementin
the stability (i.e. for a given bound eny,), the anount of polymelC and the lengtiv of the intermediate
region have lower bounds which are obtained below.

In{(0)}. (44)



P. Daripa, G. Pasa/ Applied Mathematics Letters 18 (2005) 1293-1303 1301

4. Lower boundson L and C

For stabilization of the flow, we prescribe that the upper bousd, of the growth rae be a fraction
of osm given by

Om = POsm, O<p=1, (45)

so that(1 — p) x 100 can be viewed as a percentage gain in improvement of stability over the
Saffman-Taylor case. The above relation then gives

2p _ 2B (m2—p(O)*2 _ 2p
3.3 3us/3 (m2—DY2 33
From this we obtain

1(0) = pp — (pPud(uz — 1)/ BHY3. (47)

Note that 1< u(0) < 2. Theright inequality is transparent. To see the left inequality, first note that
(12 + D2 > p?u3 which implies(uz — 1)? > (p?u3/B?). If we multiply both sides of this inequality
by (112 — 1) and then take its cubic root, we get, — 1) > (p?u3(u2 — 1)/p%Y3. Using this in (47)
shows tha (0) > 1. Formula 47) givesu(0) corresponding to a given improvement in stability over
the Saffman-aylor case.

Findly, we use 47) in (42) and @4) to obtain the minimum values @&, L in terms ofuz, p:

F(1(0) = (46)

3V3 2u3 e

Cmin = ZLDIB |(M2 -1 - (pﬁgz (2 — 1)) ) (48)
373 2 9 1/3

Lmin = ZLDIB In [MZ - (pﬂgz (2 — 1)) . (49)

The formulae 47), (48) and @9) give 1 (0), C and L corresponding to the improvemert5j of the
stahlity in terms of the viscosity ratiqus (recall that this is normalized by1). For a desired level

(p in (45) of improvement of stability over the Saffman—Taylor case, one should choose the polymer
amountC > Cpin, the lengthL > Lpin, and the viscsity profiles 88) consistent withu (0) given

by (47).

5. Discussion and conclusions

In this work, we have obtained some new bounds on several quantities based on linearized stability
analysis and assuming that the visitp is continuous at the trailinghierface. The lirarized stability
analysis used in this work can be applied in principle, though not without technical complications and
cumbersome algebra, to the general case where the trailing interface can also have a jump in viscosity.
However, this falls outside the scope of the study undertaken here and may be addressed in the future.

The results obtained here based on linear theory are not intended for applications in the nonlinear
regime, though it will be very interesting if these results hold in the nonlinear regime. It is a well known
fact thatthe late-time evolution of fronts either intele—Shaw cell or in porous media is a highly
norlinear phenomenon and no theory based on linear analysis is capable of describing the ultimate frontal
dynamics for a given set of parameters except for a short duration during early stages of the evolution.
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In somecases, if it does, it is more an exception than the rule. On the other hand, it is very important
to realize that the ultimate frontal dynamics of viscosity driven instability is described by, among other
factors, the viscosity contrast across the front. These are well established facts from physical experiment:
as well as numerical simulations. The severity of the fully fledged fingering phenomenon associated
with the ultimate frontal dynamics in the Hele—Shaw cell is directly influenced by the viscosity ratio at
the front: the higher the viscosity ratio (ratio of viscosity of the displaced fluid to the viscosity of the
displacing fluid), the more severe the fingering phenomenon. Fortunately, this fact of ultimate frontal
dynamics in the nonlinear regime has a parallel in the exact linear theory in a qualitative sense: namely,
the higher the viscosity ratio atetiront, the more severe the grdwtaes of individual modes. This
analogy in no way implies Ht the linear stabiy dictates ultimate growth of fronts. This qualitative
analogy between linear (short-time) and nonlinear (long-time) dynamics and the fact, validated by
numerical and physical experiments (sép,[that the instability controlling strategy derived from linear
theory translates into the nonlinear regime are avérg heart of the merits of the results based on linear
theory, because such results carob&ained either exalgtor easily with little or no error through using
well-established mathematical tools of linear theory.

It is important to realize that no assumption of trertghat the linear stability dictates ultimate
growth of fronts is implied by our derivations of the various bounds here. Rather, results obtained
based on linear theory can be used effectively in parameter space (viscosity ratio) to mitigate early-time
growth of individual modes whose evolution through subsequent nonlinear interaction of these controlled
instabilities can mitigate the extent of the fingering phenomenon at late times. Such results can also be
used in decision making processes (see below) and also for setting up physical experiments to assess tf
connection between reality and predictions basedr@al theory for the nonlearregime. The results
of the kind provided here are quantitative and hence very precise. This allows one to estimate quantities
required br starting relevant projects or for setting up scientific experiments. If one were to engage in
enhanced oil recovery by polymer flooding of an oil-field, several questions would immediately arise
in the context of what is discussed in this work. Some are what the optimal amount of polymer to use
is, what the viscosity in the polysolution at the interface directly in contact with the oil should be, how
long the polymer flooding should be continued before reverting back to pure water injection, and so
on. Similar questions would arise if one were even to set up a model experiment for such purposes
to experimentally assess the actual merits of th®les process, since ultimately the whole process is
highly nonlinear. Such questions are easily answered with the help of quantitative results given here anc
hence help in thedecision making process. In the light of these facts, we address the utility of our results
below.

We have given an upper bound on the growth ré&8),(and lower bounds on the injection length
L (see 44)) and on the total amount of polymér (see 42)). all in terms of the viscosity ratig(0)
(non-dimensionalized by the viscosity) for the optimal viscous profile given by30). So,once the
choice ofu (0) has beenmade, one can use these estimates to calculate the other quahtit®sahich
are necessary to set up an experiment, physical or numerical. Moreover, using our egtifnpaing
can even calculate the improvemegnin stability over the two-layer Saffman—Taylor case which should
allow one, in principle, to predict the average location of the front, at least at early stages of evolution,
and then compare this with actual experimental or numerical calculations. Such comparisons are at times
thecatalyst for generating new ideas for improving estimates or modifying estimates based on some new
data (perhaps empirical at times) to extend their validity even for late-time evolution of fronts. Without
swch edimates, setting up experiments to achieve singlaals is a much more expensive proposition in
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most cases, as these have to be based on trial and error through many numerical or physical simulations.
and sometimes such tasks cannot even be performed repeatedly, e.g. in a real oil-field.

In the above, lie choice ofu(0) enables the rest of the calculations required for the set-up.
Alternatively, one can choose the desired level of improvenpentstability over he Saffman—Taylor
case and then find (0) using the estimatel{). The rest of thealculation then follows as above. In fact,
one can then use estimatés) and @9) to estimate the mimum values ofC andL required br the
set-up of the experiment.
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