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New bounds for stabilizing Hele–Shaw flows
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Abstract

We consider the problem of displacement processes in a three-layer fluid in a Hele–Shaw cell modeling
enhanced processes of oil recovery by polymer flooding. The middle layer sandwiched between water and oil
contains polymer-thickened water. We provide lower bounds on the length of the intermediate layer and on the
amount of polymer in the middle layer for stabilizing theleading front to a specified level. We also provide an
upper bound on the growth rate of instabilities for a given viscous profile of the middle layer.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In oil recovery by secondary displacement processes, a viscous oil in a porous medium is displaced
by the injection of another less viscous immiscible fluid, usually water. The sharp interface (a contact
discontinuity), within the Hele–Shaw model approximation, separating oil and water suffers from
Saffman–Taylorinstability [1] which is one of the sources of poor oil recovery as the moving unstable
interface fails to sweep the oil efficiently before the interface breaks at the production well, thereby
producing water instead of oil at breakthrough. The surface tension reduces the instability only to some
extent which isnot sufficient to improve oil recovery. In order to contain this instability to a meaningful
level for improving oil recovery process before breakthrough, various tertiary displacement processes
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are employed. One of these processes involves displacing oil first with some polymer-thickened water
(to be called ‘polysolution’ henceforth) followed by pure water. Such polymer-flooding processes have
been addressed and studied in the 1980s by Gorell and Homsy [2] and Daripa et al. [3–5]. Morerecently,
they havebeen studied by Carasso and Pa¸sa [6–8].

The polymer-flooding processes basically involve three-layer fluid with an intermediate layer (to be
called the ‘I.L.’ henceforth) of finite thickness containing polysolution. The viscosity of the polysolution
depends on the concentration of polymer. A uniform distribution of polymer gives an I.L. of polysolution
of uniform viscosity. Thus the polysolution is less viscous than oil but more viscous than water. On the
other hand, a non-uniform distribution of polymer concentration gives an I.L. with variable viscosity. The
effects of constant as well as variable viscosity I.L. in stabilizing porous media and Hele–Shaw flows
have been studied in great detail numerically by Daripa et al. [3–5]. The effect of a variable viscosity I.L.
in stabilizing Hele–Shaw flows has been studied by Gorell and Homsy [2] and Carasso and Pa¸sa [6–8].
These studies concentrate on computing the growth rate of instabilities for a given length of the I.L. and
a specified viscosity profile in the I.L.

In this work, we first provide an upper bound on the interfacial growth rate of instabilities in the
presence of an I.L. We then make use of this upper bound to provide lower bounds on the length of the
I.L. and the amount of polymer required for suppressing the Saffman–Taylor instabilities to a prescribed
level. Wealso provide the corresponding viscosity of the polysolution at the leading front displacing the
fluid as well as the bounds on the admissible viscosity profiles of the polysolution in the intermediate
layer. In Section 2, we review thebasics of the problem formulation from the literature but within a
framework that helps in a concise derivation and presentation of our results inSections 3and4. We
discuss the relevance of our results and finally conclude inSection 5.

2. Preliminaries

2.1. The basic equations for the polymer model

The model we consider here within the Hele–Shaw approximation consists of three regions in the
planeOx1y1: a near-half-plane of water (region 1) stretching tox1 → −∞, a similarone of oil (region 2)
stretching tox1 → ∞, with a thin layer of polysolution in between (region 3). The polysolution in the
intermediate layer I.L. (region 3) isassumed to have a variable viscosityµ(x1, y1, t), whileµ1 andµ2
are theconstant viscosities of the water and oil phases respectively. The fluid velocity(u, v) of the water
phase upstream,x1 → −∞, is considered to be(U,0), and the pressure isdenoted byP . The relevant
equations for this flow are then given by

∂u

∂x1
+ ∂v

∂y1
= 0, x1, y1 ∈ R, (1)

∂P

∂x1
= −µu,

∂P

∂y1
= −µv, x1, y1 ∈ R, (2)

Dµ

Dt
= 0, x1 ∈ I.L., y1 ∈ R, (3)

with µ in Eq. (2) defined asµ = µ1 in region 1 andµ = µ2 in region 2. The first equation above is the
continuity equation, the second the Darcy law, and the third arises from the fact the polymer is merely
advected by the aqueous phase and the polymer concentration is an invertible function of the viscosity.
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A basic solution of the above system (1)–(3) in the(x1, y1) coordinates is given by

u = U, v = 0, µ = µ0(x1 − Ut), (4)

P = −U
∫ x1

x0

µ(s − Ut)ds = P0(x1, t). (5)

In (4), the functionµ0 is anarbitrary basic viscosity profile which is a function of(x1 − Ut) only. This
function will be assumed to have all the properties stated below forµ(x1, y1, t). The above solution
allows one to consider the intermediate region I.L. of lengthL, which at the initial moment is on the
left of the origin. Thus, the regionx1 < Ut − L is filled with water, the I.L.Ut − L < x1 < Ut
with polysolution, and the regionx1 > Ut with oil. The three-layer fluid system is moving with the
water velocity U . Two planar interfaces exist, one atx1 = Ut − L (water–polysolution) and the other
at x1 = Ut (polysolution–oil). The variable viscosityµ(x1, y1, t) in the I.L. layer at any timet ≥ 0 has
the following properties: (i)∂µ/∂x1 ≥ 0 (i.e. viscosity increases monotonically from the left interface at
x1 = −L to the right interface atx1 = 0 in the intermediate region), (ii)µ2 > minx1 µ(x1, t) ≥ µ1, and
(iii) µ1 < maxx1 µ(x1, t) ≤ µ2. Theseproperties ofµ in the I.L. are assumed to be part of the model.

In a moving framex = x1 − Ut, y = y1, the water–polysolution part is contained in the region
−L < x < 0, and the interfaces are atx = −L, andx = 0. In order to study linear stability of the basic
solutions (4) and (5) in the moving frame, we consider an initial disturbance which slightly displaces the
planar interfaces atx = −L , x = 0 to non-planar configurations. We consider the perturbed solutions

u(x, y, t) = U + εũ, v(x, y, t) = εṽ, P(x, y, t) = P0(x)+ ε p̃, µ = µ0(x)+ εµ̃, (6)

where ε is a small parameter. We write Eqs. (1) through (3) in the above moving frame and then
substitute (6) in these modified equations. We equate to zero the coefficients of the small parameter
ε to obtain the following linearized equations for̃u, p̃, andµ̃:

∂ ũ

∂x
+ ∂ṽ

∂y
= 0, x, y ∈ R, (7)

∂ p̃

∂x
= −µ̃U − µ0ũ,

∂ p̃

∂y
= −µ0ṽ, x, y ∈ R, (8)

∂µ̃

∂t
+ ũ

dµ0

dx
= 0, −L < x < 0. (9)

We study the temporal evolution of arbitrary perturbations by the method of normal modes. Hence,
we consider a typical wave component of the form

(ũ, p̃, µ̃) = ( f (x), ψ(x), φ(x))e(iky+σ t), (10)

wherek is a real axial wavenumber, andσ is the growth rate which could be complex. We substitute
(10) in (7) through (9), andobtain equations involvingf (x), ψ(x), andφ(x). By appropriately cross-
differentiating these equations forf (x), ψ(x), φ(x), we obtain the following equation forf (x) in the
intermediate region:−L < x < 0,

−(µ0 fx)x + k2µ0 f = k2U

σ
(µ0)x f, x ∈ (−L ,0), (11)

which governs the linear stability of the basic solution (4) and (5). Above and below, we usethenotation
fx = d f/dx .
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Two boundary conditions required to solve the above equation are obtained from the conditions that
hold at the interfaces. At each of these interfaces, the following conditions must hold (see [9]).

(a) Kinematic condition: Fluid particles on both sides of an interface must move with the interface
without the two fluids occupying the same point at the same time and without a cavity forming
between the fluids. This is equivalent to the statement that the velocity of the fluid particles normal to
the interface is continuous across the interface and is equal to the material derivative of the interfacial
disturbance.

(b) Dynamic condition: The jump in normal stress of the fluid across an interface is balanced by the
surface tension force at the interface.

From these conditions, after some manipulations (see [6] for their derivation) we obtain

µ+
0 (−L) fx(−L) = f (−L)

{
µ1k + Uk2

σ
[µ1 − µ+

0 (−L)] + Sk4

σ

}
, (12)

µ−
0 (0) fx(0) = f (0)

{
−µ2k + Uk2

σ
[µ2 − µ−

0 (0)] − T k4

σ

}
, (13)

whereT, S are the surface tension coefficients atx = 0 andx = −L interfaces respectively, and
superscripts ‘−’ and ‘+’ denote the “right” and “left” limit values respectively. The dispersion relation
associated with solving (11) subject to (12) and (13) depends on the viscosity profileµ0(x),−L < x <
0, and hence allows calculation of the optimal viscosity profile, i.e., the viscosityµ0 for which the growth
rateσ is smallest over all modes.

Without the intermediate region (i.e., with zero polymer concentration),µ0(x) is a step function with
jump atx = 0 andL → ∞. In this case, Eq. (11) becomesfxx + k2 f = 0,−∞ ≤ x < 0, which
has solutionf (x) = Aekx ,−∞ ≤ x < 0 that decays to zero in the far field. Using this solution with
the relevant boundary condition (13), one obtains the well known dispersion relation for the two-layer
Saffman–Taylor instability:

σs = (µ2 − µ1)Uk − T k3

µ2 + µ1
, (14)

where subscript ‘s’ stands for Saffman–Taylor instability. The maximum growth rateσsm is associated
with wavenumberksm which is given by

σsm = σ(ksm) = 2(µ2 − µ1)U

3(µ2 + µ1)
ksm , ksm = 1√

3

√
(µ2 − µ1)U

T
. (15)

We useσsm andksm to obtain the following non-dimensional quantities:

σ ∗ = 2σ

3
√

3σsm
, µ∗(x) = µ0(x)/µ1, k∗ = k/(

√
3ksm), µ∗

2 = µ2/µ1,

x∗ = √
3ksm x, L∗ = √

3ksm L , f ∗(x) = f (x)/U, λ∗ = 1/σ ∗.
(16)

In thecase of zero polymer concentration, the relations in (14) and (15) imply that the growth rate takes
a maximum (non-dimensional) valueσ ∗

sm at a wavenumberk∗
sm .

σ ∗
sm = 2

3
√

3
≈ 0.38, k∗

sm = 1√
3
. (17)
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Below we consider the case of continuous viscosity across the water–polysolution interface atx∗ = −L.
Werecall here that the polysolution in the I.L.,−L < x < 0, is an aqueous phase with polymer dispersed
in it in such a way that the polymer concentration, and hence the viscosity, increases monotonically
from x = −L to x = 0. Now, if we set up the model so that polymer concentration starts with zero
concentration from the left interface, then essentially we have water on either side of the locationx = −L
which, in this special case, can be called a “pseudo-interface”. Therefore, there cannot be any surface
tension atx = −L. Therefore, it is physically consistent here to consider that the surface tension (T ) acts
only on the polysolution–oil interface atx∗ = 0 where wewill have different liquid even if viscosities
on either side were to be same. The linear stability of the polysolution–oil interface for the above set-up
of the model is governed by the following Sturm–Liouville problem (omitting∗):


−(µ fx)x + k2µ f = λk2βµx f, x ∈ (−L ,0)
fx(0) = (λa + b) f (0),
fx(−L) = k f (−L),

(18)

with {
a = k2β{µ2 − µ(0)− k2(µ2 − 1)}/µ(0)
b = −kµ2/µ(0), β = (µ2 + 1)/(µ2 − 1).

(19)

The two boundary conditions in (18) are scaled versions of dynamic boundary conditions (12) and (13)
usingS = 0 andµ1 = µ+

0 (−L). Note that eigenvalueλ, which isthe inverseof the growth rate (see (16)),
appears in one of the boundary conditions which make this problem for a givenµ(x) non-trivial to solve
for thedispersionrelationσ(k) or for the upper bound of the growth rate. However, a numerical approach
to obtaining the upper bound of the growth rate is feasible, which we address next. To this end, we note
that total amount of polymerC, without any loss of generality, is defined by the following formula:

C =
∫ 0

−L
µ(x) dx . (20)

2.2. Estimate of the growth rate

A finite-difference approximation of the problem defined by (18) and (19) (see [6]) leads to

M f = λap f , (21)

where f = ( f0, f1, . . . , fN ), fi ≈ f (xi), xi = −ih, h = L/N , i = 0,1, . . . , N , andλap, for which
the discrete system (21) has exact solutions, is the numerical approximation ofλ. The corresponding
approximate value of the growth rate is denoted byσap = 1/λap. Gerschgorin’s localization theorem
gives localization of eigenvaluesλi of the matrixM from whichone obtains the inequalities (see [6] for
details)

−b

a
≤ λap = 1/σap ≤ 2 − bh

ah
,

µ

βµ′ < λap = 1/σap. (22)

Since

−a

b
= H(k, µ(0)) = kβ

µ2
{µ2 − µ(0)− k2(µ2 − 1)}, (23)
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the left inequality of (22)1 and inequality (22)2 yield

σap ≤ H(k, µ(0)), σap <
βµ′

i

µi
, i = 1,2, . . . , (N − 1), (24)

which leads to the following upper boundσm for thegrowthrateσap such that 0< σap ≤ σm :

σm = Max{k,i}

{
H(k, µ(0)),

βµ′
i

µi

}
, i = 1,2, . . . , (N − 1), (25)

where a prime denotes a partial derivative with respect tox , andµi ≈ µ(xi). At k = km , H(k, µ(0))
attains its maximum valueF(µ(0)) = Max{k}{H(k, µ(0))} given by

F(µ(0)) = 2β

3µ2

(µ2 − µ(0))3/2√
3(µ2 − 1)

> 0, km =
√
µ2 − µ(0)

3(µ2 − 1)
. (26)

Hence Eq. (25) becomes

σm = Max
1≤i≤N−1

{
F(µ(0)),

βµ′
i

µi

}
. (27)

Note from (23) and (24) that the unstable modes (σap(k) > 0) have wavenumbersk ∈ (0, kcr )

with kcr < kc where kc = √[µ2 − µ(0)]/[µ2 − 1], which in dimensional form becomeskc =√
U
T (µ2 − µ(0)). In thelimit of µ(0) → µ1 (two-layer case),kc is same as the critical wavenumber for

the two-layer case (see (15)) and thereforekcr = kc in this limit which supports our estimatekcr < kc
for the three-layercase.

The convergence of the solutions of (21) to the exact solutions of (18) and (19) has been proved in [7]
and therefore the above inequalities and the estimates (25) alsohold for the exact value of the growth
rate.

Below, we consider only those viscosity profiles in the intermediate region for which the following
relationholds:

(βµ′)/µ ≤ F(µ(0)). (28)

Then the following estimate ofσm follows from (27) and (28):

σm = F(µ(0)). (29)

An improvement in stabilityrequires that the upper bound,σm , of thegrowth rate for this three-layer
fluid case be less than that (σsm) for the two-layer (Saffman–Taylor) case. This then implies that

σm < σsm ⇒ F(µ(0)) <
2

3
√

3
, (30)

which, together with (26), in turn implies

β(µ2 − µ(0))3/2

µ2
√
(µ2 − 1)

< 1. (31)

Remark 1. Whenµ(0) = µ2, σm → 0 andhenceµ′ = 0 (see (28)), implying that the viscosity is
constant atµ2 in the middle layer which violates the continuity requirement for the viscosity at the
interfacex = −L. Thus the value ofµ(0) = µ2 is not admissible any more for viscosity profiles subject
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to the constraint (28). Henceforth, we consider values ofµ(0) ∈ [1, µ2) excluding the possibility of
µ(0) = µ2.

Remark 2. In this remark, all variables appear in dimensional form. If the middle layer has a constant
viscosityµ = µc such thatµ1 < µc < µ2, then the upper boundσcm on the growth rate of the leading
interface will be given by the Saffman–Taylor-type formulae within a very good approximation, at least
for largeL. Therefore, we can write (replaceµ1 in (15)1 with µc)

σcm = 2

3
√

3

(µ2 − µc)
3/2

µ2 + µc

U3/2

T
. (32)

This should be compared with the upper boundσm given above for the variable viscosity profile
constrained by (28) (see also the next section). Below, we use the new notationσnm for thedimensional
form of the upper boundσm . It then follows from using (26)1 in (29) and thengoing back to the
dimensional form using (16) that

σnm = 2

3
√

3

(µ2 − µ(0))3/2

µ2

U3/2

T
. (33)

Therefore, a measure of control of the instability of the leading interface by using variable viscosity
rather than constant viscosity is given by the ratio of above two bounds, which simplifies, after using the
formula (32) and (33) for these bounds, to

σnm

σcm
=
(
µ2 + µc

µ2

)(
µ2 − µ(0)

µ2 − µc

)3/2

. (34)

For thecase whenµc = µ(0)which corresponds to the use of significantly more polymer in the constant
viscosity case than in the variable viscosity case, it is expected on physical grounds that the leading
interface will be much less unstable for the constant viscosity case than for the variable viscosity case,
i.e., σcm < σnm , which isborne out by the above formula (34), because whenµc = µ(0), theabove
formula gives

σnm

σcm
=
(

1 + µ(0)

µ2

)
> 1. (35)

For thecase whenµc = µ1, which is more akin to the case for polymer flooding because it corresponds
to the use of no polymer in the constant viscosity case and a finite amount of polymer in the variable
viscosity case, it is then expected on physical grounds that the leading interface will be more unstable
for the constant viscosity case than for the variable viscosity case, i.e.,σcm > σnm , which isalso borne
out by the above formula (35), because whenµc = µ1, the above formula (35) gives

σnm

σcm
=
(

1 + µ1

µ2

)(
µ2 − µ(0)

µ2 − µ1

)3/2

, (36)

which is usually a small number, much less than one, in most circumstances with water viscosity (µ1)
much less than the oil viscosity (µ2) and the viscosityµ(0)much closer to the oil viscosity. For example,
with µ2/µ1 = 10 andµ(0)/µ1 = 9 whichare realistic in many cases (see [4]), the above formula (36)
givesσnm/σcm ≈ 0.04 which amounts to a 25-fold reduction in the growth rate of the leading interface!
Therefore, it is possible to contain the leading interface instability significantly by polymer flooding the
intermediate layer in an appropriate manner.
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3. Improved restrictions for µ(0)

The estimate (25) holds only for the “interior” values of the viscosity in the intermediate region.
Therefore we consider the restriction (28) in the following form:

µ′(z)/µ(z) ≤ F(µ(0))/β, −L < z < 0. (37)

By integration of the above relation forz ∈ (−L , x), we have

µ(x) ≤ exp

{
(x + L)

F(µ(0))

β

}
, x ∈ (−L ,0). (38)

This relation is obtained using the continuity of the viscosity at x = −L, i.e.,µ(−L) = 1. Using the
above inequality in (20) and integrating, we obtain the following lower bound for the “optimal” injection
lengthL in terms ofC andµ(0):

L ≥ β

F(µ(0))
ln

{
C F(µ(0))

β
+ 1

}
. (39)

The inequality (38) alsoholds atx = 0 in the intermediate layer (see [6,7]) which then leads to

µ(0) ≤ exp

{
L

F(µ(0))

β

}
. (40)

From this we obtain

L ≥ β

F(µ(0))
ln{µ(0)}, (41)

which is a “second” lower bound on the optimal injection length in terms ofµ(0) only, unlike the first
bound given in (39). However, the inequality (39), in conjunction with (41), is useful for obtaining a
lower bound on the amountC of polymer which we show below.

The relations (39) and (41) areused to obtain lower bounds onC andL in terms ofµ(0). If the amount
of polymerC satisfies

C ≥ β{µ(0)− 1}/F(µ(0)), (42)

then

β

F(µ(0))
ln

{
C F(µ(0))

β
+ 1

}
≥ β

F(µ(0))
ln{µ(0)}, (43)

which in conjunction with (39) and (41) gives

L ≥ β

F(µ(0))
ln

{
C F(µ(0))

β
+ 1

}
≥ β

F(µ(0))
ln{µ(0)}. (44)

Therefore the lower bound (39) of L is compatible with (41) if C satisfies (42). The relations (30), (42)
and (44) give direct estimates forσ , C andL in terms ofµ(0). Thus, for a desired level of improvement in
the stability (i.e. for a given bound onσm), the amount of polymerC and the lengthL of the intermediate
region have lower bounds which are obtained below.
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4. Lower bounds on L and C

For stabilization of the flow, we prescribe that the upper bound,σm , of thegrowth rate be a fraction
of σsm given by

σm = pσsm, 0< p ≤ 1, (45)

so that (1 − p) × 100 can be viewed as a percentage gain in improvement of stability over the
Saffman–Taylor case. The above relation then gives

F(µ(0)) = 2p

3
√

3
�⇒ 2β

3µ2
√

3

(µ2 − µ(0))3/2

(µ2 − 1)1/2
= 2p

3
√

3
. (46)

From this we obtain

µ(0) = µ2 − (p2µ2
2(µ2 − 1)/β2)1/3. (47)

Note that 1≤ µ(0) < µ2. The right inequality is transparent. To see the left inequality, first note that
(µ2 + 1)2 ≥ p2µ2

2 which implies(µ2 − 1)2 ≥ (p2µ2
2/β

2). If we multiply both sides of this inequality
by (µ2 − 1) and then take its cubic root, we get(µ2 − 1) ≥ (p2µ2

2(µ2 − 1)/β2)1/3. Using this in (47)
shows thatµ(0) ≥ 1. Formula (47) givesµ(0) corresponding to a given improvement in stability over
the Saffman–Taylor case.

Finally, we use (47) in (42) and (44) to obtain the minimum values ofC, L in terms ofµ2, p:

Cmin = 3
√

3β

2p


(µ2 − 1)−

(
p2µ2

2

β2
(µ2 − 1)

)1/3

 , (48)

Lmin = 3
√

3β

2p
ln


µ2 −

(
p2µ2

2

β2
(µ2 − 1)

)1/3

 . (49)

The formulae (47), (48) and (49) give µ(0), C and L corresponding to the improvement (45) of the
stability in terms of the viscosity ratioµ2 (recall that this is normalized byµ1). For a desired level
(p in (45)) of improvement of stability over the Saffman–Taylor case, one should choose the polymer
amountC > Cmin, the length L > Lmin, and the viscosity profiles (38) consistent withµ(0) given
by (47).

5. Discussion and conclusions

In this work, we have obtained some new bounds on several quantities based on linearized stability
analysis and assuming that the viscosity is continuous at the trailing interface. The linearized stability
analysis used in this work can be applied in principle, though not without technical complications and
cumbersome algebra, to the general case where the trailing interface can also have a jump in viscosity.
However, this falls outside the scope of the study undertaken here and may be addressed in the future.

The results obtained here based on linear theory are not intended for applications in the nonlinear
regime, though it will be very interesting if these results hold in the nonlinear regime. It is a well known
fact thatthe late-time evolution of fronts either in aHele–Shaw cell or in porous media is a highly
nonlinear phenomenon and no theory based on linear analysis is capable of describing the ultimate frontal
dynamics for a given set of parameters except for a short duration during early stages of the evolution.
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In somecases, if it does, it is more an exception than the rule. On the other hand, it is very important
to realize that the ultimate frontal dynamics of viscosity driven instability is described by, among other
factors, the viscosity contrast across the front. These are well established facts from physical experiments
as well as numerical simulations. The severity of the fully fledged fingering phenomenon associated
with the ultimate frontal dynamics in the Hele–Shaw cell is directly influenced by the viscosity ratio at
the front: the higher the viscosity ratio (ratio of viscosity of the displaced fluid to the viscosity of the
displacing fluid), the more severe the fingering phenomenon. Fortunately, this fact of ultimate frontal
dynamics in the nonlinear regime has a parallel in the exact linear theory in a qualitative sense: namely,
the higher the viscosity ratio at the front, the more severe the growth rates of individual modes. This
analogy in no way implies that the linear stability dictates ultimate growth of fronts. This qualitative
analogy between linear (short-time) and nonlinear (long-time) dynamics and the fact, validated by
numerical and physical experiments (see [4]), that the instability controlling strategy derived from linear
theory translates into the nonlinear regime are at thevery heart of the merits of the results based on linear
theory, because such results can beobtained either exactly or easily with little or no error through using
well-established mathematical tools of linear theory.

It is important to realize that no assumption of the sort that the linear stability dictates ultimate
growth of fronts is implied by our derivations of the various bounds here. Rather, results obtained
based on linear theory can be used effectively in parameter space (viscosity ratio) to mitigate early-time
growth of individual modes whose evolution through subsequent nonlinear interaction of these controlled
instabilities can mitigate the extent of the fingering phenomenon at late times. Such results can also be
used in decision making processes (see below) and also for setting up physical experiments to assess the
connection between reality and predictions based on linear theory for the nonlinearregime. The results
of the kind provided here are quantitative and hence very precise. This allows one to estimate quantities
required for starting relevant projects or for setting up scientific experiments. If one were to engage in
enhanced oil recovery by polymer flooding of an oil-field, several questions would immediately arise
in the context of what is discussed in this work. Some are what the optimal amount of polymer to use
is, what the viscosity in the polysolution at the interface directly in contact with the oil should be, how
long the polymer flooding should be continued before reverting back to pure water injection, and so
on. Similar questions would arise if one were even to set up a model experiment for such purposes
to experimentally assess the actual merits of the whole process, since ultimately the whole process is
highly nonlinear. Such questions are easily answered with the help of quantitative results given here and
hence help in thedecisionmaking process. In the light of these facts, we address the utility of our results
below.

We have given an upper bound on the growth rate (29), and lower bounds on the injection length
L (see (44)) and on the total amount of polymerC (see (42)): all in terms of the viscosity ratioµ(0)
(non-dimensionalized by the viscosityµ1) for the optimal viscous profile given by (39). So,once the
choice ofµ(0) has beenmade, one can use these estimates to calculate the other quantities (L ,C) which
are necessary to set up an experiment, physical or numerical. Moreover, using our estimate (47), one
can even calculate the improvementp in stability over the two-layer Saffman–Taylor case which should
allow one, in principle, to predict the average location of the front, at least at early stages of evolution,
and then compare this with actual experimental or numerical calculations. Such comparisons are at times
thecatalyst for generating new ideas for improving estimates or modifying estimates based on some new
data (perhaps empirical at times) to extend their validity even for late-time evolution of fronts. Without
suchestimates, setting up experiments to achieve similar goals is a much more expensive proposition in
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most cases, as these have to be based on trial and error through many numerical or physical simulations,
and sometimes such tasks cannot even be performed repeatedly, e.g. in a real oil-field.

In the above, the choice ofµ(0) enables the rest of the calculations required for the set-up.
Alternatively, one can choose the desired level of improvementp in stability over the Saffman–Taylor
case and then findµ(0) using the estimate (47). The rest of thecalculation then follows as above. In fact,
one can then use estimates (48) and (49) to estimate the minimum values ofC andL required for the
set-up of the experiment.
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