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This paper presents results of some numerical experiments on the backward heat
equation. Two quasi-reversibility techniques, explicit filtering and structural perturbation,
to regularize the ill-posed backward heat equation have been used. In each of these
techniques, two numerical methods, namely Euler and Crank–Nicolson (CN), have been
used to advance the solution in time.
Crank–Nicolson method is very counter-intuitive for solving the backward heat equation
because the dispersion relation of the scheme for the backward heat equation has a
singularity (unbounded growth) for a particular wave whose finite wave number depends
on the numerical parameters. In comparison, the Euler method shows only catastrophic
growth of relatively much shorter waves. Strikingly we find that use of smart filtering
techniques with the CN method can give as good a result, if not better, as with the Euler
method which is discussed in the main text. Performance of these regularization methods
using these numerical schemes have been exemplified.

© 2010 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The problem of heat conduction through a conducting medium occupying a space Ω subject to no heat flux across the
boundary of the region is formulated as follows:

⎧⎨
⎩

ut − νuxx = 0, x ∈ Ω, t > 0,

ux|∂Ω = 0, t > 0,

u(x,0) = u0(x), x ∈ Ω.

(1)

Here u(x, t) is the temperature and u0(x) is the initial temperature distribution. This problem is known to be well-posed
in the sense of Hadamard, i.e. existence, uniqueness and continuous dependence of the solution on the boundary data
are well-established for this problem. The above problem is usually referred as a forward problem in the context of heat
equation.

The backward problem related to the heat equation refers to the problem of finding the initial temperature distribution
of the forward problem from a knowledge of the final temperature distribution v0(x) at time T :
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⎧⎨
⎩

ut − νuxx = 0, x ∈ Ω, t ∈ [0, T ],
ux|∂Ω = 0,

u(x, T ) = v0(x), x ∈ Ω.

(2)

The change of variable t → T − t leads to the following formulation of this backward problem where v(x, t) = u(x, T − t):⎧⎨
⎩

vt + νvxx = 0, x ∈ Ω, t ∈ [0, T ],
vx|∂Ω = 0,

v(x,0) = v0(x), x ∈ Ω.

(3)

This backward problem is ill-posed on all three counts: existence, uniqueness and continuous dependence of solution on
arbitrary initial data (see Nash [19], John [11], Miranker [17] and Hollig [9]), though this problem is well-posed for initial
data whose Fourier spectrum has compact support (see Miranker [17]). However, in practice, an initial data cannot in general
be guaranteed to have a compact support in Fourier space. When an initial data has a compact support in Fourier space, it
loses this compactness in practice for a variety of reasons such as measurement error, noise in the measured data, round-off
error in machine representations of such data, just to mention a few reasons. Integrating such equations by any numerical
scheme further compounds this problem due to the effect of truncation error. Because of these reasons, even when a unique
solution of the backward problem exists for some particular initial data, computing such a solution in some stable way has
been a challenge for a long time (see Douglas and Gallie [6], John [11], Pucci [20]).

A constructive approach to circumvent this computational challenge is to analyze first the dispersion relation. The dis-
persion relation associated with the backward heat equation is ω = k2, i.e. a mode with wave number k grows quadratically.
This kind of catastrophic growth of short waves is also an indication that solutions (classical) of the backward problem
may not always exist for all time for arbitrary initial data. This is all too well known for the backward heat equation for
we know that any discontinuous temperature profile gets smoothed out instantaneously by forward heat equation. Another
consequence of this is the undesirable catastrophic growth of errors (in particular in high wave number modes) arising due
to numerical approximation of the equation (truncation error), the machine representation of the data (roundoff error) and
noise in any measured data.

In this paper, computation of solutions of this ill-posed backward heat equation is undertaken on appropriately chosen
space–time grid in conjunction with filtering and regularization techniques. We present numerical results that show that
solutions can be computed in stable ways for times longer than earlier reported by clever choice of the grids, filters,
regularization term and clever dynamic application of the chosen filters. We also present detail outline of the procedures
so that the computational results presented here can be reproduced by anyone interested in doing so. It is worth pointing
out here that the filtering techniques reported earlier in the literature with other ill-posed problems (see [13,22,4,5,8]) have
been applied here successfully to this backward heat problem.

2. Numerical schemes and results

The computational domain Ω is taken to be one dimensional, in particular Ω = [0,1]. We discretize the interval [0,1]
with M subintervals �x = 1/M of equal length with grid points denoted by xm , m = 0, . . . , M . Integration in time is done
in time step of �t with time interval T = N × �t and tn = n × �t , n = 0, . . . , N . The exact value of the solution at (xm, tn)

is denoted by v(xm, tn) and numerical value by vn
m . Zero Neumann boundary conditions at both end points of the interval

[0,1] are approximated that results in the following third order accurate end point values of v for t > 0,

v(0, t) = 4v(�x, t) − v(2�x, t)

3
+ O

(
(�x)3), (4)

v(1, t) = 4v(1 − �x, t) − v(1 − 2�x, t)

3
+ O

(
(�x)3). (5)

2.1. Euler scheme

In terms of forward and backward finite difference operators D+ and D− , the finite difference equation for the backward
heat equation is

D+
t vn

m

�t
= −ν

D+
x D−

x vn
m

�x2
, ∀m �= {1, M}, ∀n > 2. (6)

For numerical construction of solutions, it is useful to choose appropriate values of �x and �t so that numerical and exact
dispersion relations do not deviate too much from each other over a range of participating wave numbers. Using the ansatz
vn

m = ρneiξm (where ρ = eβ�t and ξ = kπ�x) in the finite difference equation (6) yields the dispersion relation,

ρ = 1 + 4νr sin2 (kπ�x/2), (7)

where r = �t/�x2. When �x → 0, we have ρ ∼ 1 + (kπ)2ν�t which gives, in the limit �t → 0, β = ln |ρ|/�t ∼ ν(kπ)2

which is same as the exact growth rate.
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2.2. Crank–Nicolson scheme

The backward heat equation in this scheme is discretized as

D+
t vn

m

�t
= − ν

2�x2

(
D+

x D−
x vn+1

m + D+
x D−

x vn
m

)
. (8)

For dispersion relation, same ansatz for vn
m as in the Euler scheme is inserted in the finite difference equation (8). This

yields the following dispersion relation

ρ = 1 + 2νr sin2 (
ξ
2 )

1 − 2νr sin2 ξ
2

, (9)

where r = �t/�x2 as before. When �x → 0, we have

ρ ∼ 1 + ν(kπ)2 �t
2

1 − ν(kπ)2 �t
2

,

which gives, in the limit �t → 0, β = ln |ρ|/�t ∼ ν(kπ)2 which is the same as the exact dispersion relation. For r > 1/2ν ,
the dispersion relation has a singularity at k = ku given by

ku = 2

π�x
arcsin

(
�x√
2ν�t

)
. (10)

Figs. 1(a) and 1(b) compare the exact dispersion relation with the numerical ones for several values of space and time steps
respectively for both the Euler and the CN schemes. The plots are log–log plots due to the large values of growth rates.
Numerical dispersion plot for the CN scheme corresponding to �x = 10−3 and �t = 10−4 for which r > 1/2ν clearly shows
the location of the singularity at ku = 45.05. Since the singularity and high values of the growth rate are very localized near
a very high wave number with rest of the dispersion curves comparing favorably with the exact one, larger time steps may
still be able to yield reasonably accurate solutions on the same grid �x as for the other dispersion curves in the figure. We
will test below whether this is indeed true or not. For the other choices of grid values used for the CN case in the figure,
r is less than 1/2 (r < 1/2ν). This figure shows that numerical dispersion curves compare favorably with the exact one up
to a higher wave number for the CN scheme than for the Euler scheme. However, they all are almost same for up to a wave
number approximately 25.

2.3. Numerical results

Numerical experiments have been performed on many problems but the results from the ones corresponding to only the
following problems are presented below for brevity.

Example 1 (Single cosine mode). It is easy to see that the function

ve(x, t) = cos(kπx)exp
(−k2π2ν(T0 − t)

)
, (11)

is the solution of the backward heat equation with initial data

v0(x) = cos(kπx)exp
(−k2π2νT0

)
. (12)

Note that vx(x, t) = 0 at x = 0,1 for all t > 0.

Example 2 (Gaussian). It is easy to check that

v(x, t) = 1√
5 − 4t

exp

(
− (x − 0.5)2

ν(5 − 4t)

)
, 0 � t � 1, (13)

is the solution of the backward heat equation with initial data

v(x,0) = 1√
5

exp

(
− (x − 0.5)2

5ν

)
. (14)

It follows that

vx(x, t) = −2(x − 0.5)

ν(5 − 4t)3/2
exp

(
− (x − 0.5)2

ν(5 − 4t)

)
, 0 � t � 1,

which is not exactly zero at the end points. It can be made close to zero by choosing a small value of ν .
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Fig. 1. Comparison (in log scale) of the exact dispersion relations of the Euler and Crank–Nicolson schemes for various values of space and time steps. FDE
stands for “Finite Difference Equation". Note the singularity at ku = 45.05 in the Crank–Nicolson FDE for �t = 10−4 and �x = 10−3.

Example 3 (Square bump). This function is given by

h(x) =
⎧⎨
⎩

0, 0 < x < 1/4,

1, 1/4 < x < 3/4,

0, 3/4 > x > 1.

(15)

The exact solution of the forward problem with this square bump initial data is given by

u(x, t) = a0 +
∞∑

k=1

ak cos(kπx)e−νk2π2t,

where

a0 = 1/2, ak = 2

k π

(
sin

3kπ

4
− sin

kπ

4

)
, k � 1.

It then follows that the exact solution of the backward heat equation with initial data

v(x,0) = a0 +
∞∑

k=1

ak cos(kπx)e−νk2π2 T0 , (16)

is given by

v(x, t) = a0 +
∞∑

k=1

ak cos(kπ x)e−νk2π2(T0−t), 0 � t � T0.

It is found that fifty modes are more than sufficient to accurately represent the bump function (15). Therefore, the initial
data (16) for the backward heat equation has been generated with fifty modes in our applications later.

First of all, we want to emphasize that we solve the backward heat equation in a finite interval. For a solution to exist,
following condition on initial data should be satisfied: “amplitude of the Fourier coefficient should decay faster than e−k2

for a mode with wave number k for large k (see also Section 2.2 of [7])”. In Example 1, the cosine initial data has only
one Fourier mode, thus the above condition is satisfied. It is easy to verify that the initial Gaussian data also satisfies
this condition. For Example 3, the initial data v(x,0) is generated using finite number of modes as mentioned above and
hence this data also satisfies the above condition. Alternatively, one can also see that the initial data we use for these three
examples satisfy the Picard criterion (see [7, p. 39]) which for the problem of backward heat conduction is

∑
e(2k)2 | fk| < ∞

(see [7, Section 1.5]).
For each of the examples above, using both the Euler and the Crank–Nicolson schemes, we compute numerical solutions

ṽ(x, T ) from initial data v0(x) using 14-digit accurate arithmetic. We do the experiments on [0,1] for various grid sizes
and up to various time levels t . Fig. 2(a) shows plots of exact and numerical solutions based on the cosine initial data (12)
with k = 1. Fig. 2(b) shows similar plots but with cosine initial data having k = 6. In both figures we see that quality of
solutions at time levels t = 3.5 × 10−3 and t = 2 × 10−3 shown in Figs. 2(a) and 2(b) respectively is acceptable. For time
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Fig. 2. Cosine initial data (12) (Example 1). Comparison of exact (solid line) and numerical solutions (Euler in diamonds and CN in plus) for different initial
data. Results are with �t = 10−4 and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and
plus symbols are in question in the figure.

Fig. 3. Gaussian initial data (14) (Example 2). Comparison of exact (solid line) and numerical solutions (Euler in diamonds and CN in plus) for different
initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols are in
question in the figure.

levels beyond these the accuracy of solutions gradually deteriorates with increase in time of simulation due to growth of
participating short waves present in the round-off and the truncation errors. The normalized L2 norm of the error between
the exact solution ve(., t) and the numerical solution v(., t) at time t , defined by

eL2(t) = ‖v(., t) − ve(., t)‖2

‖ve(., t)‖2
,

is shown in Table 1 for both cosine initial data. Figs. 3(a), 3(b) and 4 show similar plots for Gaussian initial data (14)
(two different values of ε) and square bump initial data (15) respectively. The normalized L2 error norms are shown in
Table 1.

The evolution of the L2 errors for these three examples is shown in Fig. 5. As expected, it grows exponentially for
both the Euler and the Crank–Nicolson numerical schemes. However, a slight difference of maximum value can be noticed
between them at t = 10−2 where errors are the largest with Crank–Nicolson.

Next we show some results with noisy initial data. To generate noisy initial data for the three examples, a noise function
is introduced into the initial condition of the backward problems as follows:

vδ(x,0) = v(x,0) × (
1 + δ(x)

)
, (17)
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Fig. 4. Bump square data (15) (Example 3). Comparison of exact (solid line) and numerical solutions (Euler in diamonds and CN in plus) for M = 33. Plus
symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols are in question in the figure.

Fig. 5. Plot of L2 error versus time for three different examples without noise. For these plots M = 33, �t = 10−4.

Table 1
Relative error norms without filtering.

IC �t Time Schemes eL2

Cosine Euler 2.06 × 10−2

k = 1 10−4 t = 3.5 × 10−3 CN 1.99 × 10−1

Cosine Euler 1.45 × 10−1

k = 6 10−4 t = 2 × 10−3 CN 4.5 × 10−1

Gaussian Euler 5.41 × 10−2

ν = 10−2 5 × 10−3 t = 2 × 10−1 CN 9.85 × 10−2

Gaussian Euler 8 × 10−2

ν = 5 × 10−3 10−2 t = 8 × 10−1 CN 2.88 × 10−1

Example 3 Euler 4.08 × 10−3

T0 = 10−1 10−5 t = 3 × 10−3 CN 5.04 × 10−3

where δ(x) is the noise generated using the MatLab function “rand” multiplied by a magnitude coefficient δm:

δ(x) = δm × rand(x). (18)

For a fixed time t = 10−2, Fig. 6 shows the plots of the L2 error as a function of the noise parameter δm for both the Euler
and the Crank–Nicolson schemes. In both cases, when the noise parameter is less than about 10−4, the error remains at a
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Fig. 6. Plot of L2 error at t = 10−2 versus noise parameter δm for three different examples. For these plots M = 33, �t = 10−4.

constant level (O (1010) for Euler and O (1013) for CN) corresponding to the values that can be observed without noise at
t = 10−2 in Fig. 5. Above this value 10−4 of the noise parameter, the error grows with an increase in the noise parameter
for two of the three examples as seen in Fig. 6. It should be noted that with exactly the same numerical conditions and
the noise parameter, error with the Crank–Nicolson scheme is three orders of magnitude larger than that with the Euler
scheme.

3. Filtering technique

We have applied five different filters to control the spurious effects on the solution due to catastrophic growth of par-
ticipating short wave components of the round-off and truncation errors. These low-pass filters, denoted as Φ(k;kc), are
applied on the Fourier spectrums ak of the solution at certain time intervals (see Daripa [4] and text below for their proper
applications). This results in the filtered spectrum a′

k and defined by

a′
k(k;kc) = Φ(k;kc)ak(k), (19)

where ak and a′
k denote respectively the unfiltered and filtered Fourier coefficients and kc is a parameter, called

cut off wave number, on which the filter depends (see below). First of these filters is the sharp filter Φs defined
by

Φs(k) =
{

1, k � kc,

0, k > kc .
(20)

We have also applied another three filters described in Appendix A. Two of these Φa(k) and Φe(k) are C∞ filters and
the other three Φi(k), i = 1,2,3 have varying degrees of smoothness with smoothness of the filters increasing with
index i. Below, figures and tables show numerical solutions for times much longer than otherwise possible without fil-
ters.

3.1. Numerical results

Figs. 7(a), 7(b), 8(a), 8(b) and 9 compare exact solutions against the numerical solutions obtained using the sharp filter.
Two ways of filtering have been used as it impacts on the result quality. On the one hand, the filter can be applied whenever
the amplitude of the mode above the cut off (kc) exceeds 10−5: this method is called F1. On the other, the solution may be
filtered every time steps: let us call it F2. The method of filtering has been reported in the results.

In the tested examples, choice of the filter shape does not affect noticeably the solutions in the three examples when
plotted. However, cut off wave number kc needs to be carefully selected in each case for it to be able to filter the spurious
effects of computational (truncation and round-off errors) noise on the numerically constructed solutions.

Errors as a function of filter type and value of the cut off wave number kc are shown in Table 2. In each case, the cut
off wave number shown gives the reasonable good numerical solution. Data with other values of cut off wave numbers
are not shown as these do not improve the solution. For a given precision (less than about 5 × 10−1), application of the
filter enables computation of quality solutions for times more than what is otherwise possible without filtering. The most
dramatic improvement occurs with the Example 1 with k = 1, where time increases from 3.5 × 10−3 to t = 1 with the same
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Fig. 7. Cosine initial data (12) (Example 1). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) for different
initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols are in
question in the figure.

Fig. 8. Gaussian initial data (14) (Example 2). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) for
different initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols
are in question in the figure.

Fig. 9. Bump square data (15) (Example 3). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) for different
initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols are in
question in the figure.
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Table 2
Relative error norms with the three examples using filtering.

IC �t Time Cut off Type Schemes eL2

Cosine F2 Euler 4.45 × 10−2

k = 1 5 × 10−3 t = 1 kc = 2 CN 2.58 × 10−2

Cosine F1 Euler 1.72 × 10−1

k = 6 4 × 10−4 t = 10−2 kc = 7 CN 5.45 × 10−2

Gaussian F1 Euler 6.93 × 10−2

ν = 10−2 10−4 t = 0.9 kc = 10 CN 6.92 × 10−2

Gaussian F1 Euler 1.36 × 10−1

ν = 5 × 10−3 5 × 10−2 t = 1 kc = 16 CN 6.33 × 10−2

Example 3 F1 Euler 4.45 × 10−2

T0 = 0.1 10−4 t = 0.095 kc = 4 CN 4.57 × 10−2

Fig. 10. Cosine initial data (12) (Example 1). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) for
different initial data with noise and M = 33. Noise parameter δm = 10%. Plus symbols and diamond symbols are on top of each other wherever the contrast
between diamond and plus symbols are in question in the figure.

Fig. 11. Gaussian initial data (14) (Example 2). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) for
different initial data with noise and M = 33. Noise parameter δm = 10%. Plus symbols and diamond symbols are on top of each other wherever the contrast
between diamond and plus symbols are in question in the figure.
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Fig. 12. Bump square data (15) (Example 3). Comparison of exact (solid line) and filtered numerical solutions (Euler in diamonds and CN in plus) with
noise and M = 33. Noise parameter δm = 1%. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and
plus symbols are in question in the figure.

Table 3
Relative error norms with the three examples using filtering on noisy initial data.

IC �t Time Cut off Type Schemes eL2

Cosine F1 Euler 5.55 × 10−2

k = 1 5 × 10−3 t = 1 kc = 2 CN 1.07 × 10−1

Cosine F2 Euler 1.31 × 10−1

k = 6 4 × 10−4 t = 10−2 kc = 7 CN 1.06 × 10−1

Gaussian F2 Euler 1.13 × 10−1

ν = 10−2 5 × 10−3 t = 0.9 kc = 7 CN 1.12 × 10−1

Gaussian F2 Euler 2.41 × 10−1

ν = 5 × 10−3 10−2 t = 1 kc = 10 CN 2.41 × 10−1

Example 3 F2 Euler 1.67 × 10−2

T0 = 0.1 10−3 t = 0.05 kc = 4 CN 2.11 × 10−2

level of precision. Indeed, wavenumber of the mode being small, a small cut off may be applied and thus the contamination
of the computation is delayed. The marginal enhancement is obtained with Example 2 with ν = 5 × 10−3 where simulation
time for quality solution increases from 8 × 10−1 to 1. All the other cases are comprised between these extremes. The use
of the method F1 of filtering has been necessary only with Example 1. In the other cases, no enhancement has been noticed
so that the method F2 has been preferred because it provides the results faster.

Next we show results obtained with noisy initial data vδ(x,0) = v(x,0) × (1 + δ(x)), where δ(x) denotes the noise
presented in Eq. (18). In the case of Example 3 with noise, the magnitude of the coefficient had to be changed to δm = 1%
as the value δm = 10% is comparable to the magnitude of the original initial function. Note that the function “rand” returns
pseudo-random values drawn from a uniform distribution on the unit interval. Solutions analogous to those shown in
Figs. 7(a), 7(b), 8(a), 8(b) and 9 but with noisy initial data are shown in Figs. 10(a), 10(b), 11(a), 11(b) and 12. Table 3
shows the various error norms with the sharp filter only because the results are similar with other filters. Similar to the
case without noise, filtering helps improve the accuracy of the solution at any instant of time. The noise introduces high
wavenumbers in the spectrum of the initial condition of the backward problem. They contaminate the solution initially but
does so even more drastically to the solution at later times. Application of the filter at every time step (method F2) has
been used to compute relatively accurate solutions at later times. In simulations with noise, the filter cut off kc remains
independent of the presence of noise.

Next we show for all three examples, two different types of plots of L2 error. In particular, Fig. 13 shows the L2 error
against time for both the numerical schemes. For these simulations, no random noise has been added on the initial data.
Next we show results of simulations from initial data with random noise added as per ansatz (17). Fig. 14 shows L2 error
at a fixed time level as a function of the noise parameter δm (see (18)). Comparison of Fig. 13 with Fig. 5 shows the
effectiveness of the filters in limiting the contamination of the results by spurious growth of the high wave number modes
of the round-off and discretization errors. On the other hand, comparison of Fig. 14 with Fig. 6 shows that noise levels
δm < 10−4 does not affect the L2 error for any of the examples in both the methods with this trend continuing even for
some values of δm higher than 10−4 in some cases. However, as seen in these figures the error in Fig. 14 converges towards
much smaller values than those obtained without filter as shown in Fig. 6. Growth of the error is clearly limited. But such
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Fig. 13. Plot of L2 error versus time using filter for three different examples without noise. For these plots M = 33, �t = 10−4. Filter cut off is kc = 10,
F2 method has been used where filter has been applied every 4th time step.

Fig. 14. Plot of L2 error at t = 10−2 versus the noise parameter using filter for three different examples. For these plots M = 33, �t = 10−4. Filter cut off is
kc = 10, F2 type.

control has its limitation: the filter also removes the information that is required to retrieve fine scale features of solutions
data when present and thus cannot be used to recover corners, discontinuities, etc. in the solutions if present.

4. Regularization technique

There exist different types of regularization techniques (see [1,18,16,8,23]). Here we regularize the backward heat equa-
tion by adding a fourth order term. The resulting problem is given by⎧⎪⎪⎨

⎪⎪⎩

vt + νvxx + εvxxxx = 0, x ∈ Ω = [0,1], t ∈ [0, T ],
vx|∂Ω = 0, t ∈ [0, T ],
vxxx|∂Ω = 0, t ∈ [0, T ],
v(x,0) = ψ(x), x ∈ Ω.

(21)

The dispersion relation of this Eq. (21)1 is given by

ω = (πk)2(ν − ε(πk)2). (22)

The most dangerous wave number kd with the maximum growth rate ωmax and the wave number k∗ of the neutral mode
are given by

kd = 1
√

ν
, ωmax = ν2

, k∗ = 1
√

ν
. (23)
π 2ε 4ε π ε
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Fig. 15. Comparison of the exact (ω versus k) and numerical (|ρ|/�t versus k) dispersion relations for the regularized problem for several values of space
and time steps. For these plots ν = 1 and kd = 10.

An appropriate choice of small value for the regularizing parameter ε can significantly curtail the spurious growth of short
waves. We can see from the above formulas that we can equivalently treat kd or k∗ as regularizing parameter instead of ε
since value of ε is automatically chosen if we choose either kd or k∗ . Next we discuss the schemes to be used for solving
the above regularized problem.

4.1. Euler and CN schemes

Euler scheme. The finite difference equation for the regularized Eq. (21) is

D+
t vn

m

�t
= −ν

D+
x D−

x vn
m

�x2
− ε

D+
x D−

x D+
x D−

x vn
m

�x4
, ∀m �= {1, M}, ∀n > 2. (24)

For numerical construction of the accurate solutions, it is also necessary to choose appropriate values of �x and �t so
that numerical and exact dispersion relations do not deviate too much from each other over a range of participating wave
numbers. Using the ansatz vn

m = ρneiξm (where ρ = eβ�t and ξ = kπ�x) in the finite difference equation (24) yields the
dispersion relation

ρ = 1 + 4r sin2
(

ξ

2

)
− 16μ sin4

(
ξ

2

)
, (25)

where μ = ε�t
�x4 . Fig. 15(a) compares the exact (see Eq. (22)) and the numerical (see Eq. (25)) dispersion relations for several

choices of parameter values. This figure shows that optimal step sizes are �x = 10−4 and �t = 10−3 when ν = 1 and
kd = 10. Note that with this set of parameters, the dispersion relation seems to be discontinuous in the range [12,26] of k.
In fact, this is due to the representation in log scale of the function that reaches a value close to zero.

Crank–Nicolson scheme. The finite difference equation for the above regularized equation is

D+
t vn

m

�t
= − ν

2�x2

(
D+

x D−
x vn+1

m + D+
x D−

x vn
m

) − ε

2�x4

(
D+

x D−
x D+

x D−
x vn+1

m + D+
x D−

x D+
x D−

x vn
m

)
. (26)

For dispersion relation, the same ansatz for vn
m as in the Euler scheme is inserted in the finite difference equation (26) of

the Crank–Nicolson scheme. This yields the following dispersion relation:

ρ = 1 + 2r sin2 (
ξ
2 ) − 8μ sin4 (

ξ
2 )

1 − 2r sin2 (
ξ
2 ) + 8μ sin4 (

ξ
2 )

. (27)

Fig. 15(a) compares the exact (see Eq. (22)) and the numerical (see Eq. (25)) dispersion relations for several choices of
parameter values. This figure shows that the optimal step sizes are �x = 10−4 and �t = 10−3 when ν = 1 and kd = 10.
Since the plot is in log scale, note that sometimes the growth factor is undefined in a defined range of wavenumber
because some values of ρ are less than zero.
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Fig. 16. Cosine initial data (12) (Example 3). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) for
different initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols
are in question in the figure.

4.2. Numerical boundary conditions

Regularization introduces a fourth order term in the equation and a second boundary condition at each boundary
(see (21)). The fourth order derivative term is evaluated by finite central differences using five points:

vxxxx(xi, t j) = v j
i+2 − 4v j

i+1 + 6v j
i − 4v j

i−1 + v j
i−2

�x4
. (28)

Because of this term in the discrete approximation of the regularized equation at the interior grid points, solutions at two
points outside the domain, namely v j

−1 and v j
M+1, are required. This is done the following way using the second boundary

condition (21). The third order derivative term vxxx is approximated to second order accuracy as

vxxx|x=0 = − 3
2 v(−�x) + 5v(0) − 6v(�x) + 3v(2�x) − 1

2 v(3�x)

�x3
+ O

(
�x2).

Using the boundary condition vxxx = 0 and the third order accurate approximation (4) in the above formula, we obtain third
order accurate formulae

v(−�x) � 4v(�x) + 8v(2�x) − 3v(3�x)

9
, (29)

and similarly at x = 1 (using Eq. (5))

v(1 + �x) � 4v(1 − �x) + 8v(1 − 2�x) − 3v(1 − 3�x)

9
. (30)

4.3. Numerical results

Figs. 16(a), 16(b), 17(a), 17(b) and 18 compare the numerical solutions against the exact solutions of the regularized
problem. The normalized L2 error norms are shown in Table 4. The regularized Euler and CN schemes do not give the
best results for the same parameter set. The parameters for which we obtain the best results for each of these scheme are
mentioned in the caption of the figures and are also reported in Table 4. These numerical results confirm that under a given
tolerance of error, the simulation time can be increased significantly using regularization.

Finally, we present results of regularization of the backward problem subject to initial conditions with noise: vδ(x,0) =
v(x,0)× (1+δ(x)) (see Eq. (18)). The same settings as presented in the section dedicated to the filtering, e.g., the magnitude
of δ = 10% for all examples except for Example 3 where it is 1%, are used for these simulation with regularization. Plots are
shown in Figs. 19(a), 19(b), 20(a), 20(b) and 21. Table 5 recaps the error norms. As expected, noise prevents from reaching as
large simulation time as with pure initial data. As before, we present in Fig. 22 the error growth as a function of time using
regularization. For these simulations, no random noise has been added on the initial data. The sensitivity of the solutions to
noise has also been found to be interesting which is shown in Fig. 23. Comparing Fig. 22 with Fig. 5 and Fig. 23 with Fig. 6
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Fig. 17. Gaussian initial data (14) (Example 2). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) for
different initial data and M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols
are in question in the figure.

Fig. 18. Bump square data (15) (Example 3). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) for
M = 33. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and plus symbols are in question in the
figure.

Table 4
Relative error norms with regularization.

IC �t Time kd Schemes eL2

Cosine Euler 3.18 × 10−2

k = 1 10−5 t = 10−1 kd = 4 CN 3.17 × 10−2

Cosine kd = 16 Euler 9.81 × 10−2

k = 6 10−3 t = 5 × 10−3 kd = 10 CN 4.81 × 10−2

Gaussian kd = 11 Euler 8.63 × 10−2

ν = 10−2 5 × 10−2 t = 0.8 kd = 10 CN 7.6 × 10−2

Gaussian kd = 28 Euler 1.53 × 10−1

ν = 5 × 10−3 10−2 t = 1 kd = 24 CN 1.51 × 10−1

Example 3 Euler 2.11 × 10−2

T0 = 10−1 10−5 t = 5 × 10−2 kd = 6 CN 2.12 × 10−2
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Fig. 19. Cosine initial data (12) (Example 1). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) for
different initial data with noise and M = 33. Noise parameter is δm = 10%. Plus symbols and diamond symbols are on top of each other wherever the
contrast between diamond and plus symbols are in question in the figure.

Fig. 20. Gaussian initial data (14) (Example 2). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) for
different initial data with noise and M = 33. Noise parameter δm = 10%. Plus symbols and diamond symbols are on top of each other wherever the contrast
between diamond and plus symbols are in question in the figure.

Fig. 21. Bump square data (15) (Example 3). Comparison of exact (solid line) and regularized numerical solutions (Euler in diamonds and CN in plus) with
noise for M = 33. Noise parameter is δm = 1%. Plus symbols and diamond symbols are on top of each other wherever the contrast between diamond and
plus symbols are in question in the figure.



F. Ternat et al. / Applied Numerical Mathematics 61 (2011) 266–284 281
Table 5
Relative error norms with regularization on noisy initial conditions.

IC �t Time kd Schemes eL2

Cosine Euler 5.9 × 10−2

k = 1 10−5 t = 8 × 10−2 kd = 3 CN 5.91 × 10−2

Cosine kd = 12 Euler 8.26 × 10−2

k = 6 10−4 t = 3 × 10−3 kd = 12 CN 7.13 × 10−2

Gaussian kd = 8 Euler 8.54 × 10−2

ν = 10−2 5 × 10−3 t = 0.7 kd = 8 CN 8.55 × 10−2

Gaussian kd = 10 Euler 8.02 × 10−2

ν = 5 × 10−3 5 × 10−3 t = 0.8 kd = 10 CN 7.91 × 10−2

Example 3 Euler 1.21 × 10−2

T0 = 10−1 10−5 t = 2 × 10−2 kd = 3 CN 1.21 × 10−2

Fig. 22. Plot of L2 error versus time using regularization for three different examples without noise. For these plots M = 33, �t = 10−4. Regularization
parameter is given by kd = 10.

Fig. 23. Plot of L2 error at t = 10−2 versus the noise parameter δm using regularization for three different examples. For these plots M = 33, �t = 10−4.
Regularization parameter is given by kd = 10.

respectively, it is observed that regularization limits growth of the error with or without noise. Moreover, its effect is fully
comparable to that of the filter (see Figs. 13 and 14).

For our purposes below, value of the regularization parameter ε for which the L2 error is least will be called optimal
value, denoted by ε∗ , of the parameter ε . The choice of the optimal value ε∗ certainly depends on the noise parameter δm
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Fig. 24. Plot of L2 error at t = 2× 10−3 versus the regularization parameter ε with the cosine initial data (k = 1) for three values of the noise parameter δm .
For these plots �t = 10−5 and M = 33.

which is a measure of signal to noise ratio modulo some constant depending on the examples. A strategy that will allow
selection of ε∗ in dependency of the noise parameter δm is certainly helpful. However, it is not clear how to do this a priori.
To get some insight into how to do this even a posteriori, plots of L2 error are shown against the regularization parameter
ε and the residual norm (‖ε × vxxxx‖2) in Figs. 24(a) and 24(b) respectively. The results are shown with CN scheme only
and for the first example only because general trends of the plots for other combinations of the two methods and the three
examples of this paper are similar. The plots in Fig. 24(a) resemble U -curves and those in Fig. 24(b) resemble L-curves. It
is worth mentioning here that L2 errors and the residual norms were computed for decreasing values of the regularization
parameter ε and then these plots were done. Therefore, it should be understood that the parameter ε decreases as any of
the L-curves (including the one which looks more like a U for no noise case in Fig. 24(b)) is traced from right to left.

We see from the U -curves that both, the minimal value of L2 error (corresponding to ε∗) and the optimal value ε∗
decrease monotonically with decreasing values of the noise parameter δm . From the L-curves, same inference is drawn
about the dependency of L2 error on the noise. However, notice that the effect of ε decreasing away from the optimal value
ε∗ has much more dramatic effect on the L2 error than on the residual. In the presence of noise, L2 error increases rapidly
with hardly any change in the residual (the L-part of the L-curves). Therefore, either of the curves can be used for choosing
the optimal value ε∗ .

In general, smaller the magnitude of the noise, smaller the optimal value of the regularization parameter ε∗ . The value
of ε∗ seems to remain constant when the noise parameter reaches a value less than 0.01% (figure is not shown here).
Indeed, for such a value of δm < 0.01% and such time level, the error is no longer affected by the noise in agreement with
the observation made in Fig. 6. As seen in the U -curves, for optimal choice ε∗ of the regularizing parameter with noise
level δm < 0.01% in the initial data, the regularized solution approximates the exact one having an L2 error of the order of
O (10−3). In concluding this section, we want to emphasize that the discussion here on U - and L-curves is based on plots
made from data obtained at a specific time level. More research is needed (which will be a topic of research in the future)
to determine, even a posteriori, the optimal value of the regularizing parameter in dependency of time of simulation.

5. Discussion and conclusion

Two stable ways of computing solutions of backward heat equation, namely filtering (direct filtering of short waves)
and regularization techniques (structural perturbation of the heat equation), have been proposed and discussed for their
proper implementation. For each of these ways of computing stable solutions, two finite difference methods, namely the
Euler method and the Crank–Nicolson (CN) method, for solving the associated initial boundary value problem have been
devised. These schemes have been analyzed. In particular, (numerical) dispersion relations for these two numerical schemes
associated with each of the two initial boundary value problems arising in filtering and regularizing techniques respectively
have been derived.

Appropriate choice of parameters so that numerical dispersion relations well approximate the exact dispersion relations
of the PDEs over the range of participating wave numbers is one of the important factors in devising stable ways of com-
puting the numerical solutions of the backward heat equation. This has been one of the hallmarks of the success of these
methods which has been exemplified in this paper with adequate number of examples. Another important factor has been
to apply the filter and set the level of the filter appropriately which are partly guided by severity of ill-posedness and partly
by trial and error. We have shown here that in this way, we are able to compute stable solutions for times longer than
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otherwise possible. The methods are new. It will be interesting to see whether these results compare favorably or not with
other existing methods [2,3,10,12,14,15,21,24] which is a topic of future research.

The filtering and regularization methods are used to obtain smooth approximate solutions of ill-posed problems. The
filtering methods have been applied here in a way that can provide good approximate smooth solutions but falls short
of providing singular solutions such as the ones with corners and discontinuities. Such corners and discontinuities are
smoothed out in the solutions obtained by the way the filtering techniques are applied here. Singular solutions can be ob-
tained by better applications of the filtering techniques which is difficult to apply in general because the application process
involves in part science and in part art (see [13]). In the regularization technique, we have provided the U -curve criterion
for optimal choice of the regularizing parameter a posteriori. This optimal value is shown to decrease with decreasing noise
level.
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Appendix A. Definition of the filters used

We have applied five filters one of which is described in the main body of the text and the rest four are defined below:

1. Arctan filter Φa(k):

Φa(k) = 1

π
arctan

(−104(k − kc)
) + 0.5. (31)

2. Three polynomial filters Φi(k): smoothness of the sharp filter defined in the main body of the text can be improved by
considering polynomial functions gi (see Daripa [4]):

Φi(k, p) =
⎧⎨
⎩

1, k � kc,

1 − gi(k̂), kc < k < k2,

0, k � k2,

(32)

where k̂ = k−kc
k2−kc

. The smoothing functions are defined respectively by:

g1(x) = x, 0 < x < 1, (33)

g2(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9

2
x3, 0 < x � 1

3
,

9x3 + 27

2
x2 − 9

2
x + 1

2
,

1

3
< x � 2

3
,

1 − 9

2
(1 − x)3,

2

3
< x < 1,

(34)

g3(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

625

24
x5, 0 < x � 1

5
,

−625

6
x5 + 3125

24
x4 − 625

12
x3 + 125

12
x2 − 25

24
x + 1

24
,

1

5
< x � 2

5
,

625

4
x5 − 3125

8
x4 + 4375

12
x3 − 625

4
x2 + 775

24
x − 21

8
,

2

5
< x � 3

5
,

1 + 625

6
(1 − x)5 − 3125

24
(1 − x)4 + 625

12
(1 − x)3 − 125

12
(1 − x)2 + 25

24
(1 − x) − 1

24
,

3

5
< x � 4

5
,

1 − 625

24
(1 − x)5,

4

5
< x < 1.

(35)

These filters have varying degree of smoothness and how to apply these have been exemplified in gory detail in
Daripa [4].
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