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ABSTRACT
We consider the axisymmetric flow of a Newtonian fluid as-

sociated with the spreading of a thin liquid film on a rotating
annular disk. The effects of surface tension and gravity terms
are included. The asymptotic solution for the free surface of the
thin film is found using an expansion for the film thickness in
powers of a small parameter characterizing the thickness of the
film and applying the method of matched asymptotic expansion.
This solution can be used to calculate the thickness of the film,
the velocity field, and the pressure at any point on the disk with
good accuracy. Numerical results are presented for a specific
initial distribution of the film thickness. Many features of the
spin-coating thinning process are captured by our asymptotic so-
lution. We also produce results which are in excellent agreement
with the experimental findings of Daughton and Givens (6) and
Hwang and Ma (9).
Keywords: Thin films, asymptotics, rotating disk, surface ten-
sion.

NOMENCLATURE
F = An arbitrary dependent variable
F0 = leading order term in the expansion ofF
F1 = first order term in the expansion ofF

Fr = Froude number,
√

(Ω4R2
0H0

3/gν2)
H0 = maximum value of the initial film thickness
R= outer radius of the annular disk
R0 = inner radius of the annular disk
Re= Reynolds number,U0H0/ν

Q0 = amount of liquid deposited initially
Q = amount of liquid depleted
U0 = velocity scale,R0/tc
We= Weber number,σ0/R0H0

2Ω2ρ
c = a constant of integration
c0 = constant of integration
c1 = constant of integration
c2 = constant of integration
g = gravity
h = non-dimensional film thickness distribution
h0 = leading order term in the expansion ofh
h1 = first order term in the expansion ofh
hc = composite film thickness
p = non-dimensional pressure
p′ = pressure
r = non-dimensionalr-axis coordinate
r ′ = r-axis coordinate
t ′ = time
tc = Characteristic time scale,ν/(ΩH0)2

u = non-dimensional speed alongr− axis
u′ = speed alongr− axis
v = non-dimensional azimuthal speed
v′ = azimuthal speed
w = non-dimensional speed alongz-axis
w′ = speed alongz-axis
z= non-dimensionalz-axis coordinate
z′ = z-axis coordinate
Greek Symbols
δ = non-dimensional initial film thickness distribution
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δ̂ = initial film thickness distribution
ε = small parameter,H0/R0

µg = viscosity of the gas phase
µl = viscosity of the liquid phase
ν = kinematic viscosity of the fluid
ρ = density of the liquid
σ0 = surface tension coefficient
τ = non-dimensional time
τb = wave breaking time
θ = polar angle
Ω = uniform angular velocity of the disk
Superscripts
c = composite
′ = dimensional
Subscripts
b = break
c = characteristic
l = liquid
g = gas
r = first derivative with respect tor
rr = second derivative with respect tor
z= first derivative with respect toz
zz= second derivativewith respect toz
0,1 = index for the perturbation terms unless specified other-

wise
τ = first derivative with respect toτ

1 INTRODUCTION
Production of thin films on solid surfaces has enormous

practical applications. Thin liquid films can be produced on
smooth solid surfaces either by the action of gravity on station-
ary vertical/inclined planes or by the action of centrifugal force
on rotating disks. The pioneering work of Kapitza (11) on thin
viscous fluid layers has been a catalyst for extensive research on
the production of thin liquid films under gravity. However, sim-
ilar studies under centrifugal force, instead of gravity, have re-
ceived much less attention, in spite of the fact that the centrifugal
force can be controlled at any desired level in a proper laboratory
setting.

Importance of thin film production on a rotating disk has
gained significant momentum over last two decades in connec-
tion with the coating on IC chips and other substrates in micro-
electronics industry. The first theoretical study of the associated
viscous flow in this field was carried out by Emslie et al. (7)
almost forty years ago. They considered axisymmetric flow of
a Newtonian fluid on a planar substrate rotating with constant
angular velocity and assumed that a steady state will reach when
centrifugal and viscous forces balance each other. A study of this
simplified problem allowed the authors to show that the unifor-
mity of the film is not disturbed as the film thins gradually. Sub-
sequent authors have extended this work to include various phys-

ical factors including surface tension, air-shear, non-Newtonian
fluids, non-planar substrate, evaporation and adsorption. In this
connection, the review article of Larson and Rehg (13) should
also be cited.

Over the past three decades, various authors have attempted
to explain and understand the various relations among different
factors involved in spin-coating process. Daughton and Givens
(6) performed careful experiments and showed that the final film
thickness is largely insensitive to the initial amount of fluid de-
posited on the disk, the rate of removal of the fluid, the rotational
acceleration and even the total spin time. Strong dependence was
observed for initial solute concentration and the final spin speed
by Meyerhofer (17). Sukanek citesukanek85 proceeded further
to consider the effects of evaporation rate on the spin speed and
solute concentration. Jenekhe and Schuldt (10) extended this
problem to the case of non-Newtonian fluid and studied the ef-
fects of elasticity on this flow. Lawrence (14) extensively re-
viewed some of the main contributions to the theory as well as
experimental observations. But all these analyses were based on
the typical hydro-dynamical approximation as employed by Em-
slie et al. (7).

Full Navier-Stokes equations were first considered by Hig-
gins (8) to study the flow development through a matched asymp-
totic expansion procedure. Later, Dandapat and Ray (3; 4; 5) and
Ray and Dandapat (19) extended the problem to study analyti-
cally the effects of thermocapillarity and magnetic field on the
rate of film thinning. They observed that thermocapillary effect
plays a vital role in enhancing the film thinning rate. In these
studies it is tacitly assumed that the disk is wet so that the clas-
sical no-slip boundary condition can be applied at every point on
the disk surface and the film flows under a planar interface for
entire period of spinning. Another important class of problems
viz. spreading of a liquid drop on a rotating disk in connection
with the spin-coating is also studied by Troian et al. (21), Melo
et al. (16), Moriarty et al. (18) and others. These studies were
concerned with the motion of the contact line on the spinning
disk and its stability. A recent study by Wilson et al. (23) of
a spreading thin drop on a rotating disk shows that the profile
of the spreading film becomes flat except near the contact line
where capillary ridge forms that ultimately leads to the onset of
instability.

To the best of our knowledge, only Matsumoto et al. (15),
Wang et al. (24) and Kitamura (12) considered non-planar free
surface and studied the unsteady problem. Matsumoto et al. (15)
assumed a hemi-spherical liquid blob on the wetted surface of the
disk and studied numerically spreading of the blob on a rotating
surface and the role of different forces on the development of thin
film. Using a similarity transformation on both time and space
(radial coordinater), Wang et al. (24) reduced the Navier–Stokes
equations to a set ordinary differential equations and solved these
numerically. The present study is parallel to that of Kitamura
(12) as both of these studies are on the unsteady development of
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a thin film on a rotating disk for initial non-planar free surface.
Kitamura (12) considered a hemi-spheroidal shaped liquid blob
placed on the center of the disk and studied the evolution of film
thickness on the surface using an expansion for the film thickness
in powers ofr2 and obtained the composite transient film thick-
ness. Thus their solution is valid for small values ofr, whereas
our solution (see below) is valid at all values ofr for thin films.

In this paper, we consider the spreading of a thin liquid film
(with uniform non-uniform initial thickness) on an annular spin-
ning disk which is initially wet. The chief justification for the
use of this type of disk is that the liquid moves radially out-
ward by the action of centrifugal force, and the flow eventually
becomes uniform at a sufficient distance from the center of the
disk. Therefore most the substrates get deposited in the grooves
at a larger (sayr > a). In order to minimize the wastage of the
expensive coating liquid which are used up for the formation of
the thin film atr < a, this type of spinning disk is generally used
for spin coating. We obtain asymptotic solution for the thick-
ness of the thin film as a function ofr using an expansion for the
film thickness in powers of a small parameter characterizing the
thickness of the film and applying the method of matched asymp-
totic expansion. This solution for small values ofε is valid for all
values ofr and can be used to calculate the thickness of the film
with good accuracy at any point on the disk. Other quantities of
interest such as the velocity field and the rate at which the fluid
is depleted from the disk during thinning process are calculated
using this asymptotic solution. Effects of initial topography of
the free surface, surface tension, Froude number, and Reynolds
number are also addressed. We qualitatively and quantitatively
predict various features of the thinning process which agree well
with the existing numerical and experimental results.

2 GOVERNING EQUAITONS
AND BOUNDARY
CONDITIONS
We consider an axisymmetric flow of a thin film of an in-

compressible viscous liquid on a planar annular disk which ro-
tates about the its axisz passing through its center ‘O’. It has in-
ner and outer radius ofR0 andR respectively, and hasQ0 amount
of liquid deposited on its surface. Our aim is to analytically study
the evolution of initial film thickness:h(r, t = 0) = δ̂(r), R0 <
r < R. The appropriate characteristic length scales along the ra-
dial (r) and the vertical direction (z) areR0 andH0 respectively
whereH0, the maximum value of the initial film thickness, is
much smaller than the inner radiusR0 which in turn is much
smaller than the outer radiusR of the annular disk.

During the spin-off stage, the centrifugal force and the vis-
cous shear across the film are of comparable magnitude. At this
stage, the Reynolds numberRe(= U0H0/ν) is of order one and
the balance of these forces defines a characteristic time scaletc

given by

tc = ν/(ΩH0)2, (1)

whereΩ andν are the uniform angular velocity of the disk and
the kinematic viscosity of the fluid respectively. The velocity
scaleU0 is defined as(R0/tc). Using these scales we introduce
the following dimensionless variables as

t ′ = tcτ, r ′ = R0 r , z′ = H0z, h′ = H0h,

δ̂ = H0δ, u′ = U0u,

v′ = (U0/
√

εRe)v, w′ = εU0w, and

p′ = (νR2
0ρ/H0

2tc)p, (2)

where the primed variables denote the relevant dimensional
quantities and the dimensionless parameterε = H0/R0 is very
small according to our previous assumptions. Using (2) in the
equation of continuity and in Navier-Stokes equations reduce
these to the following dimensionless form.

ur +(u/r)+wz = 0,
εRe[uτ +uur +wuz]− (v2/r) =
−pr +uzz+ ε2[urr +(u/r)r ],
εRe[vτ +uvr +(uv/r)+wvz] =
vzz+ ε2[vrr +(v/r)r ],
ε3Re[wτ +uwr +wwz] =
−pz+ ε2wzz+ ε4[wrr +wr/r]− εRe Fr−2,




(3)

whereu(r,z, t),v(r,z, t),w(r,z, t) are the components of fluid ve-
locities in ther,θ andz directions respectively,p is the pressure

and the Froude numberFr =
√

(Ω4R2
0H0

3/gν2) in which g is
the gravity. Here the subscripts denote differentiation with re-
spect to the indicated variables. Following are the corresponding
boundary and initial conditions in dimensionless form.

• No-slip condition on the disk surface at z= 0:

u(r,0,τ) = 0, v(r,0,τ) = r,

w(r,0,τ) = 0.
(4)

• Shear stress vanishes along the interface at z= h(r,τ):

2ε2hr(wz−ur)+

(1− ε2h2
r )(ε

2wr +uz) = 0, (5)

vz− ε2rhr(v/r)r = 0. (6)
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• Jump in the normal stress across the interface is balanced
by the surface tension times curvature at z= h(r,τ):

−p+2ε2(1+ ε2h2
r )

−1

[wz−hruz+ ε2(h2
r ur −hrwr)]−

ε3We[hrr (1+ ε2h2
r )

−3/2

+(hr/r)(1+ ε2h2
r )

−1/2] = 0. (7)

Here, the Weber number

We= (σ0/R0H0
2Ω2ρ)

in which ρ is the density andσ0 is the surface tension acting
on the free surface of the fluid. In the analysis above, we have
assumedRe Fr−2 = Fr andWe= ε2We, whereWe∼ O(1). This
implies that surface tension is large and is of the orderO(ε−2).

• The kinematic condition at z= h(r,τ) :

hτ +uhr = w. (8)

In deriving the above free surface conditions, we have assumed
that adjacent to the liquid film at the free surface is a gas or liquid
vapor, and therefore the viscosity ratioµg/µl , whereµl andµg are
the viscosities of the liquid and gas phases respectively, is much
less than unity and any motion of the gas is neglected. Further we
assume that all physical properties viz. viscosity, surface tension
etc. are constant in the subsequent analysis.

• The initial conditions:

u(r,z,0) = v(r,z,0)
= w(r,z,0) = 0, z> 0,

h(r,0) = δ(r),
1≤ r < R/R0. (9)

3 SOLUTION OF THE PROBLEM
For ε � 1, we look for asymptotic solution of the problem

defined by (3)-(9) by expanding the dependent variables in pow-
ers ofε.

F(r,z,τ) ∼ F0(r,z,τ)

+ εF1(r,z,τ)+O(ε2). (10)

Using (10) in (3)–(7) and collecting the zeroth-order terms, we
have

u0r +(u0/r)+w0z = 0,
u0zz+v2

0/r = p0r ,
v0zz= 0,
p0z = 0.


 (11)

The corresponding zeroth-order boundary conditions are

u0 = w0 = 0, v0 = r, at z= 0 (12)

u0z = v0z = 0, p0 = 0, at z= h(r,τ). (13)

Without any loss of generality, we have taken in the abovep0 = 0.
It is clear from the set of coupled equations (11) that the zeroth-
order equations are independent of time. The solutions of the
system (11) subject to the boundary conditions (12) and (13) are

u0 = r(hz− z2

2
), (14)

v0 = r, (15)

w0 =
1
3

z3−hz2− 1
2

rz2hr , (16)

p0 = 0. (17)
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Similarly, we obtain the following solutions of the first-order sys-
tem of equations.

u1 = −Fr hr +We

[
hrrr +

hrr

r
− hr

r2

]
[
hz− z2

2

]
+Re

[
rhτ

(
z3

6
− h2z

2

)
+

+
r2hhr

24
z4 +

2
9

rh3z3− 3
5

rh5z

− r2h4hr

6
z+

rz6

360
− rhz5

60

]
,

v1 = Re

[
rhz3

3
− 2

3
rh3z− r

12
z4
]
,

w1 =
1
r

[
We

{
r[

1
r
(rhr)r ]r

}
r

−Fr (rhr)r
](z3

6
− hz2

2

)

+
[
Fr hr −We

[
1
r
(rhr)r

]
r

](
hrz2

2

)

+Re

[
hz6

180
− z7

1260
− h3z4

9
+

3h5

5
z2

+
rhr

360
z6− rhhr

40
z5− rh2hr

6
z4

+
7
4

rh4hrz
2− r2h2

r

120
z5 +

r2h3h2
r

3
z2

− r2hhrr

120
z5 +

r2h4hrr

12
z2 +

h2hτ

2
z2

− hτ

12
z4− rhrτ

24
z4

+
rh2hrτ

4
z2 +

rhhrhτ

2
z2

]
.




(18)

Thus the effect of the surface tension enters into this asymptotic
solution at the first order throughWe.

Using equations foru1 andw1 from (18) in the kinematic
boundary condition (8) foru andw respectively, the long time

evolution equation forh, accurate up toO(ε), becomes

hτ +
1
3r

(
r2h3− ε

{
rh3[Fr hr

−We

(
1
r
[rhr ]r

)
r

]

+
Re
4

(
5
2

r2h4hτ +
9
10

r3h6hr

+
311
105

r2h7
)})

r

+O(ε2) = 0, (19)

which exactly matches with the equation (5) of Kitamura (12).
The present analysis deviates from that of Kitamura (12) in
which an expansion of the film profileh(r,τ) in powers ofr 2 is
used to study the evolution of film thickness.. Thus his analysis
is valid near the rotational axis (atr = 0) only. For asymptotic
solution for small values ofε which is valid for all values ofr,
we instead expand the film profileh(r,τ) in powers ofε

h(r,τ) ∼ h0(r,τ)+ εh1(r,τ)+O(ε2). (20)

Using (20) in (19) and collecting the coefficients of orders up to
ε, we obtain at the lowest order the following governing equation

h0τ + rh2
0h0r = −2

3
h3

0, (21)

while at orderε we have

h1τ + rh2
0h1r =−2(h2

0 + rh0h0r)h1

+
1
3r

[
rh3

0

{
Fr h0r −We[

1
r
(rh0r)r ]r

}

+Re
( 34

105
r2h7

0−
2
5

r3h6
0h0r

)]
r

. (22)

It follows from equation (21) that

d
dτ

h0(r(τ),τ) = −2
3

h3
0(r(τ),τ), (23)

along the characteristic curver(τ) satisfying

d
dτ

r(τ) = r(τ)h2
0(r(τ),τ). (24)
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Upon integration, these two equations give

h0(r(τ),τ) = c0

(
1+

4
3

c2
0τ
)− 1

2

along

r(τ) = c1

(
1+

4
3

c2
0τ
) 3

4

. (25)

It also follows from (25) that along each characteristic curve (24),

r(τ)h
3
2
0 (r(τ),τ) = c1c2/3

0 = constant. (26)

Here c0 and c1 are characteristic-curve-dependent constants.
Since the above equations are valid at large times, these con-
stantsc0 andc1 can be related to initial data by matching these
solutions with small time solutions which we discuss later in the
next section. These two equations in (25) can be combined to
obtain

r(τ) = c1h
− 3

2
0 (r(τ),τ)

(
1

h2
0(r(τ),τ)

− 4
3

τ
)− 3

4

, (27)

which is in agreement with the works of Melo et al. (16) and
Moriarty et al. (18) on the spreading of a drop on a rotating disk.

Similarly, it follows from equation (22) thath1 can be inte-
grated along the same characteristic curve (24). In so doing, we
obtain

h1(r(τ),τ) = −2
9

Fr c2
0c−2

1 χ−5/2

+
32
81

We c20c−4
1 χ−4

+
62
315

Re c50χ− 5
2 +c2χ− 1

2 , (28)

along the characteristic curve (24). In the above,χ = (1 +
4c2

0τ/3) andc2 is the constant of integration. In order to find the
constantsc0,c1,c2 by matching these solutions with short time
solutions, we next find short time solutions.

3.1 Short time analysis
At the spun-up stage, the time scale is dictated by the fact

that the local inertial term is of the same order of magnitude as
the viscous and the centrifugal terms in the governing equations.
The appropriate time scale is then given by

t = τ/ε, u = u, v = v, w = w,

h = h, p = p, r = r, and η = z, (29)

where new notations are introduced for short-time solutions for
all other variable. In these variables, the governing equations of
motion become

ur +(u/r)+wη = 0,
Reut + εRe[u ur +wuη]
− (v2/r) = −pr +uηη
+ ε2[urr +(u/r)r ],

Revt + ε Re[u vr +(uv/r)+w vη] =
vηη + ε2[vrr +(v/r)r ],
ε2Rewt + ε3Re[uwr +wwη] =
− pη + ε2[ε2wrr + ε2

r (wr)
+wηη]− εFr.




(30)

The associated boundary conditions reduce to

u = w = 0, v = r at η = 0, (31)

2ε2hr(wη −ur)+
(1−ε2 h

2
r ) (ε2wr +uη) = 0,

vη − ε2rhr(v/r)r = 0,
−p̄+2ε2(1+ ε2h̄2

r̄ )−1

[wη + ε2ūr̄ h̄2
r̄ − ε2wr̄h̄r̄ − ūηh̄r̄ ]

−ε3c−1[h̄rr (1+ ε2h̄2
r̄ )3/2

+(1+ε2h̄2
r̄ )

−1/2(h̄r̄/r̄)] = 0,




at η = h, (32)

ht + εuhr = εw at η = h, (33)

and the initial conditions remain the same, i.e.

u(r,η,0) = w(r ,η,0) = v(r,η,0) = 0,

h(r,0) = δ(r), (34)

for all values ofz and r in the film. The matching conditions
are derived from the requirement that, for continuity in the flow
structure, the flows in the spin-off and the spun-up stages are
smoothly connected. This leads to the condition

lim
t→∞

FSU = lim
τ→ 0

FSO, (35)

where the subscripts ‘SU’ and ‘SO’ represent the spun-up (short
time) and spin-off (long time) stages respectively. Expanding the
variables in powers ofε (see (10)) and substituting these in (30)–
(34), we obtain, to the leading-order, the following equations

u0r +(u0/r)+w0η = 0,
Reu0t − (v2

0/r) = −p0r +u0ηη,
Rev0t = v0ηη,

p0η = 0,


 (36)
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with the boundary conditions

u0(r ,0, t) = w0(r,0, t) = 0,

v0(r ,0, t) = r, (37)

u0η = v0η = 0, p0 = 0, on

η = h(r , t), (38)

h0t = 0, onη = h(r, t), (39)

and the initial conditions as

u0(r,η,0) = w0(r ,η,0)
= v0(r,η,0) = 0, (40)

h0(r ,0) = δ(r). (41)

From (39) and (41), we have

h0(r, t) = δ(r), for t ≥ 0,

1≤ r < R/R0. (42)

The solutions of equations in (36) satisfying (37)–(38) and (40)
are

u0(r,α, t) = r

[
δ2(r)(α− α2

2
)

−2δ2(r)
∞

∑
p=1(2)

sin(λpα)
λ3

p

exp(−λ2
pt/Reδ2(r))

− 4t
Re

∞

∑
p=1(2)

(sinλpα)
λp

exp(−λ2
pt/Reδ2(r))

−16
∞

∑
p=1(2)

∞

∑
n=1(2)

δ2(r)Ao
np

(λ2
p−2λ2

n)

× (sin(λpα)
{

exp(−λ2
nt/Reδ2(r))

−exp(−λ2
pt/Reδ2(r))

})
−32

∞

∑
p=1(2)

∞

∑
n=1(2)

∞

∑
l>n

δ2(r)Al
np

λ2
p− (λ2

n+λ2
l )

×sin(λpα)
{

exp(−(λ2
n +λ2

l )t/Reδ2(r))

−exp(−λ2
pt/Reδ2(r))

}]
,

v0(r,α, t) = r

[
1−2

∞

∑
n=1(2)

sin(λnα)
λn

exp(−λ2
nt/Reδ2(r))

]
,

w0(α, t) = δ3(r)
(

α3

3
−α2

)

−4δ3(r)
∞

∑
p=1(2)

cos(λpα)−1
λ4

p

exp(−λ2
pt/Reδ2(r))

− 8tδ(r)
Re

∞

∑
p=1(2)

cos(λpα)−1
λ2

p

exp(−λ2
pt/Reδ2(r))−32δ3(r)

∞

∑
p=1(2)

∞

∑
n=1(2)

Ao
np

λp(λ2
p−2λ2

n)

× (cos(λpα)−1)
{

exp(−2λ2
nt/Reδ2(r))

−exp(−2λ2
pt/Reδ2(r))

}
−64δ3(r)

∞

∑
p=1(2)

∞

∑
n=1(2)

∑
1>n

Al
np{cos(λpα)−1}

λp
{

λ2
p−λ2

n−λ2
l

}
× ({exp[−(λ2

n +λ2
l )t/Reδ2(r)]

−exp[−λ2
pt/Reδ2(r)]

})
, (43)

whereη = αδ(r), λn = nπ/2,n = 1,3,5, . . ., Ao
np = 1/(λp(λ2

p−
4λ2

n)) andAl
np = λp/(λ4

p + (λ2
n − λ2

l )
2 − 2λ2

p(λ2
n + λ2

l )). Since
the free surface will vary within 0≤ η ≤ δ(r) ≤ 1 after the start
of the rotation of the disk, we have assumed that 0≤ α ≤ 1 in
finding (42). To complete the solution we need to calculate the
first-order correction to the film thickness for short time. From
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the kinematic condition we obtain the first-order correction as

h1(r , t) = −2
3

δ3(r) t −4δ5(r) Re

∞

∑
p=1(2)

(
exp(−λ2

pt/Reδ2(r))−1

λ6
p

)

− 8
Re

∞

∑
p=1(2)

1
λ2

p

×
{

Reδ3(r)t
λ2

p
exp[−λ2

pt/Reδ2(r)]

+
Re2δ5(r)

λ4
p

(exp[−λ2
pt/Reδ2(r)]−1)

}

−32δ5(r)Re
∞

∑
p=1(2)

∞

∑
n=1(2)

Ao
np

λp(λ2
p−2λ2

n)

×
{

exp(−2λ2
nt/Reδ2(r))−1

2λ2
n

−exp(−λ2
pt/Reδ2(r))−1

λ2
p

}

−64δ5(r) Re
∞

∑
p=1(2)

∞

∑
n=1(2)

∞

∑
l > n

Al
np

λp
{

λ2
p− (λ2

n+λ2
l )
}

×
{

exp(−(λ2
n +λ2

l )t/Reδ2(r))−1

(λ2
n +λ2

l )

−exp(−λ2
pt/Reδ2(r))−1

λ2
p

}
, (44)

whereh1(r ,0) = 0 is used. Comparing the above equation (44)
with equations (8a) and (8b) of Kitamura (12), one can see that
the terms for gravity and surface tension are absent from (44).
This is due to the fact that the contributions of these terms in short
time analysis are of the orderO(ε2) and we have considered only
up toO(ε). But the effects of these terms become prominent at
large times (see equations (18) and (22)).

3.2 Matched asymptotic solution
First we calculatec0 andc1 associated with equations in (25)

by using the condition (35) onh0, i.e.

lim
t→∞

h0(t) = lim
τ→ 0

h0(τ). (45)

Since the solutionh0(r, t) given by (42) does not depend on time
t, the above matching condition implies that the solution (25) can

be applied up toτ = 0, and this leads to

c1 = r(0) = ξ (say), c0 = h0(ξ,0) = δ(ξ). (46)

Therefore, to findh0(r,τ), one solves the equation (second equa-
tion in (25))

r(τ) = ξ
(

1+
4
3

τδ2(ξ)
) 3

4

(47)

for ξ and then (first equation in (25)) uses

h0(r,τ) = δ(ξ)
(

1+
4
3

τδ2(ξ)
)− 1

2

. (48)

However, the equation (47) may not have a unique solution be-
cause characteristics (47) may cross depending on the initial film
thicknessδ(ξ). If τb denotes the first time when this happens,
then we can find this by settingdr

dξ = 0. A simple calculation
shows that

τb =
−1

min
[

4
3δ2(ξ)+2ξδ(ξ)δ′(ξ)

] . (49)

Thus, the thin film which evolves in the form of a wave as it
propagates outward first breaks atτ = τb just as a wave does on
a beach. Later we will show such wave breaking phenomenon in
the thin film evolution.

In order to find the first order correction to the film thickness,
we first need to find the constantc2 that appear in (28). The
constantc2 in (28) can also be estimated through the matching
relation (35) between (28) and (44), and this gives

− 2
9

Fr δ2(ξ)ξ−2 +
32
81

Weδ2ξ−4

+
62
315

Reδ5(ξ)+c2 = 0.66087Reδ5(ξ). (50)
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Thus we obtainh1(r,τ) as

h1(r,τ) =
32
81

Weδ2(ξ)ξ−4
(

1+
4
3

δ2(ξ)τ
)−4

(51)

+
(

62
315

Reδ5(ξ)− 2
9

Fr δ2(ξ)ξ−2
)

(
1+

4
3

δ2(ξ)τ
)−5/2

+
(

2
9

Fr δ2(ξ)ξ−2 +0.46373Reδ5(ξ)

−32
81

Weδ2(ξ)ξ−4
)(

1+
4
3

δ2(ξ)τ
)−1/2

. (52)

As before, to findh1(r,τ) using the above formula, one first
solves the equation (47) forξ and then uses (52).

The composite uniform expansion (see Van Dyke (22)) for
the transient film thicknesshc(r, t) is then given by

hc(r,τ) =
[
h0(r,τ)+h0(r,τ/ε)−δ(ξ)

]
+

2
3

δ3(ξ)τ+ ε [h1(r,τ)

+h1(r,τ/ε)−0.66087Reδ5(ξ)
]
.

(53)

To find the composite film thicknesshc(r,τ), one
first solves the equation (47) to findξ, and then finds
h0(r,τ),h0(r,τ/ε),h1(r,τ),h1(r,τ/ε) using (48), (42), (52), (44)
respectively, and finally the composite film thickness using (53).

4 RESULTS AND DISCUSSION
Here we exemplify some of the phenomenon by considering

the following initial film distributionh(r,0) = δ(r).

δ(r) = (r −1)e(2−r), r ≥ 1. (54)

Figure 1 shows the variation of the film thicknesshc(r,τ)
with r at several values of timeτ for Fr = 0 but for finite values
of WeandRe. It shows that the initial film thickness is larger
in the central region than elsewhere. As the free surface of this
film evolves, a wave-like front develops which migrates radially
outward and the film behind this front gradually gets thinner with
increasing time. Moreover, this wave as it propagates eventually
breaks and the film height becomes triple-valued immediately
afterward as seen in the plot forτ = 1.5 in this figure. This figure
shows that the wave breaks at a timet : 0.5< t < 1.5 atξ : 3.0<

ξ < 5.0. A simple calculation involving (49) and (54) shows that
this wave breaks for our example atτ = τb given by

τb = min

{
3e−2(2−ξ)

2(ξ−1)(3ξ2−8ξ+2)

}

= 1.0553694 at ξ = 3.21525. (55)

This is consistent with the plots shown in Fig. 1. It is worth
noting from our expressions for the wave breaking time and its
location that surface tension, gravity and viscosity have no effect
either on the wave breaking time or its location. However, the
wave height at the time it breaks is somewhat mitigated by the
surface tension due to its film-thinning effect (see below).

It is worth making some remarks about the effects of sur-
face tension (Weber number), gravity (Froude number), and vis-
cosity (Reynolds number) on the thinning process of the film.
We notice from above that the Weber number, Froude number,
and Reynolds number enter into the expression for the compos-
ite thicknesshc throughh1(r,τ). A simple manipulation of (52)
with the help of (27) and (46) gives

h1(r,τ) =
2
9

Fr h2
0r−2(χ2−1)

+
32
81

We r−4h2
0(1−χ7/2)

+Re h50

(
62
315

+0.46373χ2
)

,

(56)

whereχ = (1+4δ2(ξ)τ/3).
This equation shows that the term which represents the ef-

fect of surface tension (throughWe) is negative. This implies that
surface tension helps the thinning process of the film. It is also
clear from (56) that the effect of surface tension is more impor-
tant nearr = 1 and negligible for larger. As a result, the central
region thins faster than the outer region. This is contrary to what
one expects in the case of spreading of a drop under centrifugal
force, where surface tension inhibits the spreading process of the
drop. Both of these opposing effects of surface tension can be
understood from the fact that the surface tension tenns to mini-
mize the surface area. In our case, the surface tension does so by
helping the thinning process which reduces the surface area since
the entire surface is wet to being with. In the case of a spreading
drop, the surface area increases with drop spreading due to cen-
trifugal force which is against what surface tension would like to
do. Hence, in this case it opposes the spreading effect. Further, it
can be seen from equation (56) that the gravity (throughFr) and
viscosity (through Re) do not help the thinning process. How-
ever, it is seen from (56) that the effect of gravity is mild at large
r >> 1.
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We have also investigated the effects of the initial amount
of liquid deposited on the disk and the initial topography of the
free-surface on the large time behavior of the thickness of the
film. Results of a prototypical study of the effect of the initial
topography of the free-surface with the operating time and the
initial amount of fluid deposited remaining same are tabulated.
Table I shows the film thickness for four values ofr at τ = 10
andτ = 20 for two types of initial topography of the free surface:
(i) planar with uniform film thickness; and (ii) non-planar with
non-uniform distribution of initial film thickness given by (54).
In both cases, same amount of fluidQ0 is deposited initially on
the disk.

We find that the film thickness vary along the radial direc-
tion r during the evolution of the film from some initial data,
even when the film is uniform initially. The free surface of the
film in both cases (uniform and non-uniform initial thickness)
becomes almost planar (except for a very small region near the
inner perimeter) with uniform thickness at a later stage. For
obvious reasons, this happens sooner when the film is initially
uniform (see Table I). At this stage, the film for the case of
non-uniform initial distribution is thinner as expected. However,
the thinning process of the film continues beyond this stage and
eventually the film attains an almost uniform thickness (for most
part of the disk away from the central region) that is indepen-
dent of the initial distributions considered. It is worth noting in
Fig. 1 that the film becomes fairly of uniform height afterr > 4
at τ = 20 when all the wave breaking and thinning process have
subsided. At very large times, we have obtained almost uniform
film thickness ofO(10−4) for r > 4 for both types of initial to-
pography of free surface.

Figure 2 shows variation of the film height withr at four
different time levelsτ = 0.0, 2.0, 20.0, 500.0 for uniform initial
distributions(a) and(a1) such that the amount of liquid in(a) is
more than that in(a1). It is clear from this figure that the final
film thickness does not depend on the amount of liquid initially
distributed. These above two results are consistent with the ex-
perimental findings of Daughton and Givens (6).

Next we show some plots of the velocity components of the
fluid on the free surface. The plot ofv versusr (which is not
shown here) is linear as expected on the free surface due to no-
slip condition. Figure 3 shows the plots ofu andw againstr
for different values ofτ. It is worth mentioning here that the
variation ofv with τ for fixed r is negligible.

dQ/dτ, the rate at which the liquid is depleted from the
disk, is shown against timeτ in Fig. 4 for both uniform and
non-uniform (given by (54)) initial distributions. HereQ is the
amount of liquid depleted in timet and the initial amount of fluid
Q0 are the same in both cases. It shows that most of the liquid
flows out of the disk initially in a very short time. Thereafter,
dQ/dτ decreases gradually with increasing time and attains the
same value atτ = 25 for both uniform and non-uniform initial
distributions. This means that rate at which the film thins de-

creases gradually and the thinning rate for both becomes same at
τ = 25. However, thinning rate eventually become zero at very
large time which is not shown in this picture. The negative part of
dQ/dτ in Fig. 4 for non-uniform initial distribution in fact repre-
sents the amount of liquid flowing in, and is more than that of the
liquid flowing out of the annular disk. This figure also suggests
that the rate of depletion at early stages of development is more
for uniform initial distribution than the non-uniform one. In other
words, the retention of fluid for non-uniform initial distribution
is more than that for uniform distribution at early stages of the
spreading of the thin film. This result is in excellent agreement
with the findings of Hwang and Ma (9).

5 CONCLUSION
The asymptotic solution presented here provides some un-

derstanding of the film-thinning process associated with spin-
coating. Some of our results explain experimentally observed
facts and some provides new insights into the spin-coating pro-
cess.

We find that the final thickness of the almost planar thin-
film of uniform thickness does not depend on the initial topogra-
phy (planar or non-planar) of the free surface and on the initial
amount of liquid deposited on the spinning disk. For the same
amount of liquid deposited initially, the non-planar initial free
surface enhances film thinning when compared with planar free-
surface. The surface tension is found to enhance film thinning,
and hence attenuates the wave breaking phenomena to the extent
that wave height is less severe when it breaks. However, the wave
breaking time and its location where the wave breaks are not af-
fected by any of the physical factors: surface tension, gravity or
viscosity. However, this conclusion is based onO(ε) accurate
asymptotic solutions.
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Table 1. Comparison of the film thickness hc(r,τ) at several values of

r and τ, when same amount of fluid Q0 is distributed initially either as a

uniform of non-uniform distribution

τ = 10.00

r uniform film non-uniform film

distribution distribution

1.2 0.243 0.112

3.2 0.244 0.234

4.2 0.244 0.250

5.2 0.244 0.253

τ = 20.00

r uniform film non-uniform film

distribution distribution

1.2 0.181 0.082

3.2 0.183 0.167

4.2 0.183 0.176

5.2 0.183 0.180
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Figure 1. Variation of the film thickness hc(r,τ) for non-uniform initial

distribution with respect to r for several values of time τ: τ = 0.0 (I), τ =

0.5 (II), τ = 1.5 (III), τ = 2.0 (IV), τ = 20.0 (V).
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subsequent developments of the amount Q1 and the dotted line for Q2.
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(c) and (c1) for τ = 20.0 and (d) and (d1) for τ = 500.00.
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