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15. Fast Algorithms and Scientific
Computation

Prabir Daripa
Department of Mathematics, Texas A&M University, College Station, TX-77843

Abstract Fast and accurate algorithms play an important role in scientific
computation because they enable us to accomplish computations faster than otherwise
it is possible. This also makes computation of high quality solutions of complex
problems more feasible. However, significant progress in this direction is necessary
in order to narrow the gap between today’s scientific needs and system (hardware
as well as software) performance. In recent years, one of the ways speed-up in
computation has been achieved is by parallel compuling, i.e., by simuitaneous use
of several processors in parallel. Efficient parallel computing requires efficient
paralle! algorithms. This chapter, among other things, discusses two paralle] algarithms
developed and implemented within last few years by the author and his colleague
Leo Borges. This paper discusses only the theoretical aspects of these algorithms.
More details and results of numerical implementation can be found in Borges and
Daripa [6, 8). _

Keywords Singular integral transform, fast algorithm, parallel processing, distributed
memory, pipelining algorithm.

1. Introduction

Many problems of industrial or/and scientific interest may require to handle an
excessive amount of data. Such problems usually presents large memory
requirements and intensive floating point computations. The design of fast
algorithms in itself does not eliminate the need for improved computing resources.
An immediate consequence is the demand for paraliel computing. Distributed
memory multiprocessors provide the resources to deal with large-scale problems.
Data can be partitioned along processors so that the storage constraints and the
communication overhead are minimized. This basic philosophy behind parallel
computing is addressed here through its application to singular integrals and
partial differential equations. '

Singular integrals play an important role in a wide variety of applied sciences
including mathematical physics, computational sciences, and continuum mechanics
and clagsical methods for partial differential equations (PDEs), just to mention
a few. Their accurate and efficient evaluations help solve complex problems in
many of these areas, and in many cases allow computations of high resolution
solutions feasible.

In {15, 16, 18], Daripa and his colleagues laid the mathematical foundation of
an algorithm for fast and accurate evaluation of certain singular integral transforms
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in the complex plane. Such integrals arise in the integral methods
elliptic partial differential equations in the complex plane. By const
algorithm offers good parallelization opportunities and a lower co
complexity when compared with methods based on quadrature rules. Construction
and implementation of such a parallel algorithm for singular integral transformg
in complex plane has been described in detail by Borges and Daripa [6]. The
basic principle behind these al gorithms can be applied to solve partial differentig]
equations in the real plane. This has been done for Poisson’s equation in Borges
and Daripa [8]. Both of these parallel algorithms only utilize a Ii near neighbour-
to-neighbour communication path which makes the ai gorithms very suitable for
any distributed memory architecture. The algorithms are highly parallelizable
and our implementation of these algorithms is virtually'architecture-indcpendcm_
Numerical results and theoretical estimates (see [6, 8]} show goad paraliel scalability
of the algorithms.

In this chapter, we present only theoretical aspects of both of these parallel
algorithms and their complexity issues. For implementation and numerical results,
we refer the reader to Borges and Daripa [6, 8]. Each algorithm is presented in
a separate scction and is self-contained. This has the advantage that one can read
each of these sections without reading the other. For this convenience, I have
allowed some amount of overlap between the sections on these algorithms.
Section 2 below discusses the parallel algorithm for singular integral transforms
in the complex plane. Section 3 provides the parallel algorithm for solving the
Poisson equation on a disk. We conclude in section 4 where we suggest a list of
problems related to the extension of these ideas and algorithms to arbitrary
domains in two- and three-dimensions. Various combinations of some of these
problems can be good candidates for new M.S./Ph.D. thesis problems.

ot solving
ruction, the
mputational

2. A Parallel Algorithm for Singular Integral Transforms

Fast aigorithms for the accurate evaluation of singular integral operators are of
fundamental importance in solving clliptic partial differential equations using
integral equation representations of their solutions. For example, the following
singular integral transform arises in solving Beltrami equations [16]:

o)1 [ o dan, g=gem
BO:1)

where k is a complex valued function of ¢ defined on B(0; 1) = {z:]z{< 1}, for
a suitable finite positive integer s [18]. Daripa [16, 17] has used the Beltrallni
equation for quasiconformal mappings [16] and for inverse design of airfoils
{(14]. Singular integral operators arise in solving problems in partial dif‘ferent‘lal
equations [4, 5, 13, 15, 31, 32, 33], fluid mechanics [3, 14], and electrostatics
[27] using integral equation methods.

The use of quadrature rules to evaluate (1) presents two major disadvantages:
First, the complexity of the method is 2 (N %) for a N'% net of grid points. In terms
of computational time, it represents an impracticabie approach for large problem
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sizes (also, quadrature methods deliver poor accuracy when employed to evaluate
ertain singular integrals). Daripa [15, 16, 18] presented a fast and accurate
algorithm for rapid evaluation of the singular integral (1). The algorithm is based
on some recursive relations in Fourier space together with FFT (fast Fourier
transform). The resuiting method has theoretical computational complexity
Z(N* log, N) or equivalently £(log; N) per point which represents substantial
savings in computational time when compared with quadrature rules. Furthermore,
results are more accurate because the algorithm is based on exact analyses.

Below we present a parallel algorithm to solve the singular integral operator
(1). The recursive relations of the original algorithm [15, 18] (see § 2.1 below)
are redefined in a way that message lengths depend only on the number of
Fourier coefficients being evaluated, so that communication costs are independent
of the number of annular regions in use. The implementation is based on having
~ two simultaneous fluxes of data traversing processors in a linear path configuration.
It allows overlapping of computational work simultaneously with data-exchanges,
and having a minimal number of messages in the communication channels. The
resulting algorithm is very scalable and independent of a particular distributed
memory configuration.

The remaining of this section is organized as follows. Subsection 2.1 reviews
from [18] the sequential algorithm while subsection 2.2 describes the parallel
implementation, subsection 2.3 presents the analysis of the paraliel algorithm,
and subsection 2.4, presents our approach to analyze the scalability of the algorithm.,

2.1 The Algorithm
The fast algorithm to evaluate the singular integral transform (1) was developed
in [16, 17]. The method divides the interior of he unit disk B(Q; 1) into a collection
of annular regions, The integral and #(0) are expanded in terms of Fourier series
with radius dependent Fourier coefficients. The good performance of the algorithm
is due to the use of scaling one-dimensional integrals in the radial direction to
produce the solution over the entire domain. Specifically, scaling factors are
employed to define exact recursive relations which evaluate the radius dependent
Fourier coefficients of the singular integral (1). Then inverse Fourier transforms
are applied on each circle to obtain the value of the singular integrals on all
circles.

To review the mathematical foundation of the algorithm, we state the following

theorem verbatim from (17]:
Theorem 2.1 If T,Ai(0) exists in the unit disk as a Cauchy principal value, and

h(re*y= X h,(r)e™ then the nth Fourier coefficient S,,(r) of T,,A(re’®) can

fn=—oa

be written as
Cn,m(r) + Bn,m (r), rx0,
Spm(r) =10, r=0andn # 0, ()
So.m (0), r=0andn=0,
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where

2(-1)™* f—n—1Y 7 ¢y
rml (m—l L(EJ FrealPddO, 1<,

Com(r) =40, : ~m<n<0, (3)
2 m+n—1 1/ B min-1

and B, ,,(r) and S ,(0) are defined as follows.
Case 1. If h(0) is Holder continuous in the uni
<landm=1or 2, then

t disk with exponent no<y

1
Som(0) = -2 lim _[ P hy,(p)dp, (4)
g0 J,
B 0, m=1,
n.m(r) - hn+2 (r)‘ m= 2. (5}
Case 2. If k(o) is analytic in the unit disk and m is a finite positive integer, then
Sﬂ',m(o) = - hm{r = l)s (6)
Bn.l(") =0, Q)
and form>2
0, n<-l,n#-~m
D™ r¥mpo(r), n=-m,
Bum(r)= {p T (8)
( J rzﬂmhmi-n(")’ n2 -1
m-2

The strength of the above theorem is evident when considering the unit disk
8(0; 1) discretized by N x M lattice points with N equidistant points in the
angular direction and M equidistant points in the radial direction. Let 0 = n<r

<...<ry= 1 be the radii defined on the discretization. The following corollaries
of Theorem 2.1 are presented verbatim from [17]:

Corollary 2.1 It follows from (3) that Cam(1)=0forn 20, and C,,(0) = O for

n < —m. We repeat from (3) that C, ,(r) = 0 for ~ m < n < 0 for all values of # in
the domain.

Corollary 2.2 If r;> r; and

—_1ymH f a r N\ mtn-l
g"l)_—.’—( " JIJ [r—"] Apen(P)dP, n<-m,
£ “m=1 foj

Lo n
Cﬂ . S s

-1 ri mn-1
-—f:(m" ] f : ["—‘] bmon(P)D. 120,
T m~1 o
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r;\" .
then Cn.m(rj) = (%] Cn.m(ri) + C:::':nuv ns —m, . (10
i

i

n
Com(n) = (g) Com(rs) — Cilyy n—-20. (11)
Corollary 2.3 LetO=r <ry<...<ry=1,then

! B
p> (:—’J ciM forn < —-mandi=2,... .M,
C,,'m(f[)= in2 i

M-l \B (12)
—E(—‘) Cil forn20andi=1,...,. M~ 1.

i=t \ i

Corollary 2.2 defines the recursive relations that are used in the calculation of
the Fourier coefficients §,,, of the singular integrals in (1). It prescribes two
recursive relations based on the sign of the index  of the Fourier coefficient §,, ,,
being evaluated. We will address the coefficients (such as C,,) with index
values n < —m as negative modes and the ones with index values n > 0 as positive
modes. Equation (10) shows that negative modes are built up from the smallest
radius r; towards the largest radius ry,. Conversely, equation (11} constructs
positive modes from ry, towards r,. We summarize these concepts with a formal
description of the algorithm in Figure 1.

Although steps 3 and 4 are very appropriate to a sequential algorithm, they
may represent a bottleneck in a parallel implementation. In the next subsection,
we overcome this problem by redefining the formal description of the above
algorithm.

2.2 Parallel Implementation
The performance of a parallel system is largely determined by the degree of
concurrency of its processors. The identification of intrinsic parallelism in the
_method leads to our choice for data partitioning [24]. The fast algorithm employs
two groups of Fourier transforms (steps 1 and 7) which can be evaluated
independently for each fixed radius r,. Consequently their computations can be
performed in parallel. Since each FFT usually engages lengthy computations,
the computational granularity of each processor will be large and therefore very
well suited for MIMD architectures. Negative effects resulting from communication
delays in a MIMD computer can be minimized by an efficient implementation.
Mechanisms to reduce communication delays on message-passing architectures
include: evenly distributed load balancing between processors, overlapping of
communication and computations, reduced message lengths, and reduced frequency
in exchanging messages. Often the above mechanisms are conflicting and, in
practice, a tradeoff will define an efficient implementation. We address this issue
in this section.
The fast algorithm in subsection 2.1 requires multiple Fourier transforms to
be performed. Specifically, it computes M FFTs of length ¥ in steps 1 and 7 of
Algorithm 2.1. For the sake of a more clear exptanation, let P be the number of
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Algorithm 2.1 Sequentia) Algorithm for the Singular Integral Transform

Given m 2 1, M, N and the %n'd values A(re”™, 1 e (1, M), ke [1, M), the algorithm
retums the values of Tiure™™) (e (1, M), k € [1, M.

1. Compute the Fourier coefficients hair), n € [~ NI2 +m, N2\, for M sets of data at /
[, M].

2. Compute the radial one-dimensional integrals Cy00,ie (LM-1],ne - M2, -n} U
{0, N72) as defined in (9). .

3. Compute coefficients C, (1) for each of the negative modes 1 [~N/2, =] as defined ip
(10}
{a) Set C,(r) = 0.
() Fori=2,... M

Cn,n (rl') = (r_’i-J Cn;!l (rl—l) + C:-:‘
1=l
4. Compute coefficients C, (71} for each of the positive modes » € [0, N72] as defined in
(1)

@ Set C, (i) = 0.
(b) Fnrf:M—l,..., |

Cn.m (n)= (;:}_IJ Cn‘n (rhl) - C:f:l'

5. Ifm> ], set Cordrd=0,06 [, M], forn e [-m, =1].

6. Compute the Fourier coefficients Samlr)le [, Mlne [-NR2, N2 — m], as defined in
Theorem 2.1, .
Ni2em

7. Compute T, h(re*™¥¥ = Efu , Sum(r)e=™¥ k& [1, N1, for cach radius r e (1, Ml

Fig. 1.  Sequential description of the fast algorithm for the evaluation of the singular
integral transform (1). -

available processors and M be a multiple of P. There are distinct strategies to
solve muitiple FFTs in parallel systems [9, 22). Three approaches are summarized
in [91: (1) Parallel calls to FFTs, (2) Parallel FFT with inner loop, and (3)
Truncated parallel FFT. In the first Case, one sequential N-point FFT algorithm
is available on each processor. For a total of P processors, the M sequences are
distributed between processors so that each one performs M/P calls to the FFT
routine, For the second case, only one parallel FFT is implemented. In this case,
the data manipuliated by the algorithm is a set of N vectors, each vector of length
M, such that each component of a vector belongs to a distinct M sequence. It
corresponds to substituting single complex operations in the parallel FFT algorithm
by an inner loop over M. In the third case, the bit-reversal is applied individually
on each input sequence and then a unique sequence of length MN is obtained by
concatenating all M sequences. A parallel FFT is applied but only for log,

Nstages. Therefore, the Fourier coefficients for a given M sequence can be
extracted from the original place where it was concatenated. Since, both the

parallel! FFT with inner loop and the truncated parallel FFT approach present

identical computational loads and synchronization overheads [9), their performance

is very similar. Perhaps the major disadvantage of the truncated FFT verson is
the cumbersome programming overhead when M is not a power of 2. Parallel
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calls to sequential FFTs perform bit-reversal setup and sine-cosine calculations
M/P times on each processor: jt Tepresents an overhead that may produce larger
running times when comparing this strategy against parallel FFT with inner loop
or truncated parallel FFT. Conversely, parallel calls to sequential FFTs presents
no synchronization overhead because no interprocessor commaunication occurs.
As a final remark, methods to maximize bandwidth utilization and minimize
communication overhead for paralle]l FFTs may experience network congestion
when aiming to overlap communication by computations [11).

We adopt an improved implementation of parallel cajis to sequential FFTs by
assigning grid points within a group of circles to each processor. The FFT
transforms present in the algorithm contribute the most to the computational cost
of the algerithm. Also, each FFT calculation presents a high degree of data
dependency between grid points re2%*# gor 5 fixed radius r,, ! € [1, M]. Data
locality is preserved by performing Fourier transforms within a processor.
Specifically, given P processors p;, j=0,..., P— |, data is distributed so that
Processor p; contains the data associated with the grid points r,e®™ g e 11 N]
andle [jM/IP+1,(j+ 1)M/P]. Thus, each FRT can be evaluated in place without
communication. This approach is free of network congestion. Moreover, several
different forms of the FFT algorithm exist [2). But all of them proceed in a

group of data associated with / e (JMIP+ 1, (j + DM/P] in the same processor
pp» all MIP Fourier transforms can be performed simuitaneously. In practice, it
means that mechanisms like bit-reversal and calls to sines and cosines are computed
Only once on each processor.

A straightforward formulation for the parallel algorithm might attempt to use
two sets of communication. The first set is related with step 2 in Al gorithm 2.1
and encompasses communication between neighbour processors to exchange the
boundary Fourier coefficients required in equation (9). The second set arises
from the inherently sequential recurrences insteps 3 and 4 where a given coefficient

Cam(ri) depends on all terms LY with i e [2, 07, if n < ~m, or Cr¥ with | e

[, M-1]if n 2 0. Assume that there is no interprocessor communication. The

~]

only coefficients C,’;,,,, that can be computed on processors p; are C,',"ﬁ,,; i, ke

GMIP+m+ 1, G+ 1) M/P - m]. Consequently, a meassage-passing mechanism
must be used to exchange coefficients C,;",,, aCross processors. A closer look into
the algorithm reveals that a better parallel implementation can be formulated.
The mechanism of redundant compultations, that is, computations that are
performed on more than one processor, can be used to improve performance of
parallel programs on distributed memory machines. The first set of communications
can be totally eliminated. Since the algorithm employs equations (10) and (11)
that only utilize consecutive radii, only terms of the form C ,’,T,i;" and C,i'.f: Lie
[iMIP+ 1, G+ 1)M/P), are required in the processor p;. Notice that pj already
evaluates the Fourier coefficients ha(r), Le [jM/P + 1, U+ DM/P). In the case
of a numerical integration based on the trapezoidal rule and m = 1, for example,
only the Fourier coefficients for { = JMIPand =G+ DM/P + 1 must be added
to the set of known coefficients for processor p;. That is, if the initial data is
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overlapped so that each processor evaluates coefficients for radii r, I € [jM/p,
(J + DM/P + 1}, there is no need for communication. The number of circles
whose data overlap between any two neighbor processors remain fixed regardless
of the total number of processors in use. Consequently, this strategy does not
compromise the scalability of the algorithm.

The second set of communication arises from the fact that fecurrences (10)
and (11) should be evaluated on the same processor. If terms Crm’ and CH are
not transferred from one processor 1o another, the data dependency imposed by
(10) and (11) indicates that at most two processors (one for # < —m and other for
1 2 0} would be performing computations and keeping all remaining processors idle,
It basically implies that the data partitioning scheme must be reverted to allow
processor p; to evaluate the coefficients C,,,(r), [ € [1, M], for n e [/NIP - Nf2,
(f + 1)NIP — N/2]. When understanding data as an N X M matrix distributed in a
row-wise partitioning, the above data-reversion operation {swap) corresponds
t0 a matrix transposition problem, which may flood communication channels
either with messages of length @ (NM), or messages of the broadcast type. In
both cases, it can easily result on large communication overhead for the algorithm,

However, Corollary 2.3 leads to a more efficient parallelization strategy as
shown below. To achieve this, we first rewrite the sums in equation (12) as

¢ L ,

Com(r)=n" .*Ez {}I—J C,:':,}," forn< -mandi=2,.. M (13)
M=~1 LA

Com(n)=-r X (rl) Ci forn20andl= L...,M-1, (14

i=l

! no M-1 a
so that sums X (rl] Cit and Z'} (ri] CH1 will be distributed across
=2\ % i=t \ Ti
processors. Before we carry out computations with formulae {13) and (14), we
should note that these new formulae are unstable for large values of n.
The above computations can be stabilized by performing more regulat
calculations as in the original recurrences (10) and (11). In both approaches,

computations evaluate terms of the form

5

where n € [-N/2, N/2 — m} depends on the number N of Fourier coefficients. In
the case of (10) and (11), we have a/8= r/r y,i=2, ..., M, forn <-m, ax?d
alf=ring,l=1,...,M~1,forn20. Since r._, < r; < ry,y, the algorithm in
essence only evaluates increasing positive powers of values on the interval
(0, 1). Moteover, for the case of M equidistant points in the radial direction we
have n=(I- DAM - 1), I =1, ..., M, which implies that those values belong
to the interval [0, 5, ). Unfortunately, in the case of (13) and (14) we have
alff = Ur, r; € (0, 1], which may imply on either a fast overflow for large
absolute values of n < —m, or a fast underflow for large values of n 2 0. We
overcome this problem by making use of the stabilized recurrences
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gi(n) =0,
qr{n) = (%:—IJ,! (gizy(n) + C,':;,,l‘l), =2, ... M Vn<-m (16)
where we have defined ry,,; = 1, and
qu(n) =0,
g (n) = [%'-J (@iam) + CH), 1=M-1,...,1, vnz0 07

A first observation is that the above recurrences are stable as in the case of the
original recutrences (10) and (11) because terms (a/8) " are also increasing positive
powers of values on the interval (0, 1). Secondly, recurrences (16) and (17) can
be used to evaluate formulae (13) and (14). In fact, for a fixed I € [2, M) and
n < —m we obtain :

gi (n) = (’—'l] [giy(n) + C¥)

L

(5[ o ez ]

- 27— 1-
) [91-2(”) LG C...,i‘J

=7 - .

. 711 nh '

- ! ”
= | 2L RRIPREY
=y [ rzu + .f=22 (rf ) CNJ’I }
! 1 L Li

=1 X -—J Ci, 18

T & ( o nm _ (18)

which implies that equation (13) can be rewritten as

C,,,m(?;)=(—'l—) gi(n) forn< -mandl=2,.. M. (19)

Y

Similarly, for a fixed € [1, M - 1] and n 2 O recurrence (17) evaluates

M-1 1 L
gl (ny=n" 5 (;] Cam, (20)

leading equation (14) to
" n
C,w(r;)=-—(r!—’J gf(ny forn>0andl=1,.... M- 1. (21)
-1

For the purpose of achieving an even distribution of computational load across
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processors, it is helpful to split the computational work when performing
recurrences (16) and (17). We define the following partial sums for each processor
piyji=0,...,P— 1. For the case n < -m, let

' MiP i n \
—_ =14
tp(n) = r;UPH ::22 (_) Cn.m

Ti
G+ MIP Ly (22)
ty(n) = r(,}+l)M.~‘P+l iR 1 (‘;'*J C:!‘—’}‘.l Jj=L .., P~1,
and for n > 0, let
M-1 no
(30(n) = o e f=(P—§MIP+l (%) e
GROMIP |\ (23)
tHn) = rlyp i=,-£p+l (r—J cHl j=0,...,P-2

Since coefficients C,':,:;" n < —m)and C,ff;l (n > Q) are already stored in the

processor p; when i € [JM/P + 1, (j + )M/P], partial sums 7 and ¢} can be
computed locally in the processor p;. Moreover, these computations are carried
out using the same stable recurrences defined for g~ and ¢* in equations (16) and
{n.

If the accumulated sums §j and §},j=0,..., P -1, are defined by
55(n) = t5(n), neE-m
§5(ny = (__—U“’“”’*‘J Spm)+t;, n<-m
ViMiPat
5y =t} nz0
Sp_l(") = tp.](n)s =
and (25)

n

” Fidip _—

Srmy = | =2 | Sjulmy+tf, 20
4 T +DMIP

then we have a recursive method to accumulate partial sums f; and ¢} computed

in processors p, j =0, ..., P — 1. The resulting formulas for §7 and 5] are
given by
GYOMIPE e
57() = e _Zz (7) Com'  forn<-—m, (26)
t= )
M-l 1 a . 2?)

A4 — . it >

and $H(M) = rle i=ﬁ|§!’+l( ; ] Com’ fornz0. {

In fact, for the case of negative modes one can verify that

n n
T r N ~ _
j‘} (1) = (+1) MiP+t IMIP+1 s}_z(n) +i |40
: TiM1P+1 -1 M/PH

A similar p1

Accumul
locally on e
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processor:

Forn>0, Kk
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sum 57, fro

The advan
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and hence sin
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accumulate th
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§7a(n)

Tt -13MiP41

MIP "o 1) M -
B (A e T
i=(j-1)MIP+1 \ Y ' i=jM/p11 \ 1y i

- G+ Mip :
o n tg (n) n ,
= TGy MiPH [h + X (i—) C,i',,l,"

3 rﬂ
) MIPH

T™MiP+1 i=M/Py]
(H)MIP n
=t Y, A i1,i
oM 2 [,J Com'- (28)

A similar proof holds for accumulated sums ¢ 1. o
Accumulated sums §7 and 5 can now be used to calculate coefficients C,
locally on each processor. Given a fixed radiug 7, the associated data belongs t’f,’

processor p; where l € [ jM/P + L, G+ DM/P). Computations in pyonly make use
of accumulated sums from neighbor processors. For 5 < —m local updates in

‘processor pgy are performed as described in Corollary 2.2. Local updates in

processors py, j=1, ..., P — 1 use the accumulated sum §7.1 from the previous
Processor:

Com(Tpeps) = Si0{n) + CIMIP jhrPa

Cm("l) = (%} Crmln) + C::}'J_ 29

For n 2 0, local updates in processor pP_, are alsg performed as described in
Corollary 2.2. Local updates in processors Ppi=0,... P-2usethe accumulated
sum 3;_, from the next processor:

Cn,m("(j-l-l)MfP) = _;}-H(n) - CE;;UM#P,(J"H]M/PH
rl n
Can(n) = (HJ Crm(na) = CH3.

The advantage of using equations (30) and (29) over original recurrences (10)
and (11) is that accumulated sums §7 and § T are obtained using pmigl sums 7
and 77 Since all partial sums can be computed locally (without message passingj)
and hence simultaneously, the sequential bottieneck of the ori ginal recurrences
(10) and (11} is removed. It may be worth pointing out now that the data-
dependency between processors appears only in equations (24) and (25). The
only sequential component in this process is the message-passing mechanism to
accumulate the partial sums, which will be explained in the next paragraphs. The
notation in equations (24} and (25) will be simplified to allow a clear exposition:

(30)

o Relation sy = 57| + ] represents the updating process in recurrence
(24), and
¢ Relation 57 =57, + t;' represents updating (25),
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Figure 2 presents the general structure for the algorithm. Processors are divided
into three groups: processor ppy is defined as the middle processor. Processors
Po. - - - ppry are in the first half, and pep,y, . . ., ppy ate the second half
processors. Due to the choice for data distribution, processors in the first haif are
more likely to obtain the accumulated sum s; before the accumulated sum s*.
In fact, any processor in the first half has less terms in the accumulated sum 57
when compared against s7. Additionally, the dependency is sequential. The
accumulated sum s} on a first half processor p; depends on s, which in turn
depends on sj_,. It suggests the creation of a negative stream (negative pipe): a
message started from processor py containing the values s3 = 5 and passed to
the neighbor p,. Processor p| updates the message to s;” = sg + ¢{ and sends it
to processor p,. Generically, processor p; receives the message s7.; from Pi1s
updates it as s; =s;; + ¢, and sends the new message to processor Pi- It
corresponds to the downward arrows in Figure 2. In the same way, processors on
the second half start computations for partial sums s} . A positive stream starts
from processor pp_: processor p; teceives s}“ from py,; and sends the updated
message s;=s;, +1¢; to p;;. The resulting algorithm is composed by two
simultaneous streams of neighbor-to-neighbor communication, each one with
messages of length N. In short, one pipe started on processor py (negative stream),
and a reverse pipe which starts on pp_; (positive stream). The scheme is free of
data-reversion and communication costs are lower than the same for a matrix
transposition process.

So =14 sg It it
P o A
First half (FP) F Sy =85+ Phe =‘FZ+ +5)
of processors A x
e
-\"\ P “ Positive stream
" Pen Spr =™ Sppaa i
Middle (MP) St = Stna *Tin
processot . .
y # Negative stream
/ ~
Vol R Y
Secand Bett (5P} $pa=Spy thig TPy = Spay +ipa
of processors Pra p “
Pra s =t ' Sp = Spy+isg

time
Fig. 2. Message distribution in the algorithm. Two streams of nelghbor-to-neighbor
messages cross communication channels simultaneously,

Load balance is a fundamental issue in parallel programming. Additionally,
communication overhead is typically several orders of magnitude larger than
hardware overhead [34). Coordination between processors must . attempt (o
have the local computational work performed simultaneously under the same
time frame, and 2. avoid a message passing mechanism that delays local work.
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Thus, messages must arrive and leave the middle processor as early as possible
so that idle times are minimized. As soon as one processor receives a message,
it updates the information and forwards it to the next processor in the pipe.
Figure 3 summarizes the strategy. The algorithm is divided into nine time frames
(from a to 1). The top row (FP) represents one processor belonging to the first
half, the second row (MP) represents the middle processor, and the bottom row
(SP) corresponds to one processor in the second haif. Rectangles indicate the
computational work performed by one processor: the left side represents
computations for negative modes (n < —m), and the right side indicates computation
work for positive modes (n 2 0). Interprocessor communication is represented
by an arrow. Upward arrows belong to the positive stream, and downward arrows
form the negative stream. On the first time frame (a), all processors perform the
same amount of work by evaluating FFT transforms and either the partial sum
(t+) or the partial sum (t=). On frames (b), (¢) and (d), negative and positive
streams arrive at the middle processor (it corresponds to the intersection point at
the center of Figure 2). A processor p; on the first half receives a message from
Pi-1» 8nd a processor py on the second half receives a message from py,, as
indicated on (b). In frame (¢), processor pg,»,; obtains the accumulated sum s+
and sends it to the middle processor ppp,. Similarly, processor ppp_; updates the
accumulated sum s~ which is sent to pp_; in frame (d). The empty slots on (b)
and (c) represent the delay due to interprocessor communication. On (b), the
middle node is idle waiting for the negative and positive streams to arrive. On
this example, time frames for the processor on the top of the figure are shifted
by one time slotin () because the middle node gives precedence to the incoming
message from the positive stream. On frames (d) and (e), all processors evaluate
their remaining partial sums. The middle processor updates the accumulated
~ sums and sends 5~ to the second haif of processors (f), and s* to the first half (g).
The empty slots in frames (e) and (f) indicate the delay for the outgoing messages
to arrive at processors pg and pp_. The last step is to have all processors obtaining
terms C, , and performing inverse FFT transforms in (h) and (i).
Figure 3 also suggests an improvement for the algorithm. Note that the last
group of computations on each processor is composed by the calculation of the

o R 4
™[] Ié["} H I
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=
£
[}
B
o]
=
;f')
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(a) o) © (d) © ) ® () (i)

Fig.3. Coordination scheme to minimize delays due to interprocessor
communication. The middle processor (MP) plays a key role to forward the
positive stream to the first half of processors (FP) and to forward the
negative stream to the second half of processors (SP).
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terms C, .., # € [-N/2, N/2], in (1) and the inverse Fourier transforms. For
the first half processors, Fourier coefficients associated with negative modes
(» < —m) only depend on the accumulated sums s~ which are evaluated in time
frame (d). It indicates that these coefficients can be obtained earlier within the
empty time frame (f). The tradeoff here is that lengthy computations for the Fourier
coefficients may delay the positive stream and, consequently, delay all the next
processors waiting for a message from the positive stream. Thus, the best choice
depends on the problem size given by N and M, and also the number of processors
P. The same idea applies for processors on the second haif: Fourier coefficients
associated with positive modes (n > 0) can be evaluated in time frame (e). We
distinguish these variants of the alporithm by defining

e the late computations algorithm as the original version presented in Figure
3 where each processor evaluates all the Fourier coefficients after all the
neighbor-to-neighbor communications have been completed; and

s the early computations algorithm as the version in which half of the
Fourier coefficients are evaluated right after one of the streams have
crossed the processor.

In the next subsection, we analyze the late computations algorithm in detail and
compare it with other approaches.

2.3 Analysis of the Parallel Algorithm

2.3.1 Complexity of the Stream-based Algorithm

When designing the above coordination scheme, one can formulate a timing
model for the stream-based algorithm. The parallel implementation presents a
high degree of concurrence because major computations are distributed among
distinct processors. However, interprocessor communication is always a source
of parallel overhead. Different problem sizes correspond to distinct levels of
granularity which implies that there is an optimal number of processors asociated
with each granularity. A complexity model plays a key role in the investigation
of these characteristics. For the timing analysis, we consider #, as the message
startup time and ¢, as the transfer time for a complex number. To normalize the
model, we adopt constants ¢, and c; to represent operation counts for distinct
stages of the algorithm. The model follows the dependencies previously discussed

in Figure 3. Each processor performs a set of M/P Fourier transforms in

(c\/2)(MIP)N log, N operations, and computes the radial integrals Ci' using

{co/ 3}(M/P)N operations. To evaluate ither M/P partial sums r* or M/P partial
sums £, each processor takes (c2/3)(M/P)(N/2) operations. Positive and negative
streams start from processors pp., and pq respectively and each processor forwards
(receive and send) a message of length A/2 towards the middle node. The total
time is 2((P — 1)/2)(t, + (N/2)1,). In the next stage, each processor performs
either a partial sum r* or partial sum ¢~ at the cost of (c,/3)(M/P)(N/2) operations.
Positive and negative streams restart from the middie node and arrive in po and
pp-, respectively after 2((P — 1)/2)(¢; + (N/2)t,,) time units for communication.
Additionally, the coefficients C,,,, are computed in (c,/3)(M/P)N operations.
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Finally, (c//2Y(M/P)N log,N operations are used to apply inverse Fourier transforms.
The paralel timing for our stream-based algorithm is given by

T _ o %NloggN-!- ez %N+ AP - 1) (r, + %rw} (31

To analyze the performance of the paralle! algorithm, we must compare the above
equation against the timing estimate for the sequential algorithm. In the later
case, the algorithm starts performing M Fourier tansforms in (¢1/2) MN log,N
operations. Radial integrals are obtained after (c,/3)MN operations, and the
timing for evaluating the Fourier coefficients is also (cx/3)MN. Finally, M inverse
Fourier tansforms take (¢,/2)MN log,N computations. Therefore, the sequential
timing T is given by

T,=c,MNlog, N + %.«.-,MN. (32)

Clearly, most of the parallel overhead must be attributed to the communication
term in equation (31). Although each processor performs an extra set of (ca/3)
(M /P)N computations when obtaining the partial sums ¢~ and #*, the overhead of
the extra cost is still amortized as the number of processors P increases. An
immediate consequence is that overheads are mainly due to increasing number
of angular grid points N. No communication overhead is associated with the
number of radial grid points M. This scenario is made clear when obtaining the
speed-up S*** for the algorithm

r e\MNlogsN + 2 c,MN
3

3
gitream _ = (33)
Tgiean N
P o1 M Nlog; N + o N+ ap- 1)(:34-5-:“,]
cLMN logs N + % ¢, MN
=P (34)

ctMNIlogsN+ c; MN + 2P(P - l)(:, + % r,,)

and the resulting efficiency

J— ciMNloga N + % ca MN a5

i N
ciMNlogo N + c; MN + 2P(P ~ 1)(t, + :w)

Est

1

1+(£31MN+2P(P-1)(:,+% tw))/[clMNlugzN+%CzMN)

(36)

Efficiency measures the fraction of the total running time that a processor is
devoting to perform computations of the algorithm, instead of being involved on
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interprocessor coordination stages. From the above equation, one can detect the
sources of overhead which makes £°*™ < 1. It shows that the efficiency decays
quadratically in the number of processors P.

For the asymptotic analysis of the algorithm, we drop the computational
terms of lower order in (31) since they represent a small amount of overhead
when compared against the communication term in (35). The resulting asymptotic
timing Tp™ for the parallel algorithm is given by

: N
T;sym_—_cij—g-NIogzN+ 2P -1 (rs+ -i—tw}. (37)

Since message lengths depend on N and computational work depends also on M,
distinct problem sizes will present different performances. The number of processors
for which the asymptotic parallel running time 75%™ achieves its minimum is

determined by -@-&- = (. In the case of (37), we have

JP
payme _ cMNlog, N
oo N ’ (38)
21+ 5t

which can be understood as an approximation for the value of P which minimizes
the numerator in (36) for given values of M and V.

2.3.2 Comparison with Other Approaches .

Estimate (31} can also be used to compare the performance of the parallel
algorithm against an implementation based on matrix trangposition. As stated
earlier, this approach aims to evaluate recurrences (10) and (11} within a processor.
Consequently, data must be reverted in all processors as exemplified on Figure
4 for the case where P = 4, Initially, each processor contains data for evaluating
M/P Fourier transforms. It corresponds to each row on Figure 4(a). To calculate
recurrences sequentially, each processor must exchange distinct data of size NM/
P? with all P - | remaining processors. At the end of the communication cycle,
processor p; contains all the terms Cr', n € [ jNIP - Ni2, (j + DNIP - NI2).
Figure 4(b) describes the communication pattern. Rows are divided into P blocks
of size NM/P? 5o that the processor p;exchanges distinct data-blocks with different
processors. The data-transfer pattern involves an all-to-all personalized
communication as in a parallel matrix transposition procedure. For a mesh
architecture, the estimated communication timing [26] is given by

M
TIomspose — 2 (WP - 1) (Zr, + TN rw], (39)
and the total parallel timing T,""*** is obtained by adding the timing for M/P
Fourier transforms, the timing to apply the recurrences, the same Top - tO

revert back data into the original ordering, and the timing for M /P inverse Fourier
transforms. The basic difference in the computational timing when comparing
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Fig. 4. Coordination pattern based on all-to-al) personalized communication:
(8) M/P Fourier transforms are evaluated locally; (b) each two processors
exchange blocks of size MN/P2.

with the case of positive and negatiire streams approach is that there is no need
for the extra set of partial sums with cost {c/3)(M/P)N, The final estimate for the
matrix transposition based algorithm is then given by

T _ o %Nlogzw + %cz -“‘;,i N+ (P - 1)[2:, + @ rw], (40)
which shows the different degree of scalability between both algorithms. In fact,
for the case of the stream-based algorithm, interprocessor communication introduces
a delay of order PN depending on the problem size as it can be derived from the
coefficients in ¢, in estimate (31), Under the same principle, an algorithm based
on matrix transposition generates a delay of order 4MN//P . In a large scale
application, clearly M >> P due to practical limitations on the number of available
processors which makes PN << 4MN/+/P . It implies that the stream-based
algorithm must scale up better than the second approach because of a smaller
communication overhead.

Theoretical estimates can also be used to compare the proposed algorithm
against an implementation based on parailel FFT coding as discussed in subsection
2.2. For this purpose, we consider a parallel binary-exchange algorithm for FFT
as described in {26). In binary-exchange FFT, data is exchanged betwen all pairs
of processors with labelling indexes differing in one bit position. Although
interprocessor communication takes place only during the first log, P iterations
of the parallel FFT algorithm, the communication pattern is proce to produce
large overheads. For a mesh architecture with P rows and 4P columns, the
distance between processors which need to communicate grows from one to
VP /2 links. In practice, it means that links between processors will be shared
by multiple messages. It results from the fact that fast Fourier algorithms inpose
a large interdependency between the elements of the input data. Since a mesh
architecture does not present the same degree of interprocessor connectivity as
in a hypercube, for example, contention for the communication channels may
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occur. Considering the parallel FFT with inner loop described in subsection 2.2,
the amount of communication due to the binary-exchange algorithm is given by
(26]

NM
Toms = (logy P) 1, + 4 75 1)

which is equivalent to a communication delay with the same order Q(NM/ /P )
as in the case of the communication timing (39) for the matrix transposition
approach. Consequently, the previous analysis for the matrix transposition approach
also applies here, and the stream-based algorithm presents better parallel scalability
than the paralle! binary-exchange approach.

2.4 Analysis for A Coarse-grained Data Distribution
The degree of parallelism indicates the extent to which a paralle] program matches

the parallel architecture. Speed up captures the performance gain when utilizing

a parallel system [35]:

e True speed-up is defined as the ratio of the time required to solve a
problem on a single processor, using the best-known sequential algorithm,
to the time taken to solve the same problem using P identical processors.

e For the relative speed-up the sequential time to be used is determined by
scaling down the parallel code to one processor.

Efficiency indicates the degree of speed-up achieved by the system. The lowest
efficiency £ = 1/P is equivalent to leave P - 1 processors idle and have the
algorithm executed sequentially on a single processor. The maximum efficiency
E =1 is obtained when all processors devote the entire execution time to perform
computations of the algorithm, with no delays due to interprocessor coordination
or communication. In practice, performance critically depends on the data-mapping
and interprocessor coordination process adopted for a coarse-grain parallel
architecture. By limiting the amount of data based on memory constraints imposed
by a single-processor version of the algorithm, one cannot perform numerical
experiments to validate a timing model for coarse-grain data distribution when
using large values of P. To allow the usage of large problem sizes to observe
speed-ups and efficiencies in a coarse-grained data distribution, we define

o Modified speed-ups $' and modified efficiencies B which are calculated
by comparing performance gains over the parallel algorithm running on
a starting configuration with 20 processors. Specifically we have

. 20
SI20] - 2_()7._T_Q'L and EM™1 = LP]’ 42)

P

where Tp is the parallel running time obtained using P processors.

Comparing with the actual definition for relative speed-up, the modified
speed-up § *™ adopts 207, as the running time for the sequential version of the

algorithm. It basically corresponds to assuming optimal speed-ups and efficiencies

when using 20 processors, that is, § = 20 and E = 1 for P = 20. Although the

re:

me
sol
din
for
ser
car
int
ina
dir:
the

for

mas

‘equ

con
pro

inte
beh
ath
equ
Dar




2.2,
n by

(41)
[P)

tion
yach

ility

:hes

ting

e a
hm,
ors.
I by

rest
the
cy
rm
ion
ing
llel
cal

1€n
rve

on

2)

he
ies:
he

Fast Algorithms and Scientific Computation 485

actual efficiency for 20 processors is smaller than 1, the analysis allows us to
observe the performance of the algorithm for a large number of processors
without having strong constraints on problem sizes: values for M and N which
could be used on a single processor represent an extreme low level of granularity

- for an increasing number of processors. Speed-ups and efficiencies can be analyzed
for up to 60 processors by using P = 20 as a reference configuration.

The implementation of the paraliel algorithm described above and the numerical
results of various case studies with this algorithm are presented and discussed in
detail in Borges and Daripa [6, 7). These are not being presented due to restrictions
on the number of pages of this chapter. '

Below we present sequential and parallel fast al gorithms for Poisson equation
on a disk. The following section is self-contained and can be studied on its own.

3. A Fast Parallel Algorithm for the Poisson Equation

The Poisson equation is one of the fundamental equations in mathematical physics
which, for example, governs the spatial variation of a potential function for
given source terms. The range of applications covers from magnetostatic problems
to ocean modeiling. Fast, accurate and reliable numerical solvers play a significant
role in the development of applications for scientific problems. In this section,
we present an efficient sequential and parallel algorithms for solving the Poisson
equation on a disk using Green’s function method.

A standard procedure to solve the Poisson equation using Green’s function
method requires evaluation of volume integrals which define contribution to the
solution due to source terms. However, the complexity of this approach in two-
dimension is Z(N*) for a N net of grid points which makes the method prohibitive
for latge-scale problems. Here, we expand the potential in terms of Fourier
series by deriving radius dependent Fourier coefficients. These Fourier coefficients
can be obtained by recursive relations which only utilize one-dimensional integrals
in the radial directions of the domain. Also, we show that these recursive relations
make it possible to define high-order numerical integration schemes in the radial
directions without taking additional grid points. Results are more accurate because
the algorithm is based on exact analysis: the method presents high accuracy even
for problems with sharp variations on inhomogeneous term. On single processor
machine, the method has a théoretical computational complexity ON? log, N)or
equivalently ¢ (log,N) per point which represents substantial savings in
computational time when compared with the complexity & (N?) for standard
procedures.

The above basic philosophy mentioned has been applied in section 2 above in
the context of developing fast algorithms for efficient evaluation of singular
integrals {see also [18)) in the complex plane. The mathematical machinery
behind this philosophy is applied in subsection 3.2 below for the presentation of
a theorem (Theorem 2.1) which outlines the fast algorithm for solving the Poisson
equation in the real plane. The proof of this theorem can be found in Borges and
Daripa [8]. The theorem 3.1 follows the general format of the theorer 2.1.

We address the parallelization of the algorithm in some detail which is one of
the main thrusts of this section. The resulting algorithm is very scalable due to
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the fact that communication costs are independent of the number of annular
regions taken for the domain discretization. It means that an increasing number
of sample points in the radial direction does not increase overheads due to
interprocessor coordination. Message lengths depend only on the number of
Fourier coefficients in use. Communication is performed in a linear path
configuration which allows overlapping of computational work simultaneously
with data-exchanges. This overlapping guarantees that the algorithm is well
suited for distributed and shared memory architectures. Here our numerical
experiments show the good performance of the algorithm in a shated memory
computer. Related work in section 2 (see also [6, 7]) shows the suitability for
distributed memory. It makes the algorithm architecture-independent and portable.
Moreover, the mathematical formulation of the parallel algorithm presents a
high level of data locality, which results on an effective use of cache.

Al this point, it is worth mentioning that there now exists a host of fast
parallel Poisson solvers based on various principles including the use of FFT and
Fast Multipole method [28, 10, 12, 30]. The fast solver of this section is based
on the theorem 2.1 which is derived through exact analyses and properties of
convolution integrals involving Green’s function. Thus, this solver is very accurate
due to these exact analyses which is demonstrated on a host of problems in [8].
Accuracy can be further improved by incorporating some symmetry properties
of a disk which we do not discuss here.

Moreover, this solver is easy to implement and has a very low constant hidden
behind the order estimate of the complexity of the algorithm. This gives this
solver an advantage over many other solvers with similar complexity which
usually have a high value of this hidden constant. Furthermore, this solver can be
very optimal for solving certain classes of problems involving circular domains
or overlapped circular domains. this solver can also be used in arbitrary domains
via spectral domain embedding technique. This work is currently in progress.

In subsection 3.1 we start presenting the mathematical preliminaries of the
algorithm and deriving the recursive relations. In subsection 3.2 we describe the
sequential implementation and two variants of the integration scheme. Subsection
3.3 introduces the parallel implementation and its theoretical analysis.

3.1 Mathematical Preliminaries
In this subsection we introduce the mathematical formulation for a fast solver

for Dirichlet problems. Also recursive relations are presented leading to an efficient
numerical algorithm. Finally, the mathematical formulation is extended to Neumann

problems.

3.1.1 The Dirichlet Problem and its Solution on a Disk
Consider the Dirichlet problem of the Poisson equation

Au=f inB @3
w=g OnoAB,

where B = B(0, R) = {x € R?: | x| < R}. Specifically, let v satisfy

Av =f inB, (44)
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and w be the solution of the homogeneous problem

Aw=90 inB
(45)
w=g-v onoB.
Thus, the solution of the Dirichlet problem (43) is given by
' U=Uv+w. (46)
A principal solution of equation (44) can be written as
v(x) = Jl f(M G(x,n)dn, x€B8, 47
B

where G(x, 1) is the free-space Green’s function for the Laplacian given by

G(x, 1) = ﬁ log|x -7l (48)

To derive a numerical method based on equation(47), the interior of the disk
B(0, R) is divided into a collection of annular regions. The use of Quadrature
rules to evaluate (47) incurs in poor accuracy for the approximate solution.
Moreover, the complexity of a quadrature method is (N*) for a N2 net of grid
points. For large problem sizes it represents prohibitive costs in computational
time. Here we expand v(") in terms of Fourier series by deriving radius dependent
Fourier coefficients of u(-). These Fourier coefficients can be obtained by recursive
relations which only utilize one-dimensional integrals in the radial direction.
The fast algorithm is embedded in the following theorem:

Theorem 3.1 If u(r, ) is the solution of the Dirichlet problem (43) for x = re'*

andf(re’*y= I f£(r)e™ then the nth Fourier coefficient u,(r) of u(r, -) can be
n:-ﬂ

written as
| : .r i .
) =0,) +( 5 (@2 un(RD, 0<r<R 49)
whete g, are the Fourier coefficients of g on @B, and
t R
vn(r)=f p,.(r.p)dp+.r g (r, p}dp, (50)
1 . r
Plog r{ol(.\o)r n 20,
ith A P)= 4 ~ A 51
" Palr ) ﬂ%(f}] (o)., n#0, e
plog p.lﬁfll(p)! n= 0|
d Arp) =1 - o 52
an ga(r, P) ﬂ%(%} £(D) no. (82)
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3.1.2 Recursive Relations of the Algorithm

Despite the fact that the above theorem presents the mathematical foundation of
the algorithm, an efficient implementation can be devised by making use of
recursive relations to perform the integrations in (50). Consider the disk B(0, R)
discretized by N x M lattice points with N equidistant points in the angular
direction and M distinct points in radial direction. LetO=r < ry<.. . <ry=R
be the radii defined on the discretization. Theorem 3.1 leads to the following
corollaries: '

Corollary 3.1 It follows from (50) and (52) that v,(0) = 0 for n # Q.

Corollary 3.2 LetO=rj<r<...<ry=R,and

Cy' = {p} flprdp, n<0, (53)
ij T op
Dif=- j 2(5) sorde. n>0 54
If for r; > r;, we define '
va(n) =0, n<0,
0z = (%)nv;(r,-) +Cil, n<o, 9
i) =0, n>0,
and vin) = (-%Tv;(rf) +D¥, >0, o)
then fori=1,..., M, we have

U:(n) + vi(r), n<0,
vn(r) = (57
va(n)+ v5(n), n>0

Corollary 3.3 LetO=r <r;<...<ry=R, and add n = 0 to the definitions
in Corollary 3.2 as

- 4] .. Ty
ci'=[" otprde and b= [ ptogpstprde. B
n 7

then given =1, ..., M we have

( M-1
Iog:qECI My E D, forn =0,

{ n
() =14 % (%) ciHvy E (f;) Di’:,“, forn <0, (59)

i=2 f=!'

M-l —
z [%J DI &+ E [’I) ciM forn > 0.
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It is important to emphasize that M distinct points r, . . . , ry; need not to be-
equidistant. Therefore, the fast algorithm can be applied on domains that are
nonuniform in the radial direction. This anisotropic grid refinement may at first
seem unusual with elliptic problems. Even though it is true that isotropic grid
refinement is more common with solving elliptic equations, there are exceptions
to the rule, in particular with a hybrid method such as ours {Fourier in one
direction and finite difference in the other direction). Since, Fourier methods are
spectrally accurate, grid refinement along the circumferential direction beyond
a certain optimal level may not always offer much advantage. This is well known
because of the exponential decay rate of Fourier coefficients for a classical
solution (¢™ function). This fact has been exemplified in Borges and Daripa [8)
(see Example ! and Table 1 in subsection 5.1 of [8]) where we have shown that
to get more accurate results one needs to increase the number of annular regions
without increasing the number of Fourier coefficients participating in the
calculation, i.e. anisotropic grid refinement with more grids in the radial direction
than in the circumferential direction is more appropriate for that problem.

3.1.3 The Neumann Problem and its Solution on a Disk

The same results obtained for solving the Dirichlet problem can be generalized
for the Neumann problem by expanding the derivative of the principal solution
v in (47). Consider the Neumann problem

Au=f inB

Ju

=¥ on JB, (60)

The analogous of Theorem 3.1 for the Neumann problem is given by

Theorem 3.2 If u(r, 0) is the solution of the Neumann problem (60) for x = re'®

and flre'®) = I f(re™, then the nth Fourier coefficient u,(r) of u(r, ) can be
iz =na

written as

ug{r) =vg(r) + @q, n=0

il
ul’l (r)=vﬂ (r)+(%) ("%I' Wn"'vn(R)Ja n# Ov

(61)

where i, are the Fourier coefficients of ¢ on 9B, v, are defined as in Theorem
3.1, and @, is the parameter which sets the additive constant for the solution.

3.2 The sequential Algorithm

An efficient implementation of the algorithm embedded in Theorem 3.1 is derived
from Corollary 3.2. It defines recursive relations to obtain the Fourier coefficients
Uy in (49) based on the sign of the index n of v,. In the description of the
algorithm, we address the coefficients with index values # < 0 as negative modes
and the ones with index values n > 0 as positive modes. Equation (55) shows that
negative modes are built up from the smallest radius r, towards the largest radius
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ry- Conversely, equation (56) constructs positive modes from fy towards r,.
Figure 5 presents the resulting sequential algorithm for the Dirichlet problem,
The counterpart algorithm for the Neumann problem similarty follows from

Theorem 3.2 and Corollary 3.2.

Algorithm 3.1 Sequential Algorithin for the Polsson Equation on & Disk

for the Dirichiet problem (43).

the Fourier coefficients g, on 48,
2. For i€ [1, M~ 1], compute the radizl one-dimensional integrals C,™', n & [- M2, 0] as
defined in (53) and (58); and compute D/, 5 € [0, /2] as defined in (54) and (58).

3. Compute coefficients v; (r;) for each of the negative modes n € [-NV/2, 0] as defined in (55
and {59):

(@) Set vy (r)=0forne [(-N2,0).
®) Fxi=2...M

v (n) = (r—'*-J i (n) +CY, ne =N, 0.

Jal
4. Compute coefficients v? {r) for each of the positive modes # € [0, N/2] as defined in (56)
end {59):

(@) Set v?(ry) =0forne [0, N72).
() Fort=M-1,..,1

:,

vs(n) = [r’—‘] 0} () + DY, e 0, N2,
(3]
5. Combine coefficients v} and v; as defined in (57) and (59):
Fori=1,... M
Vo(n) = log r; v5(r) + v} (n).
"n(rl)= v-n(rt)=un_(rl)+ U:.(r;), ﬂE[_~I2| “'l]v

6. Apply the boundary conditions as defined in (49):
Fori=2, .. .M

]

Ll
“n{ri) = ”u(rl') + ('E) (gn - UN(R})I neE [" szr N!zl

Ni2
Compute u(re? ™y = "_Em u(re™™, k& (1, N, for each radius r, ! {1, M).

=

Given M, N, the grid values f{r,e?™¥) gnd the boundary conditions g(Re*™™) ;¢ 1. M,
k€ [, N, the algorithm returns the values wre* ™™y L (1, M, k€ {1, N} of the solution

1. Compute the Fourier cocfficients Lron e {=N/2, N2}, for M sets of data at ] € {1, M), an¢

Fig. 5, Description of the sequential algorithm for the Dirichlet problem.

Notice that Algorithm 3.1 requires the radial one-dimensional integrals C;**' and
Dy™to be calculated between two successive points (indexed by i and i + 1)
on a given radial direction (defined by ). One possible numerical method to
obtain these integrals would be to use the trapezoidal rule. However, the trapezoidal
rule presents an error of quadratic order. One natural approach to increase the
accuracy of the numerical integration would be to add auxiliary points between
the actual points of the discretization of the domain to allow higher order integration
methods to obtain C,‘;'“l and D). This approach presents two major
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disadvantages: I. It substantially increases computational costs of the algorithm
because the fast Fourier transforms in step ! of Algorithm 3.1 must also be
performed for all the new circles of extra points added for the numerical integration;
2. In practical problems the values for function f may only be available on a
finite set of points, which constrains the data to a fixed discretization of the
domain and no extra grid points can be added to increase the accuracy of the
solver.

Here, we increase the accuracy of the radial integrals by redefining steps 2,
3 and 4 of Algorithm 3.1 based on the more general recurrences presented in
equations (55) and (56). Terms C',‘,"'*'l and D,';‘“'l are evaluated only I._lSil'lg two
consecutive points. In fact, for the case n < 0 one can apply the trapezoidal rule
for (53) leading to

PN 2 -

for a uniform discretization where r;= (i — 1)8r. It corresponds to the trapezoidal

rule applied between circles r; and r;,,. A similar equation holds for phi* By

evaluating terms of the form C5#*! and DE™*, three consecutive points can

be used in the radial direction. It allows the use of the Simpson’s rule

. . 2 j ~ -
C:l"a”‘l - -(-éﬁr%- ((l - l)[%] fn (rl'—l)

i+ 1

+4i [—‘—-) fulm) + G+ D) f,.('rm)J, - (63)

which increases the accuracy of the method. In the algorithm, it corresponds to
redefining step 3 for n < 0 as

v, (n) =0,
vy (r)= C:l'zi

vy (n)= [%J vy () + CE2 1=3,.., M,
and step 4 for n > 0 as
vy (ry) = 0,
vy (ry-1) = D:‘_I'M,

vy (n)= (%J vl (nep) + DI, 1=M-2,..., 1

It results on an integration scheme applied between three successive circles, say
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7i-1, 1; and 1y, with computational costs practically similar to the trapezoidal
rule but with higher accuracy. The above Simpson’s rule presents an error formuijg
of fourth order in the domain of length 28r. For sufficiently smooth solutions, it
allows cubic convergence in r.

3.3 The Parallel Algorithm

Current resources in high performance computing can be divided into two major
models: distributed and shared memory architectures. The design of a parallel
and portable application must attempt to deliver a high user-level performance in
both architectures. In this subsection, we present a parallel implementation suited
for the distributed and shared models. Although we conduct our presentation
using the message-passing model, this model can also be empioyed to describe
interprocessor coordination: higher communication overhead corresponds to larger
data dependency in the algorithm, which results on loss of data locality. Even
though shared memory machines have support for coherence, good performance
requires locality of reference because of the memory hierarchy. Synchronization
and true sharing must be minimized [1]. Efficient parallelized codes synchronize
infrequently and have little true sharing [38). Therefore, a good parallelization
requires no comimunication whenever possible. Using the data decomposition
which allows lower communication cost also improves the data locality. The
performance of the parallel algorithm on distributed memory systems have been
addressed in section 2 (see also [6]). There a variant of the algorithm has been
used for fast and accurate evaluation of singular integral transforms.

The recursive relations in Corollary 3.2 are very appropriate to a sequential
algorithm. However, they may represent a bottleneck in a parallel implementation.
In this subsection we use the results presented in Corollary 3.3 to devise an
efficient paraliel solver for the Poisson equation. Theoretical estimates for the
performance of the parallel version of the algorithm are given below. We also
show that this parallel solver has a better performance characteristics than an
implementation based on Corollary 3.2. Finally, we compare our parallel algorithm
with other Poisson solvers.

3.3.1 Parallel Implementation

The fast algorithm for the Poisson equation requires multiple fast Fourier transforms
(FFT) to be performed. There are distinct strategies to solve muitiple FFTs in
paralle! systems [9, 22]. In section 2 (see also {6]) we have shown that an
improved implementation of parallel calls to sequential FFTs is the best choice

for the fast algorithm. For the sake of a more clear explanation, let P be the -

number of available processors and M be a multiple of P. Data partitionirig is
defined by distributing the circles of the domain into P groups of consecutive
circles so that each processor contains the grid points for M/P circles. To obtain
a more compact notation we define

y{j)=jMIP.

Given P processors p, j = 0, ..., P — 1, data is distributed so that processor
p; contains the data associated with the grid points r;e?™™* e [1, N] and

sit
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Le [y(j) + 1, y(j + 1)]. Figure 6 exemplifies the data distribution for a system
with three processors (P = 3).

@ r r@ y3
Fig. 6. Data distribution for the parallel version of the fast algorithm.

One optimized version of a sequential N-point FFT algorithm is available on
each processor: multiple Fourier transforms of the same length are performed
simultaneously. The M sequences of values assumed on the N grid points belonging
to a circle are distributed between processors so that each one perforins one
unique call to obtain M/P FFT transforms. Overall, the FFT transforms contribute
the most to the computational cost of the algorithm and the above data-locality
allows the intensive floating point operations to be performed locally and
concurrently. Thus, each FFT can be evaluated in place, without communication.
Other strategies for solving the multiple FFTs required in the algorithm are
discussed in section 2 (see also [61).

Although Corollary 3.2 is formulated for the generic case rj > r;, the results
in Corollary 3.3 only require consecutive radii (i.e., terms of the form Cn L1 and
Dy, L e [y () + 1, y(j + D) in processor p;. Therefore, the numerical
mtegratmn for equations (53), (54) and (58) can be performed locally if one
guarantees that all necessary data is available within the processor. Notice that
p; already evaluates the Fourier coefficients f, (r), 1€ [¥(j)+ L, y(j+ 1)]. In
the case of a numerical integration based on the trapezoidal rule (62) only the
Fourier coefficients for { = jM/P and ! = (j + 1) M/P + 1 must be added to the
set of known Fourier coefficients for processor pj- That is, if the initial data is
overlapped so that each processor evaluates coefficients for radii r;, { € [y (),
¥ (j + 1) + 1], there is no need for communication. Similarly, if the modified
simpson’s rule (63) is employed, processor p; only needs to evaluates coefficients
for radii r, 1€ [Y(§}~ 1, y(j+ 1)+ 2]. The number of circles whose data overlap
between any two neighbor processors remains fixed regardless of the total number
of processors in use. Consequently, this strategy does not compromise the scalability

of the algorithm.




494 Daripa

Algorithm 3.1 was described based on the inherently sequential iterations
from Corollary 3.2 which are more suitable for a sequential implementation. In
the case of a parallel aigorithm, an even distribution of computational load is
obtained by splitting the computational work when performing recurrences
(58) and (59) as described in Corollary 3.3. We evaluate iterative sums g,
1€ [y(j), Y + 1)], concurrently on all processors p;, j =0, ..., P — 1, as follows.
For the case n <0 let

(g7 (n) =0,
1.- na ) _ 1,1 . . (64)
gr (n) = e (g +C ), I=y(N+L...v{+ 1),
where we have defined ry, = 1, and for the case n > 0 let
(47 gaye () =0,
‘ Y (65)
q/ (n) = {iq—‘—] (gh (m) + D™, T=y(G+ D, .7+ L

Since coefficients C.™' (n < 0) and D;**! (n > 0) are already stored in processor
p;when i€ [Y()+ 1, y(j + 1)], partial sums ¢; and t§ can be computed locally
in processor p;. In section 2 (see also [6]) we have shown that the above
computations can be used to define the following partial sums for each processor

Py
t7(n) = gyjsn{n), n<0,
f}' (ﬂ) = q;(})i-l (ﬂ), nz0
Moreover, it follows from (64) and (65) that for n <0

e 1)" i-1,i
s =rium 2 (7] o

T(.“"l) 1 n i-1.i
t7 () = rypana i=r§)+l (;i'} Ce
and forn20Q

-1 ) " i+l
(=1 z —| b}
tP-l( ) Fyp-1y izy (P-1)+1 ("?] "

TU+1} l R i i+l
+ — pht — I
rj (n)= rl’(f) i=.‘r{zj)+l (rx] Dy

Although sums as described above may seem to produce either fast overflows or

fast underflows for large absolute values of », partial sums ¢ and ¢7 can be
obtained by performing very stable computations (64) and (65} as described in
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section 2 (see also [6)). Therefore the algorithm proceeds by performing the
partial sums in parallel as represented in Figure 7.

Po 4| Dy Ppt

I Y Y () 142 Y+ y(P-1) M
- = ——— —~—+—-—h

ty t i tra
—— ———— R Ee—— M rr——

(74 I3 tf 3y

7]
s) e

Fig. 7 Sums are evenly distributed across processors,

To combine parﬁal sums 7 and ¢} evaluated on distinct processors, we define
the accumulated sums 57 and §1,j=0,..,P~1.Forns0let

55 (n) = 15 (n),
{a_ For: 7 . (66)
Sf (n):[:—::%) Sj_l(ﬂ)+r}-,
and forn>0
(35, (my =13, (m),
\ r, n (67)
) I AL it (n) + 1t
e ['r(ﬂl) M+ 1]

Therefore we have a recursive method to accumulate partial sums {7 and t}
computed in processors p;- Accumulated sums §; and §; can now be used to
calculate coefficients C, and D, locally on each processor. Given a fixed radius
71, the associated data belongs to the processor pysuch that l € [y (j) + 1,
y{j+ 1)]. Computations in Psonly make use of accumulated sums from neighbor
processors. For n €0 local updates in processor p, are performed as described in
Corollary 3.2. Local updates in processors pj, j = 1, ..., P— 1, use the accumulated
sums §7, from the previous processor when obtaining terms v, as defined in
equation (55)

3 $7. ()4
Vs (ryiyn) = $7a(m) + CTOTD

n (68)
vy(n)= (-"—) vy (ng) + C7M.

"

For n 2 0 local updates in processor pp_, are also performed as described in
Corollary 3.2. Local updates in processors PrJ=0, ..., P—2 use the accumulated
sum 3;“ from the next processor to obtain terms v, from equation (56):
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A YLy (D +!
Vs (Fy o) = = 54,y (n) — DYVDTOD

n (69)
vy (n) = (f;—) vF (nyg) + DI

The advantage of using equations (68) and (69) over original recurrences in
Corollary 3.2 is that accumulated sums 57 and .'r';' are obtained using partia]
sums #7 and 7. Since all partial sums can be computed locally (without message
passing) and hence simultaneously, the sequential bottleneck of the original
recurrences is removed. The only sequential component in this process is the
message-passing mechanism to accumulate the partial sums. '
The next step in the algorithm consists of combining coefficients v} and Uy

to obtain the component v, of the solution as described in step 5 of Algorithm
3.1. Notice that for a fixed radius r,, coefficients v;(n) and vr.(n),

n € |- N/2, 0], are stored in the same processor. Therefore, computations in {59)
can be performed locally and concurrently, without any communication.
Specifically, processor p; evaluates terms v,(r)), n € [-N/2, N/2], where l € [y(j)
+ 1, ¥(j + 1)]. A final set of communications is employed to broadcast the values

Un(R), n € [-N/2, Ni2], from pp_, 1o all other processors so that the Fourier

coefficients u, of the solution can be evaluated by using equation (49), similarly

as represented in step 6 of Algorithm 3.1. This broadcast process is represented

in Figure 8 by the second set of upward arrows starting from processor pp_;.

The notation in equations (66) and (67) will be simplified to allow a clear

exposition of the inter-processor communication present in our paralle]
implementation:

* Relation s7 =157, +1; represents the updating process. in recurrence
{66), and

* Relation s} = s}, + 1] represents updating (67).

The parallel algorithm adopts the successful approach mentioned in section 2
and investigated in detail through implementation in {6, 7). Processors are divided
into three groups: processor ppy, is defined as the middle processor (MP), processors
Po: -+ Ppn-y are the first half processors (FP), and ppyy,,. ..., pp_; are in the
second half (SP) as represented in Figure 8.

We define a negative siream (negative pipe): A message started from processor
Po containing the values sg = #; and passed to the neighbor p,. Generically,
processor p; receives the message s7; from Pj-1, updates the accumulated sum
§j =8j4 +1j, and sends the new message s; to processor Py It corresponds
to the downward arrows in Figure 8. In the same way, processors on the second
half start computations for partial sums s*. A positive stream starts from processor
Pp-17 processor p; receives s};l from p;,; and sends the updated message
st = 5 + 1] topj;. The positive stream is formed by the first set of upward
arrows in Figure 8. The resulting algorithm is composed by two simultaneous
streams of neighbor-to-neighbor communication, each one with messages of

(MF

(5P)

Fig. 8.

length ;
middle
structus
coordin
simulta:
having s
80 that i
the accu

Pl Cos
been ser
any pro:
message
sumns f;
commun
against ot
paralle] i
the algor
The p:
domain i
decompo
decompao:
attempt tc
does not &
Thus our ;
otherwise




69

€8 in
artial
ssage
.ginal
is the

dv,
rithm
()
1(59)
ition.
[y®
alues
yurier
ilarly
ented
P-1-
clear
raliel

rence

jon2
vided
3SSOTS
n the

essor
cally,

|l sum
yonds

scond

ssage
ward

1E0US
es of

Fast Algorithms and Scientific Computation 497

55 =15 @ sy =8t 4l v(R)

Pa ~ A 4
LB Sp=sg tiy st =s5) 41}
(FP) : . y;
i _.-
i N “ P <" Positive stream )
MP) Pen Sp2 = Spau e @ b (R)
Son = Shon *iin 4p .
. Y \ roadcasting
t - ., Negative stream :
H 4 "\
1
. P A $
(SP) Spa =8, ¥, 5p2 = 85p3 4 ip v(R)

N t
Pea 53 =1}, Spa=Spatiti, &)
time
Fig. 8, Message distribution in the algorithm. Two streams of neighbor-to-neighbor
messages cross communication channels simultaneousty. Homogeneous and
particular solution are combined after processor pp_; broadcasts the houndary
values of ». :

length N/2. Note from Figure 8 that negative and positive streams arrive at the
middle processor simultaneusly due to the symmetry of the communication
structure. In section 2 (see also {6, 7]) we describe an efficient interprocessor
coordination scheme which leads to having local computational work performed -
simultaneously with the message passing mechanism. In short, it consists on
having messages arriving and leaving the middle processor as early as possible
so that idle times are minimized. Any processor p; in the first half (FP) obtains
the accumulated sum s; and immediately sends it to the next neighbor pracessor

Py Computations for partial sums ¢ only start after the negative stream have
been sent. It correspond to evaluating ¢; within region A in Figure 8. Similarly,

any processor p; in the second half (SP) performs all the computations and
message-passing work for the positive stream prior to the computation of partial

. sums ¢7 in region B. This mechanism minimizes delays due to interprocessor

communication. In fact, in section 2 (see also [6]) we compare this approach
against other parallelization strategies by presenting complexity models for distinct
parallel implementations. The analysis shows the high degree of scalability of
the algorithm,

The parallel algorithm presented here is certainly based on decomposing the
domain into full annular regions and hence, it has some analogy with domain
decomposition method. But this analogy is superficial because domain
decomposition methods by its very name have come to refer to methods which
attempt to solve the same equations in every subdomain, wheres our algorithm
does not attempt to solve the same equation in eacyh annular subdomain separately.
Thus our algorithm is nat a classical domain decomposition method. Interpreting
otherwise would be misleading. In fact, decomposing a circular domain into full
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annular domains and then attempting to solve the equation in each subdomain in
the spirit of domain decomposition method would not be very appealing for a
very large number of domains because the surface to volume area becomes very
large. Our algorithm is not based on this principle in its entirety, even though
there is some analogy which is unavoidable.

3.3.2 Complexity of the Parallel Algorithm

To analyze the overhead due to interprocessor coordination in the parallel algorithm
we adopt a standard communication model for distributed memory computers.
For the timing analysis we consider f#; as the message startup time and ¢, the
transfer time for a complex number. To normalize the model, we adopt constants
¢; as the computational cost for floating point operations in the FFT algorithm,
and ¢, to represent operation counts for the other stages of the algorithm. To
obtain the model, we analyze the timing for each stage of the algorithm:

+ Each processor performs a set of M/P Fourier transforms in (c/2)(M/P)N
loga N operations.

» Radial integrals Ci'*' and D' are obtained using (cy/4)(M/P)N
operations for the trapezoidal rule (and (¢, 2/3)(M/P)N for Simpson’s
rule).

« Each group of M/P partial sums 1+ and ¢~ takes (c/4)}(M/P)(N/2) operations
on each processor.

« Positive and negative streams start from processors pp_, and p, respectively,
and each processor forwards (receive and send) a message of length N/2
towards the middle node (see Figure 8). The total time is 2(P — 1)/2)
(¢, + (Ni2),).

» The second group of M/P partial sums ¢ and 1~ is performed in (c,/4)
(M/P)(Ni2) operations.

* Positive and negative streams restart from the middle node and arrive in
Po and pp_y, respectively, after 2((P — 1)/2)(t, + (N/2)z,) time units for
communication.

* Terms v~, v* and v are computed in (c,/4)(M/P}N operations.

 Boundary conditions are broadcast in (f; + Nt,,) log, P time units.

+ Principal solution v and boundary conditions are combined in (cx/4)
(MIP)N operations.

* (c/2)(M/P)N log; N operations are used to apply inverse Fourier transforms.

Therefore, the parallel timing 7 for the parallel fast algorithm is given by
7p = ¥ (ci loga N+ 2) + (P - 1)

+logy P)t, + N(P-1+log, Pz, (70)

To obtain an asymptotic estimate for the parallel timing, we drop the
computational terms of lower order in (70) which leads to

13m0 = o, M 1og, N+ 201, + NP1, an
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The performance of the parallel algorithm can be observed by comparing the
above equation against the timing estimate for the sequential algorithm. In the
case of a sequential implementation, we have the following stages:

* M Fourier transfmorms are performed in (¢,/2)MN log; N operations.

* Radial integrals C''* and D™ are obtained after {¢2/4)MN operations.

* Terms v™, v* and v are computed in (c/4)MN operations.

* Principal solution v and boundary conditions are combined in (e /MN
operations.

* M inverse Fourier transforms take (c,/2)MN log, N computations.

Summarizing, the sequential timing 7, is given by

T, =c,MNlogy N + % caMN, 72)
with asymptotic model
TP = ¢, MN log, N. (73)

From equations (70) and (72) one can observe that most of the parallel overhead
is attributed to the communication term in equation (70). An immediate consequence
is that overheads are mainly due to increasing number of angular grid points N.
No communication overhead is associated with the number of radial grid points
M. We use the asymptotic estimates to obtain the speed-up § for the parailel
algorithm '

T, e aMNlogy N
S= o = MN 74
P Pl logs N+2Pt, + NP,
_p clMN log, N as)

ciMN log; N+ P? (2, + Nt,)
and the corresponding efficiency

M 1
E= == , 76) -
P14 P22, + Nt,)Ye,MN log, N 79
which shows that the efficiency decays quadratically in the number of processors
P
Different problem sizes correspond to distinct levels of granularity, which
implies that there is an optimal number of processors associated with each
granularity, Since message lengths depend on N and computational work depends
also on M, the theoretical model can be used to estimate the best performance for
a given problem. The number of processors for which the asymptotic parallel

. ’ “ymp . . . 13 H aTP“)mp —
running time Tp~ " achieves its minimum is determined by —— = 0. In the

case of (71), we have:




soymp | €1 MN logy N
Fopi ™ = 2t, + N1, 77

which can be understood as an approximation for the optimal value of P which
maximizes the efficiency (76) for given values of M and N,

3.3.3 Comparison with a Matrix Transposition-based Algorithm

Although the recursive relations in Corollary 3.2 are very appropriate to a sequential
algorithm, these may introduce excessive communication on parallel
implementation. The major difference is that if one attempts to evaluate recurrences
(55) and (56), data must be reverted in all processors. In fact, steps 3 and 4 in
Algorithm 3.1 show that each coefficient vy (r;)} depends on all terms C,f,'l‘i
with i € [2, 1], and each coefficient v} () depends on all terms D) withie
[, M — 1]. Consequently a message-passing mechanism must be used to exchange
coefficients of the form C. ' and D"*! across processors. Figure 9 shows data
being reverted in all processors for the case where P = 4, Initially each processor
contains data for evaluating M/P Fourier transforms. It corresponds to each row
on Figure 9(a). To calculate recurrences locally, each processor must exchange
distinct data of size NM/P? with all P — 1 remaining processors. At the end of the
communication cycle, processor p; contains all the terms ¢ oand DI with
n € [jN/P — N/i2, (j + 1)NIP = N/2). Figure 9(b) describes the communication
pattern. Rows are divided into P blocks of size NM/P® so that processor p;
exchanges distinct data-blocks with different processors. The data-transfer pattern
involves an all-to-all personalized communication as in a parallel matrix
transposition procedure. For a mesh architecture the estimated communication
timing [26] is given by

Tonme?®® = 2 (JF - 1)[2:, + “’;N rw]. (78)
3
Po - o«
-
P * A '.“.-""’ .
M ol &
- A -
F -
P e e r
L A
.‘.- : s,
P P ¥
! N >
(@ (b)

Fig. 9. Coordination pattern based on all-to-ali personalized communication:
(a) M/P Fourier transforms are evaluated locally; (b) each two processors
exchange blocks of size MN/P2. :
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Therefore, interprocessor communication introduces a delay of order 4MN/P.
Comparatively, the stream-based algorithm generates a delay of order PN. In a
large scale application, clearly M >> P due to practical limitations on the number
of available processors which makes PN << 4MN/+/P . It implies that the stream-
based algorithm must scale up better than the second approach because of a
smaller communication overhead.

3.3.4 Comparison with Other Methods
Fourier Analysis Cyclic Reduction (FACR) solvers encompass a class of methods
for the solution of Poisson’s equation on regular grids [21, 40, 41]. In two-
dimensional problems, one-dimensional FFT's are applied to decouple the equations.
into independent triangular systems. Cyclic reduction, Gaussian elimination (or
another set of one-dimensional FFTs and inverse FFTs) are used to solve the
linear systems. In the FACR({) algorithm, ! preliminary steps of block-cyclic
reduction are performed to decrease the number or the length of the Fourier
coefficients. The reduced system is solved by the FFt method and by ! steps of
block back-substitution. In particular, for I = 0 we have the basic FFT method,
and I = 1 corresponds to a variant of the original FACR algorithm [21]. The
basic idea of the FACR (/) method relies on switching to Fourier analysis in the
middle of cyclic reduction to reduce the operation count when compared with
either pure Fourier analysis or cyclic reduction. Formally, the optimal choice
! ~ log; (logz N) makes the asymptotic operation count for FACR({) be
(N log, loga N) in a N X N grid, which is an improvement over the estimate
@(N? log, N) associated with the basic FFT method (FACR(0)) and cyclic reduction. -
A parallel implementation of the FACR(!) solver must take into account the
effect of the choice of / on the degree of parallelism of the algorithm [41]. At
{ =0, the method performs a set of independent sine transforms and solves a set
of independent tridiagonal systems, which makes the choice { = 0 ideally suited
for parallel computations. The parallel implementation of the matrix decomposition
Poisson solver (MD-Poisson solver) presented in [37] follows this concept: a
block-pentadiagonal system is solved on a ring of P processors using Gaussian
elimination without pivoting, so that only neighbor-to-neighbor communication
is required. The complexity of the method on a ring of P processors is (NY/P
log, N) if one disregards communication overhead [37]. For ! > 0, the degree of
parallelism of the FACR(!) algorithm decreases at each additional stage of cyclic
reduction. For example, in [25] a parallel variant of the FACR(}) algorithm
exploits the numerical properties of the tridiagonal systems generated in the
method. Factorization is applied based on the convergence properties of these
systems. However this approach can lead to severe load-imbalance on a distributed
memory architecture because convergence rates may be different for each system
- resulting in idle processors. Cyclic allocation must be used to diminish load-
imbalance. Moreover, it is also known from [25] that any two-dimensional data
partitioning would produce communication overhead due to data transposition.
The previous observations show that our parallel Poisson solver is competitive
with other current techniques. Typically, the best parallel solvers are defined
using an one-dimensional processor array configuration because of the unbalanced
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communication requirements for the operations performed along the different
coordinates of the grid.

4. Conclusion

We. have presented two parallel algorithms. Both of these parallel algorithms
were derived from their sequential analogues which are presented in the above
two sections. Basic idea that has been exploited in constructing these fast sequential
algorithms is some recursive relations in Fourier space. We noticed these while
carrying out some analysis and thought they could be profitably used for speeding -
up computations. Our analysis of complexity of these algorithms and numerical
results presented elsewhere do bear out these facts. This idea has not been
exploited much and it may be useful for constructing similar fast algorithms for
other singular operators and partial differential equations. Tn particular, it will be
worthwhile to see the feasibility of the application of this idea to Helmholtz
equations (oscillatory and monotonic). .

It is worthwhile to extend these from disk to sphere in three-dimensions. This
should be possible. Later these algorithms should be useful for developing fast
algorithms in arbitrary domains, perhaps by making using of domain embedding
techniques. We have done studies in this direction which will be reported in the
future.

The accuracy of the sequential algorithms presented in sections 2 and 3 may
not be optimal, and there is room for further improvement, in particular with the
Poisson equation if one uses some of the symmetry properties in a clever fashion
and modify these algorithms suitably. We will report on this in a future publication.
Lastly, it will be worthwhile to apply these algorithms to practical problems
involving these singular integrals and partial differential equations. Let me close
by saying that I will be glad to interact with anyone who may be interested in
pursuing these ideas.
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