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Abstract

We present exact analytical solutions for steady-state axisymmetric creeping flows of
a viscous incompressible fluid in the presence of a compound multiphase droplet. The
solutions given here explain the droplet-fluid interactions in complex situations. The
two spherical surfaces constituting a vapor-liquid compound droplet are assumed to
overlap with a contact angle 7/2. It is further assumed that the surface tension forces
are sufficiently large so that the interfaces have uniform curvature. The singularity
solutions for the extensional and stokeslet induced flows in the presence of a compound
droplet are deduced from general results. The features of the flow fields and the drag
depend on various parameters involved in the problem. In the case of a low induced by
a pair of opposite stokeslets, the streamlines in the continuous phase display toroidal
eddy patterns. The eddy changes its size and shape if the locations of the initial
stokeslets are altered. These observations may be useful in the study of hydrodynamic
interactions of droplets with other objects in a viscous fluid. We also provide a brief
discussion of our results in connection with the computation of mobility functions. The
exact results presented here can be useful in validating numerical algorithms and codes

on multiphase flow and fluid-droplet interactions.

1 Introduction

In recent years, there has been a general surge of interest in understanding the behavior of
compound multiphase drops as a result of their occurrence in a variety of engineering systems.
These drops occur in processes such as melting of ice particles in the atmosphere, liquid
membrane technology as well as in other industrial operations. Gas-liquid compound drops
are also found as transient configurations during rapid evaporations of drops near the super
heat limit [9] and disruptive combustion of free droplets of multi-component fuels [4]. The
studies concerning the lipid bilayer [2] and polymer grafted [1] membranes in concentrated
solutions also reveal the existence of compound drops. The experimental evidences recorded
in those studies initiated the relevant theoretical investigations in the last few decades.
Some perspectives on the theoretical fluid mechanics of multiphase droplets are discussed

in Sadhal et. al. [8]. The compound drop is usually modeled as two overlapping spherical



surfaces with a contact angle. This model has been used in the electric field-induced cell-
to-cell fusion process to predict the fusion of biological cells [11]. In hydrodynamics, similar
models have been employed to analyze the flow fields in and around a compound droplet [10,
5, 6, 7]. In [10], the translation of a vapor-liquid compound drop was solved by the use of
toroidal frame. The expressions for the flow fields and hydrodynamic force were obtained
in terms of a rather complicated conical functions. For the overlapping spheres with a
contact angle 7/2, simple singularity solutions for the Stokes flow past an encapsulated
droplet (compound drop) were presented later in [5]. This simple approach has been further
exploited more recently in [6, 7] to derive solutions for a compound drop suspended in
complicated flow fields. The analyses provided in the latter articles are the basis for the
present study:.

In the present analysis we discuss few flow properties concerning droplet-fluid interac-
tions in complex flow situations. In particular, we provide singularity solutions for some
axisymmetric flows in the presence of a compound droplet which describe the flow fields in
the continuous and dispersed phase fluid regions, respectively. The flow patterns displayed
here explains the flow behavior in and around a compound droplet suspended in extensional
and stokeslet induced flows. The plots of drag force acting on the droplet illustrate several
interesting features. The calculations of the present study can provide the basis for com-
puting mobility functions. It is worth mentioning here that one of the primary motivations
behind this work has been to provide exact solutions to somewhat complicated, yet analyt-
ically tractable, problems that can be used to validate numerical algorithms and codes on

multiphase flow and fluid-droplet interactions.

2 Geometry of the compound droplet

The two-sphere geometry of the compound droplet is depicted in Fig. 1. This geometry
consists of two unequal overlapping spheres S, and 5, of radii @ and b with centers O and
O’ respectively. We assume that these spheres intersect orthogonally. The boundary of the
droplet is denoted by I' = I', U T, where I', is part of the boundary where » = a and I’ is
part of the boundary where r = b (see Fig. 1). Since the spheres overlap at a contact angle
7/2, the two centers share a common inverse point D. In the right-angled triangle O AO’,
c? = a?+1?, where OO’ = c. In the meridian plane, the line AB intersects OO’ at D. Hence,
OD = a*/c and DO’ = V?/c. Let (r,0,¢),(r',0',¢) and (R,0,¢) be the spherical polar
coordinates of any point outside the assembly I" with O, 0" and D as origins respectively.
The geometrical relations that follow from Fig. 1 are given in [6].

Part of the sphere S, contains a liquid with viscosity different from the viscosity of the

liquid around the droplet, and part of the sphere S, contains vapor. It should be remarked
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Figure 1: Schematic of a vapor-liquid compound droplet "

that the interface separating the vapor and the dispersed phase liquid joins points A and B,
and is not the the line AB shown in the Fig. 1. This interface between the phases is assumed
to have a uniform curvature different from that of the spheres S, and S;. We designate the
fluid region exterior to I' as I and the spherical regions S, and S, as 11 and [11] respectively.
The surface tension forces are assumed to be large enough to keep the interfaces in a spherical
shape. The vapor-liquid configuration exists at rest with contact angle approximately 90° if
i1 & Vi >> Yoo Which is in agreement with the Laplace law on all interfaces. Here

the 7, denotes the surface tension at the interface separating regions a and b.

3 Formulation of the Problem

We consider a stationary compound drop submerged in an arbitrary axisymmetric flow of
a viscous fluid. The Reynolds number of the flow fields is assumed to be small so that
all inertial effects are negligible. In this case, the governing equations for fluid flow are
the linearized steady Navier-Stokes equations, also called creeping flow equations or Stokes

equations,
pOVEgY = vp, v.q® =0, (1)

where i = 1, 2 refers to continuous and dispersed phase liquids respectively, gV, p® and p®
are the velocities, pressures and viscosities in the respective phases. The boundary and inter-
face conditions are as follows: (i) velocity and pressure far from the droplet are that of basic
flow; (ii) zero normal velocity on I'; (iii) continuity of tangential velocity and shear stress at
the liquid-liquid interface I';; and (iv) zero shear-stress at the vapor-liquid interface I',. The

governing Stokes equations subject to the above far-field and interface conditions constitute



a well-posed problem whose solution provides the velocities and pressures prevailing in the
presence of the compound droplet.
As the flow is axially symmetric about the z—axis, it is convenient to use the Stokes

stream function formulation which requires the solution of the fourth-order scalar equation

L2 =0, (2)
where L_; is the axisymmetric Stokes operator given by
2  1-n*o?

L 4 =— - 3
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for the coordinates (r,0) with = cos . Now the velocity components in terms of the stream

function are given by
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" r2sin@ 00 ' 1Y rsinf or ’
and the pressure is obtained from
ap® p® 0 , op?) w0 ,
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The boundary and the interface conditions stated at the beginning of this section can also

be expressed in terms of the stream function (see [6] for details).

4 Results

The solutions for the above problem for various axisymmetric underlying flows are obtained
here by the method of images. Since the two spheres intersect at a contact angle 7/2, it is easy
to see that the solutions are arrived at the third reflection. The solutions are conveniently
represented in cylindrical coordinates if we define (p, ¢, 2), (¢, ¢, 2') and (II, ¢, Z) as the
cylindrical polar coordinates with respect to O, O" and D as origins, respectively (see Fig.
1).

Let 1o(p, z) is the free-space stream function for an axisymmetric motion of a viscous
fluid whose singularities lie outside a two-sphere with boundary I'" formed by two unequal
spherical surfaces intersecting orthogonally. We also require that 1y(p, z) = o(r?) as r — 0.
When a compound droplet is introduced in the place of the two-sphere geometry in this flow

field v, the modified stream functions due to the droplet become
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for the continuous phase and

% — 2 , 0 e r3 a® a?
v@(p2) = (1 - N g g 0 %L] <¢o<p, 9 - S —>) ,

(7)

for the dispersed phase respectively. The function ¥ in equation (6) is defined as

b? b? AR3 a’b? _ a? a’b?
V= %(TWP,;C* ﬁz’) - T/3¢0(6232H7 o CZRQZ)’

(2)
—_u
and A = paFmoR

well as the boundary conditions [7]. The required velocity and pressure fields are computed

It is easy to show that the expressions (6) and (7) satisfy equation (2) as

from (4)-(5). In a similar fashion, the hydrodynamic force acting on the compound droplet

is evaluated which is given by

P~ 4 {foao + (- 8) (Baido - Fail )}

b2
- 0muA { an + an o+ [V (a0 + aw]o | ®
where qg, = —curl (é¢ ;—quo(ﬁ—; 0, ﬁ—iz)), é4 being the unit vector in azimuthal direction. The

subscripts inside the square brackets in (8) indicate the unbounded flow while the subscripts
outside indicate the values of the quantities at those points. The expression (8) represents
the Faxen-relation for a compound droplet in axisymmetric flows.

In the following we present singularity solutions for extensional and stokeslet induced
flow fields in the presence of a compound multiphase droplet using (6)-(7). The flow due
to a stokeslet is an example belonging to the class of singularity induced flows. We also

compute the drag on the droplet in each flow.

4.1 Extensional flow past a compound droplet

Here the axisymmetric flow in which the stationary compound droplet is immersed is given
by ¥ = ar?sin? 0 cos 0, where « is a shear constant and @, unless otherwise mentioned below,
refers to the polar angle measured counterclockwise at O from the axis of symmetry of the
droplet as shown in Figure 1. It is worth pointing out that if the angle 6 is measured with
respect to a different origin along the axis, then the ¢y as given above will correspond to a
different extensional flow. Therefore this stream function 1)y can be used to refer to several
extensional flows simply shifting the point O for the purposes of measurement of angle 6.
The exact solutions for this problem can be obtained by the use of (6) and (7). The solution



1o P N w N 0 o
T T

Figure 2: Flow patterns for extensional flow around a vapor-liquid compound droplet.

for the continuous phase is

2 3
Y (r,0) = asz—aa3p2+A{(—%Z—

r3 2 7!
N 3v° 2 3be L e\ p?
2 2 2r' ) r”?

2. /2
Pz p
— (1 — A) |:O[b3 7"/3 + ab07:|

3a°b a*b® [ a® Z  ab? a®
AEPR 27 (92 o) 2 2
* [ 2ct R 2c3 (9 c? ) R 2¢'R <3 c? >

3a5b5Z_2 3a7b° Z] 12

Y e BT B

a®b a*b® 7 12
+ (1-A) {—R———] aﬁ, (9)

and the solution for the dispersed phase is
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where L_; is defined as in (2). The image system in the continuous phase consists of
stokeslets, stresslets, degenerate stokes-quadrupoles and degenerate stokes octupoles located
at O and D plus a stokes-quadrupole located at D. It is noticed that the strengths of these
image singularities depend on radii of the two spherical surfaces a, b, the distance between
the centers ¢ and the non-dimensional viscosity ratio A. Some typical flow patterns inside
and outside the compound droplet are shown in Fig. 2. There appears to be a circulatory

flow in the dispersed phase as seen from Fig. 2.
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Figure 3: Drag force in extensional flow with origin at D, the center of the circle of intersec-

tion of two spheres

The drag force can be calculated using (8). The drag D., the force acting in the z

direction, in the present case is then found to be

D, G [3A 1 1
e~ 7|7 (1) H0- 0 (159 .

We see that the drag force depends on many parameters such as § = g, the distance
c= aﬂl + 3?) = a between the centers, rate of shear a, and the viscosity parameter A.
This drag perhaps arises due to the geometrical asymmetry. This geometrical asymmetry
vanishes in the limiting cases: (i) a = 0,b > 0; and (ii) b = 0,a > 0. In these limiting cases,
we expect the drag to be zero provided the origin about which 6 is measured (see Figure 1)
is at the center of the sphere. In fact, we see from (11) that this drag force is indeed zero for
b = 0 as expected. However, it is non-zero for a = 0 because the origin shifts in the this case
and is no more at the center of the sphere. It is interesting that the drag in extensional flow
significantly depends on the choice of the origin. We shall now illustrate this by choosing the
origin at D i.e., at the center of the contact circle. The governing differential equations are
the same as they are invariant under translation of origin and the complete solutions can be
derived by the use of (6)-(7). It can be seen that the shift of origin strongly influences the
strength of primary image singularities such as stokeslet, stresslet and potential-doublet and
further introduces an extra stokeslet at O. The higher order singularities however remain
unaffected. For the sake of brevity we omit the details and focus our attention on the

expression for the drag which is found to be

DeD . ﬁ 1 A /3
SruMab? {1 B * 23" <6 * 2)] ’ (12)



where the second suffix D indicates that the origin is taken at this point. Clearly, equations
(11) and (12) are quite different and interestingly the latter reveals the existence of zero drag
corresponding to equilibrium. We observe that the shifting of origin alone does not make the
drag zero. Rather, the equilibrium position (for which the force vanishes) depends on the
viscosity and radii ratios. The plots shown in Fig. 3 further illustrates these features. The
various values for which the force vanishes may be obtained by equating (12) to zero which

yields the following relation between viscosity parameter A and ratio of radii parameter

B =b/a.

26°(1 — 3°)
A="L "7
333 + 2)

The above expression yields the critical value (. of (8 for which the drag vanishes at a

(13)

specified value of A. Since A lies between 0 and 1, equation (13) gives the constraint 5. < 1
or equivalently b < a. This in turn implies that the liquid volume should be less than the
vapor volume in order to have a vanishing drag force. It also follows from equation (13) that
B, is an increasing function of A (see Fig. 3) with £, = 0.7965595828 for A = 1 and 3, = 1
for A = 0. In other words, when the sphere S is also a vapor(A = 0), the drag becomes
zero if the two radii of the spheres are equal which corresponds to the case of composite
bubbles. Due to the added symmetry about the plane of intersection in this case, one would
expect this result to be true even for the case of arbitrary contact angle. For the vapor-solid
assembly (A = 1), the force vanishes when b/a = 0.7965595828.

It is also of interest to analyze the stability of the equilibrium (zero drag) position found
above. We first observe that in extensional flow the equilibrium results even in the absence
of buoyant force and equation (13) gives the values of A and [ corresponding to equilibrium
for which the drag force vanishes. The stability of this zero drag position can be analyzed
by moving the origin along z—direction. We noticed in the beginning of this section that
the shifting of origin along z—axis changes the drag force significantly. It can be seen from
(11) and (12) that for a given equilibrium value of A and 3 with a > 0, moving the origin
towards O results in a drag force along positive z—direction. Similarly it can be shown that
moving the origin towards O’ leads to a drag force along negative z—direction. Therefore,
the equilibrium in this case is clearly stable. For the same equilibrium values of A and (3

with a < 0, a similar examination shows unstable equilibrium.

4.2 Stokeslet outside I'

Here the underlying flow is induced by a stokeslet. We apply the results (6)-(8) to derive

the modified flowfield in the presence of a compound droplet.

We consider a stokeslet of strength %, located at a point (0,0, c+ d), say E7, outside
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[. The free-space stream function due to this stokeslet is 1y(p, z) = , where (p1, 21)
are the cylindrical coordinates with F; as origin. The flow fields in the presence of the
two-sphere assembly with a stokeslet outside it can be obtained by the use of (6) and (7).

For the continuous phase, we obtain
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and for the dispersed phase, we have
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where (p2, 22), (p4, 24), (ps, 24) are the cylindrical polar coordinates of a point with Fs, Fs3, E,
as origins respectively, and r; = r* — 200;rcos 0 + 003, j = 1,2,3,4. Here OOy = ¢ +
d,005 = 2= 005 = B4 and 00, = £L
spheres S, and S}, respectively, but outside the overlap region and the point Fj lies inside the

respectively. Note that E, and Ej lie inside the

overlap region. The image singularities are now located at these points (i.e., at E,, E5 and
Ey4). In contrast to the previous example, the image points are now shifted away from the
centers O, O’ and their common inverse point D. It is clear that the locations of the image
points are indeed dictated by the location of the initial stokeslet. Now the image system in
the continuous phase consists of stokeslets at Fy, F3 and Fjy, Stokes-doublets at E3 and Fy
and Degenerate Stokes-quadrupoles at F3 and Fj4. The strengths of the image singularities
depend on radii, the location of the initial stokeslet and the viscosity ratio. It is interesting
to note that the image system for a stokeslet near a viscous drop also has the same type of
singularities (with different strengths) as the compound drop. But the location of the image
singularities in the former is at a single point.

Below we present the flow patterns for the case when the droplet is placed between two
stokeslets of opposite strengths. We use the terminology “two opposite stokeslets” to refer
to two stokeslets: one with the positive strength, and the other with equal but negative

strength. We choose the one which is on the vapor side to have positive strength and the



e

10 15 -10 -5 o
@ (®)

\ \Q
8
6
4

Figure 4: Flow patterns for a pair of opposite stokeslets with a = 1, b = 2, A = 0.6. (a)
dy=b+5,d,=a+5, (b)dy=b+3,dy=a+5;(¢c)d=b+5,d,=a+2;(d)d=b+5,
d, = a + 1. Here dy,d, denote the locations of the stokeslets from the liquid and vapor

spherical surfaces, respectively.

other on the liquid side to have an equal but negative strength. Fig. 4(a)-(d) shows the flow
patterns for the case of two opposite stokeslets for various locations. If the two stokeslets
are far from the droplet, the interaction of the stokeslets is not stronger in the neighborhood
of the droplet (see Fig. 4(a)). When they are moved closer, a single toroidal eddy structure
appears in front of the liquid sphere. This eddy moves further close to the droplet as the
stokeslets are moved nearer to the compound drop. We notice that the size and shape of
these closed streamlines also change due to the stokeslets moving closer to the droplet. The

drag force on the compound droplet, found using (8), is

i (0 ) st (0~ G5 |

41— A) {%_b?iibcd] } (16)

Here F = (F,, F,

Y
a stokeslet flow depends on the viscosity ratio, the radii and the location of initial stokeslet.

a
F = Dse.{ — +A
3e{c+d+

F.). Tt can be seen from (16) that the drag force on the compound drop in

We discuss briefly the variation of drag force with these parameters. In Fig. 5(a) we have
plotted g—; against the location of the stokeslet d for different viscosity ratios with a = 1
and b = 2. The drag decreases monotonically with increasing values of d as expected. This

means that the droplet experiences greater resistance in stokeslet flow if the stokeslet is closer
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Figure 5: Drag force in a (single) stokeslet flow. (a) Variation with the stokeslet location d for
a fixed a = 1,b = 2; (b) Variation with the liquid sphere radius b for a fixed a = 2,d = b+ 1.

to it. Fig. 5(b) shows variation of the drag force with radius ‘0" when the stokeslet is at a
distance d = 1. In this case, the drag force decreases until b ~ 0.5 and then starts increasing
with increasing values of b. This, in turn, implies that the resistance is greater when the
liquid volume is large compared to the vapor volume. It may be noticed that the drag force
in general lies between the vapor-solid and vapor-vapor assembly limits. When A = 1, the
expression (16) yields the force on a vapor-solid assembly while for A = 0, it reduces to the

drag force on a vapor-vapor assembly (composite bubble).

4.3 Mobility functions

The image solutions for Stokes singularities may be employed in a method of reflections type
of calculation for the interactions between a compound drop and an arbitrary small particle.
The key idea is that over length scales associated with the compound drop, the disturbance
fields produced by a small particle may be approximated by those produced by equivalent
Stokes singularities (stokeslet, degenerate stokes-quadrupole etc.). In the reflections at the
small sphere we can truncate the multipole expansion at the desired order in a;/c;, where
ay is the radius of the smaller particle and ¢; is the distance between the location of the
small particle and the center of the compound drop. For reflections at the large sphere,
we retain the entire multipole solution, which of course is the image systems of the Stokes
singularities. The mobility functions may then be computed in the same way as explained
in [3]. The complete calculations of the mobility functions and the hydrodynamic interactions

will be discussed elsewhere.
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