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Abstract

The pulsatile flow in an eccentric catheterized artery is studied numerically by making use of an extended
version of the fast algorithm recently developed by Borges and Daripa [3]. The flow rate is prescribed as
a periodic function of time. The axial pressure gradient and axial velocity distribution in the catheterized
artery are obtained as solutions of the problem. Through the computed results, the increases in mean
pressure gradient and mean frictional resistance in the artery due to catheterization are estimated.

1 Introduction

Catheters attached with various functional tools have extensive use in contemporary medical sciences. The
measurement of various physiological flow characteristics (e.g., arterial blood pressure or pressure gradient and
flow velocity or flow rate) as well as the diagnosis (e.g., X-ray angiography and intravascualar ultrasound)
and treatment (e.g., coronary balloon angioplasty) of various arterial diseases are done through an appropriate
catheter-tool device by inserting the device into a peripheral artery and positioning it in the desired part of
the arterial network (see Back [1], Back et al. [2], and Dash et al. [7, 8] for details).

The insertion of a catheter into an artery leads to the formation of an annular region between the catheter
wall and the arterial wall. This will increase the flow resistance in the artery and modify the pressure distri-
bution. Therefore, the pressure/pressure gradient recorded by a transducer attached to the catheter will differ
from that of an uncatheterized artery. In order to obtain an accurate pressure reading, it is essential to know
the catheter-induced errors. This necessitates a study of blood flow in a catheterized artery.

Through a detailed mathematical model, MacDonald [11] studied the pulsatile flow in an eccentric catheter-
ized artery and obtained the estimates for pressure gradient corrections. Back [1] and Back et al. [2] studied
the important hemodynamical characteristics like the wall shear stress, pressure drop, and frictional resistance
in a catheterized coronary artery under normal as well as stenosed conditions and estimated the mean flow
resistance increase due to catheterization. Taking into account the non-Newtonian nature of blood, Dash et
al. [7] studied the flow pattern in a narrow catheterized artery and estimated the increased frictional resistance
in the artery due to catheterization. The effect of catheterization on various flow characteristics in a curved
artery with or without stenosis was studied by Karahalios [10], Jayaraman and Tiwari [9], and Dash et al. [8].

In this paper, we revisit the problem of pulsatile blood flow in a straight eccentric catheterized artery which
was originally studied by MacDonald [11]. However, here we compute the flow characteristics (i.e., the axial
pressure gradient and axial velocity distribution) accurately and rapidly by using an extended version of the fast
algorithm developed recently by Borges and Daripa [3] (see also Daripa and collaborators [4, 5]). Through the
computed results, we estimate the increases in mean pressure gradient and frictional resistance in the artery
due to catheterization. A more detailed exposition of the material presented here can be found in Daripa and
Dash [6].

2 Mathematical formulation

Figure 1 shows a typical cross-section of the catheterized artery. It is an eccentric annular region 2 bounded

by 02 =I'y UT's where

Ty: 224y =r2 and Ty: (z—b)>+y* =12 (2.1)
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Figure 1: Schematic diagram of a cross-sectional plane of the eccentric catheterized artery.

Here ¢ and r; are the radii of the outer (artery) and inner (catheter) tubes respectively. The origin (0,0) of
the coordinate system is chosen as the center of the outer tube and the z-axis is chosen to pass through the
center of the inner tube in the cross-sectional plane. We denote the center of the inner tube as (b,0). The
axial flow in the eccentric annulus is considered to be due to an uniform pulsatile (oscillatory) axial pressure
gradient %(t) with period %’T The velocity field is given by (0,0,w). The fluid (blood) is considered to be
incompressible and Newtonian, and the flow is assumed to be laminar and fully developed. Then the simplified
Navier-Stokes equation and the no-slip boundary conditions for the flow (see MacDonald [11]) are given by

a_w _@_’_ Pw  JPw
pat_ 0z H

%) + a—yQ} in Q, (2.2)

and

w=0 on 09, (2.3)

where p and p are density and viscosity of the fluid respectively. It is convenient to work with non-dimensional
variables. Therefore, we introduce the characteristics length as rg, characteristics pressure gradient as —F,

(mean pressure gradient), characteristic velocity as Prg/u, and the characteristics time as w™!. In non-
dimensional form (retaining the same notations), equations (2.1) and (2.2) are reduced to
ow Idp OPw Pw
2 .
a*—=—+4+—+— in Q, 2.4
ot 0z 0x2  Oy? (24)
and
w=0 on 09, (2.5)
where a =, /rdw/ (%) is the Womersley frequency parameter. The boundary curves I'; and I'3, in non-
dimensional form, are now given by
[y: 22 +y*=1 and Ta: (z—c)? +y* =d? (2.6)

where a = r; /rg and ¢ = b/rg. During flow simulation in a catheterized artery, it is often desirable to estimate
the increase in axial pressure gradient due to the insertion of a catheter into an artery. In this case, the flux
(flow rate) is assumed to be known (constant) which can be expressed in the form of Fourier series

Q) = //w(.r,y,t)d.rdy = Z Qe (2.7)
Q

j=—o0

where i = y/—1. The flow-rate is non-dimensionalized with respect to the characteristics flow rate P,rg/pu.



Pulsatile Flow in an Eccentric Catheterized Artery 3

3 Method of solution

Since the flow rate Q(t) is a periodic function of time # (prescribed), we seek the solutions for 22(t) and

oz
w(z,y,t) in the form of Fourier series

o

%(t): Z Pje't, and w(z,y,t) = Z w;(z,y)e " (3.1)

j=—o00 j=—oc

Substituting the series (3.1) in the Dirichlet problem comprising of equations (2.4) and (2.5) and equating the

coefficients of e*/* on both the sides, we get the Dirichlet problem
0’E; 0°E; . .
o 9 ivjEj—1 in Q, (3.2)
and
E;j=0 on 01, (3.3)

for j = 0,4£1,42,---,+o00. Here Ej(z,y) = wj(z,y)/P; and v; = ja?. It can be easily shown that the
coefficients F;’s satisfy I; = E—,] for j = £1,£2,--- ,£o0. It is worth noting here that the equation (3.2) is
a complex Helmholtz equation for the complex coefficient E;. Solving the Dirichlet problem (3.2) and (3.3)
provides F; which can be used, as described below, to obtain the axial pressure gradient in the eccentric

annulus.

3.1 Evaluation of Pressure Gradient

Substituting the expression (3.1) for w(x,y,t) in equation (2.7) and equating the coefficient of €“* on both
the sides, we get

[ wtnisas = (3.4)

P=q / [ B wiza, (3.5)
Q

for j = 0,41, £2,+00. The axial pressure gradient in the eccentric annulus can be obtained through equa-
tions (3.1) and (3.5).

In the following subsection, we describe our approach for solving the Dirichlet problem comprising of the
complex Helmholtz equation (3.2) and the boundary condition (3.3) in the eccentric annular domain €. In
order to take advantage of recently developed fast solvers (described in section 4) for real elliptic problems
which are well suited for concentric circles, we first conformally transform the eccentric annular domain 2 into
a concentric annular domain D and then transform the complex Helmholtz equation into a two coupled Poisson
equations. We discuss this procedure next.

which gives

3.2 Conformal Mapping

It is easy to see that the conformal mapping (see MacDonald [11])
z— 51
z—=1/B

maps the circlesT';: |z| =1 and T'2: |z —¢| = a into the circles 0D;: || = f1 and OD3: [£| = (2, respectively,
where (31 is the smallest real root of the quadratic algebraic equation

€= f() = (36)

s +(a®> = —1)s+c=0, (3.7)

and

BB —¢)
B2 = 1*7610 (3.8)
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It is easy to check that if ¢ > 0 and a 4+ ¢ < 1, then
O<ece<Bri<a+cec<l and 0< By <. (3.9)

Therefore, the eccentric annular region €2 bounded by the circles I'y and I's in z-plane is mapped onto the
concentric annular region D bounded by 0D = 0D; U 9D, in the &plane. If we denote € = re'®, then the
conformal mapping (3.6) transforms the Dirichlet problem (3.2) and (3.3) into

AE; = F(r,0)(iv;E; —1) in D, (3.10)
and
E;=0 on 0D, (3.11)
where the Laplacian A and the function F(r,#) are defined, respectively, by

0? 10 1 92
A=gat o T o (3:12)

and
2

S N ST,
ﬁl )2 B3(1 —2rcosf 4 1r2)2"

The expression (3.5) for the Fourier coefficient Pj is transformed into

P, =Qj / / " / (r, 0)rdrdo. (3.14)

3.3 Precise Mathematical Problem and Numerical Scheme

(3.13)

For convenience, we write the function Ej(r,6) in the form
E;(r,0) = Gj(r,0) +iH;(r,0). (3.15)
Then the Dirichlet problem (3.10) and (3.11) is reduced to

AGj = —F(r,0)(v;H; +1)

AH]' = F(’I’, Q)VjGj D’ (316)

and

G;=H; =0 on 0D. (3.17)

The above Dirichlet problem comprising of the two coupled Poisson equations (3.16) and boundary condi-
tions (3.17) is numerically solved through the following iterative scheme

AGEY = FmOGHY +1) (3.18)
AHY = F(r, 9)%0(’”1) ’
subject to conditions
G =o=H""Y on aD. (3.19)

The initial guess G;l)(r, 0) = Hj(l)(r, 0) =0, V (r,0) € D is chosen to start the iteration procedure. The
iteration is continued until following convergence criterion is met.

1) (k)
I1GY ) (r,0) — G (1,0) oo < € } (3.20)

(1) )
[H;7 0, 0) = Hi7 (1, 0)[|oc < €

The above numerical scheme requires solving two Poisson equations in each iteration for each j. Therefore we
need to solve approximately 2 K L number of Poisson equations where K is the number of Fourier coefficients
used for numerical purposes and L is the average number of iterations required for each j in the above iteration.
Since this could be expensive numerically, in particular if K and/or L are large, we adapt a recently developed
fast algorithm for the Poisson equation in a circular disk by Borges and Daripa [3] to our annular region with
appropriate modification. We discuss this algorithm next.
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4 A Fast Algorithm for the Poisson Equation in an Annular Disk

In this section, we present a fast algorithm for the Poisson equation in an annular disk with Dirichlet
boundary condition which is used in the iteration scheme (3.18) and (3.19). Various fast algorithms to solve
elliptic equations exist, but here we use the one originally developed by Daripa and co-workers [3, 4, 5] for
this kind of problems. In Borges and Daripa [3], a fast algorithm is presented to solve the Poisson equation in
a circular disk with Dirichlet and Neumann boundary condition. Here that algorithm is modified suitably to
extend it to an annular disk. We consider the problem

Aw = f(r,0) in D }

w = g(0) on 0D (4.1)

where D = {£ € R?: 31 < €] < B2} and 0D = {£ € R?: [¢] = 31 or [¢] = (B2} Let
o=ty Kz oo
We can express the solution of the problem (4.1) in the form
w(r,0) = u(r,0) + v(r,0), (4.3)
where u(r, ) and v(r, ) satisty, respectively,
Au= f(r,§) in D, (4.4)
and

Av =0 in D }

v=g—u ondD (4.5)

In sections 4.1 and 4.2, we present the fast algorithms to find a solution of (4.4) and to solve the problem (4.5).

4.1 A Solution of Equation (4.4)

A particular solution of equation (4.4) can be written as

u©) = [[ fo)G(E dman, €€ D. (46)
D
where )
G(&m) = - log ¢ —1l, (4.7)

is the free-space Green’s function for the Laplacian in the domain D; ¢ = &1 +1i&2 and 7 = 11 +1in2. For numerical
evaluation of the singular integral in equation (4.6), the annular domain D is divided into a grid formed by a
set of radial lines and concentric circular lines. The use of standard quadrature rules to evaluate the integral
leads to poor accuracy. Moreover, complexity of the quadrature method is O(N*) for a N2 grid points in the
annular domain D. For large N, the method becomes expensive in terms of computational time. However, the
integrals in equation (4.6) can be computed accurately and rapidly by extending the fast algorithm originally
developed by Daripa and co-workers [3, 4, 5] to the annular domain.

The mathematical foundation of the fast algorithm to evaluate (4.6) is embedded in the following theorem.
Here, we represent the solution u(r,6) as a Fourier series with radius dependent Fourier coeflicients w,,(r).
These Fourier coefficients w, (r) are obtained in terms of one-dimensional integrals in radial direction. The
proof of the theorem is given in Daripa and Dash [6]. This theorem is based on a minor modification of the
proof given in Borges and Daripa [3] for a circular disk.

Theorem 1. If f,(r) is the nth Fourier coefficient of the function f(r,0), then the nth Fourier coefficient
un(r) of the solution u(r,0) can be written as
’ B
un(r) = / Pu(r, p)dp + / au(r, p)dp, (4.8)

B2
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where plogrfo(p), n =0,
Pl ) = —ﬁ (f) an(p), . (4.9)
and
plog pfo(p), n=0,
(e p) = —ﬁ(%)nfn(p% "o (4.10)

Despite the fact that the above theorem presents the mathematical foundation of the algorithm, an efficient
implementation can be made by devising suitable recursive relations to carry out the one-dimensional integra-
tion in equation (4.8) and to evaluate the Fourier coefficients w, (1) of the solution wu(r,#). Let the annular
domain D = {¢ € R? : 35 < [¢| < 31} be discretized into NxM grid points with N equidistant points in the
angular direction and M equidistant points in radial direction. Theorem 1 leads to the following corollary.

Corollary 1. Let o =11 <19 < --- <71y = (1. Define
" n
| (%) falp)p, <0,
Cpl =", (4.11)
/pfn(p)dp, n =0,

Ti

and
Tj

- / 2 (%) Falp)dp. >0,

Dyl =q o (4.12)
/ plog pfn(p)dp, n=0.
Let v > r; and define
U;(’Fl) = 07 n S s
AN g 413
U;(’I"j) = T—‘]> u’;(ri) + CTZL:J’ n S O’ ( )
ri
and
U;t(’I"M) = 07 n Z y
)" 4.14
o= (2) st 4 08 0 )
J
Then, fori=1,2,...,n, we have
u,, (i) +u’, (r7), n <0,
un(r;) = § log(ri)u,, (r;) +ut(r;), n=0, (4.15)
w,y (ri) 4+ uZp, (ri), n > 0.

The above Corollary defines the recursive relations to obtain the Fourier coefficients uy,(r) of the solution w(r, 9)
based on the sign of the index n of w,. Equation (4.13) constructs n < 0 modes from the smallest radius rq
towards the largest radius rp;. Conversely, equation (4.14) constructs n > 0 modes from ry; to r1. The steps
involved in computing a particular solution u(r,6) of equation (4.4) in an annular region D are presented in
Algorithm 1 below.

Algorithm 1: Computation of Solutions of Equation (4.4) in the Annular Domain D.

For a given grid size M x N, equidistant grid points (r;, = S + (I = 1)(61 — (2)/(M — 1),0) = 27k/N), and
specified grid values f(r,e*), the algorithm returns the solution values u(re*) for I € [1, M] and k € [1, N].
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1. Compute the Fourier coefficients f,, (1), n € [~N/2, N/2], for eachl € [1, M] of the grid data f(re?*), | €
[1, M], k € [1, N]. FFT is used for such purposes as discussed in the note at the end of next subsection.

2. For i € [1, M — 1], compute the one-dimensional radial integrals C%**! n € [-N/2,0], and D%, n €
[0, N/2] as defined in equations (4.11) and (4.12) using trapezoidal rule.

3. Compute the coefficients u,, (r;), n € [-N/2,0], [ € [1, M] as defined by equation (4.13):
(a) Set u,, (r1) =0, n € [-N/2,0],
(b) For [ =2,--- , M, compute
n
.
uy (r) = (ﬁ) uy, (1) + CoBE ne [-N/2,0].
4. Compute the coefficients u,’ (1), n € [0, N/2], | € [1, M] as defined by equation (4.14):
(a) Set w,t (rp) =0, n€[0,N/2],
(b) For =M —1,---,1, compute
n
ut(r) = (L) ut(riq) + DL noe[0,N/2).
Ti+1
5. Compute the Fourier coefficients u,(r;), n € [-N/2,N/2], | € [1, M] by combining coefficients wu, (r;)
and u,” () as in equation (4.15).
Forl=1,2,---, M, compute
un(r1) = uy () + ut,,(n), n€[-N/2,—-1],
uo(r) = log(r)ug (1) + ug (1),
Un(rl) = ufn(rl): ne [laN/2]

6. Compute the solution values u(r;e?),l € [I,M],k € [1,N] from the Fourier coefficients u,(r),l €
[1,M],n € [-N/2,N/2]. FFT is used for such purposes as discussed at the end of next subsection.

4.2 Solution of the Problem (4.5)

The solution for the harmonic function v(r,8) in the annular domain D satisfying the Dirichlet boundary
conditions (see equations (4.5)) can be represented as an infinite series. This solution is available in many
elementary books in partial differential equations and/or applied mathematics. Below, we present this solution
as a theorem for the sake of completeness.

Theorem 2. Let a,, and b, be the nth Fourier coefficients of boundary functions h1(0) and ha(0) defined by
hl(ﬂ) = g1 (0) - u(ﬂl, 0) and h2 (9) = 92(0) — u(ﬁg, 9) (416)

Then the Fourier coefficients vy, (1) of the solution v(r,8) of (4.5) are given by

(1) = {C" e e (@.17)
Cnr™ ™+ Dypr™, ifn #£0,
where b boln 3 In 3
_ap— o _ b n o1 — aoln o2
= n@m T T wGm (4.18)
C, = 2122 0n1 — An7 d D, = 4nl1L 7 nl3) )
G D (119

Algorithm 2: Computation of Solution of Equation (4.5) in the Annular Domain D.

For a given grid size M x N, equidistant grid points (r; = B2 + (I — 1)(81 — B2)/(M — 1),6, = 27k/N), and
boundary values hi(f)) and ha(6y), the algorithm returns the solution values v(re),1 € [1, M], k € [1, N].

1. Compute the Fourier coefficients a,, and b, n € [-N/2, N/2], of the boundary data hi1(0)) and h2(0), k €
[1, N]. FFT is used for such purposes as discussed in the note below.
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2. Compute the coefficients C,, and D,,, n € [-N/2, N/2] using equations (4.18) and (4.19).

3. Compute the Fourier coefficients v,(r;), n € [-N/2,N/2], I € [1,M] for the solution v(r,0) using
equation (4.17).

4. Compute the solution values v(rie?*),l € [1,M],k € [1,N] from the Fourier coefficients v, (r;),l €
[1, M],n € [-N/2,N/2]. FFT is used for such purposes as discussed in the note below.

Finally, we add the solutions obtained from Algorithm-1 for equation (4.4) and from Algorithm-2 for prob-
lem (4.4) to obtain the desired solution of the problem (4.1).

Note: In Algorithms 1 and 2, we use FFT’s of length IV, which is a power of 2, in going back and forth between
the data and its Fourier coefficients. This requires obvious slight modification of these algorithms such as using
n € [-N/2 — 1, N/2] instead of using n € [-N/2, N/2]. This requires careful implementation of the method.

4.3 The Computational Complexity of the Algorithm

In steps 1 and 5 of Algorithm-1, there are 2M FFT’s of length N and all other computations in steps 2,
3, and 4 are of lower order. Similarly, in steps 1 and 4 of Algorithm-2, there are 2M FFT’s of length N and
all other computations in steps 2 and 3 are of lower order. With each FFT of length N contributing N In N
operations, the asymptotic operation count and hence the asymptotic time complexity is O(MNIn N). It is
easy to see that the asymptotic storage requirement is of the order O(M N). Finally, we remark that the above
algorithms are parallelizable on multi processor machines (see Borges and Daripa [3] for details).

5 Numerical Results and Discussions

The numerical method presented in the previous section has been implemented for modeling the pulsatile
blood flow in an eccentric catheterized artery which involves the following assumptions: (i) the arterial segment
is straight, (ii) the arterial wall is rigid and impermeable, (iii) blood is an incompressible Newtonian fluid, and
(iv) the flow is fully developed. The flux (flow rate) Q(t) is considered to be a prescribed periodic function of
time ¢. With these assumptions and conditions, the numerical results for the axial pressure gradient %(t) and
the axial velocity distribution w(z,y,t) are obtained for different values of the Womersley frequency parameter
a, radii ratio a, and eccentricity parameter ¢. These results are used to obtain the estimates of the increased
mean pressure gradient and frictional resistance in the artery due to the insertion of a catheter into it.

The model problem in Fourier space reduces to solving two coupled Poisson equations (3.16) with Dirichlet
boundary conditions (3.17), for each Fourier mode j € [—K, K|, where K is the number of harmonics in
the Fourier series representation of the prescribed periodic flow rate Q(t) (see below for the representation of
flow rate); K is assigned the value 6. These Dirichlet problems are solved iteratively using the scheme (3.18)
and (3.19) and convergence criterion (3.20). The value of € in equation (3.20) is chosen as 1075, For better
accuracy of the numerical results, the number of grid points M + 1 in the radial directions is chosen as 101 and
the number of grid points N in the angular direction is chosen as 128. Tt is found that the convergence of the
iterative scheme for higher values of the Fourier modes j depends very much on the values of the Womersley
frequency parameter «, radii ratio a, and eccentricity parameter c. The values of a and ¢ are chosen to satisfy
a<1,¢c>0and a+c < 1. For larger values of a and smaller values of ¢, the iterative scheme converges for
a large range of values of a. But, for smaller values of a and larger values of ¢, the scheme is very sensitive to
values of o and converges for relatively smaller values of a.. For o < 1, the scheme converges for all j € [—6, 6]
and for almost all values of a and ¢ in the above range.

Figure 2 shows the curve for time variation of flow rate Q(t) in a cycle of oscillation that is used to compute
the axial pressure gradient % (t) and the axial velocity distribution w(z, y,t) in the eccentric catheterized artery
for different values of the parameters «, a, and ¢. This curve represents an approximation to a measured flow
rate in a canine femoral artery (see MacDonald [11]). Tt is specified by the equation

Q) = ZQ; cos(jt —1;), (5.1)
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(A) Flow rate curve
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Figure 2: Time variation of flow rate Q(t) during a cycle of oscillation.

where @} and ¢, j =0,1,---,6, are the amplitudes and moduli of the harmonics of the flow rate Q(¢) which
are specified in Table 1. The series (5.1) can be written in the form of complex Fourier series (2.7) if we define

* 1 *x —q); "y .
Qo = Qg cos(vn), Qj = §Qj€ Wi, and Q_;=Qj j>0. (5.2)
Table 1: The amplitudes and moduli of the harmonics of the flow rate Q(¢) which is defined by equation (5.1)
and shown in Figure 2.

F; 0 1 2 3 1 5 6
Q7 [ 0.0916 | 0.2040 | 0.2292 | 0.1011 | 0.0464 | 0.0291 | 0.0106
¢; | 0.0 | 0.5482 | 2.6100 | 3.4670 | 4.1670 | 5.3035 | 6.2832

The behavior of the computed solution E; of the Dirichlet problem (3.10) and (3.11) is described through
Figure 3. This figure actually shows the plots of |F}| vs. j for different values of o in Figure 3(A) and
Figure 3(B): (A) a = 0.5, ¢ = 0.25 and (B) a = 0.75, ¢ = 0.15; and for different values of ¢ in Figure 3(C) and
Figure 3(D): (C) a =1, a =0.25 and (D) a =1, a = 0.5. Here the variables F}’s are related to the functions
E;(r,0)’s by

27 51
Fy = / / F(r.0)E, (r.0)rdrdo. (5.3)
0 2

Therefore F; represents the denominator in equation (3.14). The value of F; depends on four parameters: the
specific mode j, Womersley frequency parameter «, the radii ratio a (i.e. the radius of the catheter tube), and
the eccentricity parameter ¢ (i.e. the distance of the axis of the catheter tube from the axis of the artery).
These dependencies can be inferred directly from the various plots in Figure 3. For example, we notice the

following from this figure: (a) % < 0, i.e., the magnitude of F; decreases with an increasing value of o for a

a]a F a|F
fixed value of j, a, and ¢; but (b) % > 0, i.e., the | Fj| increases with increasing value of ¢; (c) % <0, ie.,

%I;?‘ < 0, i.e., the |Fj| decreases with increasing
value of j. We also notice that for smaller values of ¢ and «, the variation of |F}j| with j is negligibly small.
The case (c) above is consistent with the fact that cross-sectional area of the catheterized artery decreases with
the increase in radii ratio a.

The variation of pressure gradient %(t) with time ¢ during a cycle of oscillation for different values of «
with (A) a = 0.5, ¢ = 0.25, and (B) a = 0.75, ¢ = 0.15; and for different values of ¢ with (C) a = 1.0,
a = 0.25, and (D) @ = 1.0, a = 0.5 is shown in Figure 4. This pressure gradient is computed through
equations (3.1) and (3.14). This is the amount of pressure gradient required in the catheterized artery so that
the resulting flux in the catheterized artery will be equal to the flux Q(¢) in the uncatheterized artery as given
by equation (5.1). Therefore, from Figure 4 we can estimate the increase in the pressure gradient in the artery
due to catheterization.

It is observed from Figure 4 that the pressure gradient % (t) shows the qualitative behavior of the prescribed
flow rate Q(t). However, unlike flow rate, it quantitatively varies significantly during a cycle of oscillation. These

the |Fj| decreases with increasing value of a; and finally (d)
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Figure 3: Plots of |Fj| vs. j: plots in (A) and (B) are for different values of a with (A) a = 0.5, ¢ = 0.25 and
(B) a = 0.75, ¢ = 0.15; plots in (C) and (D) are for different values of ¢ with (C) « = 1, a = 0.25 and (D)

a=1,a=0.5.
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(A) a=0.5, c=0.25, a+c=0.75 (B) a=0.75, c=0.15, a+c =0.90
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Figure 4: Time variation of pressure gradient %(t) during a cycle of oscillation: plots in (A),(B) for different
values of o with (A) a = 0.5, ¢ = 0.25 and (B) a = 0.75 and ¢ = 0.15, and plots in (C),(D) for different values
of ¢ with (C) @ = 1.0, a = 0.25 and (D) @ = 1.0, a = 0.5.

results are in excellent agreement with the results of MacDonald [11]. From Figures 4(A) and 4(B), it is seen
that the pressure gradient does not vary appreciably with the Womersley frequency parameter . However, it
varies markedly with the radii ratio a and eccentricity parameter ¢ during a cycle of oscillation: (i) for a = 0.5
and ¢ = 0.25, the peak pressure gradient is about 15; (ii) where as for ¢ = 0.75 and ¢ = 0.15, it is about 85
(see Figures 4(A) and 4(B)). Figures 4(C) and 4(D) show that the pressure gradient increases with increasing
radii ratio a (or equivalently, the catheter radius), but decreases with increasing eccentricity parameter ¢ (or

equivalently, the separation between the center of catheter and the center of artery).

Table 2: The mean (time average over a cycle of oscillation) axial pressure gradient (%) in the catheterized
artery as a function of radii ratio a and eccentricity parameter ¢ with Womersley frequency parameter a = 1.0
(The mean flow rate is Qo = Qf cos(vho) = Qf = 0.0916).

c\a | 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1 | 0.899 | 1.194 | 1.640 | 2.371 | 3.677 | 6.255 | 12.051
0.2 | 0.804 | 1.030 | 1.350 | 1.835 | 2.605 | 3.893 | 6.177
0.3 | 0.687 | 0.841 | 1.047 | 1.337 | 1.755 | 2.376 -
0.4 | 0.574 | 0.674 | 0.802 | 0.972 | 1.201 -
0.5 | 0.477 | 0.541 | 0.620 | 0.721 -
0.6 | 0.400 | 0.440 | 0.488 -

The time averaged mean axial pressure gradient % in the catheterized artery obtained as a function of radii
ratio a and eccentricity parameter ¢ is presented in Tables 2. The Womersley frequency parameter « is fixed
at 1.0. The void entries in this table indicate that the computation has not been done for values of a and ¢
for which a 4 ¢ > 0.9. The time averaged mean flow rate @ obtained from equation (5.1) is 0.0916. The mean
frictional resistance is calculated from these tables as the ratio of the mean pressure gradient and the mean flow



12 Daripa and Dash

rate. So, this table basically indicates how the mean axial pressure gradient and the mean frictional resistance
will vary with the radii ratio a and eccentricity parameter ¢ when a catheter is inserted into the artery. The
factor by which the mean pressure gradient, or equivalently, the mean frictional resistance increases due to
catheterization can be calculated from this table.

6 Concluding Remarks

The fast algorithm of Borges and Daripa [3] for Dirichlet problems in a circular disk is extended here for
solving Dirichlet problems in an annular disk. This fast algorithm is implemented and applied to study pulsatile
(oscillatory) blood flow in a straight eccentric catheterized artery by modeling blood as an incompressible New-
tonian fluid. The axial pressure gradient g—i’ (t) and the axial velocity distributions w(z,y,t) in the catheterized
artery are obtained as solutions of the problem by prescribing the flow rate Q(t) as a suitable periodic function
of time t typical of that of a canine femoral artery. Numerical results are obtained for various values of the
Womersley frequency parameter «, radii ratio a, and eccentricity parameter c. From these numerical results,
changes in the mean pressure gradient and the mean frictional resistance due to the insertion of a catheter into
an artery are estimated. These estimates can be used to correct the error involved in the measured pressure
gradients using catheters.

The present study shows that axial pressure gradient in the catheterized artery does not vary appreciably
with the Womersley frequency parameter o. However, it varies significantly with the radii ratio a (i.e., the
catheter radius) and the eccentricity parameter ¢ (i.e., the distance between the center of catheter and the
center of artery). The mean axial pressure gradient and the mean frictional resistance increase with increas-
ing catheter radius, but decrease with increasing distance between the center of catheter and the center of artery.
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