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Abstract

This paper briefly describes some essential theory of
a numerical method based on domain embedding and
boundary control to solve elliptic problems in com-
plicated domains. A detailed account of this method
along with many proofs and numerical results can be
found in Badea and Daripa [1].

1 Introduction

In domain embedding methods, irregular domains ω
where solutions of problems are sought are embedded
into regular domains Ω so that solutions in these em-
bedded domains can be constructed more efficiently,
possibly using some fast and accurate solvers on the
embedding domains. There are several ways to exploit
domain embedding ideas in actual construction of so-
lutions in the irregular domain. For example, domain
embedding idea is usually used in conjunction with the
optimal boundary or distributed control methods, or
the Lagrange multiplier techniques. The use of these
embedding methods is now commonplace for solving
complicated problems arising in science and engineer-
ing. In this regard, it is worth mentioning works of
Borgers [2] for Stokes equations, Dinh et. al. [3] for
fluid dynamics and electromagnetics, Neittaanmäki et.
al. [6] for free boundary problems and optimal design,
Young et. al. [7] for the transonic flow calculation, just
to mention a few. Due to space limitation, we have not
been able to provide here more references on these em-
bedding methods. More references on these methods
can be found in Badea and Daripa [1].

Below we first state (section 2) some results related to
the formulation of a Dirichlet problem in terms of an
optimal boundary control problem. In this formula-
tion, the solution on the auxiliary domain Ω is sought
such that it satisfies the boundary conditions on the
domain ω. As proved in Badea and Daripa [1] and
stated below, this optimal boundary control problem
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has an unique solution if the controls are taken in a fi-
nite dimensional subspace of the space of the boundary
conditions on the auxiliary domain. We also state the
main theorem related to the proof that the solutions
of Dirichlet (or Neumann) problems can be approxi-
mated within any prescribed error, however small, by
solutions of Dirichlet (or Neumann) problems in the
auxiliary domain taking an appropriate subspace for
such an optimal control problem.

In Badea and Daripa [1], we have proved that the re-
sults obtained for the interior problems hold for the
exterior problems. There, we have given some numer-
ical examples for both the interior and the exterior D
irichlet problems.

2 Controllability

We briefly outline some key results here for the contro-
lability using the Dirichlet problems as defined below.
The proofs of the theorems mentioned here as well as
a similar development for the Neumann problems are
given in Badea and Daripa [1].

Below we consider a domain embedding and optimal
boundary control approach to solve the following ellip-
tic equation:

Ay = f in ω (1)

subject to Dirichlet boundary conditions

y = gγ on γ, (2)

or Neumann boundary conditions

∂y
∂nA(ω) = hγ on γ, (3)

where A is a suitable elliptic operator (see [1]), and
∂

∂nA(ω) is the outward conormal derivative associated
with A. Here and below ω, Ω ∈ N (1),1 (i.e. the
maps defining the boundaries of the domains and their
derivatives are Lipschitz continuous) are two bounded
domains in RN such that ω̄ ⊂ Ω. Their boundaries are
denoted by γ and Γ, respectively. Appropriate func-
tion spaces of the solutions are given in Badea and
Daripa [1].

The Dirichlet problem (1)–(2) has an unique solution



which depends continuously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |gγ |L2(γ)}. (4)

Also, under some classical conditions, the Neumann
problem (1), (3) has a unique solution which depends
continuously on the data

|y|H1/2(ω) ≤ C{|f |L2(ω) + |hγ |H−1(γ)}. (5)

We study the controllability of the solution of the above
problems in ω with the solution of a Dirichlet problem
in Ω. Let

U = L2(Γ) (6)

be the space of controls. The state of the system for
a control v ∈ L2(Γ) is given by the solution y(v) ∈
H1/2(Ω) of the following Dirichlet problem

Ay(v) = f in Ω
y(v) = v on Γ.

(7)

In the case of the Dirichlet problem (1)–(2), the space
of observations is taken to be

H = L2(γ), (8)

and the cost function is given by

J(v) =
1
2
|y(v) − gγ |2L2(γ), (9)

where v ∈ L2(Γ) and y(v) is the solution of problem
(7). For the Neumann problem given by (1) and (3),
the space of observations is taken to be

H = H−1(γ), (10)

and the cost function is given by

J(v) =
1
2

∣∣∣∣ ∂y(v)
∂nA(ω)

− hγ

∣∣∣∣
2

H−1(γ)

. (11)

Proposition 2.1 A control u ∈ L2(Γ) satisfies J(u) =
0, where the control function is given by (9), if and only
if the solution of (7) for v = u, y(u) ∈ H1/2(Ω) satisfies

Ay(u) = f in Ω − ω̄,
y(u) = y on γ,

∂y(u)
∂nA(Ω−ω̄) + ∂y

∂nA(ω) = 0 on γ,
(12)

and
y(u) = y in ω, (13)

where y is the solution of the Dirichlet problem defined
by (1) and (2) in the domain ω. The same result holds
if the control function is given by (11) and y is the
solution of the Neumann problem (1) and (3).

Since (12) is not a properly posed problem, it follows
from the above proposition that the optimal control
might not exist. However, J. L. Lions proves in [4]
(Chap. 2, §5.3, Theorem 5.1) a controllability theorem
which can be directly applied to problem (7). Using
this controllability theorem, the following theorem (see
Badea and Daripa [1]) can be proved, and it justifies
controllability of the solutions of problems in ω by the
solutions of Dirichlet problems in Ω.

Theorem 2.1 The set {y(v)|ω : v ∈ L2(Γ)} is dense,
using the norm of H1/2(ω), in {y ∈ H1/2(ω) : Ay =
f in ω}, where y(v) ∈ H1/2(Ω) is the solution of the
Dirichlet problem (7) for a given v ∈ L2(Γ).

In Badea and Daripa [1], the controllability of the so-
lutions of Dirichlet and Neumann problems in ω by
Neumann problems in Ω is also discussed, and a theo-
rem similar to Theorem 2.1 in this case is stated and
proved there.

3 Controllability with finite dimensional spaces

Let {Uλ}λ be a family of finite dimensional subspaces
of the space L2(Γ) such that given (6) as a space of
controls with the Dirichlet problems, we have⋃

λ

Uλ is dense in U = L2(Γ). (14)

For a v ∈ L2(Γ) we consider the solution y′(v) ∈
H1/2(Ω) of the problem

Ay′(v) = 0 in Ω
y′(v) = v on Γ.

(15)

We fix an Uλ. The cost functions J defined by (9) and
(11) are differentiable and convex. Consequently, an
optimal control

uλ ∈ Uλ : J(uλ) = inf
v∈Uλ

J(v), (16)

exists if and only if it is a solution of the equation

uλ ∈ Uλ : (y(uλ), y′(v))L2(γ) =
(gγ , y′(v))L2(γ) for any v ∈ Uλ.

(17)

when the control function is (9), and

uλ ∈ Uλ :
(

∂y(uλ)
∂nA(ω) ,

∂y′(v)
∂nA(ω)

)
H−1(γ)

=(
hγ , ∂y′(v)

∂nA(ω)

)
H−1(γ)

for any v ∈ Uλ,
(18)

when the control function is (11). Above, y(uλ) is the
solution of problem (7) corresponding to uλ, and y′(v)



is the solution of problem (15) corresponding to v. If
yf ∈ H2(Ω) is the solution of the problem

Ayf = f in Ω,
yf = 0 on Γ,

(19)

then, for a v ∈ L2(Γ), we have

y(v) = y′(v) + yf , (20)

where y(v) and y′(v) are the solutions of problems (7)
and (15), respectively. Therefore, we can rewrite prob-
lems (17) and (18) as

uλ ∈ Uλ : (y′(uλ), y′(v))L2(γ) =
(gγ − yf , y′(v))L2(γ),

(21)

and

uλ ∈ Uλ :
(

∂y′(uλ)
∂nA(ω) ,

∂y′(v)
∂nA(ω)

)
H−1(γ)

=(
hγ − ∂yf

∂nA(ω) ,
∂y′(v)
∂nA(ω)

)
H−1(γ)

,
(22)

for any v ∈ Uλ, respectively.

Lemma 3.1 For a fixed λ, let ϕ1, . . . , ϕnλ
, nλ ∈ N, be

a basis of Uλ, and let y′(ϕi) be the solution of problem
(15) for v = ϕi, i = 1, . . . , nλ. Then {y′(ϕ1)|γ , . . .,

y′(ϕnλ
)|γ} and {∂y′(ϕ1)

∂nA(ω) |γ, . . . ,
∂y′(ϕnλ

)

∂nA(ω) |γ} are linearly
independent sets.

The following proposition proves the existence and
uniqueness of the optimal control when the states of
the system are the solutions of the Dirichlet problems.

Proposition 3.1 Let us consider a fixed Uλ. Then
problems (21) and (22) have unique solutions. Conse-
quently, if the boundary conditions of Dirichlet prob-
lems (7) lie in the finite dimensional space Uλ, then
there exists a unique optimal control of problem (16)
corresponding to either the Dirichlet problem (1), (2)
or the Neumann problem (1), (3).

The following theorem proves the controllability of the
solutions of the Dirichlet problems in ω by the solutions
of the Dirichlet problems in Ω. In fact, it proves the
convergence of the embedding method associated with
the optimal boundary control.

Theorem 3.1 Let {Uλ}λ be a family of finite dimen-
sional spaces satisfying (14). We associate the solution
y of the Dirichlet problem (1), (2) in ω with problem
(16), in which the cost function is given by (9). Also,
the solution y of the Neumann problem (1), (3) is as-
sociated with problem (16), in which the cost function
is given by (11). In both cases, there exists a positive

constant C, and for any given ε > 0 there exists Uλε

such that

|y(uλε)|ω − y|H1/2(ω) < Cε,

where uλε ∈ Uλε is the optimal control of the corre-
sponding problem (16) with λ = λε, and y(uλε) is the
solution of problem (7) with v = uλε .

Using the basis ϕ1, · · · , ϕnλ
of the space Uλ, we define

the matrix

Πλ = ((y′(ϕi), y′(ϕj))L2(γ))1≤i,j≤nλ
(23)

and the vector

lλ = ((gγ − yf , y′(ϕi))L2(γ))1≤i≤nλ
. (24)

Then problem (21) can be written as

ξλ = (ξλ,1, · · · , ξλ,nλ
) ∈ Rnλ : Πλξλ = lλ. (25)

Consequently, using Theorem 3.1, the solution y of
problem (1), (2) can be obtained within any prescribed
error by setting the restriction to ω of

y(uλ) = ξλ,1y
′(ϕ1) + · · · + ξλ,nλ

y′(ϕnλ
) + yf , (26)

where ξλ = (ξλ,1, · · · , ξλ,nλ
) is the solution of algebraic

system (25). Above, yf is the solution of problem (19)
and y′(ϕi) are the solutions of problems (15) with v =
ϕi, i = 1, · · · , nλ.

An algebraic system (25) is also obtained in the case
of problem (22). This time the matrix of the system is
given by

Πλ =

((
∂y′(ϕi)
∂nA(ω)

,
∂y′(ϕj)
∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

, (27)

and the free term is

lλ =((
hγ − ∂yf

∂nA(ω) ,
∂y′(ϕi)
∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

.
(28)

Therefore, using Theorem 3.1, the solution y of prob-
lem (1), (3) can be estimated by (26). Also, yf is the
solution of problem (19), and y′(ϕi) are the solutions
of problems (15) with v = ϕi, i = 1, . . . , nλ.

Remark 3.1 We have defined yf as a solution of
problem (19) in order to have y(v) = y ′(v) + yf or

∂y(v)
∂nA(Ω) = ∂y′(v)

∂nA(Ω) + ∂yf

∂nA(Ω) , respectively, on the bound-
ary Γ. In fact, we can replace y(v) by y′(v) + yf in the
cost functions (9) and (11) with yf ∈ H2(Ω) satisfying
only

Ayf = f in Ω, (29)

and the results obtained in this section still hold.



4 Approximate observations in finite
dimensional spaces

In solving problems (21), (22), we require an appropri-
ate interpolation which makes use of the values of y ′(v)
computed only at some points on the boundary γ. We
show below that using these interpolations, i.e., obser-
vations in finite dimensional subspaces, we can obtain
the approximate solutions of problems (1), (2) and (1),
(3).

As in the previous sections, we deal with the case when
the states of the system is given by the Dirichlet prob-
lem (7). Let Uλ be a fixed finite dimensional subspace
of U = L2(Γ) with the basis ϕ1, · · · , ϕnλ

.

Let us assume that for the problem (1), (2), we choose
a family of finite dimensional spaces {Hµ}µ such that

⋃
µ

Hµ is dense in H = L2(γ). (30)

Similarly, for problem (1), (3) we choose the finite di-
mensional spaces {Hµ}µ such that

⋃
µ

Hµ is dense in H = H−1(γ). (31)

The subspace Hµ given in (30) and (31) is a subspace
of H given in (8) and (10), respectively.

An appropriate choice of Hµ is made based on the prob-
lem to be solved as discussed above. For a given ϕi,
i = 1, · · · , nλ, we consider below the solution y′(ϕi) of
problem (15) corresponding to v = ϕi and we approxi-
mate its trace on γ by y′

µ,i.Also, the approximation of
∂y′(ϕi)
∂nA(ω) on γ is denoted by ∂y′

µ,i

∂nA(ω) .

Since the system (25) has a unique solution, the de-
terminants of the matrices Πλ given in (23) and (27)
are nonzero. Consequently, if |y ′(ϕi) − y′

µ,i|L2(γ) or

| ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω) |H−1(γ) are small enough, then the ma-
trices

Πλµ = ((y′
µ,i, y

′
µ,j)L2(γ))1≤i,j≤nλ

(32)

and

Πλµ =

((
∂y′

µ,i

∂nA(ω)
,

∂y′
µ,j

∂nA(ω)

)
H−1(γ)

)
1≤i,j≤nλ

(33)

have nonzero determinants. In this case, each of the
algebraic systems

ξλµ = (ξλµ,1, . . . , ξλµ,nλ
) ∈ Rnλ : Πλµξλµ = lλµ (34)

has a unique solution. In this system, the free term is

lλµ = ((gγµ − yfµ, y′
µ,i)L2(γ))1≤i≤nλ

(35)

if the matrix Πλµ is given by (32) and

lλµ =((
hγµ − ∂yfµ

∂nA(ω) ,
∂y′

µ,i

∂nA(ω)

)
H−1(γ)

)
1≤i≤nλ

(36)

if the matrix Πλµ is given by (33). Above, we have
denoted by gγµ and hγµ some approximations in Hµ

of gγ and hγ , respectively. Also, yfµ and ∂yfµ

∂nA(ω) are

some approximations of yf and ∂yf

∂nA(ω) in the corre-
sponding Hµ of L2(γ) and H−1(γ), respectively, with
yf ∈ H2(Ω) satisfying (29).

The solution y of problems (1), (2) and (1), (3) can be
approximated with the restriction to ω of

y(uλµ) = ξλµ,1y
′(ϕ1) + · · · + ξλµ,nλ

y′(ϕnλ
) + yf , (37)

where ξλ = (ξλµ,1, . . . , ξλµ,nλ
) is the solution of appro-

priate algebraic system (34).

Using Theorem 3.1, we can prove the following theorem
which estimates the error depending on the approxima-
tion on the boundary γ of the domain ω of both the
boundary conditions and the solutions on Ω.

Theorem 4.1 Let {Uλ}λ be a family of finite dimen-
sional spaces satisfying (14). Also, we associate prob-
lem (1), (2) or (1), (3) with a family of spaces {Hµ}µ

satisfying (30) or (31), respectively. Then, for any
ε > 0, there exists λε such that the following hold.

(i) If the space Hµ is taken such that |y′(ϕi)−y′
µ,i|L2(γ),

i = 1, . . . , nλε , are small enough, y is the solution of
problem (1)–(2), and y(uλεµ) is given by (37), in which
ξλµ is the solution of the algebraic system (34) with the
matrix given by (32) and the free term given by (35),
then the algebraic system (34) has a unique solution
and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(|gγ − gγµ|L2(γ) + |yf − yfµ|L2(γ)

+ max1≤i≤nλ
|y′(ϕi) − y′

µ,i|L2(γ)

)
.

(ii) If the space Hµ is taken such that | ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω) |H−1(γ), i = 1, . . . , nλε , are small enough, y is
the solution of problem (1)–(3), and y(uλεµ) is given
by (37) in which ξλµ is the solution of the algebraic
system (34) with the matrix given by (33) and the free
term given by (36), then the algebraic system (34) has
a unique solution and

|y(uλεµ)|ω − y|H1/2(ω) < Cε

+ Cλε

(
|hγ − hγµ|H−1(γ) +

∣∣∣ ∂yf

∂nA(ω) − ∂yfµ

∂nA(ω)

∣∣∣
H−1(γ)

+ max
1≤i≤nλ

∣∣∣ ∂y′(ϕi)
∂nA(ω) −

∂y′
µ,i

∂nA(ω)

∣∣∣
H−1(γ)

)
,



where C is a constant and Cλε depends on the basis of
Uλε .

Remark 4.1. Since the matrices Πλµ given by (32)
and (33) are assumed to be nonsingular, it follows that

{y′
µ,i}i=1,...,nλ

and { ∂y′
µ,i

∂nA(ω)}i=1,...,nλ
are some linearly

independent sets in L2(γ) and H−1(γ), respectively.
Consequently, if mµ is the dimension of the correspond-
ing subspace Hµ, then nλ ≤ mµ.

5 Numerical example

The numerical tests refer to the Dirichlet problem

−∆y = f in ω,
y = gγ on γ,

(38)

where ω ⊂ R2 is a square centered at the origin with
sides parallel to the axes and of length of 2 units. The
approximate solution of this problem is given by the
solution of the Dirichlet problem

−∆y(v) = f in Ω,
y(v) = v on Γ,

(39)

in which the domain Ω is the disc centered at the origin
with radius equal to 2. The solutions of the homoge-
neous Dirichlet problems in Ω are found by the Poisson
formula

y(v)(z) =
1

2πr

∫
|ζ|=r

v(ζ)
r2 − |z|2
|z − ζ|2 dSζ . (40)

The circle Γ is discretized with n equidistant points,
and U ⊂ U ≡ L2(Γ) is taken as the space of the piece-
wise constant functions. Naturally, an element ϕi in
the basis of H is a function defined on Γ which takes
the value 1 between the nodes i and i + 1 and vanishes
in the rest of Γ. The square γ is also discretized with
m equidistant points, and H ⊂ H ≡ L2(γ) is taken as
the space of the continuous piecewise linear functions.
Evidently, the inclusions in (14) and (30) are dense
because the union of the spaces (over some sequence
of mesh size approaching zero) of continuous piecewise
linear or piecewise constant functions is dense in L2.

The values of the integrals in the Poisson formula at
the points on γ are calculated using the numerical in-
tegration with three nodes. The integrals in the inner
products in L2(γ) are calculated using an exact formula
when H is the space of the continuous piecewise linear
functions. In particular, if we have on γ two continuous
piecewise linear functions y1 and y2 such that

y1(x) = mk
1(x − xk) + yk

1 ,
y2(x) = mk

2(x − xk) + yk
2

(41)

n errd errb
80 .36692E-07 .15956E-06
72 .46271E-08 .41101E-07
60 .14682E-09 .25103E-08
45 .12475E-08 .54357E-08
40 .64352E-12 .11638E-07
36 .67121E-12 .11648E-06
30 .12371E-05 .33923E-05
24 .39543E-12 .19851E-04
18 .10609E-03 .43901E-03
12 .29916E-10 .54208E-02
10 .94618E-02 .17096E-01

Table 1: Table 5.1. Relative errors for the Dirichlet prob-
lem.

for x ∈ [xk, xk+1], k = 1 . . . , m, then∫
γ

y1y2 = h
m∑

k=1

[
yk
1yk

2+

h2

3 mk
1mk

2 + h
2 (mk

1yk
2 + mk

2yk
1 )
]
,

(42)

where h = xk+1 − xk is the mesh size on γ.

All computations below have been performed in fifteen
digit arithmetics (double precision).

In this example, we choose the exact solution to be
u(x1, x2) = x2

1 + x2
2. Hence gγ(x1, x2) = x2

1 + x2
2, and

f = −4. We have taken yf = 2x2
1 as a solution of the

inhomogeneous equation in Ω. It has been compared
with the computed one at 19 equidistant points on a
diagonal of the square: (-1.4,-1.4),. . .,(0,0),. . .,(1.4,1.4).
Below errd denotes the maximum of the relative errors
between the exact and the computed solutions at these
19 considered points in the domain ω. A similar error
only on the boundary γ is denoted by errb.

Table 5.1 shows errors errd and errb against n, the num-
ber of the equidistant points on Γ which is the dimen-
sion of the finite dimensional space U . Recall that Γ is
boundary of the embedding domain Ω. All these com-
putations use a mesh size of 0.1 on γ. It corresponds to
m = 80, the number of equidistant points on γ, which
is the dimension of the finite dimensional space H . The
smallest diagonal element during the Gauss elimination
method is of the order 10−17 for n = 80 and n = 72,
and of the order 10−14 for n = 60. It is greater than
10−10 for n = 10, . . . , 45. We should mention that in
the cases when n > 60, where the last pivot is very
small, we notice an increase in error. In all these cases
the error errb, which can be calculated for any example
even when the exact solution is not known, is a good
indicator of the computational accuracy.

In the above example, the right-hand side f of the equa-
tion in ω is given by an exact algebraic formula, and it



was extended in Ω by the same formula. Moreover, we
have had for this simple example an exact solution yf

of the inhomogeneous equation in Ω, which could be ex-
actly evaluated at the mesh points of the boundary γ of
the domain ω. Also, the solutions of the homogeneous
problems in Ω, given by the above Poisson formula,
could be evaluated directly at these mesh points. In
other much more complicated examples in [1] we study
the effect of various extensions of f in Ω on the com-
puted solutions in ω. Therefore, in those examples, the
solution of the problem in Ω could be computed only at
some nodes of a regular mesh over Ω, and their values
at the mesh points on γ are calculated by interpolation.
We could not give these example here because of the
limitations on the numbers of pages (6 pages at most).
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