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Abstract

A class of model equations that describe the bi-directional propagation of small amplitude long waves on

the surface of shallow water is derived from two-dimensional potential flow equations at various orders of

approximation in two small parameters, namely the amplitude parameter a ¼ a=h0 and wavelength pa-

rameter b ¼ ðh0=lÞ2
, where a and l are the actual amplitude and wavelength of the surface wave, and h0 is

the height of the undisturbed water surface from the flat bottom topography. These equations are also

characterized by the surface tension parameter, namely the Bond number s ¼ C=qgh2
0, where C is the

surface tension coefficient, q is the density of water, and g is the acceleration due to gravity.

The traveling solitary wave solutions are explicitly constructed for a class of lower order Boussinesq

system. From the Boussinesq equation of higher order, the appropriate equations to model solitary waves

are derived under appropriate scaling in two specific cases: (i) b � ð1=3 � sÞ6 1=3 and (ii)

ð1=3 � sÞ ¼ OðbÞ. The case (i) leads to the classical Boussinesq equation whose fourth-order dispersive term

vanishes for s ¼ 1=3. This emphasizes the significance of the case (ii) that leads to a sixth-order Boussinesq

equation, which was originally introduced on a heuristic ground by Daripa and Hua [Appl. Math. Comput.

101 (1999) 159] as a dispersive regularization of the ill-posed fourth-order Boussinesq equation.
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1. Introduction

The classical (fourth-order) Boussinesq equation

gtt ¼ gxx þ ðg2Þxx þ gxxxx; ð1:1Þ

describes the bi-directional propagation of small amplitude and long wavelength capillary–gravity
waves on the surface of shallow water [1,2] as well as lattice waves in non-linear lattices [3,4]. The
model Eq. (1.1) was originally derived by Boussinesq [5] from the Euler�s equation of motion for
two-dimensional potential flow beneath a free surface by introducing appropriate approximations
for small amplitude long waves. Later, Korteweg–deVries [6] derived an equivalent model
equation for uni-directional wave propagation, known as the classical (third-order) KdV equa-
tion, by using the far-field analysis in addition to the Boussinesq�s approximations. The third-
order KdV equation has become more popular because of its mathematical simplicity and
well-posedness.

Ill-posedness of Eq. (1.1) is a deficiency in the model and raises questions about the physical
relevance of this equation in the context of modeling bi-directional propagation of small ampli-
tude long water waves. Even otherwise, this equation poses mathematical and numerical diffi-
culties [7,8]. One of the well-known well-posed variant of this equation which is valid at the same
order is to replace the last term in Eq. (1.1) by gxxtt. There are other ways to regularize this
equation in a physically consistent way, e.g. by including the effect of surface tension which will
lead to a higher order model than the Boussinesq equation (1.1). Even though the surface tension
itself may not be that important for long waves, their inclusion in deriving equations which model
propagation of such waves may be important, in particular in non-linear models that may oth-
erwise generate dangerous short waves such as Eq. (1.1). In this paper, through a systematic
derivations of higher order Boussinesq equation models by including second-order terms in
perturbation theory, we show that the a higher order Boussinesq model, originally introduced by
Daripa et al. [8], is a physically relevant model of bi-directional propagation of small amplitude
long waves on the surface of shallow water.

The ill-posed interfacial model equations are often regularized by adding the effect of surface
tension [8,15]. When the effect of surface tension is included, the solutions to the water wave
equations are characterized by the Bond number s ¼ C=qgh2

0, in addition to the amplitude pa-
rameter a ¼ a=h0 and wavelength parameter b ¼ ðh0=lÞ2

. Here, C is the surface tension coefficient,
q is the density of water, g is the acceleration due to gravity, h0 is the height of the undisturbed
water surface, a is the amplitude of the surface wave, and l is the wavelength of the surface wave.
The inclusion of the surface tension effect, in some cases, leads to the higher order model equa-
tions, such as the fifth-order KdV equation [16] and the sixth-order Boussinesq equation [8,17].
These equations are physically relevant model equations for shallow water waves in the limit
s " 1=3 (i.e., when the Bond number s is less than but very close to 1/3). It has been proved that
these equations do not possess classical local solitary wave solutions, but admit weakly non-local
solitary wave solutions characterized by oscillatory tails at the far-field [8,16–23].

Based on a general theory of non-canonical perturbations of Hamiltonian systems, Olver [9,10]
derived some new Hamiltonian model equations for both uni- and bi-directional propagation of
small amplitude long waves on the surface of shallow water. Later, Olver and Kichenassamy
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[22,23] have analytically studies these higher order model equations for water waves including the
well-known fifth-order KdV equation and investigated the issue of existence of solitary wave
solutions for those equations. Recently, Bona et al. [14] derived a number of variants of classical
Boussinesq system for such bi-directional wave propagation problems and presented their higher
order generalizations including their relevance to experiments and observations (also see the
references there in).

Higher order models that support waves propagating in both directions, the topic of this paper,
are of interest in practical situations where waves can propagate in either directions. One obvious
situation where two-way propagation is desirable is when the flow is bounded by walls. There is
no sensible way to study wall-reflection in either KdV or its fifth-order generalization. However,
the higher order Boussinesq equations circumvents this problem and allow the possibility of such
studies. In [8], the sixth-order Boussinesq equation was introduced and numerically studied for the
first time with its simplest aspect by modeling a single solitary wave propagating in one direction.
Next meaningful step would be to study this equation with wall-reflection which we hope to take
up in the future.

In this paper, we derive a class of higher order Boussinesq systems and Boussinesq equations
which are appropriate for the description of bi-directional wave propagation of small amplitude
and long wavelength on the surface of shallow water. This is an important and interesting de-
velopment because the widely used first-order models make sense only if no new qualitative
features have been thrown away with the second-order terms. However, the primary objective of
this paper is to include the effect of surface tension in the models of shallow water waves which has
often been neglected in the earlier derivations in literature [11–14]. The secondary objective is to
derive and establish the physical relevance of the sixth-order Boussinesq equation [8,17] in the
context of shallow water waves.

In Section 2, generalized higher order Boussinesq systems correct up to Oða2; ab; b2Þ are derived
from two-dimensional potential flow equations governing the shallow water waves under gravity.
In Section 3, various lower order Boussinesq systems are derived as special cases and the traveling
solitary wave solutions are constructed explicitly. In Section 4, a higher order Boussinesq equation
is derived which is of the same order of approximation as the generalized higher order Boussinesq
system derived in Section 2. From this equation, the appropriate equations to model solitary
waves in two cases, namely when the Bond number s satisfies (i) b � ð1=3 � sÞ6 1=3; or (ii)
ð1=3 � sÞ ¼ OðbÞ, are derived. In Section 5, the behavior of the solutions to the model equations
derived in Section 4 is discussed and concluding remarks are made.

2. Generalized higher order Boussinesq systems

Let z ¼ 0 be the bottom topography, z ¼ h0 be the height of the undisturbed water surface, and
a be the amplitude of the surface wave. So, if gðx; tÞ represents the free surface elevation from its
undisturbed location, then z ¼ hðx; tÞ ¼ h0 þ agðx; tÞ represents the free water surface. Let l de-
notes the wavelength of the surface wave and / denotes the potential function. We introduce the
following non-dimensionalization

x ! lx; z ! h0z; t ! lffiffiffiffiffiffiffi
gh0

p t; / ! la
ffiffiffiffiffiffiffi
gh0

p

h0

/; ð2:1Þ
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where g is the acceleration due to gravity. In non-dimensional form, the governing equation and
boundary conditions for water waves (see [1,2] for more details) are then given by

b/xx þ /zz ¼ 0; ð2:2Þ

and

/z ¼ 0 at z ¼ 0;

gt þ agx/x �
1

b
/z ¼ 0 at z ¼ 1 þ ag;

/t þ
1

2
a/2

x þ
1

2

a
b

/2
z þ g � bs

gxx

½1 þ a2bg2
x�

3=2
¼ 0 at z ¼ 1 þ ag:

9>>>>=
>>>>;

ð2:3Þ

Here a ¼ a=h0 (amplitude parameter), b ¼ ðh0=lÞ2
(wavelength parameter), and s ¼ C=qgh2

0 (Bond
number); C is the surface tension coefficient and q is the density of water. These full Hamiltonian
water wave equations (2.2) and (2.3) with zero and non-zero s were also considered by Olver [9,10]
in the studies of deriving Hamiltonian and non-Hamiltonian model equations for water waves.
Now we seek the solution for the potential function / in the form [1,2,14]

/ ¼
X1
k¼0

ð�1Þkbk z2k

ð2kÞ!
o2kf
ox2k

; ð2:4Þ

where f ¼ f ðx; tÞ is the value of the potential function / at bottom z ¼ 0. The solution for / can
also be expressed in terms of the potential function w ¼ wðx; tÞ ¼ /ðx; h; tÞ at an arbitrary height
z ¼ h; 06 h6 1, as in Olver [9,10]. Eq. (2.4) suggests that the horizontal velocity /x is of Oð1Þ and
the vertical velocity /z is of OðbÞ. Also, / satisfies the Laplace equation (2.2) and the bottom
boundary condition in Eq. (2.3). Now substituting expansion (2.4) in the free surface boundary
conditions of Eq. (2.3), and rearranging the series, we obtain

gt þ agx

X1
k¼0

ð�1Þkbk ð1 þ agÞ2k

ð2kÞ!
o2kþ1f
ox2kþ1

þ
X1
k¼0

ð�1Þkbk ð1 þ agÞ2kþ1

ð2k þ 1Þ!
o2kþ2f
ox2kþ2

¼ 0; ð2:5Þ

and

X1
k¼0

ð
"

� 1Þkbk ð1 þ agÞ2k

ð2kÞ!
o2kþ1f
otox2k

#
þ a

2

X1
k¼0

ð
"

� 1Þkbk ð1 þ agÞ2k

ð2kÞ!
o2kþ1f
ox2kþ1

#2

þ ab
2

X1
k¼0

ð
"

� 1Þkbk ð1 þ agÞ2kþ1

ð2k þ 1Þ!
o2kþ2f
ox2kþ2

#2

þ g � bsgxx 1
	

þ a2bg2
x


�3=2 ¼ 0: ð2:6Þ

Retaining the terms up to Oða2; ab;b2Þ in Eqs. (2.5) and (2.6), we get the following higher order
model equations for water waves involving the free surface elevation gðx; tÞ and the potential
function f ðx; tÞ at the bottom z ¼ 0:
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gt þ agx fx

�
� b

2
fxxx

�
þ ð1 þ agÞfxx �

b
6
ð1 þ 3agÞfxxxx þ

b2

120
fxxxxxx ¼ 0; ð2:7Þ

and

ft �
b
2
ð1 þ 2agÞfxxt þ

b2

24
fxxxxt þ

a
2
ðf 2

x � bfxfxxxÞ þ
ab
2
f 2
xx þ g � bsgxx ¼ 0: ð2:8Þ

Differentiating Eq. (2.8) w.r.t. x and writing u0 ¼ fx (horizontal velocity at bottom z ¼ 0), we
obtain the model Eqs. (2.7) and (2.8) in the following equivalent forms:

gt þ u0x þ aðgu0Þx �
b
6
u0xxx �

ab
2
ðgu0xxÞx þ

b2

120
u0xxxxxx ¼ 0; ð2:9Þ

and

gx þ u0t þ au0u0x � b sgxxx

�
þ 1

2
u0xxt

�
þ b2

24
u0xxxxt � ab ðgu0xtÞx



þ 1

2
ðu0u0xxÞx � u0xu0xx

�
¼ 0:

ð2:10Þ

Eqs. (2.9) and (2.10) constitute the higher order Boussinesq system. We now derive a class of
model equations all of which are formally equivalent to the system (2.9) and (2.10). If u denotes
the horizontal velocity /x at a height z ¼ h; 06 h6 1, then we can relate u0 to u with the help of
Eq. (2.4) as

u ¼ u0 � b
h2

2
u0xx þ b2 h4

24
u0xxxx þ Oðb3Þ: ð2:11Þ

By inverting Eq. (2.11), we obtain

u0 ¼ uþ b
h2

2
uxx þ b2 5h4

24
uxxxx þ Oðb3Þ: ð2:12Þ

Substituting expression (2.12) for u0 into Eqs. (2.9) and (2.10), and simplifying, we get the fol-
lowing higher order Boussinesq system:

gt þ ux þ aðguÞx þ
b
6
ð3h2 � 1Þuxxx þ

ab
2
ðh2 � 1ÞðguxxÞx þ

b2

120
ð5h2 � 1Þ2uxxxxxx ¼ 0; ð2:13Þ

and

gx þ ut þ auux þ
b
2

ðh2
	

� 1Þuxxt � 2sgxxx



þ ab

2
ðh2
	

þ 1Þuxuxx þ ðh2 � 1Þuuxxx � 2ðguxtÞx



þ b2

24
ð5h2 � 1Þðh2 � 1Þuxxxxt ¼ 0; ð2:14Þ
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which matches exactly with the one of the second-order Boussinesq system derived by Olver [10]
(see Eqs. (4.7) and (4.8) in page 283) for bi-directional water waves. From Eqs. (2.13) and (2.14),
we obtain the following lower order approximations:

ux ¼ k1ux � ð1 � k1Þ gt þ aðguÞx þ
b
6
ð3h2 � 1Þuxxx

	 

þ Oðab;b2Þ;

ux ¼ k2ux � ð1 � k2Þgt þ Oða; bÞ;

�
ð2:15Þ

and

ut ¼ k3ut � ð1 � k3Þ gx þ auux þ b
2
ðh2 � 1Þuxxt � bsgxxx

	 

þ Oðab; b2Þ;

ut ¼ k4ut � ð1 � k4Þgx þ Oða; bÞ;

�
ð2:16Þ

for any arbitrary ki 2 R, i ¼ 1; 2; 3; 4, and 06 h2
6 1. Using the lower order approximations (2.15)

and (2.16) in the dispersion terms of the higher order Boussinesq system (2.13) and (2.14), we
obtain the following generalized higher order Boussinesq systems:

gt þ ux þ aðguÞx þ b C1uxxx½ þ C3gxxt� þ ab C3ðguÞxxx



þ 1

2
ðh2 � 1ÞðguxxÞx

�
þ b2 C2uxxxxx½ þ C4gxxxxt� ¼ 0; ð2:17Þ

and

gx þ ut þ auux þ b½C5uxxt þ ðC7 � sÞgxxx� þ ab C7ðuuxÞxx



þ 1

2
ðh2 þ 1Þuxuxx

þ 1

2
ðh2 � 1Þuuxxx � ðguxtÞx

�
þ b2 C6uxxxxt½ þ C8ð � C7sÞgxxxxx� ¼ 0; ð2:18Þ

where the constants C1;C2; � � � ;C8 are given by

C1 ¼
1

2
h2

�
� 1

3

�
k1; C2 ¼ � 1

4
h2

�
� 1

3

�2

1ð � k1Þ þ
5

24
h2

�
� 1

5

�2

k2;

C3 ¼ � 1

2
h2

�
� 1

3

�
1ð � k1Þ; C4 ¼ � 5

24
h2

�
� 1

5

�2

1ð � k2Þ;

C5 ¼
1

2
h2
�

� 1
�
k3; C6 ¼

5

24
h2

�
� 1

5

�
h2
�

� 1
�
k4 �

1

4
h2
�

� 1
�2

1ð � k3Þ;

C7 ¼ � 1

2
h2
�

� 1
�

1ð � k3Þ; C8 ¼ � 5

24
h2

�
� 1

5

�
h2
�

� 1
�

1ð � k4Þ: ð2:19Þ

So the model equations (2.17) and (2.18) describe a four-parameter family of Boussinesq systems
for bi-directional propagation of water waves. The second-order Boussinesq system derived by
Olver[10] (see Eqs. (4.8) and (4.9) in page 283) can also be deduced from Eqs. (2.17) and (2.18)
under the special case k1 ¼ 1, k2 ¼ 1, k3 ¼ 0 and k4 ¼ 0. In this case, the terms of OðabÞ and Oðb2Þ
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in Eq. (2.18) are reduced respectively to ½ð2 � h2Þuxuxx þ ðggxxÞx� and ½ 1
24
ðh2 � 5Þðh2 � 1Þþ

1
2
ðh2 � 1Þs�gxxxxx. Now using the following scaling transformations

x ! b1=2x; t ! b1=2t; g ! b�1g; u ! b�1u; ð2:20Þ

the generalized higher order Boussinesq system (2.17) and (2.18) can be put into the following
canonical form:

gt þ ux þ SðguÞx þ C1uxxx½ þ C3gxxt� þ S C3ðguÞxxx
	

þ 1
2
ðh2 � 1ÞðguxxÞx



þ C2uxxxxx½ þ C4gxxxxt� ¼ 0; ð2:21Þ

and

gx þ ut þ Suux þ S C7ðuuxÞxx
	

þ 1
2
ðh2 þ 1Þuxuxx þ 1

2
ðh2 � 1Þuuxxx � ðguxtÞx



þ C5uxxt½ þ C7ð � sÞgxxx� þ C6uxxxxt½ þ ðC8 � C7sÞgxxxxx� ¼ 0; ð2:22Þ

where S ¼ a=b is the Stokes number. Since ki 2 R, i ¼ 1; 2; 3; 4, are arbitrary, and 06 h2
6 1, we

can obtain various variants of the higher order Boussinesq system by suitably choosing ki�s and h
in Eqs. (2.21) and (2.22). For modeling solitary water waves, we need to have a balance between
the effects of non-linearity and the effects of dispersion. In this case, the two small parameters a
and b are treated as proportional to each other, i.e., a ¼ OðbÞ as b ! 0; therefore, S ¼ Oð1Þ.

3. Generalized lower order Boussinesq systems

If we consider the generalized Boussinesq system (2.17) and (2.18), retain terms up to Oða;bÞ,
scale the variables using the transformation (2.20), and take a ¼ OðbÞ as b ! 0 (say a ¼ b), we
obtain the following lower order Boussinesq systems

gt þ ux þ ðguÞx þ D1uxxx � D2gxxt ¼ 0; ð3:1Þ

and

gx þ ut þ uux þ ðD3 � sÞgxxx � D4uxxt ¼ 0; ð3:2Þ

where D1, D2, D3 and D4 are given in terms of k ¼ k1, l ¼ ð1 � k3Þ, and h as follows:

D1 ¼ C1 ¼
1

2
h2

�
� 1

3

�
k; D2 ¼ �C3 ¼

1

2
h2

�
� 1

3

�
ð1 � kÞ;

D3 ¼ C7 ¼ � 1

2
ðh2 � 1Þl; D4 ¼ �C5 ¼ � 1

2
ðh2 � 1Þð1 � lÞ: ð3:3Þ

The lower order Boussinesq system (3.1) and (3.2) reduces to the Boussinesq system considered in
Chen [12,13] and Bona et al. [14] in the special case s ¼ 0, and to the Boussinesq system derived in
Olver [9] (see Eq. (4.7) in page 244) in the special case s ¼ 0, k ¼ 1, l ¼ 0. However, the presence
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of the surface tension parameter s (Bond number) can make the above Boussinesq system (3.1)
and (3.2) numerically well-posed as initial value problems. So, these systems can be considered as
regularized Boussinesq systems.

It is worth noting that various choices of the parameter values for k, l and h in system (3.1) and
(3.2) will give various systems all of which will be of the same order, and hence, will be formally
equivalent to each other. Some examples are given below. The origin of the some of these systems
with s ¼ 0 is discussed in Chen [12] and Bona et al. [14]. All of these systems are mentioned here
for the sake of completeness.

Case I: If h2 ¼ 0, k ¼ 0, l ¼ 0, then we have D1 ¼ 0, D2 ¼ �1=6, D3 ¼ 0, D4 ¼ 1=2. So, we obtain
the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx þ 1
6
gxxt ¼ 0;

gx þ ut þ uux � sgxxx � 1
2
uxxt ¼ 0:

�
ð3:4Þ

Case II: If h2 ¼ 0, k ¼ 0, l ¼ 1, then we have D1 ¼ 0, D2 ¼ �1=6, D3 ¼ 1=2, D4 ¼ 0. So, we
obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx þ 1
6
gxxt ¼ 0;

gx þ ut þ uux þ ð1
2
� sÞgxxx ¼ 0:

�
ð3:5Þ

Case III: If h2 ¼ 0, k ¼ 1, l ¼ 0, then we have D1 ¼ �1=6, D2 ¼ 0, D3 ¼ 0, D4 ¼ 1=2. So, we
obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx � 1
6
uxxx ¼ 0;

gx þ ut þ uux � sgxxx � 1
2
uxxt ¼ 0:

�
ð3:6Þ

This system with s ¼ 0 is derived in Whitham [1] (Eq. (13.101)).
Case IV: If h2 ¼ 0, k ¼ 1, l ¼ 1, then we have D1 ¼ �1=6, D2 ¼ 0, D3 ¼ 1=2, D4 ¼ 0. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx � 1
6
uxxx ¼ 0;

gx þ ut þ uux þ ð1
2
� sÞgxxx ¼ 0:

�
ð3:7Þ

Case V: If h2 ¼ 1=3, k is arbitrary, l ¼ 0, then we have D1 ¼ 0, D2 ¼ 0, D3 ¼ 0, D4 ¼ 1=3. So, we
obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx ¼ 0;
gx þ ut þ uux � sgxxx � 1

3
uxxt ¼ 0:

�
ð3:8Þ

This system with s ¼ 0 was originally derived by Boussinesq [5].
Case VI: If h2 ¼ 1=3, k is arbitrary, l ¼ 1, then we have D1 ¼ 0, D2 ¼ 0, D3 ¼ 1=3, D4 ¼ 0. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form
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gt þ ux þ ðguÞx ¼ 0;
gx þ ut þ uux þ ð1

3
� sÞgxxx ¼ 0:

�
ð3:9Þ

Case VII: If h2 ¼ 2=3, k ¼ 0, l ¼ 0, then we have D1 ¼ 0, D2 ¼ 1=6, D3 ¼ 0, D4 ¼ 1=6. So, we ob-
tain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx � 1
6
gxxt ¼ 0;

gx þ ut þ uux � sgxxx � 1
6
uxxt ¼ 0:

�
ð3:10Þ

This system with s ¼ 0 is the regularized Boussinesq system considered by Bona and Chen [11].
Case VIII: If h2 ¼ 2=3, k ¼ 0, l ¼ 1, then we have D1 ¼ 0, D2 ¼ 1=6, D3 ¼ 1=6, D4 ¼ 0. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx � 1
6
gxxt ¼ 0;

gx þ ut þ uux þ ð1
6
� sÞgxxx ¼ 0:

�
ð3:11Þ

This system with s ¼ 0 is known as the coupled-regularized-KdV system [12].
Case IX: If h2 ¼ 2=3, k ¼ 1, l ¼ 0, then we have D1 ¼ 1=6, D2 ¼ 0, D3 ¼ 0, D4 ¼ 1=6. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx þ 1
6
uxxx ¼ 0;

gx þ ut þ uux � sgxxx � 1
6
uxxt ¼ 0:

�
ð3:12Þ

This system with s ¼ 0 is also known as the coupled-regularized-KdV system [12].
Case X: If h2 ¼ 2=3, k ¼ 1, l ¼ 1, then we have D1 ¼ 1=6, D2 ¼ 0, D3 ¼ 1=6, D4 ¼ 0. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx þ 1
6
uxxx ¼ 0;

gx þ ut þ uux þ ð1
6
� sÞgxxx ¼ 0:

�
ð3:13Þ

This system with s ¼ 0 is known as the coupled-KdV system [12].
Case XI: If h2 ¼ 1, k ¼ 0, l is arbitrary, then we have D1 ¼ 0, D2 ¼ 1=3, D3 ¼ 0, D4 ¼ 0. So, we

obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx � 1
3
gxxt ¼ 0;

gx þ ut þ uux � sgxxx ¼ 0:

�
ð3:14Þ

Case XII: If h2 ¼ 1, k ¼ 1, l is arbitrary, then we have D1 ¼ 1=3, D2 ¼ 0, D3 ¼ 0, D4 ¼ 0. So, we
obtain the Boussinesq system (3.1) and (3.2) in the form

gt þ ux þ ðguÞx þ 1
3
uxxx ¼ 0;

gx þ ut þ uux � sgxxx ¼ 0:

�
ð3:15Þ

This system with s ¼ 0 is the integrable version of Boussinesq system considered by Krishnan
[24].

P. Daripa, R.K. Dash / International Journal of Engineering Science 41 (2003) 201–218 209



All these systems are equivalent and describe the bi-directional propagation of capillary–gravity
waves within the same order of approximation Oða;bÞ. It is found that the generalized lower order
Boussinesq system (3.1) and (3.2) supports the traveling-solitary-wave solutions which are dis-
cussed in the following subsection.

3.1. Traveling solitary wave solutions

In this section, we will look for the exact traveling wave solutions of the generalized lower order
Boussinesq system (3.1) and (3.2) under the condition that gðx; tÞ and uðx; tÞ are proportional to
each other and that they approach to zero as jxj ! 1. Therefore, we express

gðx; tÞ ¼ gðX Þ and uðx; tÞ ¼ uðX Þ; X ¼ x� cst; ð3:16Þ

where cs is the velocity of the wave. Then we have the system (3.1) and (3.2) in the form

�csg0 þ u0 þ ðguÞ0 þ D1u000 þ D2csg000 ¼ 0;
g0 � csu0 þ uu0 þ ðD3 � sÞg000 þ D4csu000 ¼ 0;

�
ð3:17Þ

where the prime denotes the differentiation w.r.t. X . Integrating the system (3.17) once, we get

�csg þ uþ guþ D1u00 þ D2csg00 ¼ 0;
g � csuþ u2

2
þ ðD3 � sÞg00 þ D4csu00 ¼ 0;

�
ð3:18Þ

where the constants of integration have been set to zero, since we are looking for solitary wave
solutions. If u and g are proportional to each other, namely uðX Þ ¼ BgðX Þ, Bð6¼ 0Þ 2 R, then we
obtain the system (3.18) in the form

ðB2 � csBÞg þ B2g2 þ ðD1B2 þ D2csBÞg00 ¼ 0;
2ð1 � csBÞg þ B2g2 þ 2ðD3 � s þ D4csBÞg00 ¼ 0:

�
ð3:19Þ

In order for the system (3.19) to have a non-trivial solitary wave solution, it is necessary that the
two equations in system (3.19) are identical, which implies

B2 þ csB� 2 ¼ 0;
D1B2 þ ðD2 � 2D4ÞcsB� 2ðD3 � sÞ ¼ 0:

�
ð3:20Þ

Thus we have a linear system (3.20) for B2 and csB, the solution of which will depend on the values
of D1, D2, D3, D4 and s as follows:

Case I: If D2 � 2D4 � D1 6¼ 0 (i.e., the determinant of the coefficient matrix in system (3.20) is
non-zero), then there is an unique solution of the system (3.20) given by

B2 ¼ 2ðD2 � 2D4 � D3 þ sÞ
D2 � 2D4 � D1

;

csB ¼ 2 � B2 ¼ 2ðD3 � s � D1Þ
D2 � 2D4 � D1

:

9>>>=
>>>;

ð3:21Þ
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Case II: If D2 � 2D4 � D1 ¼ 0 and D1 ¼ D3 � s, then there are infinitely many solutions of the
system (3.20) given by

csB ¼ 2 � B2; B2 ¼ arbitrary: ð3:22Þ

Case III: If D2 � 2D4 � D1 ¼ 0 and D1 6¼ D3 � s. There is no solution.

So, in cases I and II, we expect the solitary wave solutions to exist. Since both the equations in
system (3.19) are identical, we can consider any one of these two to find the solitary wave solution.

Therefore, we have the differential equation for g as

2ðB2 � 1Þg þ B2g2 þ ½ðD1 � D2ÞB2 þ 2D2�g00 ¼ 0: ð3:23Þ

Differentiating Eq. (3.23) once and writing it in standard form, we have

1 � B2

B2
g0 � ðD1 � D2ÞB2 þ 2D2

2B2
g000 ¼ gg0: ð3:24Þ

The following lemma [25] assures the existence of solitary wave solutions to Eq. (3.24).

Lemma 1. Let R1 and R2 be two real constants. Then the equation

R1g
0ðX Þ � R2g

000ðX Þ ¼ gðX Þg0ðX Þ; ð3:25Þ

has a solitary wave solution if R1R2 > 0. Moreover, the solitary wave solution is given by

gðX Þ ¼ 3R1sech2 1

2

ffiffiffiffiffi
R1

R2

r
ðX

�
þ X0Þ

�
; ð3:26Þ

where X0 is an arbitrary constant.

It follows from the above lemma that Eq. (3.24) will admit solitary wave solutions if

1 � B2

B2

� �
ðD1 � D2ÞB2 þ 2D2

2B2

� �
> 0 or ð1 � B2ÞððD1 � D2ÞB2 þ 2D2Þ > 0: ð3:27Þ

Also, we need to have B2 > 0, since B has to be a non-zero real constant. The solitary wave
solution of Eq. (3.24) is given by

gðX Þ ¼ Asech2 cðX½ þ X0Þ�; ð3:28Þ

where

A ¼ 3ð1 � B2Þ
B2

and c ¼ 1

2

2ð1 � B2Þ
ðD1 � D2ÞB2 þ 2D2


 �1=2

: ð3:29Þ
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The solitary wave solution for uðX Þ is then given by

uðX Þ ¼ ABsech2 cðX½ þ X0Þ�: ð3:30Þ

We can summarize the above results in the following theorem:

Theorem 1. The system of equations

gt þ ux þ ðguÞx þ D1uxxx � D2gxxt ¼ 0;

gx þ ut þ uux þ ðD3 � sÞgxxx � D4uxxt ¼ 0;

�
ð3:31Þ

admits a pair of solitary wave solution of the form

gðx; tÞ ¼ Asech2 cðxþ x0 � cstÞ½ �;
uðx; tÞ ¼ ABsech2 cðxþ x0 � cstÞ½ �;

�
ð3:32Þ

where

B ¼ � 2ðD2 � 2D4 � D3 þ sÞ
D2 � 2D4 � D1


 �1=2

; if D2 � 2D4 � D1 6¼ 0

arbitrary; if D2 � 2D4 � D1 ¼ 0 and D1 ¼ D3 � s

8<
:

cs ¼
2 � B2

B

A ¼ 3ð1 � B2Þ
B2

c ¼ 1

2

2ð1 � B2Þ
ðD1 � D2ÞB2 þ 2D2


 �1=2

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð3:33Þ

under the condition

ð1 � B2ÞððD1 � D2ÞB2 þ 2D2Þ > 0 and B2 > 0: ð3:34Þ

If D1 � D2 þ 2D4 ¼ 0 but D1 6¼ D3 � s, then there does not exist solitary wave solutions to the above
system.

This general theorem provides an easy way to test the existence and non-existence of solitary
wave solutions for the special Boussinesq systems (3.4) through (3.15).

4. Higher order Boussinesq equation

The Boussinesq equations of various orders for surface elevation gðx; tÞ can be obtained by
eliminating the horizontal velocity u from the Boussinesq systems derived in Section 2. We choose
the Boussinesq system consisting of Eqs. (2.9) and (2.10). From these equations, we obtain the
lower order approximated systems as
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gt þ u0x ¼ Oða;bÞ; gx þ u0t ¼ Oða; bÞ; ð4:1Þ

and

gt þ u0x þ aðgu0Þx �
b
6
u0xxx ¼ Oðab; b2Þ;

gx þ u0t þ au0u0x �
b
2
ð2s � 1Þgxxx ¼ Oðab;b2Þ:

9>=
>; ð4:2Þ

It follows from Eqs. (4.1a) and (4.2a) that

u0 ¼ �
Z x

�1
gt dxþ Oða;bÞ; u0 ¼ �

Z x

�1
gt dxþ ag

Z x

�1
gt; dx�

b
6

gxt þ Oðab;b2Þ: ð4:3Þ

Using the lower order approximations (4.1) and (4.2) in the resulting equation from (o=ot [Eq.
(2.9)]–o=ox [Eq. (2.10)]), we obtain the following higher order Boussinesq equation:

gtt � gxx þ a½ðgu0Þt � u0u0x�x þ
b
3
ð3s � 1Þgxxxx þ

b2

15
ð5s � 2Þgxxxxxx

þ ab
6
½ðu0u0xxxÞx � 6ðu0xu0xxÞx þ 3ðggxxxÞx � 6ðggxxÞxx� ¼ 0: ð4:4Þ

We need to eliminate u0 from Eq. (4.4). Substituting the expressions for u0 given by Eq. (4.3) in
Eq. (4.4) and using the lower order approximations (4.1b) and (4.2b), we obtain

gtt � gxx � a
1

2
g2

"
þ

Z x

�1
gt dx

� �2
#
xx

� b
1

3



� s

�
gxxxx þ a2 g

Z x

�1
gt dx

� �2
" #

xx

� ab
2

3
ðg2

t Þxx



þ ðggxxÞxx � sðggxxxÞx
�
� b2

3

2

5



� s

�
gxxxxxx ¼ 0; ð4:5Þ

which is the required higher order Boussinesq equation appropriate for small values of a and b. It
follows from Eq. (4.5) that the effect of non-linearity appears at OðaÞ;Oða2Þ and OðabÞ terms,
where as, the effect of dispersion appears at OðbÞ and Oðb2Þ terms. The leading order dispersion
term is bð1=3 � sÞgxxxx. The following two cases are worth considering.

Case I: If b � ð1=3 � sÞ6 1=3, that is, ð1=3 � sÞ ¼ K1 ¼ Oð1Þ, then a balance between the non-
linearity and dispersion, which is necessary to model a solitary wave, requires a ¼ OðbÞ as
b ! 0, that is, a ¼ K2b as b ! 0 (K2 fixed). Then we have the Boussinesq equation (4.5),
correct up to OðaÞ ¼ OðbÞ, as

gtt � gxx � a
1

2
g2

"
þ

Z x

�1
gt dx

� �2
#
xx

� K1

K2

agxxxx ¼ 0: ð4:6Þ

This case is appropriate for 06 s � 1=3.
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Case II: If ð1=3 � sÞ ¼ OðbÞ as b ! 0, that is, ð1=3 � sÞ ¼ K1b as b ! 0 (K1 fixed), then a balance
between the non-linearity and dispersion requires a ¼ Oðb2Þ as b ! 0, that is, a ¼ K2b

2

as b ! 0 (K2 fixed). Then we have the Boussinesq equation (4.5) correct up to
OðaÞ ¼ Oðb2Þ as

gtt � gxx � a
1

2
g2

"
þ

Z x

�1
gt dx

� �2
#
xx

� K1

K2

agxxxx �
a

45K2

gxxxxxx ¼ 0: ð4:7Þ

This case is appropriate for s " 1=3 (Bond number less than but very close to 1/3).
Co-ordinate transformation and transformed equations: If we use the transformation

X ¼
ffiffiffiffi
K2

K1

q
xþ a

R x
�1 gðx; tÞdx

� �
;

T ¼
ffiffiffiffi
K2

K1

q
t;

9=
; ð4:8Þ

and substitute

N ¼ 3

2
ðg � ag2Þ; ð4:9Þ

then we obtain the fourth-order and sixth-order Boussinesq equations (4.6) and (4.7) in the forms

NTT � NXX � aðN 2ÞXX � aNXXXX ¼ 0; ð4:10Þ

and

NTT � NXX � aðN 2ÞXX � aNXXXX � �2aNXXXXXX ¼ 0; ð4:11Þ

where �2 ¼ K2=45K2
1 . It is worth summarizing here that both the Eqs. (4.10) and (4.11) represent

the bi-directional propagation of small amplitude (weakly non-linear) and long (weakly disper-
sive) capillary–gravity waves on the surface of shallow water; Eq. (4.10) being appropriate when
06 s � 1=3, where as, Eq. (4.11) being appropriate when s " 1=3. It is to be noted that s " 1=3 can
hold true in the joint limit K1 ! 1 and b ! 0. So, we will have �2 as a small parameter inde-
pendent of the amplitude parameters a. Therefore, Eq. (4.11) can be considered as a singular
perturbation of Eq. (4.10).

4.1. Conversion of Boussinesq equations into KdV equations

The above Boussinesq equations (4.10) and (4.11) can be converted into the corresponding
KdV equations by using the far-field co-ordinate transformations

n ¼ X � T and s ¼ aT : ð4:12Þ

The transformation (4.12) describes a wave which changes slowly in a reference frame moving
with velocity one (the non-dimensional shallow water velocity). The leading order terms in the
transformed equations correspond to the following KdV equations:
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Ns þ NNn þ 1
2
Nnnn ¼ 0; ð4:13Þ

and

Ns þ NNn þ
1

2
Nnnn þ

K2

90K2
1

Nnnnnn ¼ 0: ð4:14Þ

If we further use the change of variables

n ! nffiffiffiffiffi
2d

p ; s ! s

d
ffiffiffiffiffi
2d

p ; N ! dN ; ð4:15Þ

where d is an arbitrary scaling parameter, then the KdV Eqs. (4.13) and (4.14) reduce to the
following forms:

Ns þ NNn þ Nnnn ¼ 0; ð4:16Þ

and

Ns þ NNn þ Nnnn þ
2K2d
45K2

1

Nnnnnn ¼ 0: ð4:17Þ

Eqs. (4.14) and (4.17) are two versions of the fifth-order KdV equation originally derived by
Hunter and Scherule [16]. Eq. (4.17) is exactly same as Eq. (2.29) in Hunter and Scherule [16] if we
use the notation �2 ¼ 2K2d=45K2

1 . The other generalized higher order KdV equations [22] can be
obtained from the generalized higher order Boussinesq systems and Boussinesq equations by
restricting the waves to a submanifold traveling only in one direction, as in Olver [9,10].

5. Notes on fourth-order and sixth-order Boussinesq equations

The fourth-order Boussinesq equation (4.10) is completely integrable, supports an one-pa-
rameter family of solitary wave solutions [1,2], and has Lax pair [26]. However, this equation is
severely ill-posed, and therefore, is unlikely to have classical solutions for long time for arbitrary
initial data. In fact, a numerical study [7,8] of this equation as an initial value problem reveals the
difficulty in constructing even known exact solutions because of the dreadful ill-posedness. A
physically meaningful regularization procedure follows when one recognizes from Eq. (4.10) that
NTT ¼ NXX þ OðaÞ. Therefore, one can rewrite Eq. (4.10) in the form

NTT � NXX � aðN 2ÞXX � aNXXTT ¼ 0: ð5:1Þ

The resulting Eq. (5.1) is well-posed, and therefore, can be used to describe the unsteady bi-
directional wave propagation. The fourth-order Boussinesq equations (4.10) and (5.1) can be
written in more standard forms
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gtt � gxx � ðg2Þxx � gxxxx ¼ 0; ð5:2Þ

and

gtt � gxx � ðg2Þxx � gxxtt ¼ 0; ð5:3Þ

by using the following change of variables

X ! a1=2x; T ! a1=2t; N ! a�1g: ð5:4Þ

The traveling solitary wave solutions of Eqs. (5.2) and (5.3) are given by

g ¼ 3

2
ðc2

s � 1Þsech2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
s � 1

p
2

ðX
"

� X0Þ
#
; ð5:5Þ

and

g ¼ 3

2
ðc2

s � 1Þsech2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
s � 1

p
2cs

ðX
"

� X0Þ
#
: ð5:6Þ

It is observed that both the solitary wave solutions (5.5) and (5.6) have same amplitude,
3ðc2

s � 1Þ=2, but different widths, ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
s � 1

p
Þ=2 and ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
s � 1

p
Þ=2cs.

The sixth-order (singularly perturbed) Boussinesq equation (4.11) was originally introduced on
a heuristic ground by Daripa and Hua [8] as a dispersive regularization of the ill-posed fourth-
order Boussinesq equation (4.10). The physical relevance of this equation in the context of water
waves is established here. In fact, it is seen that the singularly perturbed Boussinesq equation
(4.11) actually describes the bi-directional propagation of small amplitude long capillary–gravity
waves on the surface of shallow water for Bond number s less than but very close to 1/3 (i.e.,
s " 1=3).

The initial value calculations of Daripa and Hua [8] for the regularized sixth-order Boussinesq
equation (4.11) with initial data in the form of local solitary waves resulted in solutions which
contain a hump at its core and small amplitude oscillations far from the core. Motivated by their
work, Daripa and Dash [17] recently studied this equation both analytically and numerically using
the technique of asymptotics beyond all orders and the perturbation analysis in the Fourier do-
main of the wave and numerically using the Newton-Kantorovich pseudospectral (collocation)
method to find the traveling wave solutions. They proved the non-existence of local solitary wave
solutions and showed the existence of weakly non-local solitary wave solutions for this equation
which are characterized by small amplitude fast oscillations in the far-field. This behavior con-
firms the numerical prediction of Daripa and Hua [8]. It is well known that these types of solu-
tions also exist for the fifth-order KdV equation [16,18–21,23]. Most recently, Kichenassamy [23]
devised the method of variational calculus to obtain this type of weakly non-local solitary wave
solutions of the fifth-order KdV equation with negative speed and exponentially decaying tails.
This method can also be applied to the sixth-order Boussinesq equation to find rigorously the
weakly non-local solitary wave solutions with small amplitude fast oscillations in the far-field.
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