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Abstract

We analyze the two-dimensional Euler’s equations of motion governing the capillary-gravity waves
on the surface of shallow water. For Bond number less than but very close to 1/3, we show that the bi-
directional propagation of small amplitude and long waves is appropriately described by the sixth-order
Boussinesq equation which was recently introduced on a heuristic ground by Daripa and Hua [Appl.
Math. Comput. 101 (1999), 159-207] as a dispersive regularization of the fourth-order ill-posed (also
known as classical) Boussinesq equation.
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1 Introduction
The fourth-order (also known as classical) Boussinesq equation (see Johnson [6] and Whitham [8])

Nt = Nax + (ﬁg)xx + Nezax, (11)

arises in the context of asymptotic description of bi-directional propagating small amplitude long capillary-
gravity water waves. This equation possesses solitary wave solutions. As an initial value problem, it suffers
from severe catastrophic short wave instability. The linearized version of equation (1.1) admits solutions of

ot+ikT with short wave instability o ~ k? as k — oo. One of the consequences of this short wave

the form e
instability is difficulty in numerically constructing even known solutions, such as the classical solitary wave
solutions (see Daripa and Hua [2]), for short time. This is not so surprising since this equation may not have
classical solutions even for short time for arbitrary initial data. The exact known solitary wave solutions are
probably isolated solutions of this equation. Therefore, in the past, there have been attempts to regularize
this equation in ways that are physically more meaningful.

One of the ways to regularize equation (1.1) is to modify this equation by replacing Nyzze by Naztt (see

Whitham [8]). Recently, Daripa and Hua [2] introduced the following sixth-order Boussinesq equation

ntt = nmm + (n2)zm + nzzmz + 6277mmm7 (12>

as a dispersive regularization of equation (1.1). Here € is a suitably chosen parameter. This regulariza-
tion (1.2) is based on a heuristic ground and Daripa and Hua [2] does not provide any mathematical deriva-
tion as to the origin of this equation. Since an ill-posed equation can be regularized in an ad-hoc fashion in
many ways some of which may have no physical relevance to the problem, it is appropriate here to address
this issue in relation to the above equation (1.2).

In this paper, we address the physical relevance of this sixth-order Boussinesq equation (1.2) in the
context of water waves. In particular, we show in section 2 that equation (1.2) actually describes the bi-
directional propagation of small amplitude long capillary-gravity waves on the surface of shallow water for
Bond number less than but very close to 1/3. In section 3, we briefly comment on the nature of traveling
wave solutions of equation (1.2) based on the recent extensive study of Daripa and Dash [3].
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2 Derivation of Sixth-Order Boussinesq Equation

In this section, we present a formal derivation of the sixth-order Boussinesq equation (1.2) from the
two-dimensional Euler’s equations of motion for capillary-gravity shallow water waves in the limits of small
amplitude and long wavelength with Bond number less than but very close to 1/3.

Let z = 0 represent the bottom topography and z = h(z,t) = hy + an(z,t) represent the free water
surface, where hg is the height of the undisturbed water surface, a is the amplitude of the surface wave and
n(z,t) is the free surface elevation from its undisturbed location. Let (u,w) represent the velocity field in
(x, z) coordinate. We use the following non-dimensionalization

(2.1)

a

I—>l$, Z:hoz; t_)ﬁta ’U,—>hio ghou,
w = (h_o) (%2)Vghow, p — pa + pg(ho — z) + = (pgho)p,

where [ is the wavelength of the surface wave, g is the acceleration due to gravity, p is the density of the fluid,
p is the pressure field, and p, is the atmospheric pressure. In non-dimensional form, the Euler’s equations
of motion governing the capillary-gravity shallow water waves (see Johnson [6]) are given by

ur + a(uuy + wuy) = — py,
Blwe + a(uw, +ww.)] = —p., (2.2)
Uy + w, = 0.

The corresponding kinematic and dynamic boundary conditions are given by

w =0 at z =0,
w =1 + aun, at z = 1+an, (2.3)
p=mn— ﬂTma;’,W at z = 1—|—a17

Here a = a/hg (amplitude parameter), 3 = (ho/l)? (wavelength parameter) and 7 = I'/pgh2 (Bond number)
where I' is the surface tension coefficient.

The linearized version of the above equations admits solutions for 1 of the form Ae***~%t provided the
following dispersion relation holds (see Whitham [8])

2
W = % [(1 4 7k?h3) kho tanh(kho)], (2.4)
0

where ¢ = v/gho. In the long wavelength limit (i.e., khg < 1), we have

W? = 2k [1 - (% — r)Kh3 + %(% LA 1—25(% —T)kehg-l----} . (2.5)

This indicates that the leading order dispersion term in the equation for 7 is of order (% 77') k*hg, ie., (% 77') 0.
Therefore, the leading order dispersion term is O(3) if (3 —7) = O(1) and O(5?) if (§ —7) = O(3) However,
the non-linear term is always of order « irrespective of the value of Bond number 7. Therefore, a balance
between the non-linear and the dispersive effects (which is necessary to model a solitary wave) requires that
o = O(B) when (3 —7) = O(1) and a = O(3?) when (3 — 7) = O(f). Thus, for Bond number less than
but very close 1/3 (i.e., for 7 1 1/3), we need to have

(%—T):Klﬁ and a=Ky3* as [—0, (2.6)

with non-zero constants K; and Ky fixed. Under the conditions (2.6), we can write the governing equa-
tions (2.2) in the form
up + Ko (uuy, +wu,) = — po,
ﬂ[wt + K2ﬁ2(uwx + wwz)] = — Dz, (27)
Uy + w, = 0,
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and the boundary conditions (2.3), expressed at z = 0 and z = 1 using Taylor series expansion, in the form

w=0 at z =0,
w + Konw, = n + Ko ngu + O(B) at z = 1, (2.8)
p+ KofPnp. =0 — 280w + K120 + O(B%) at z = 1.

Below, we derive the necessary sixth-order Boussinesq equation for 7 from equations (2.7) and (2.8) through
a regular perturbation analysis. In doing so, we express the solution ¢ = (u,w,p,n) in the form

q=qo+Bq + g+ (2.9)

Upon substituting expansions (2.9) for u, w, p and 7 into equations (2.7) and boundary conditions (2.8), we
obtain the following equations and boundary conditions of various orders as coefficients of 3%, i = 0,1, 2:

Uot = —Poz wg=0 at z=0

o(1) : Poz =0 ; wo =10t at z=1 ». (2.10, 2.11)
Ugz + Woz = 0, po=mn0 at z=1
ULt = —Plx wi =0 at z=0

o) : wot = —P1z ; wy =mg at z=1 : (2.12, 2.13)
Uty + wiy =0 p1=11— 30z at z=1

we =0 at z=0

uat + Ka(uoton wa + Kamo wo, = 12t

0(62) . +’U)OUOZ) = P2z 7 +Komnozug at z =1 . (2‘147 215)
Wiz = —P22 P2+ Kamopo: = N2 — 3Max
Uzg + w2, =0 +K1N0zz at 2=1

Below we derive canonical equations governing 7o, 171, and 72 from the above set of equations by eliminating
the other variables, namely u, w, and p.

e Equation for ng(z,t) : It is easy to see from equations (2.10) and (2.11) that
Po = N0, Uot = —TNoz, Wo = —ZUoz, U0z = —70t, (2.16)
and hence we obtain the equation for ng as

Nott — Noxz — 0. (217)

Therefore, the solution 1y will be of the traveling wave form Fy(x —t) 4+ Fy(z —t) for some arbitrary function
E(] and Fg.

e Equation for n1(z,t) : Substituting the expressions for wp; from equation (2.16) in equation (2.12b) and
integrating the resulting equation with the help of condition (2.13c), we obtain

1 1
pP1= (771 + 6770mm) - 5770£EI 22 (218)

Equations (2.12a,c) and (2.18) then together give

1 1 ,
Wizt = —Ulzt = Ploz = (nlmm + 6770195:”) - inOZza:w Z. (219)

Integrating equation (2.19) with the help of condition (2.13a) and then using condition (2.13b), we obtain
the equation for n; as

Nt = Maaw = 0. (2.20)



4 Daripa and Dash

Therefore, the solution 7; will be of the traveling wave form E;(x —t) + Fy(z —t) for some arbitrary function
E1 and F1 .

e Equation for n2(z,t): Substituting the expression for wy; from equation (2.19) in equation (2.14b) and
integrating the resulting equation with the help of condition (2.15¢), we obtain

1 1 1 1 1
= A~ 1lxx K TT a4 0xxzrr) — 5 TT ~0xxxre 2 ‘a1 0xxTT 4- 2.21
p2=(m2+ g + LK1Noza + 510 ) 5 (Mew + g'o )% + 510 z (2.21)
Equations (2.14a,c) and (2.21) then can be combined to give

1
Wzt = —U2gt = P2aa T+ K> (UOUOm)m = [772xz + gnlxmzx + Kanmzxm
1 1 1 , 1 .
+ 2_4770211:sz + K2(u0u0x)x] - 5 [nlazxmm + EUOIIII’mI]Z + 2_4770:Emzzx:v z . (222)

Integrating equation (2.22) with the help of condition (2.15a) and then using condition (2.15b), we obtain
the equation for 7, as

1 z 2 1
N2tt — MN2zz — K2 |:_778 + (/ nﬂtdx) j| - KanZZJ:x — —MNozzzzzr = 07 (223)
where we have used ug = — ffoo not dz. Therefore, ny will contain terms of the form Es(z —t) + Fo(z —1t) +

tGo(x —t) + tHa(x — t) for some arbitrary functions Ey and Fs, and the functions G5 and Hy dependent on
functions Ey and Fp. Since the secular term tGa(x —t)+tHs (x —t) grows in time, 12 will become unbounded
as t — oo.

¢ Equation for n(z,t): Combining equations (2.17), (2.20) and (2.23) according to the series expansion (2.9),
we obtain the following equation for 7 correct up to O(5?)

1 i 2 32
Nt — Nex — K262 |:§772 + (/ Tt diE) i|wz_ Klﬁznwzzm - 4_5nzmzwzz = O (224)

Since 7y has a secular term ¢(Ga(x — t) + Ha(z — t)), the perturbation series approximation (2.9) for n
is not uniformly valid for all ¢; but,it is valid for all 0 < ¢ < 1/e? since s is of O(e?). Therefore, for
0 <t < 1/€® equation (2.24), which is one version of the sixth-order Boussinesq equation, is appropriate for
the approximate description of bi-directionally propagating small amplitude long capillary-gravity waves on
the surface of shallow water for Bond number less than but very close to 1/3 (i.e., 7 T 1/3). Another version
is introduced below.

¢ Co-ordinate Transformation and Transformed Equation: At first sight, equation (2.24) looks rather
complicated. But, if we use the co-ordinate transformation

_ 1 2 [T
T - \/7—1 t-/
and substitute 3K
N =222 (- Ka?). (2.26)
then equation (2.24) is transformed into the following canonical form
Nrr — Nxx — B*(N?*)xx — *Nxxxx — €1 Nxxxxxx =0, (2.27)

where we have neglected the terms of O(3%) and higher. Here, €§ = Zt=. This equation (2.27) can be
1

transformed to the standard form (1.2) through the following change of variables:
X = fx, T —pt, N—p 2. (2.28)

The parameter € in equation (1.2) is related to the parameter €; in equation (2.27) by €2 = €7 /3%
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3 Concluding Remarks

In this paper, the sixth-order Boussinesq equation (1.2), recently introduced by Daripa and Hua [2],
is derived rigorously. It is shown here that this equation describes the bi-directional propagation of small
amplitude long capillary-gravity surface waves for Bond number 7 less than but very close to 1/3 (i.e.,
7 1 1/3). Daripa and Dash [3] recently studied the sixth-order Boussinesq equation (1.2) both analytically
and numerically. It is shown there that, unlike the local solitary waves, the traveling wave solutions of this
equation can not vanish in the far-field. Instead, such waves must possess small amplitude fast oscillations
at distances far from the core of the waves extending up to infinity. So, these solutions have the qualitative
features of weakly non-local solitary wave solutions of the fifth-order KdV equation (Boyd [1], Grimshaw
and Joshi [4], Hunter and Scherule [5], Pomeau et al. [7]).

Acknowledgment: This material is based in part upon work supported by the Texas Advanced Research
Program under Grant No. TARP-97010366-030.
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