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An analytical method is developed for solving an inverse problem for Helmholtz’s equation associated
with two semi-infinite incompressible fluids of different variable refractive indices, separated by a plane inter-
face. The unknowns of the inverse problem are: (i) the refractive indices of the two fluids, (ii) the ratio of
the densities of the two fluids, and (iii) the strength of an acoustic source assumed to be situated at the inter-
face of the two fluids. These are determined from the pressure on the interface produced by the acoustic
source. The effect of the surface tension force at the interface is taken into account in this paper.

The application of the proposed analytical method to solve the inverse problem is also illustrated with
several examples. In particular, exact solutions of two direct problems are first derived using standard classical
methods which are then used in our proposed inverse method to recover the unknowns of the corresponding
inverse problems. The results are found to be in excellent agreement.

1 INTRODUCTION

The inverse problem concerning the determination of the triple fnðzÞ,�, h0g, arising in
acoustics, is considered where the three unknowns (the triple) of the problem are as
described below:

(i) nðzÞ, the variable refraction coefficient of the medium (see Section 2) consisting of
two semi-infinite fluids of constant densities �0þ and �0� occupying the regions
z>0 and z<0 respectively, where the z-axis is taken normal to the interface
and a rectangular coordinate system ðx, y, zÞ is employed.

(ii) � ¼ �0�=�0þ > 1.
(iii) h0, a constant, determining the strength of a time-harmonic (e�i!t) sound-source of

creating fluid assumed to be situated at z ¼ 0þ, very near the origin of coordinates
on the interface z¼ 0.

*Permanent Address: Indian Institute of Science, Bangalore, 560012, India.
yCorresponding author. E-mail: prabir.daripa@math.tamu.edu

ISSN 1068-2767 print: ISSN 1029-0281 online � 2002 Taylor & Francis Ltd

DOI: 10.1080/10682760290015652



The known data of the problem under consideration are the acoustic pressure
functions pðx, y, 0	Þ at the interface where pðx, y, 0	Þ ¼ lim

z!0	
pðx, y, zÞ. These are

discussed in detail in Section 2.
Similar inverse problems have been considered for solution by Ramm [1] among

other authors using a Green’s function approach when the effect of surface tension
at the interface of the two fluids is neglected. The present paper deals with the above
inverse problem when the effect of the surface tension at the interface of the two
fluids is also taken into account. Below we briefly summarize the method of solving
this inverse problem which is given in more detail in the main body of the paper.

In the present context, the corresponding direct problem is concerned with the deter-
mination of the pressure functions in the fluid regions. It is assumed in our approach
below that this direct problem possesses a unique solution for the class of functions
nðzÞ, having at most an algebraic growth at infinity. Under this assumption, the
direct problem is cast into an integral equation of the second kind (see Mikhlin [2])
for the determination of the pressure functions. Using a technique for obtaining a
series solution of this integral equation for the pressure functions which is valid for
sufficiently small values of the wave number k ¼ !=c0 (c0 representing the constant
sound speed in free-space), the inverse problem of determination of nðzÞ is cast into
two independent Laplace-inversion problems, one for each of the two regions: z>0
and z<0. The other two unknowns � and h0 (in the triple fnðzÞ,�, h0g) are determined
by using a straight-forward limiting procedure.

The paper is organized as follows. In Section 2, we have presented the basic equations
and boundary conditions of the direct problem. Section 3 is devoted to the detailed
analysis to determine the solution of the inverse problem. For validation purposes
of our inverse method, two special cases of the direct problem are considered which
are as follows: (i) nðzÞ ¼ n0 for z>0, and nðzÞ ¼ n1 for z<0 where n0 and n1 are two
different known constants; and (ii) nðzÞ ¼ n0 (a known constant) for z>0, and
nðzÞ ¼ expð2zÞ for z<0. These two direct problems are solved in a straight-forward
manner to obtain the input data for the inverse problem. With these as the input
data, the results of the corresponding inverse problems for the unknowns are found
to be in excellent agreement with their exact values when the various formulae derived
in Section 3 for the solution of the inverse problems are utilized.

2 MATHEMATICAL FORMULATION

We employ the notations used by Jones [3] with p0 and �0 as constant pressure and
density respectively of a single fluid medium and with p0ð1þ pÞ and �0ð1þ �Þ as
the corresponding perturbed quantities, caused due to a sound source of creating
fluid and situated at a point ðx0, y0, z0Þ. Then the basic equations of acoustics can
be written down in the following linearized form (neglecting gravity, viscosity and
thermal conductivity, and assuming that p and the perturbed fluid velocity v are
small quantities):

�0
@�

@t
þ �0 div v ¼ �

@m

@t
�ðx � x0Þ�ðy � y0Þ�ðz � z0Þ, ð1Þ
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�0
@v

@t
¼ �p0 grad p, ð2Þ

p ¼ c2
�0�

p0
, ð3Þ

where ‘c’ is the speed of sound and m(t) represents the mass created at the source at time
t, �(x) denoting Dirac’s delta function (considering isentropic flows only).

If the medium under consideration consists of two semi-infinite fluids of constant
densities �0þ and �0� occupying the regions z>0 and z<0 respectively, and if the
time-dependence is assumed to be of the type expð�i!tÞ (i.e. time-harmonic case),
the above equations are to be used with appropriate changes in the various quanti-
ties involved. In addition to this, we assume that the sound speed cðzÞ varies in the
z-direction only. The source of sound is taken to be of the form: mðtÞ ¼
m0 expð�i!tÞ, (m0 denoting the strength of the source) located at ðx0, y0, z0Þ ¼
ð0, 0, aÞ, að> 0Þ. Then, by means of a standard elimination procedure adapted to the
Eqs. (1), (2), and (3), we obtain the following partial differential equation for the press-
ure-function pðx, y, zÞ.

@2

@x2
þ
@2

@y2
þ
@2

@z2
þ k2nðzÞ

� �
p ¼ �h0k

2�ðxÞ�ðyÞ�ðz � aÞ, ð4Þ

where nðzÞ ¼ c20=c
2ðzÞ, k ¼ !=c0, and h0 ¼ m0c

2
0=p0þ , with p0þ representing the constant

unperturbed pressure in the region z > 0, and c0 representing the constant sound speed
in free-space (or any reference medium). The function nðzÞ, related to the refractive
index c0=cðzÞ of the fluid medium under consideration, will be called the refraction
coefficient of the medium. It is worth pointing out that the functions nðzÞ and p, appear-
ing in Eq. (4), actually represent two different functions in the two regions z > 0 and
z < 0 and that there are two equations built-in in Eq. (4).

The kinematic and dynamic interface conditions (see Drazin [4], Lamb [5]) are
respectively the following.

(a) The particle-displacement at the interface z¼ 0 must be continuous, and
(b) The jump in normal stress (pressure) at the interface must be balanced with the

surface-tension force T at the interface.

The linearized versions of these interface conditions can be expressed (See Lamb [5]
for details) in the following forms:

�
@pþ
@z

¼
@p�
@z

, on z ¼ 0, ð5Þ

pþ � p� ¼
�"

k2

@2

@x2
þ
@2

@y2

� �
@pþ
@z

, on z ¼ 0, ð6Þ

where � ¼ �0�=�0þ, and " ¼ T=c20�0þ are two parameters of the problem. Here, and in
the sequel, we have used the symbols pþ and p� for the pressure function p in the two
regions z > 0 and z < 0 respectively.
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In addition to the above interface conditions, the functions pþ and p� must also
satisfy the radiation conditions at infinity in order to ensure the uniqueness of the
solution of the boundary value problem posed by the Eqs. (4)–(6). We assume that
the unknown function nðzÞ tends to a constant limit as jzj ! 1 so that the radiation
conditions are applicable in the two regions z > 0 and z < 0.

This concludes the formulation of the direct problem of acoustics where nðzÞ, �, h0, ",
a and k are known and the pressure function is unknown. But, what we wish to consider
here is the inverse problem of determining the triple fnðzÞ,�, h0g from a knowledge
of the data pþ and p� at the interface z¼ 0 when ", a and k are given. In the next
section, we have presented an analytical method of solution of this inverse problem
under the assumption that a ! 0þ, i.e., the source is placed at the interface.

3 METHOD OF SOLUTION

We first non-dimensionalize the partial differential Eq. (4) and the conditions (5) and (6)
by using the non-dimensional coordinates �xx, �yy, �zz and the non-dimensional parameters
�kk, �"" and �hh0 as defined by relations

�xx ¼ x=L, �yy ¼ y=L, �zz ¼ z=L, �kk ¼ kL, �"" ¼ "=L, �hh0 ¼ h0=L
3 and �aa ¼ a=L,

L representing a typical length-scale. We then drop the bars everywhere and proceed to
solve the problem as described below.

Using a double Fourier transform as defined by

~ppðzÞ ¼

Z 1

�1

Z 1

�1

pðx, y, zÞ exp½ið
1x þ 
2yÞ� dxdy, ð
2 ¼ 
21 þ 

2
2Þ ð7Þ

the boundary value problem posed by the Eqs. (4)–(6) can be reduced to the problem
of solving the following integral equation (see [6,7]): (using the assumption that nðzÞ
possesses at most an algebraic growth as jzj ! 1)

~ppðz0Þ ¼ k2h0Gða, z0Þ þ k2

Z 1

�1

nðzÞGðz, z0Þ ~ppðzÞ dz, ð�1 < z0 <1Þ ð8Þ

where the function Gðz, z0Þ satisfies the following equation and conditions:

@2

@z2
� 
2

� �
G ¼ ��ðz � z0Þ, ð9Þ

@Gþ

@z
¼
@G�

@z
, Gþ ¼ �G� þ �

@G�

@z
, on z ¼ 0, ð10Þ

Gðz, z0Þ ! 0 as jzj ! 1, ð11Þ

with � ¼ "
2=k2. Here Gþ ¼ Gðz, z0Þ for z > 0, and G� ¼ Gðz, z0Þ for z < 0.
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The exact determination of the function Gðz, z0Þ can be carried out in a straight-
forward fashion and we find that

I. For z0 >0:

Gðz, z0Þ ¼

1

2

expð�
jz � z0jÞ þ

ð�þ �
� 1Þ

ð�þ �
þ 1Þ
exp½�
ðz þ z0Þ�

� �
, z > 0

1

2


2

ð1þ �þ �
Þ
exp½
ðz � z0Þ�

� �
, z < 0

8>>><
>>>:

ð12Þ

II. For z0<0:

Gðz, z0Þ ¼

1

2


2�

ð1þ �þ �
Þ
exp½
ðz0 � zÞ�

� �
, z > 0

1

2

expð�
jz � z0jÞ þ

ð1� �þ �
Þ

ð1þ �þ �
Þ
exp½
ðz þ z0Þ�

� �
, z < 0:

8>>><
>>>:

ð13Þ

Using these two forms of the function Gðz, z0Þ in the above integral Eq. (8), we obtain

I. For z0 >0,

~ppðz0Þ ¼
k2h0

2

expð�
ja � z0jÞ þ

"
3 þ ð�� 1Þk2

"
3 þ ð�þ 1Þk2


 �
exp½�
ða þ z0Þ�

� �

þ
k4


½"
3 þ ð�þ 1Þk2�

Z 0

�1

nðzÞ ~ppðzÞ exp½
ðz � z0Þ� dz

þ
k2

2


Z 1

0

nðzÞ ~ppðzÞ expð�
jz � z0jÞ þ
"
3 þ ð�� 1Þk2

"
3 þ ð�þ 1Þk2

� �
exp½�
ðz þ z0Þ�


 �
dz, ð14Þ

II. For z0<0,

~ppðz0Þ ¼
�k4h0


½"
3 þ ð�þ 1Þk2�
exp½
ðz0 � aÞ�

þ
k2

2


Z 0

�1

nðzÞ ~ppðzÞ expð�
jz � z0jÞ þ
"
3 þ ð1� �Þk2

"
3 þ ð1þ �Þk2

� �
exp½
ðz þ z0Þ�


 �
dz

þ
�k4


½"
3 þ ð�þ 1Þk2�

Z 1

0

nðzÞ ~ppðzÞ exp½
ðz0 � zÞ� dz: ð15Þ

We find that for the class of functions nðzÞ under consideration (i.e., of algebraic
growth at infinity), the integral equation for ~ppðzÞ as given by the Eqs. (14) and (15)
possesses a unique solution for sufficiently small values of the parameter k. This estab-
lishes the existence of a unique solution of the direct problem for such small values of k.
We write the solution of the Eqs. (14) and (15) in the form

~ppðzÞ ¼ k2 ~pp2ðzÞ þ k4 ~pp4ðzÞ þ k6 ~pp6ðzÞ þ � � � , ð16Þ

which is the equivalent to the Neumann series solution of the above integral equations.
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In the special case, when " ¼ 0, i.e., when the effect of surface tension is negligible,
we find, from the relations (14) and (15), that all the terms of the expansion (16),
except the first term, which contains the function ~pp2, are zero. In the case when
" 6¼ 0, we proceed to determine these functions in a manner as described below.

We multiply both sides of Eqs. (14) and (15) by the quantity 
½"
3 þ ð�þ 1Þk2�

and substitute the relation (16). Then equating the terms involving k2, k4 and k6, we
arrive at the following results.

(A) For z0 >0,


 ~pp2ðz
0Þ ¼ ðh0=2Þ½expð�
ja � z0jÞ þ exp½�
ða þ z0Þ��, ð17aÞ

"
4 ~pp4ðz
0Þ þ 
ð1þ �Þ ~pp2ðz

0Þ ¼ ðh0=2Þ½ð�þ 1Þ expð�
ja � z0jÞ þ ð�� 1Þ exp½�
ða þ z0Þ��

þ ð"
3=2Þ

Z 1

0

nðzÞ ~pp2ðzÞfexpð�
jz � z0jÞ þ exp½�
ðz þ z0Þ�gdz:

ð17bÞ

(B) For z0<0,

~pp2ðz
0Þ ¼ 0, ð18aÞ

"
4 ~pp4ðz
0Þ ¼ �h0 exp½
ðz

0 � aÞ�, ð18bÞ

"
4 ~pp6ðz
0Þ þ 
ð�þ 1Þ ~pp4ðz

0Þ ¼ ð"
3=2Þ

Z 0

�1

nðzÞ ~pp4ðzÞ expf½�
jz � z0j� þ exp½
ðz þ z0Þ�g dz

þ �

Z 1

0

nðzÞ ~pp2ðzÞ exp½
ðz
0 � zÞ� dz: ð18cÞ

If we now take limits z0 ! 0þ and z0 ! 0�of Eqs. (17b) and (18c) respectively, we
obtain

Z 1

0

nðzÞ expð�
zÞfexpð�
ja � zjÞ þ exp½�
ða þ zÞ�gdz ¼ ð
Þ, ð19Þ

Z 0

�1

nðzÞ expð2
zÞdz ¼  ð
Þ, ð20Þ

where

ð
Þ ¼
2

"
2h0
½"
4 ~pp4ð0

þÞ þ h0 expð�
aÞ�, ð21Þ

 ð
Þ ¼

 expð
aÞ

�h0
"
4 ~pp6ð0

�Þ þ
�h0




ð�þ 1Þ expð�
aÞ

"
2
�

1

2
ð
Þ


 �� �
: ð22Þ
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It is easy to check from the above results that the interface conditions (5) and (6)
are satisfied by the various components of the ~pp-functions when series (16) for ~pp is
substituted in these interface conditions.

While the results (19) and (20) can be viewed as two identities which must be satisfied
by the refraction coefficients nðzÞ of two fluid media under consideration, we can
also utilize these results for the determination of the function nðzÞ if the limiting
values ~pp4ð0

þÞ and ~pp6ð0
�Þ are known (or equivalently, if ~ppð0þÞ and ~ppð0�Þ are known as

shown below in Eq. (27)) with the assumption that a ! 0þ. Under such circumstances,
we then solve the problem of determination of the function nðzÞ by a Laplace inversion
procedure.

In the results (19)–(22), if we take limit as a ! 0þ, we obtain

Z 1

0

nðzÞ expð�2
zÞdz ¼
0ð
Þ

2
, ð23Þ

Z 0

�1

nðzÞ expð2
zÞdz ¼  0ð
Þ, ð24Þ

where

0ð
Þ ¼
2

"
2h0
½"
4 ~pp4ð0

þÞ þ h0�, ð25Þ

 0ð
Þ ¼



�h0
"
4 ~pp6ð0

�Þ þ
�h0




ð�þ 1Þ

"
2
�

1

2
0ð
Þ


 �� �
: ð26Þ

The results (23) and (24) can be viewed as Laplace transforms of the function nðzÞ for
z > 0 and z < 0 respectively. Hence the function nðzÞ can be recovered by inverting
these Laplace transforms (see [1]). As is well-known, these Laplace inversions require
that the functions 0ð
Þ and  0ð
Þ are known for values of 
 lying on certain straight
lines parallel to the imaginary axis (or equivalent to it), in the complex 
 plane.
Hence the Laplace inversion problems given by the relations (25) and (26) are ill-
posed problems and these can be resolved numerically by using the ideas proposed
by Ramm (see [9]).

It is important to recognize that all the functions appearing in the right of the
relations (25) and (26) can be determined, from the knowledge of the given data
~ppð0	Þ, which are the Fourier transforms of the limiting values of the pressure functions.
In fact, by using the first results of the Eqs. (17a) and (18a) (when a ! 0þ), we obtain:

~pp4ð0
þÞ ¼ lim

k!0
½ ~ppð0þÞ � k2 ~pp2ð0

þÞ�k�4
� 

¼ lim
k!0

½ ~ppð0þÞ � k2
�1h0�k
�4

� 
,

~pp6ð0
�Þ ¼ lim

k!0
½ ~ppð0�Þ � k4 ~pp4ð0

�Þ�k�6
� 

¼ lim
k!0

½ ~ppð0�Þ �
�

"
k4
�4h0�k

�6
n o

,
ð27Þ

so that the actual evaluation of the functions 0ð
Þ and  0ð
Þ can be carried out directly
using the known data ~ppð0	Þ.
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The above procedure of recovering the unknown function nðzÞ can be successfully
completed, if the other two unknowns of the problem, i.e., the quantities � and h0

are determined uniquely. To achieve this goal, we use Eqs. (17a) and (18b) and
obtain the following formulae (when a ! 0þ).

h0 ¼ 
 ~pp2ð0
þÞ, and

�h0

"
¼ 
4 ~pp4ð0

�Þ: ð28Þ

Thus both the unknowns h0 and � can be uniquely determined for a given data ~ppð0	Þ
and the relations that

~pp2ð0
þÞ ¼ lim

k!0
~ppð0þÞk�2

� 
, and ~pp4ð0

�Þ ¼ lim
k!0

~ppð0�Þk�4
� 

: ð29Þ

The inverse problem under consideration thus gets settled and its unique solution
can be determined once the Laplace inversions of the two relations (23) and (24) are
completed.

The various formulae derived above can be used to construct the following algorithm
to recover the values of the three unknowns fnðzÞ,�, h0g from input data ~ppð0	Þ, provided
such input data is either known a priori as a solution of the direct problem or obtained
by solving a direct problem in a different manner for known values of the triple
fnðzÞ,�, h0g.

Inverse Algorithm-I: To recover fnðzÞ,�, h0g from ~ppð0	Þ
[Note: Input data: ~ppð0	Þ when a ! 0þ.]

Step 1 Find ~pp2ð0
þÞ and ~pp4ð0

�Þ from known input data ~ppð0	Þ using (29).
Step 2 Find h0 and � using (28).
Step 3 Find ~pp4ð0

þÞ and ~pp6ð0
�Þ using (27).

Step 4 Find �0ð
Þ and �0ð
Þ using (25) and (26) respectively.
Step 5 Finally, find nðzÞ, the refraction coefficient of the medium, by taking inverse

Laplace transforms of �0ð
Þ and �0ð
Þ according to the relations (23) and (24).

We finally make the following important observations on the effectiveness of the
above algorithm.

In Steps 1 and 3 of the algorithm, it is required to calculate certain limits (Eqs. (29)
and (27)) using the input data pðx, y, 0�Þ. The problem of calculating these limits is
equivalent to finding derivatives of the input data pðx, y, 0�Þ with respect to wavenum-
ber k. Hence these derivatives must be well defined which in essence requires that the
input data and its Fourier transform must be analytic functions of the wavenumber k.

In Step 5 of the above algorithm, the Laplace inversions corresponding to integral
Eqs. (23) and (24) are to be performed numerically (which we have not taken up in
this paper) by solving two moment problems (see Martin and Ramm [9]), which are
the following integral equations of the first kindZ 1

0

xmn1ðxÞ dx ¼
1

2
0

m þ 1

2

� �
, ð30Þ

and Z 1

0

xmn2ðxÞ dx ¼  0
m þ 1

2

� �
, ð31Þ
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for m ¼ 0, 1, 2, 3, . . . . These are obtained by setting x ¼ expð�zÞ, n1ðxÞ ¼ nð� ln xÞ
for z > 0 in Eq. (23), and x ¼ expðzÞ, n2ðxÞ ¼ nðln xÞ for z < 0 in Eq. (24). The
above algorithm is based on the existence of unique solution of the above two integral
equations.

4 APPLICATIONS

In order to illustrate the proposed method of solution of the inverse problem, by the
procedure described above, we consider two special examples of the direct problem
as described below. The known data for the corresponding inverse problems can be
considered to be the ones obtained from the solutions of the direct problems which
are determined by the standard techniques.

4.1 Solutions to the Direct Problems

Example 1 Here the refractive index is chosen to be the following piecewise constant
function.

nðzÞ ¼ n0, z < 0
¼ n1, z > 0

�
ð32Þ

where n0, n1 are constants: � and h0 are also assumed to be known constants.
We find that the solution of this direct problem can be written down immediately,

satisfying the partial differential Eq. (4) and the boundary conditions (5) and (6) as
given by the relations:

~ppðzÞ ¼ B1 exp½�ð
2 � k2n1Þ
1=2z� þ

1

2
k2h0ð


2 � k2n1Þ
�1=2

� ½expfð
2 � k2n1Þ
1=2

ðz � aÞgHða � zÞ

þ expf�ð
2 � k2n1Þ
1=2

ðz � aÞgHðz � aÞ�, for z > 0,

~ppðzÞ ¼ C1 exp½ð

2 � k2n0Þ

1=2z�, for z < 0, ð33Þ

where

B1 ¼
1

2
k2h0 exp½�ð
2 � k2n1Þ

1=2a�ð
2 � k2n1Þ
�1=2

�
�k2ð
2 � k2n1Þ

1=2
� k2ð
2 � k2n0Þ

1=2
þ "
2ð
2 � k2n0Þ

1=2
ð
2 � k2n1Þ

1=2

�k2ð
2 � k2n1Þ
1=2

þ k2ð
2 � k2n0Þ
1=2

þ "
2ð
2 � k2n0Þ
1=2

ð
2 � k2n1Þ
1=2

� �
,

C1 ¼
�h0k

4 exp½�ð
2 � k2n1Þ
1=2a�

�k2ð
2 � k2n1Þ
1=2

þ k2ð
2 � k2n0Þ
1=2

þ "
2ð
2 � k2n0Þ
1=2

ð
2 � k2n1Þ
1=2

� �
,

with HðxÞ denoting the Heaviside function. Here ~ppðzÞ is the double Fourier transform of
pðx, y, zÞ as defined by the relation (7) [assuming that ð
2 � k2n0Þ

1=2 and ð
2 � k2n1Þ
1=2
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both possess a positive real part, (this choice is required by the condition of vanishing of
the transformed pressure function ~ppðzÞ as jzj ! 1 (see, for instance, [7]))].

Example 2 Here the refractive index is chosen to be

nðzÞ ¼ n0 z > 0
¼ expð2zÞ z < 0

�
ð34Þ

where n0 is a constant, � and h0 are also assumed to be known constants as in the first
example.

The differential equation for the transformed pressure function ~ppðzÞ for the region
z < 0 can be easily converted to a Bessel’s differential equation by a standard transfor-
mation (see [8]). Using this idea, we find that the solution of the direct problem, which
satisfies the partial differential Eq. (4) and the boundary conditions (5) and (6), can be
expressed in the following form:

~ppðzÞ ¼ B2 exp½�ð
2 � k2n0Þ
1=2z� þ

1

2
k2h0ð


2 � k2n0Þ
�1=2

� ½expfð
2 � k2n0Þ
1=2

ðz � aÞgHða � zÞ

þ expf�ð
2 � k2n0Þ
1=2

ðz � aÞgHðz � aÞ�, for z > 0 ð35Þ

~ppðzÞ ¼ C2

X1
n¼0

ð�1Þnðk=2Þ2nþ
 exp½ð2n þ 
Þz�

n!�ðn þ 
þ 1Þ
, for z < 0 ð36Þ

where

B2 ¼
1

2
k2h0 exp½�ð
2 � k2n0Þ

1=2a�ð
2 � k2n0Þ
�1=2

�
�k2ð
2 � k2n0Þ

1=2
� ½k2 � "
2ð
2 � k2n0Þ

1=2
�J

0


ðkÞ=J
ðkÞ

�k2ð
2 � k2n0Þ
1=2

þ ½k2 þ "
2ð
2 � k2n0Þ
1=2

�J
0


ðkÞ=J
ðkÞ

" #
,

C2 ¼
�h0k

4 exp½�ð
2 � k2n0Þ
1=2a�

J
ðkÞf�k2ð
2 � k2n0Þ
1=2

þ ½k2 þ "
2ð
2 � k2n0Þ
1=2

�J
0


ðkÞ=J
ðkÞg

" #
,

J
ðkÞ denoting the Bessel function of the first kind, and prime denoting derivative
with respect to the argument.

4.2 Solutions to the Inverse Problems

The quantities ~ppð0	Þ for the above two examples are determined from (33) and (35)
respectively. The above Algorithm-I is then applied to recover the triple unknowns
fnðzÞ,�, h0g for each of these two examples from corresponding known pressure data
pðx, y, 0	Þ or equivalently Fourier transformed data ~ppð0	Þ. We find that the recovered
function nðzÞ from the application of the above inverse algorithm agrees completely
with the choices (32) and (34) for the two examples respectively. The other two
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unknown constants � and h0 are also recovered completely. Some results obtained at
various steps of the Algorithm-I when a ! 0þ are given below.

I. For example 1:

~pp2ð0
þÞ ¼

h0



,

~pp4ð0
þÞ ¼

h0


3
n1

2
�

1

"


� �
,

~pp4ð0
�Þ ¼

�h0

"
4
,

~pp6ð0
�Þ ¼

�h0

"
6
�
ð�þ 1Þ

"

þ
ðn0 þ n1Þ

2

� �
,

0ð
Þ ¼
n1



,

 0ð
Þ ¼
n0

2

:

II. For example 2:

~pp2ð0
þÞ ¼

h0



,

~pp4ð0
þÞ ¼

h0ð"n0
� 2Þ

2"
4
,

~pp4ð0
�Þ ¼

�h0

"
4
,

~pp6ð0
�Þ ¼

�h0

"
4
�
ð�þ 1Þ

"
3
þ

n0

2
2
þ

1

2
ð
þ 1Þ

� �
,

0ð
Þ ¼
n0



,

 0ð
Þ ¼
1

2ð
þ 1Þ
:

It is easily verified that original nðzÞ for each of the two examples (see (32) and (34)) is
recovered from taking the inverse Laplace transforms of 0ð
Þ and  0ð
Þ obtained
above for both the examples. Alternatively, it can be seen that the 0ð
Þ and  0ð
Þ
obtained above are consistent with (23) and (24) for each of the choices for nðzÞ
(see (32) and (34)) in the two examples. We have thus verified our proposed method
of solution of the inverse problem through two examples.
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