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Abstract 

Some useful filtering techniques for computing approximate solutions of illposed problems are presented. Special atten- 
tion is given to the role of smoothness of the filters and the choice of time-dependent parameters used in these filtering 
techniques. Smooth filters and proper choice of time-dependent parameters in these filtering techniques allow numeri- 
cal construction of more accurate approximate solutions of illposed problems. In order to illustrate this and the filtering 
techniques, a severely illposed fourth-order nonlinear wave equation is numercally solved using a three time-level finite 
difference scheme. Numerical examples are given showing the merits of the filtering techniques. @ 1998 Elsevier Science 
B.V. All rights reserved. 
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1. Introduction 

lllposed problems appear in many areas of practical interest such as continuum mechanics, geo- 
physics, acoustics, electrodynamics, tomography, medicine, ecology, and various other branches of 
mathematical physics and mathematical analysis. Therefore, there is a considerable interest in con- 
structing good approximate solutions of such illposed problems. One of the techniques for con- 
structing such solutions is filtering technique. Filtering techniques attempt to construct approximate 
solutions of illposed problems by using selective perturbation of the initial data determined by the 
complete elimination or suppression of spurious errors in the short wave components of the data 
(cf. [5]). One of the goals of this paper is to construct and justify the use of new filtering techniques 
which employ smooth filters rather than sharp filters. 

i This research was supported by NSF grants No. DMS-9208061 and by the Office of the Vice President for Research 
and Associate Provost for Graduate Studies at Texas A&M University. 
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Filtering techniques are very popular due to their effectiveness, ease of implementation (specially, 
in Fourier domain) and possibility of achieving good approximate solutions of  illposed partial differ- 
ential equations. There are multitude of such techniques in Fourier and physical domains which can 
be applied to suppress dangerous short wave modes participating in numerical calculations. Tech- 
niques in physical domain involve local averaging of data and are usually not as robust as techniques 
in Fourier domain. Moreover, it is usually very convenient to filter in Fourier domain: take the whole 
data set, FFT it, multiply the FFT by a filter function and then do an inverse FFT to get back a 
filtered data set in physical domain. All filtering techniques in Fourier domain involve construction 
and application of digital filters. Use of these filtering techniques requires some guidance on the 
choice of filter and frequency of  its application in order to achieve good approximate numerical 
solutions of illposed problems. This task would be much simpler if there were only one optimal 
filtering technique that worked best on all illposed problems. But this is not the case and it often 
requires a combination of analysis and experimentation to achieve the best results. 

Although there has been many papers written on filtering techniques, to our knowledge there has 
been no systematic studies of  the role that smooth filters can play in providing better approximate 
solutions. This is in spite of the fact that considerable research effort has been directed towards 
constructing better approximate solutions of  illposed problems by various other techniques such as 
smoothing of  solutions in physical domain, regularization techniques, etc. It seems appropriate to us 
to numerically study in some detail the effect of smoothness of filters on the accuracy of approximate 
numerical solutions of  illposed problems. In order to do so, we construct a family of filters with 
varying degree of smoothness and carry out-numerical experimentation with filter being applied in 
a variety of ways described in the text. The filtering techniques with these filters are applied to a 
fourth order nonlinear illposed Boussinesq equation using a multilevel finite difference scheme. The 
paper is largely computational in nature. Analysis of  any kind is not presented. 

The paper is laid out as follows. In Section 2, we construct some smooth filter functions in 
the Fourier domain and discuss time-dependent parameters in these filters. An illposed Boussinesq 
equation and a numerical scheme for solving this equation using filtering techniques are discussed 
in Section 3. Section 4 discusses the algorithms: the ways the filters are applied to the multi-level 
finite difference scheme. Section 5 presents some relevant numerical results obtained with various 
filters. Concluding remarks are made in Section 6. 

2. Filtering techniques 

2.1. Description o f  the filters 

High wave number modes of  the Fourier spectrum of the initial data with amplitudes comparable 
to or less than roundoff error are naturally most contaminated by roundoff error. Catastrophic growth 
of roundoff errors in these modes due to short-wave instability causes significant contamination of  
numerical solutions as these solutions evolve in time. Filtering techniques attempt to eliminate such 
spurious effects of roundoff error on the numerical solutions by using appropriate filtering techniques. 
There are multitude of filters and the simplest among these is probably the sharp filter whose value is 
either one or zero depending on whether the wave number is below or greater than some cutoff wave 
number, n¢. Even though sharp filter has been used successfully for illposed problems, smooth filters 



P. Daripa / Journal o f  Computational and Applied Mathematics 100 (1998) 161 171 163 

(obtained by smoothing of  the sharp vertical edge at the cutoff wave number of  the sharp filter) 
with appropriate choice of  time-dependent filter parameters, when applied properly, can provide even 
better accuracy of  the numerical solutions. In order to exemplify this issue, we first define these filters 
of  varying degree of  smoothness which are then used to generate solutions of  an illposed nonlinear 
wave equation. Numerical solutions appear to be the best for certain choices of time dependent 
parameters which are presented in the Section 5. 

Here and below, the Fourier modal amplitudes of a numerical solution before and after the use 
of  a filter ~(n)  are denoted by a,, and ~i,, respectively where n is the wave number and 

fi,, = a , ,~(n) .  (2.1) 

All filters below are defined for positive wave numbers and their values for negative wave numbers 
are obtained from the property q ~ ( - n ) =  ~(n)  since the data to be subjected to filtering is real. Each 
of  the filters discussed below contains certain parameters which are time dependent. This time 
dependence is not shown explicitly in (2.1) for notational convenience. 

We experimented with following four filters of  increasing order of  smoothness. The sharp filter 
• l(n) is defined as 

1, n<~nc, 

• l ( n ) =  0, n>n~ ,  
(2.2) 

where nc is a cutoff wave number and is chosen carefully based on the computational noise level 
which is largely determined by the machine representation of  numerical solutions Fourier spectrums 
or equivalently machine roundoff error. 

Below we define three smooth filters of  family ~3, namely ~ ( n ) ,  ~ ( n ) ,  and ebb(n) which are 
C °, C 2 and C 4, respectively. These filter functions are constructed by smoothing the vertical edge 
of  the sharp filter ~ t (n)  over  (n 2 - / / c )  points. The choice of  n z > n c  is made clear later. Filters 
¢P~, j = 1,2, 3 are defined as follows: 

1, n<~nc, 

qbj(n) = 1 - gj(r~), n c < n < n 2 ,  

O, n / >  n 2 ,  

(2.3) 

where 

n - -  nc ~ =  
/12 - -  / /c ' 

(2.4) 

and 

Ol(X) =x ,  0 < x < l ,  (2.5) 

9 3 
~X , 

g2(X) 9X 3 - -  27 2 9 1 = + T x  -- ~x + ~, 

1 - 9 ( 1  - x )  3, 

1 0 < x ~  

l < X ~ 2  

Z < x < l  3 

(2.6) 



164 P. Daripal Journal of Computational and Applied Mathematics 100 (1998) 161-171 

--•-45 X 5 , 

625 5 -  3125 4 625 3 -  125 2 
- -~-x  t ~--x - 5yx +55-x 

25_ - -  1 

625 5 3125 4 -I- 4375 3 625 2 
-Tx - --ux _ -iT-x - -5-x 

o3(x)= 

625 5 3125 4 625 1 + y ( 1  - x )  - -5-(1 - x )  + ~ ( 1  - x )  3 
125 2 25 l - ~ ( 1 - x )  +~(1-x)  ~, 

1 - ~45(1 - x )  5, 

0<x~<½, 

~ < x ~ <  2 
5 ~ 

, )  

3 < X ~ 4  

4 < x < l .  

(2.7) 

The functions gl(X), 92(x) and 93(x) are C °, C 2 and C 4 functions, respectively. 
It should be noted that after application of  any of  these filters, all Fourier modes with wave 

numbers greater than n~ for the case of  filter ~bj and n2 for the case of  filters of  family 43 have 
zero amplitudes. The relative merits of  these filters are tested by experimenting with these filters on 
an illposed nonlinear wave equation which is discussed in Section 3. 

Next we discuss the choice of  the parameters nc and n2. The choice of  these parameters as it is 
currently practiced has a strong empirical basis, and there are generally tradeoffs involved between 
different choices of  these parameters in such a way that there is usually no general agreement on 
the best choice of  these parameters. There is no exact science for its selection and a suitable choice 
of  these parameters may require some numerical experimentation. 

2.2. Choice o f  nc and n2 

For our purposes here, we denote the parameter nc as the smallest wave number with amplitude 
[a,c I-- 10-m where the filter level, m, is to be chosen carefully based on roundoff error and severity of  
the growth rate of  short waves. Since high wave number modes whose amplitudes are less than or of 
the order of  roundoff error are most significantly contaminated initially, it appears sensible to choose 
these parameters based on roundoff error so that these dangerous modes are considerably suppressed. 
This guiding principle appears to be sufficient for 7-digit arithmetics (single precision) calculation. 
For our single precision calculations in this paper, we have chosen after some experimentation filter 
level m = 5  so that [an,.] = 10 -5 which is higher than the roundoff error 10 7. Fig. 1 depicts such a 
choice of nc for a discrete Fourier spectrum where no mode may have an amplitude exactly equal 
to 10 -5 . 

Two points are worth mentioning here. Firstly, parameters n2 and n~ are time-dependent since their 
choice at any particular time level is based on the Fourier spectrum of  the numerical solution at that 
time level only. Secondly, the filter level in higher precision calculations may have to be significantly 
higher than that allowed by the machine roundoff error in order to avoid very short waves that may 
otherwise be very dangerous due to growth of  truncation errors in these short waves, specially for 
severely illposed problem as the one discussed in Section 3. However, such considerations are not 
of  importance for our single precision calculations in this paper and one may refer [2] for such high 
precision calculations. 
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Fig. 1. The positions of the points no, n2 and n* we used in the algorithm. The plot shows a hypothetical Fourier spectrum 
(Fourier modal amplitudes against wave numbers). 

We numerically experimented with application of  the above filters on a severely illposed problem 
discussed in the next section. Particular attention was paid to the effect of  frequency of  applications 
of  these filters (i.e. at every time level to intervals of  few time levels) on the accuracy of  the 
numerical solutions. Best results were not obtained with application of filters at every time level. 
Rather, best results were obtained when filter was applied only if the amplitude of one or more of  
the modes with wave numbers n >nc exceeded the filter level (see Fig. 1) and the parameter n2 
(nc <n2 <n*) was chosen so that the Fourier mode with wave number n2 has the smallest amplitude 
in this wave number range (nc <n2 <n*). Next we discuss application of  these filters in solving an 
illposed Boussinesq equation. 

3. lllposed Boussinesq equation 

Filtering techniques are applied to solve the following illposed nonlinear wave equation 

u,  = (p(u))xx + Ux~x, (3.1) 

where p ( u ) =  u + u 2. This equation describes propagation of  long waves in shallow water under 
gravity [6], in one-dimensional nonlinear lattices and in nonlinear strings [7]. This equation is chosen 
for following reasons: 
• It has exact traveling wave solutions whose Fourier modal amplitudes do not change in time. This 

facilitates setting up of  numerical experiments so that the effect of  short wave instability and the 
performance of  various filtering techniques can be discerned very easily. 

• This equation has very severe short wave instability which is useful in testing the robustness of 
various filtering techniques. 

• The numerical scheme for solving this equation requires using solutions at two previous time 
levels. This provides some extra freedom in choosing the filter parameters at both of  these time 
levels as will be seen later. 
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• This equation is so severely illposed that this equation is not well understood. There are analyt- 
ical and numerical difficulties in studying this equation. ([3, 2]). Hopefully, filtering techniques 
explored here will be found helpful in providing better understanding of this equation. 
Eq. (3.1) is linearly illposed as the corresponding linearized pde has decaying as well as growing 

modes,  e ~t+i~, with the dispersion relation about the constant state, uc, given by 

~r:F = qz kv / k2  - p ' (uc) .  (3.2) 

Thus equilibrium states in the elliptic region (i.e. p ' (Uc)= 1 +2Uc < 0 )  are unstable to all modes and 
states in the hyperbolic region are unstable to modes [k[ > x /p ' (uc) .  Since growth rate, i.e. the real 
part of a+, is a monotonically increasing function of wave number, there is no wave number with 
maximal rate of  stability. It follows from the dispersion relation (3.2) that 

o ' ~ k  2 as k---+e~. (3.3) 

This short-wave instability causes severe sensitivity of  the solutions to small errors in high wave 
number modes. Moreover the growth rate of short waves here is so severe that this equation's 
solutions may not exist in classical sense for arbitrary initial data. However, solutions exist for 
special choices of  initial data. For example, this equation allows unidirectional (solitary wave) as 
well as bidirectional waves ([3, 4, 6]). To examine and compare the performance of various filters 
discussed in the preceding section, exact solitary wave solution 

u~(x, t )  = A  sech2 { v/A/6(x - c t ) }  (3.4) 

is considered where A is the amplitude of  the solitary wave and c = q: v/2A/3 is the speed of the 
solitary wave. 

Eq. (3.1) is solved numerically in a finite domain, a<~x<~b using the following finite difference 
method with uniform grid spacings h in x and 7; in t. Using v;' to denote the approximated value of 
u(x, t)  at x = a + j h ,  t = n'c and using usual finite difference operators D + and D -  to denote forward 
and backward differences, Eq. (3.1) is approximated by 

+ - " D x D~ ( p ( v ) ) )  ( D + D (  2 ,,+, , , - , ,  D t D '  vj _ + - " ) (V/ + vJ ) 
+ , ( 3 . 5 )  

T 2 h 2 2h 4 

for 7;>0 and 0 < j < N  ( 0 ~ < j < N  in case of periodic domain) where b -  a = N h .  The truncation 
error is E(h,-c)= O(h 2) + 0(7;2). We use following fourth-order accurate formulae [1] to estimate 
boundary conditions v(a - h, nT;) and v(b + h, nT;), for n ~> 0. 

3v(a, nz) + 3v(a + h , m )  - ~v(a + 2h, nT;) - 3v'(a,  nT;)h, (3.6) v ( a -  h , m ) =  - 5 

3v(b, nr )  + 3v(b - h , n , )  - ½v(b - 2h, nT;) + 3 v ' ( b , n , ) h ,  (3.7) v(b + h, nT;) = - 

and the following third-order accurate initialization to estimate v(jh,  z), 0 ~<j ~<N, 
I t  ?2 v(.,7;) = v(.,0) + v'( . ,O)z + v ( . ,0)T + O(r3), (3.8) 

where v(., ~) and v'(., r) are given, v"(.,r) can be obtained directly from using the Boussinesq Eq. 
(3.1). The dispersion relation for the above finite difference scheme for time step size -c = 0.01 and 
spatial grid size h = 0 . 5  compare very well with that of  the exact Boussinesq Eq. (3.1) (see [2]). 
These mesh sizes are used for numerical results presented in the next section. 
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4. The Algorithms 

The numerical method based on finite difference equation (3.5) and the filtering criterion of  Section 
2 is referred below as Algorithm-I. 

The numerical solution v "+2 depends on previous two time levels' solutions v" and v "+f, both of 
which may not participate in the filtering process in the Algorithm-I. It is observed during numerical 
experimentation that if v "+j participates in the filtering process and v" does not, then filtering v n 
with the parameters n2 and nc chosen based on the solution v "+x can improve the accuracy of  the 
numerical solution v "+2 considerably. Application of the numerical method based on finite difference 
Eq. (3.5) and this modified form of  filtering is referred below as Algorithm-II. This algorithm ensures 
that whenever the filter is applied on v "+~, it will be applied on v" if it did not participate in the 
filtering process during previous time step. 

5. Numerical results 

Exact solitary wave solution (3.4) of  Eq. (3.1) travels at a constant speed and therefore its modal 
amplitudes (i.e. the absolute values of  its Fourier coefficients) do not depend on time. This time 
independence of  the modal amplitudes of  a traveling solitary wave can be used very effectively 
to investigate the performance of  various filtering techniques. Therefore numerical calculations are 
performed with initial data derived from exact solitary wave solution given by (3.4) with amplitude 
A =0.5. 

Oscillations in numerical solutions start developing due to severe short wave instability as soon 
as the high wave number modal amplitudes exceed an approximate value of  10 -5 which happens at 
a time level t---0.6. Fig. 2 shows logarithm of  the amplitudes of participating Fourier modes of the 
exact solitary wave and numerical solutions at two time levels (t = 0.6 and 1.0) against their wave 
numbers. It is seen here that high wave number participating modes of  the initial condition whose 
amplitudes are less than the roundoff error are contaminated by machine roundoff error. These errors 
are amplified severely by the short wave instability and in time tend to contaminate even the low 
wave number modes of  the spectrum due to nonlinearity. 

In order to improve the calculations, filtering technique is applied here with sharp filter 4~1 as 
well as smooth filters of  the family q~3. As per filtering criterion discussed in Section 2, numerical 
solutions for t <0.6 did not require to be filtered. Filtering technique is applied for the first time at 
a time level t = 0.6. Fig. 3 shows the effect of  these filters on the Fourier spectrum of the solution 
at this time level (t = 0.6) with filters' parameter nc (see Eqs. (2.2) and (2.3), also Fig. 3) chosen 
based on the threshold level la,~l = 10 -5. Since Fourier spectrum is symmetric, it is only necessary 
to show the fight half of  the spectrum in Fig. 2. All Fourier modes with wave numbers greater than 
nc for the case of  filter ~l and n2 for the case of  filter q~ have zero amplitudes after the application 
of  the filters according to Eqs. (2.2) and (2.3). Zero amplitudes of  these modes could not be shown 
in Fig. 3 because zero is not in the range of  the ordinates of  the plots in Fig. 3. 

We have done extensive numerical experiments with the filters mentioned above and also tested 
the appropriateness of  applying the filters at various time levels. It is found that application of a 
filter at every time step deteriorates the accuracy of the numerical solutions. Best result is obtained 
with filters being applied only when it is necessary, i.e. when one or more of  the high-wave number 
modal amplitudes exceed a value approximately 10 -5 as discussed earlier. 
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Fig. 3. Effect of  the filters (a) ~l and (b) tb 2 in suppressing spurious growth of  roundoff errors. Fourier spectrums of  the 
numerical solutions at t = 0.6 before and after the use of  the filters are shown. The Fourier spectrum of  the exact solution 
is also shown here for comparison purposes. 

Table 1 
The L2 and Lo~ error estimates of  numerical solutions using filters qh, ~ ,  423, and ~ with the algorithm-I 

Time cbL ~ ~ ~] 
t 

L2 Lo~ L2 L ~  L2 Lo~ L2 Lo~ 

0.6 7.34-10 -4 2.49.10 -4 3.62-10 4 1.48.10 4 3.50.10-4 1.37.10-4 3.49.10-4 1.35.10-4 
1 2.75.10 -2 4.45.10 -3 5.58.10 -3 9.02-10 -4 5.50.10 -3 8.69.10 -4 5.50.10 3 8.67.10 4 

2 0.11 1.55.10 -2 4.52.10 2 7.95.10 3 4.70.10-2 9.05.10-3 4.60.10-2 8.07.10-3 

3 0.18 2.87.10 -2 0.18 2.87.10 2 0.18 2.86.10 2 

Instead of  inundating this paper with lots of  results, we summarize the main points of  the results 
of  numerical experiments in Tables 1 and 2 and Fig. 4. The L2 and L~ errors of  numerical solutions 
obtained with various filters using Algorithm-I and Algorithm-II are tabulated in Tables 1 and 2, 
respectively. The main observations from these tables are the following. 
• Both algorithms give more accurate numerical solutions with smooth filters of  family q~3 than with 

the sharp filter ~ .  But there are no big differences among ~/i3 filters, i.e. the degree of  smoothness 
of  smooth filters do not affect the solutions significantly in either algorithms. 
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Table 2 
The L2 and L~ error estimates of numerical solutions using filters 4~, q~, q~, and qP with the algorithm-II 

169 

Time ~1 ~ ~ ~] 
t 

L2 L~o L2 Loo L2 L~ L2 L~ 

0.6 7.34"10 -4 2.49"10 -4 3.62'10 -4 1.48'10 -4 3.50"10 -4 1.37"10 -4 3.49"10 -4 1.35"10 -4 
1 1.95.10 3 8.83.10-4 1.02.10 3 3.53.10-4 1.00.10-3 3.41.10-4 1.00.10-3 3.37.10-4 
2 1.40.10 2 4.79.10-3 4.90.10-3 1.37.10-3 4.86.10-3 1.35.10-3 5.10.10-3 1.50.10-3 
3 0.36 0.15 1.20.10 -2 3.14'10 -3 1.42'10 2 4.43.10-3 4.41.10-2 8.70.10-3 
4 0.12 4.44-10 -3 0.15 5.93.10 -2 0.17 6.44.10 -2 
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Fig. 4. Comparison of numerical and exact solutions at the time level t = 1 using different filtering techniques: (a) qh 
filter with the algorithm-I; (b) ~ filter with the algorithm-I; and (c) ~ filter with the algorithm-II. The calculations were 
done in single precision (7 digit arithmetics) with h = 0.5 and z = 0.01. 

• Numerical results with Algorithm-II are more accurate than that with Algorithm-I for a fixed 
choice of filter. 

• If there were a choice between switching to Algorithm-II from Algorithm-I and switching to a 
smooth filter from the sharp filter in Algorithm-I, the latter is better than the former. 
We illustrate the effects of  the sharp and smooth filters on the numerical solutions in Fig. 4 by 

comparing these against the exact solution given by (3.4) at a time level t = 1.0. Numerical results 
in Figs. 4(a) and (b) have been obtained using Algorithm-I with the sharp filter q~ and the smooth 
filter ~ ,  respectively. Differences in the numerical solutions with smooth filters of  family ~3 are 
almost identical (see Tables 1 and 2) and therefore we have shown numerical results with only one 
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Fig. 5. C o m p a r i s o n  o f  numer ica l  and  exact  so lu t ions  at the t ime level t = 1.7. The  calculat ions  were done in (a)  double 
precision (15 digit a r i thmet ics)  wi thout  any  use  o f  filter; (b)  single precision (7 digit  a r i thmet ics)  wi th  filter ~ at filter 

level 5. All  the computa t ions  use  h = 0.5 and  z = 0.01. 

of these smooth filters in Fig. 4(b). It is clearly seen here that the accuracy of  the numerical solution 
with the smooth filter is far better than that with the sharp filter. 

Next we illustrate the effect of  using Algorithm-II instead of Algorithm-I in Fig. 4(c). This figure 
compares the numerical solution at t = 1.0 obtained using the sharp filter q~] and Algorithm-II with 
the exact solution. A comparison of  this with the result of  Fig. 4(a) shows that accuracy of the 
numerical solution, even with the sharp filter, can be improved considerably using Algorithm-II 
instead of Algorithm-I. A comparison of Figs. 4(b) and (c) which compare favorably with each 
other within resolution of  the plots should not give the impression that sharp filter ~1 in Algorithm- 
II performs as good as the smooth filter ~ in Algorithm-I. This may be true at earlier times as 
this figure seems to indicate but this is definitely the case at later times as is evident from the error 
estimates in Tables 1 and 2. 

These and other numerical experiments strongly suggest that smooth filters should be preferred 
over sharp filters for more accurate solutions of illposed problems. In fact, numerical solutions even 
in lower precision calculations with smooth filters can give much more accurate solutions than 
higher precision calculation without filters. In other words, smooth filters is more effective than high 
precision arithmetic in providing more accurate solutions. Numerical results in Fig. (5) which were 
obtained using Algorithm-I show this. In each of Figs. 5(a) and (b), numerical results at t = 1.7 
are compared against the exact solution. Numerical result with sharp filter is not shown as this is 
much worse than that with smooth filters which can be inferred directly from Table 1 and has been 
discussed earlier in this section. 

6. Conclusion 

Below we summarize our main points based on our extensive numerical experiments with various 
filters on a severely illposed problem. These findings may have significant bearing on devising 
effective filtering techniques for other illposed problems as well. 

• Filtering techniques should use smooth filters in preference to sharp filter whenever possible. 
Smooth filters when applied properly yield better approximate solutions than sharp filter. How- 
ever, degree of  smoothness of the filter does not seem to affect the performance of the filter in 
any significant way. 
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• In order to enable better approximate solutions in multilevel finite difference scheme, it may be 
necessary to filter numerical solutions at all previous time levels that participate in the scheme 
depending on whether the numerical solution at most recent time level that is being used has 
been filtered. This is a more general statement than what we have shown here. In this paper, we 
have shown this to be the case for three time level finite difference scheme (i.e. Algorithm-II 
is better than Algorithm-I). 
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