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In this paper we derive some results that give the existence of solutions (restricted by a 
compatibility condition) to overposed inverse design problems in a satisfactory manner. An 
overposed inverse design problem is concerned with generating a profile which will have a 
specified speed distribution q;(s) at a given free stream Mach number M”, This is equivalent 
to specifying pressure distribution. This problem has been of interest in aeronautical 
engineering. The overposedness of this problem is due to the specification of M >-, An 
important issue has been the relation between q;(s) and M >. We derive this relation. A very 
useful approximation to this relation is established through numerical experiments which is 
exact for a11 practical purposes. We show the importance of this result in solving the 
overposed problem in an efficient manner. ‘1’ 1991 Academx Press, Inc 

1. INTRODUCTION 

Inverse problems have been addressed before in [l&4] with interesting new ideas. 
Basically there are two types of inverse design problems: well-posed and overposed. 
A well-posed inverse problem is concerned wth the generation of a body which will 
have a specified speed distribution. An overposed inverse problem is concerned with 
the generation of a body which will have a specified speed distribution at a specified 
free stream Mach number. The overposedness is due to the specification of the 
free stream Mach number. An overposed problem has a solution only if the free 
stream Mach number is compatible with the specified speed distribution. This 
compatibility is decided by the equations of motion. Usually the compressible fluid 
flow equations are solved completely to determine the compatibility and hence the 
existence of a solution to the overposed problem is determined a posteriori. 

In aeronautical engineering one often modifies a known pressure distribution C, 
(we use the term pressure for pressure coefficient) over an airfoil in order to 
improve the performance of the airfoil which will have this modified C,. Both, the 
free stream Mach number M :, and the speed distribution qz can be calculated from 
any arbitrary C, without using the equations of motion. This is described in Sec- 
tion 2.10 of Ref. [S]. All flow variables in this paper refer to their values normalized 
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by their sonic values. Thus throughout this paper by pressure, density, and speed 
we mean normalized pressure, normalized density, and normalized speed, respec- 
tively. For example, according to this convention qz = 1 at sonic speed. (Here and 
below the superscript “s” has been used to denote the specified variables and the 
subscript “0” to denote the values of the specified variables on the profile only. 
Occasionally subscript “0” will not be used when its purpose is implicit from the 
context). Because the free stream Mach number is specified here independently of 
the speed distribution, the above problem of finding the airfoil which will have the 
modified C, is overposed. Thus the interest in this overposed problem is due to 
aeronautical considerations. 

The central idea of this paper is to work with the equations that have the least, 
preferably no, nonlinearity. For compressible fluid flow, the best we can do is to 
work with the equations derived in our earlier paper [I], where the nonlinearity 
has been shown to be very mild. It turns out to be the right approach for our pur- 
pose as shown in this paper. In that paper [l] we have reformulated the com- 
pressible fluid flow equations as the Beltrami equation and discussed the solution 
of the well-posed inverse problem using these equations. In this paper we make use 
of the Beltrami formulation of fluid flow to discuss three important issues related 
to the solution of the overposed inverse design problem. These issues are: (i) the 
mean value relation for the Beltrami equation which is a general result; (ii) the 
application of the mean value relation to find the compatibility condition between 
M& and qfj which answers the existence of solution to the overposed problem; and 
(iii) the appli ca ion of the compatibility (or solvability) condition in reformulating t’ 
the overposed problem as a wellposed problem without solving the fluid flow 
equations. 

The rest of the paper is laid out as follows. In Section 2 we discuss the solution 
of the Beltrami equation and derive the mean value relation for this equation. Then 
in Section 3 we give some preliminaries on compressible flow and apply this mean 
value relation to obtain the compatibility condition: the relation between the far 
field and the field values on the body. In Section 4 we discuss the solution of the 
overposed inverse problem. In Section 5 we give some numerical results. Finally we 
conclude in Section 6. 

2. THE BELTRAMI EQUATION 

Consider the Beltrami equation 

u, = .f(fJ) (1) 

in the complex plane 0,: ICJ d 1, where ,f(a) satisfies a Holder condition with 
exponent CL The particular solution u(a) to this equation is given by [ 1, 61 
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where [ = < + iv. We first derive the mean value relation for the Beltrami equation 
which will be useful later for exposition. 

2.1. The Mean Value Relation 

For an arbitrary circle 52,: (~7) d 1 entirely contained in G and Holder continuous 
,f(a), every solution of the equation U, = j(a) regular in G satisfies the relation 

(3) 

where U(U) = u(a = e’“) and I may have explicit nonlinear dependence on u and 
its derivatives. 

Proof. From (1) and (2) it follows that the general solution to U, = f(o) is given 
by 

where g(c) is an analytic function of CT. We assume that u and g(a) are regular in 
ICJ/ d 1. From (4) we have 

u(a=O)= -;[{Q,f+)d[dq+g(o=O). 

Here and below we use the notation cr = 0 for 0 = (0,O). Since g(o) is regular, 
application of the mean value theorem for harmonic functions to Eq. (4) implies 

(6) 

It is an elementary exercise to show that the second integral in (6) vanishes and we 
have 

g(o=O)=&~2?@)dx. (7) 0 

From (5) and (7), Eq. (3) follows. 
The relation (3) can easily be modified to account for any finite number of 

singularities on the unit circle ID( = 1. In this case we regularize u by subtracting the 
singularities and then applying (3). If u,(a) has all the singularities and we define 
ii = u - u,, then ii satisfies (1). Hence from (3) it follows 

Next we apply the mean value relations (3) and (8) to the compressible fluid flow 
equations. 
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3. COMPRESSIBLE FLOWS 

3.1. Preliminaries 

Briefly, but briefly only, we review the basic equations of compressible flow. For 
details the reader should refer [ 11. Our interest is in compressible fluid flow past 
a body. The potential equations of compressible fluid flow are [I, 73 

v (PI) = 0; vxq=o; p = p’. (9) 

The variables have their usual meaning and have been normalized by their sonic 
values. Thus at sonic speed q = 1, p = 1 and so on. The analogs of these equations 
for subsonic flows in the potential plane M’ = C$ + i$, are given by 

8, - K -%+ = 0, %,+Kv,=O. (10) 

Here % is the flow direction and K is a function of v. In [l], the author reduced 
these equations to the Beltrami equation 

50 = f(o) (11) 

in the complex plane 52,: 1cr < 1, where the mapping Q,, -+ 0, is conformal. Here 
and below r = -v + i% is the complex velocity andf(o) = xr,. The functions v and 
x depend on Mach number “A!.” Occasionally we refer v as speed since v is a 
function of speed [ 1, 71. 

The mapping Q,,. -+ Q, allows the computation of v(g) from specified q(s) which 
is a very important aspect of this paper. This has been addressed before in [2]. 
Under this mapping, the images of the body and the infinity in the physical plane 
are respectively 1~1 = 1 and cr = (0, 0) in the circle plane. 

The function t has analytic singularities at the stagnation points, cx = 0, z = c(,> on 
the unit circle. For flows past an airfoil, t is regularized by defining ? = v” + i$ as 

2=r-ln[(l -a) a (e”%-a))‘]. (12) 

In Eq. (12), the c(, is related to circulation and 6 to the trailing edge angle of the 
airfoil. 

3.2. The Far Field Constraint 

Here we relate Z(CJ = 0), the free stream values of r, with T( 101 = l), the surface 
values of r. We apply the mean value relation (8) to (11). Then we have 

(13) 

From (12) we have 

f(d=O)= -v,+i(%,+~l,~), (14) 
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where subscript co refers to the values at infinity in the physical plane. The real and 
imaginary parts of (13) give 

and 

(16) 

Equation (15) is the exact solvability condition for inverse problems. Equations 
(15) and (16) reduce to the usual mean value relation for harmonic functions in the 
incompressible case where ,f([) = 0. These equations relate the surface values of 
the field variables 9 and v (speed and Mach number are functions of v) to the 
corresponding free stream values. The area integral in ( 13) (or ( 15) and ( 16)) is due 
to the nonlinearities of compressible flows. The nonlinearities of compressible flow 
is also implicit in the mapping of the physical plane onto the circle plane via the 
potential plane Cl, 21. Due to these area integrals, the exact free stream values 
cannot be inferred a priori from the surface values. 

3.3. Remarks Based on Numerical Experiments 

Numerical evidence (see Section 5) strongly suggests that the contribution of the 
area integral in (13) is negligible for all practical purposes, i.e., 

?(a = 0) x F(a = O), 

where 

?‘(a = 0) = & 1^,2’ S(z) dcl. (17) 

Here and below the superscript “a” will refer to the approximate value in the above 
sense. The real part of (17) is (see Eq. (14)) 

1 
s 

2n 

-‘I:=si 0 
C(a) dcl. (18) 

This relation allows one to estimate M”, , from ?(a) without solving the equations 
of compressible fluid flow. 

To be more precise, suppose M, is the exact free stream Mach number which 
satisfies (15) and M”, is the approximate value of M, which satisfies (18) 
(obtained by neglecting the contribution from the area integral in (15)). Con- 
siderable numerical experiments on various airfoils suggest that 

AM,=IM,-M”,I<&, (19) 
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where E is of the order of 0.006 at worse. The numerical value 0.006 is obtained 
numerically and does not have a theoretical basis. However, extensive numerical 
experiments suggests that in most cases this figure is much smaller than the above 
quoted figure. (We had only one case where we encountered a figure close to 0.006.) 
Numerical evidence in support of this is given in Section 5. This is partly due to the 
fact thatf(o) in Eq. (11) is 0(M4) (see Cl]). 

Numerical evidence (19) implies the following for the pressure distribution: if 
C,(s) and C;(s) denote the pressure distributions obtained from the same speed 
distribution but with Mach numbers M, and M”,, respectively, then C,(S) and 
C;(S) will be even closer because the pressure distribution is inversely proportional 
to the square of the free stream Mach number to the leading order [S]. In fact they 
will be identical for all practical purposes. Numerical evidence in support of this is 
also given in Section 5. This will allow one to correct an arbitrary pressure distribu- 
tion a priori which will have a solution for all practical purposes. 

4. THE OVERPOSED INVERSE PROBLEM 

4.1. The Approximate Solvability Condition 

For a solution to exist, the specified datas v”:)(a) and A&&, have to be compatible 
with the solvability condition (15). However, these specified datas may not satisfy 
Eq. (15) and thus the overposed inverse problem may not be solvable. Due to the 
nonlinear terms in (15), the exact solvability of this problem cannot be decided a 
priori. Usually the wellposed problem with v”“,(c() as the only input is solved to find 
the corresponding free stream Mach number M,. The C:(X) and M, satisfies exact 
solvability condition (15). The value of M, is then compared with the specified 
M”, to decide the approximate solvability of this overposed problem. If these are 
not same then the specified v”“,(a) is to be modified through some rational procedure 
in order to impose the desired A4.L. In fact we can estimate a useful upper bound 
of IM, - A4.;l without solving the well-posed problem. This will be the basis of the 
efficient numerical method discussed in the next section. We have 

IM,-M”,l=IM,-M”,+M”,-M”,I 

d IM, -M”,I+IM’:-M:,I 

= AM, + AM”, 

<E+AM~ 

=& if AM”, = 0. (20) 

We have used Eqs. (19) in (20) and the notation AMj, = IM”, -M”, 1. Thus the 
best estimate of this is E if we have AMj, = 0, i.e., 

581/95/2-I3 
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if M.:, = M”, @la) 

=a v”, = \I”, G’lb) 
1 2n 

av;u= -- 
271 

s 3(a) dci. 
0 (22) 

We have used (18) to arrive at (22) from (21b). It follows from (20) that the exact 
free stream Mach number M, will be within + E of M”, , if the speed distribution 
3= C”,(a) and M.; is consistent with (22). Since E is very small (see Eq. (19)), we 
consider this small error in M, tolerable for all practical purposes. In fact our 
experience shows that the numerical error in computing M, is of the order E. Thus 
it is justified to take (22) as the solvability condition for all practical purposes. 

If C:(a) does not satisfy (22), then it is modified a priori to satisfy this constraint 
in the same spitit as in [3]. We briefly outline this modification procedure from 
c31. 

4.2. Modification qf the Speed Distribution 

If C:)(a) does not satisfy (22), then v”;, is modified to Co, where 

f,, = f:, + Yf(E), (23) 

wheref(cr) is a suitable correction term. This can be chosen so that it is zero outside 
an interval (a,, z*), leaving it the same outside (c(,, c(~). Substituting (23) in (22) 
with v”= Co gives 

(24) 

where 

b,= -v&-~ 
2n 

C.;(a) dx 
0 

(25) 

For our purpose we choose f(a) to be 1. Then Eq. (24) reduces to 

y=b,. (26) 

We solve the well-posed problem with modified v”, as the input data as discussed 
in the next section. 

4.3. Brief Description of the Numerical Method 

First we briefly review the solution of the well-posed inverse problem from [ 1 ] 
to make the paper self-contained. The reader is referred to [l] for details. The VI:(U) 
can easily be computed from the specified q;(s) and vice versa (see [2]). An 
iterative method based on Eq. (13) yields @cc) which is used to generate the profile. 
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Now we address the overposed problem: generating a profile which has a 
specified pressure distribution C,(s). The speed distribution q”,(s) and the free 
stream Mach number M”, are computed from C,(s) using the Bernoulli’s relation 
and the ideal gas low [S]. Thus the problem is generating a profile which has a 
specified q;(s) at a given free stream Mach number M”,. The F”,(U) is computed 
from q:)(s) (see [2]). We compute v”, and hence M”, using Eq. (18). If M”, #M-L, 
i.e., if c”,(a) does not satisfy (22), then it is modified according to Section 4.2 and 
the corresponding qo(s) is also computed. The inverse problem is then solved with 
modified C,(U) as the input data by exactly the same procedure as in [ 11. This 
provides the profile and the free stream Mach number M,. The pressure distribu- 
tion C,(s) on the designed airfoil is computed from the q”(s), corresponding to 
3,(a), and M,. Next we describe our numerical results. 

5. NUMERICAL RESULTS 

In this section we present numerical results that exemplifies the following issues: 
(i) to justify the estimate in (19); (ii) to justify the effectiveness of the approximate 
solvability condition (22); (iii) to determine a priori the existence/nonexistence of 
solution to the overposed problem in an approximate sense (see Eq. (22)); and 

pressure 

-0.8 I I 
0 0.2 0.4 0.6 0.8 1.0 

arclength 

0.1 

0.0 

-0.1 
0 0.2 0.4 0.6 0.8 1.0 

chord z 

(a) Input (-) and modified (+ +) pressure distributions. (b) Exact (-) and designed 
(+ +) airfoils. 

FIG. 1. Compares the input pressure distribution with the modified pressure distribution (corrected 
a priori). Compares the airfoil corresponding to the modified speed distribution with the airfoil 
corresponding to the original speed distribution (see Fig. 2). 
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0.8 

0.6 
speed 

0.4 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

arclength 

Input (--) and modified (+ +) speed distributions 

FIG. 2. Comparison of the input speed distribution with the modified speed distribution (which 
satisfies approximate solvability condition (18)). 

(iv) to solve the overposed problem by imposing the specified M”, . We discuss each 
of these issues in the same order as listed above. We have drawn the inference by 
carrying out the following numerical experiments on various airfoils at various 
conditions. We, however, report only a few cases for the sake of brevity and clarity. 

First we justify the estimate (19). Input Euler pressure distribution C, on 
Naca0012 airfoil is shown by the solid curve in Fig. 1. This corresponds to the 
speed distribution q;(s) at M, = 0.6 as shown by the solid curve in Fig. 2 and, 
hence, these data are compatible. We compute M”, = 0.6006 from q:(s) by 

pressure 

-“.8 0m 1.0 

arclength 

Design (+) and modified (- -) p ressure distributions. 

FIG. 3. Comparison of the design pressure distribution over the designed airfoil at M, = 0.6035 with 
the modified pressure distribution (a priori) of Fig. la. Notice the accuracy in the figure (they are 
virtually same). 
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pressure 

-1.2 om 1.0 

arclength 

Target (-) and design (+ +) pressure distributions. 

FIG. 4. Comparison of the target pressure distribution with the design pressure distribution. 

the method outlined in Section 4.3. We find that the difference AM, = 
IA!, -M”,I =0.0006 satisfies (19). 

Next we show that the approximate solvability condition (22) is exact for all 
practical purposes. For this purpose we need to show that the modified speed dis- 
tribution which satisfies the approximate solvability condition (22) and the exact 
speed distribution are same for all practical purposes. We impose M”, = 0.60 by 
modifying the 3S,(c1) by the method of Section 4.2. We compute q”(M) from the 
modified C,(M) and q,(s) from q”(a). In Fig. 2 we compare the original, q;‘,(s), and 
the modified, qJs), speed distributions. The agreement is excellent which shows 
that the contribution of the double integral in (15) is indeed negligibly small. This 

speed 

arclength 

Target. (---) and modified (+ +) speed distributions 

FIG. 5. Comparison of the target speed distribution with the modified speed distribution. 
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confirms that the approximate solvability condition is excellent for all practical pur- 
poses. This is further confirmed by the remarkable agreement between the modified 
pressure distribution (based on the modified speed distribution qo(s) and M, = 0.6) 
and the exact pressure distribution in Fig. la. 

Next we design the airfoil from the modified speed and compare it against 
original NacaOO12 airfoil in Fig. 1 b. Again we find that the agreement is excellent. 
In our design process, we recover the free stream Mach number to be 0.6002 which 
is close to 0.6. Thus we have been able to impose the free stream Mach number 
within an error 0.0002 which is presumably tolerable for all practical purposes. In 
Fig. 3 we find excellent agreement between the pressure distribution at M, = 0.6002 
on the designed airfoil and the modified pressure distribution which was calculated 
a priori. This establishes that we can correct any arbitrary pressure distribution a 
priori within an error which is acceptable for all practical purposes. 

Next we take an arbitrary pressure distribution which is shown in Fig. 4. From 
Bernoulli’s relation and gas law, we have M”, = 0.60 and speed distributions q.:(s) 
of Fig. 5. These data may not be compatible and thus there may be no profile 
having the C, of Fig. 4. In fact the free stream Mach number associated with qo(s) 
of Fig. 5 is 0.66. We intend to modify the speed distribution as little as we can so 
that it has a solution (airfoil) with M, z M :, = 0.60. In order to impose M, = 0.60 
approximately, we modify the speed distribution according to Eq. (18) which is also 
shown in Fig. 5. The inverse solution to this well-posed problem with the modified 
speed as input data produces the airfoil shown in Fig. 6 and the free stream Mach 
number 0.6035 which is close enough to 0.60. Thus we have achieved a solution of 

1.2 

0.8 i 

chord z 

0 0.2 0.4 0.6 0.8 1.0 

chord x 

FIG. 6. The designed airfoil and the design pressure distribution along the chord from the modified 
speed distribution of Fig. 8. 



SOLVABILITY CONDITION AND INVERSE PROBLEMS 447 

pressure 

Target (-) and design (- - -) pressure distributions. 

FIG. 7. Comparison of the target pressure distribution with the design pressure distribution 

the overposed problem successfully by modifying the speed distribution a priori. In 
Fig. 6 we also show the design pressure distribution and in Fig. 4 we compare it 
with the input pressure distribution. A few comments should be made here 
regarding this computation. We see in Figs. 4 and 5 that the modified and the 
prescribed speed and pressure distributions is compatible with M, = 0.66 which is 
not close to the desired value M, = 0.60. If these were close, then the modified and 
input distributions will also be very close as seen in the next example. 

In Fig. 7 we show yet another arbitrary (target) pressure distribution. From 
Bernoulli’s relation and gas law, we find Mj, = 0.60 and speed distributions q”,(s) 
shown in Fig. 8. We intend to modify the pressure and speed distributions as little 
at possible so that it has a solution (airfoil) with M, z Mg, = 0.65. We impose 

1.0 

0.8 

0.6 
speed 
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0.2 0.4 

-1 
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I 
0.6 0.8 1.0 

arclength 

Target (---) and modified (+ +) speed distribut,ions. 

FIG. 8. Comparison of the target speed distribution with the modilied speed distribution. 
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0 0.2 0.4 0.6 0.8 1.0 

chord z 

FIG. 9. The designed airfoil and the design pressure distribution along the chord from the modified 
speed distribution of Fig. 8. 

pressure 

;“k>y====-; 
0 0.2 0.4 0.6 0.6 1.0 

chord .z 

Input (--) and modified (+ +) pressure distributions 

FIG. 10. Comparison of the Euler pressure distribution with the modified pressure distribution 
(corrected a priori). The Euler pressure distribution is over 6% thick Kutta airfoil at M, =0.5 and 
angle of attack = 2”. 
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M, = 0.65 approximately by modifying the speed distribution according to Eq. (18) 
which is also shown in Fig. 8. With the modified speed as input data, we solve the 
inverse problem. This generates the airfoil and associated pressure distribution 
shown in Fig. 9. Also as part of the solution we obtain the associated free stream 
Mach number to be 0.656 which is close to 0.65. Thus we have achieved a solution 
of the overposed problem successfully be modifying the speed distribution a priori. 
In Fig. 7 we compare the design pressure distribution with the input pressure dis- 
tribution. In Figs. 7 and 8 we see that the modified and the prescribed speed and 
pressure distributions are very close, as one would probably like. This is because 
the input speed distribution is exactly compatible with M, =0.648 which is close 
to the desired value M, = 0.65. 

In Fig. 10 we show a case with lift. The solid curve in Fig. 10 shows the Euler 
pressure distribution on 6% thick kutta airfoil at 2” angle of attack and free stream 
Mach number of 0.5. Here again we compute the Mz, from the associated speed 
distribution by the method outlined in Section 4.3. We find M”, to be accurate to 
0.5 up to four decimal places. This supports the inequality (19). Therefore the 
modified pressure distribution practically remains identical as that seen in Fig. 10. 
More extensive numerical examples will be reported elsewhere. 

6. CONCLUSION 

In this paper we have addressed the issue of solvability of the overposed problem 
and discussed a method to modify any arbitrary speed distribution a priori in order 
to impose any arbitrary free stream Mach number. The corresponding pressure dis- 
tribution is also predicted a priori, which is exact for all practical purposes. We 
have justified the efficiency of our approach through numerical computation. 
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