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Two algorithms are provided for the fast and accurate computation of 
the solution of Beltrami equations in the complex plane in the interior 
of a unit disk. There are two integral operators which are fundamental 
in the construction of this solution. A fast algorithm to evaluate one of 
these integrals is given by Daripa (SIAM J. Sci. Stat. Comput., 
Nov. 1992). An algorithm for fast evaluation of the second integral is 
provided here. These algorithms are based on representation of the 
solution in terms of a double integral, some recursive relations in 
Fourier space, and fast Fourier transforms. The theoretical computa- 
tional complexity of our algorithm is O(MN In N), where M and N are 
the number of nodes in the circular and radial directions. We show the 
application of these algorithms in constructing numerical methods for 
quasiconformal mappings. A numerical method is provided and 
explored numerically for the construction of quasiconformal mappings 
using the Beltrami equation. In particular we show the effect of 
dilatations on the Jacobian of the mappings which controls what is 
known as the crowding phenomenon in the literature. 0 1993 Academic 
Press, Inc. 

1. INTRODUCTION 

Beltrami equations arise in many areas of pure and 
applied mathematics such as quasiconformal mappings [ 1, 
10, 111, fluid mechanics [6], electrostatics [lo], and more 
generally in the transformation of a quasilinear partial 
differential equation to canonical form [4]. These equations 
are given by 

4 = P(b) 47, (1) 

where p and u are complex valued functions of complex 
variables 0 and 5. Henceforth a subscript denotes derivative 
with respect to that variable and an overbar denotes 
complex conjugation. Here and below the generalized 
derivatives 8, and 8, denote respectively 

a, = $(ax - ia,), a, = gax + ia,), (2) 

and 
d = x + iy. (3) 

In this paper we are interested in constructing a fast and 
accurate algorithm to solve Eq. (1) in the unit disk 101 G 1 
and its application to quasiconformal mapping. 

Quasiconformal mappings (occasionally we refer to these 
as Q-mappings) are a generalization of conformal mappings 
[ 1, 10, 111. Quasiconformal mappings, w =f(a), map a 
region Sz, in the o-plane to a region 52, in the w-plane. Such 
a mapping is conformal in an appropriate Riemannian 
metric and it preserves angles almost everywhere if these are 
measured in the region Sz, in terms of the Riemann metric 
but in the region 52, in terms of usual Euclidean metric. At 
a point go, such a mapping induces a linear mapping and 
maps circles into ellipses. The orientation and aspect ratio 
of the ellipses characterize these mappings. There are some 
striking relations between these characteristics and the 
generalized derivatives of the mapping function [ 1, 10, 111. 
These relations allow the reformulation of the quasicon- 
formal mapping as a homeomorphic generalized solution 
w = f(o) of Beltrami’s equation: wb - I w, = 0, where 
I, called a complex dilatation, is a measurable function 
in 52, that satisfies some appropriate conditions. This 
complex dilatation is related to the characteristics of the 
mapping referred to earlier. Thus, generating quasicon- 
formal mappings with any desired characteristics amounts 
to solving the Beltrami equation with pre-assigned values of 
the complex dilatation in 52,. 

There are many advantages to constructing these 
mappings as mentioned in Ahlfors [ 11. Many problems in 
applied fields can be viewed as problems in Q-mappings. 
Our interest in this paper, however, is from the viewpoint 
of flexibility that it provides over conformal mappings. 
Conformal mapping is known to suffer from two serious 
deficiencies. One is a direct by-product of Riemann’s 
mapping theorem: it does not provide very many flexible 
parameters to be adjusted. Therefore, within this frame- 
work, there is no cure for the crowding phenomenon unless 
the domain itself is changed. This problem of the crowding 
phenomenon can possibly be handled very effectively by 
Q-mapping. Second is the problem with the convergence of 
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numerical conformal mapping methods. In quasiconformal and 
mapping, an appropriate choice of dilatation may help in 
this regard. Thus Q-mappings are less rigid than conformal 
mappings and therefore can be very effective as a tool. Th(u)= -;II, ~b+,-. (6) c 

There are various general methods for conformal map- 
ping of an arbitrary domain into a circular domain, e.g., 
Theodorsen’s, Timman’s, Freiberg’s, Wegmann’s, etc. [ 91. 
Not all of these methods succeed in all problems and the 
methods which succeed in a particular problem have their 
own special characteristics from the viewpoint of con- 
vergence and accuracy. Some of these methods when used in 
connection with time dependent problems may succeed at 
earlier times but fail at later times due to the crowding 
phenomenon. Quasiconformal mappings may provide a 
viable way to adjust the resolution by an appropriate choice 
of time dependent dilation so that time dependent nonlinear 
physical problems can be probed numerically far into the 
nonlinear regime. This also calls for developing as many 
numerical methods as possible for generating quasiconfor- 
ma1 mappings. To the best of the author’s knowledge, there 
is no constructive numerical method for quasiconformal 
mappings using the Beltrami equation (1). In Section 3, we 
describe a numerical method for numerical construction of 
quasiconformal mappings. 

where c = 4 + iv. The operator T is to be understood as a 
Cauchy principal value and the function h(a) will be 
assumed to be in C& decaying at least quadratically as 
c + 0 [ 11. These two integral operators, Ph( .) and Th( . ), 
will often be termed as P-transform and T-transform, 
respectively. These two integral operators are known to 
satisfy the following relations: 

(Ph),=h, 

(Ph), = Th. 

(7) 

63) 

The solution of Eq. (4) can be written as 

4~) = Ph(o) + g(a), (9) 

where g(u) is a suitable analytic function. The precise form 
of this function depends on the boundary data. For later 
reference, we should note the following relation which 
follows from (4), (8), and (9): 

The rest of the paper is laid out as follows. In Section 2, 
we discuss the Beltrami equation and a fast method for 
accurate evaluation of certain integral operators arising in 
the context of Beltrami equation. Section 3 discusses a 
numerical method for quasiconformal mappings using the 
Beltrami equation (1). We carry out some numerical 
experiments with this method in Section 3. Conclusions are 
presented in Section 4. In a subsequent article, we will 
generalize various conformal mapping methods to the 
quasiconformal case. 

2. BELTRAMI EQUATION 

h(u) = Aa) + g,(u))- (10) 

In the following section we describe some fast algorithms 
to solve the boundary value problem associated with (4). 
This will be the building block for the construction of 
quasiconformal mappings which we describe in Section 3. 

2.2. Dirichlet Problem and Its Solution Algorithm 

We are interested in solving the following problem: find a 
u(a) in 101 < 1 such that 

2.1. Preliminaries 

In this section we briefly describe some of the relevant 
facts about the Beltrami equation which are needed for 
solving this equation with appropriate boundary data. We 
consider the Beltrami equation: 

us = p(u) u, = h(u); 14 G 1, 

Real[u(o = e”)] = u,,(a); O<a<271, (P) 

Imag[u(a = 0)] = uO. 

u6 = p(u) u, = h(u) (4) 
The function ,U(CJ) will be assumed to be in Ci (i.e., C2 with 
compact support near the origin). It is known that this 

in a,: Iu( < 1, where Ip( <Kc 1 and is Holder con- 
problem has a unique solution [ 1,4]. 

tinuous with exponent a. The solution to this equation is 
Since h(u) (=p(u) u,) itself depends on u(u), an iterative 

usually written in terms of the following two integral 
algorithm has to be used to construct a solution of the 
problem (P). However, at each iteration level, the solution 

operators: procedure is based on representation of u(u) as a P-trans- 

Ph(u)= -ifla Edtdq 

form of h(u) except for an additive analytic function g(u) 
(5) (see (6)). It then follows from (9) and problem (P) that at 

0 each iteration level, the function g(u) is to be updated as a 
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solution of the following problem: find a g(a) in 1~1 < 1 such 
that 

g,=o; 14 G 1, 

Real[g(a =&‘“)I = u,,(a) - Real(Ph(a = e”)); 

O<ad2x, 
W’) 

Imag[g(a=O)]=u,-Imag(Ph(a=O)). 

This is a standard problem in the theory of complex 
variables and the solution to this problem can easily be 
constructed [7]. We denote the solution by 

da) = 4Phk(a); h(a), ud, (11) 

where /1 denotes the solution operator of the above 
problem. Once this problem has been solved, the solution of 
problem (P) is constructed from (9), assuming that h(a) and 
P/z(a) are known in Irr( 6 1. We describe the following two 
algorithms based on how one calculates h(o). 

ALGORITHM I. We see the Eq. (4), (9), and (11) suggest 
the following iteration scheme: 

g”(a) = Whk(a); h(a), 44 

uk(a) = Phk(u) + gk(a) 

hk+‘(a) =p(u)(uk(u)),. 

(12) 

(13) 

(14) 

Here the superscript “k” refers to the level of iteration. 
It is obvious that a suitable initial choice of hk(o) starts the 
iteration procedure. Thereafter each level of iteration 
involves the following four steps: 

(1) Find the P-transform P/z(a) using the algorithm 
described in [7] in the entire domain. As shown in 
[7], the algorithmic complexity of this stage of the 
computation is at worst MN In N with MN grid 
points in the discretization of the unit disk (the 
grid-system in the unit disk consists of N radial and 
it4 circular lines). 

(2) Construct the analytic function g(a) in 1cr1 < 1 by 
solving the reduced problem (RP). This also 
involves an algorithmic complexity of the order 
O(MN In N) [7]. 

(3) Construct the solution U”(CJ) by adding the above 
two solutions according to (9). 

(4) Evaluate the derivative z&cr) from known values of 
~~(a) using the definition in (2). 

In the fourth step of Algorithm I, the accurate evaluation 
of u”,(e) from known values of u”(a) at discrete polar lattice 

points (the grid-system in the unit disk consists of radial and 
circular lines) is a difficult task. Since the operator d, is 
defined in terms of Cartesian co-ordinates (see (2)) and the 
numerical values of u(c) are known on the polar grid points, 
the evaluation of U”,(G) at the grid points requires some sort 
of approximation. We mention two types of approximation 
which seem reasonable. One way to evaluate this would be 
to take the mean of two directional derivatives, with the 
local directions being the radial and its orthogonal. Another 
way would be to first project locally the known values of 
u”(a) from the polar system to the Cartesian system and 
then use these values to evaluate the derivative using 
equation (2). 

We mention the following algorithm which avoids direct 
evaluation of these derivatives completely and is better than 
the first algorithm from the viewpoint of accuracy. This also 
has the same algorithmic complexity as Algorithm I. 

ALGORITHM II. We see that Eqs. (10) and (11) suggest 
the following iteration scheme: 

gk(a) = 4Phk(a); da), uo) (15) 

hk+ ‘(a) = p(o)[Thk(a) + &(a)]. (16) 

Similar to Algorithm I, here also a suitable initial choice of 
hk(a) starts the iteration procedure. Thereafter each level of 
iteration involves the following three steps: 

(1) Find the P-transform Ph(a) using the algorithm 
described in [7] only on the unit circle. As shown in 
[7], the algorithmic complexity of this stage of the 
computation is at worst MN In N with MN grid 
points in the discretization of the unit disk. 

(2) Construct the analytic function g(a) by solving the 
reduced problem (RP). 

(3) Find the T-transform Th(a) in the entire domain 
using the algorithm described in Section 2.4. 

(4) Update h(a) using Eq. (16). 

We should mention here that both the algorithms have 
the same operation count, provided the T-transform is 
calculated by a fast transform described in Section 2.4. 
Daripa [7] provides a fast algorithm to evaluate Ph(a). 
Ideas similar to that in [7] are used to derive the fast 
algorithm to evaluate Th(a) which we describe below. 

Remarks 2.1. Note that the above two algorithms 
update h(a) at the end of each iteration and this updated 
h(a) becomes the input for the next iteration. The rate of 
convergence of the above scheme to the exact solution will 
depend crucially on the initial guess of h(o). The fact that 
h(a) = ~(a) u, suggests an initial guess of h(a) = 0 if ~(a) is 
chosen to be O(E) in the unit disk where E is small. 
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2.3. Evaluation of P-transform 

A fast algorithm to evaluate this transform has been given 
by Daripa [7]. 

2.4. Evaluation of T-transform 

The evaluation of the T-transform can be performed by 
an algorithm which is similar to that in Daripa [7]. We give 
a detailed derivation of this algorithm below since there are 
some subtle differences in various stages due to the principal 
value nature of this transform. 

2.41. Mathematical Foundation of the Algorithm 

In this section we develop the theory needed to construct 
an efficient algorithm for the evaluation of the T-transform. 
In the following we use the notations Q,: IGIG r < 1, 
52,: sZ\Q,, and IR,: ri < JrrJ < rj. The following theorem is 
crucial for the later development of the algorithm. 

THEOREM 2.1. The T-transform ofh(a) with cr = reia can 
be written as 

Th(o)= f c,(r) eina, 
*=-cc 

(17) 

where 

c,(r) = 

~rr,,h(i)(i~+‘(t)d54; n<O, 

-~ll,h(i)(i)““(~)d5d?; n>O. (I’) 

Proof: We expand the T-transform defined in (6) in a 
Fourier series, i.e., 

1 
ff 

h(C) cc 

-k sa(c-reia)2 
d< dn = 1 c,(r) eina. (19) 

n=--co 

It follows that 

(20) 

where 

(21) 

It is an elementary exercise in complex variable theory to 
show that 

Q&, 0 = - 2ar”T,,(O, (22) 

where 

T,(C)= -6(n)(n + 1) [--(n+2) 

(n + 1) c-@+‘); I4 < Id 
+ 0.5(n + 1) c-(n+2); ICI = 14, (23) 

0; I51 ’ Id 

In (23), 6(n) = 0 for n < 0 and 6(n) = 1 for n 2 0. Substitu- 
tion of (22) in (20) gives 

(24) 

Substitution of (23) in (24) yields the desired result, 
i.e., (18). 

Remark 2.2. The above theorem can also be derived by 
first expanding l/(c - c) in powers of C/o and a/[, followed 
by integration in the complex plane. 

COROLLARY 2.1. Suppose that c = peie and 

h(l)= f h,(p) eine. 

Then the coefficients c,(r) in (18) can be written as 

c,(r) = 

(25) 

V-4 

Proof Note first that d< dn =p dp de and [ = peie. 
Substituting these in (18), we obtain 

c,(r) = 

-!$[/Q,h([)(~)n+1e-iCn+2)ed0dp; n<O, 

-~,,~~~h(~)(~~+1e-i(“+218dedp; na0. 

(27) 

Assertion (26) now follows from (25) and (27). 

COROLLARY 2.2. It follows directly from (26) that 
c,( 1) = 0 for n >, 0, c,(O) = 0 Vn # 0. Similarly, it follows 
directly from (25) that h,(O) = 0 for n # 0, and h,(O) = h(0). 
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COROLLARY 2.3. Let rj > ri. Define 

C~=z(~)Ch,,,(p)(~~+‘dl,, (28) 

where 

Then 

R= ri; 
{ 

n > 0, 
rj ; n < 0. (29) 

c,(I;)= ‘;1 
0 

n 

c,(rJ + c{; n < 0, (30) 
I 

and Step 1 

i n 

CAri)= k 0 c,( rj) - cz; n > 0. 131) 
J 

Proof. For n < 0, we have from (26), 

r. n 
= 

0 
1 
ri 

c,( ri) + c$ (32) 

For n > 0, we have from (26), 

(33) 

COROLLARY. Let 0 = rl < r2 < rg.. . c rM = 1. Then 
c,(rl) can be written as 

i- 1,i 
cn 

M-A = 
for n<Oand1=2,...,M, 

(34) 

for n>Oandl= 1, . . . . M- 1. 

ProoJ: Identical to that in [7] without any modification 
whatsoever. 

2.4.2. The Fast Algorithm 

We construct the fast algorithm based on the theory of 
Section 2. The unit disk is discretized using M x N lattice 
points with M equidistant points in the radial direction and 
N equidistant points in the circular direction. 

Initialization 
Choose M and N. Define K = N/2. 

For I E [ 1, M] and n E [-K+ 1, K], compute the Fourier 
coefficients h,(r,) of h(c) from the known values of 
h(c = rje 2sik’N), j = 1, . . . . M; k = 1, . . . . N. 

Step 2 
Compute cf;‘+ i, iE[l,M-l] for nE[-K-l,K-21, 
using (28). 

Step 3 
Compute the Fourier coefficients c,(r,); n E [ -K - 1, 
K-21, IE Cl, M], using the relations (30) and (31). 

set c,(rM) = 0 Vn E [0, K- 21 
do n = 0, . . . . K- 2 

doI=M-l,..., 1 
Use (31) of Corollary 2.4 to compute c,(r,) 
c,(rJ = ((rhI+ 1)) cn(rI+ I) - 4’+’ 
enddo 

enddo 

setc,(r,)=OVnE[-K-1, -11 
do n = -K- 1, . . . . - 1 

do I = 2, . . . . M 
Use (30) of Corollary 2.4 to compt 
c,trd = ((rh-- l))n cn(rl- I) + CL-‘, 
enddo 

enddo 

Step 4 
Finally compute Th(o = rje2”ik’N); j E [ 1 
using a truncated version of (17). 

.a c&d I 

, Ml, ke Cl, Nl, 

2.4.3. The Algorithmic Complexity 

Here we consider the computational complexity of the 
above algorithm. We discuss the asymptotic operation 
count, the asymptotic time complexity and asymptotic 
storage requirement in order. A brief analysis of the 
algorithmic complexity follows: 

581/106/2-11 
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Step Operation count Explanation 

1 O(MN In N) Each set of discrete Fourier 
transforms of N data sets contribute 
N In N operations 
There are M such discrete 
Fourier transforms 

2 O(MN) For each n, computations of cii+ ‘, 
io [l, M-l] contribute 
2M operations 
There are N such computations 
fornor--K-l,K-21 

3 O(MN Computation of each c,(r,) takes 
one operation 
There are 2MN such computations 

4 O(MN In N) Computation of Ph(0 = r,e”“), 
k E [ 1, N] for each fixed ‘y 
by FFT contributes 
N In N operations 
There are M such FFTs 
to be performed. 

From the above table we see that the asymptotic opera- 
tion count and hence the asymptotic time complexity is 
O(MN In N). 

The algorithm requires storage of the MN Fourier coef- 
ficients h,(r,) in Step 1, the MN Fourier coefficients c,(rJ 
in Step 3 and the MN values of the desired Ph at MN 
grid points in Step 4. Therefore the asymptotic storage 
requirement is 0( MN). 

Remark 2.3. The computation cl in Step 2 can be 
embedded within the inner do-loops of Step 3, thus 
avoiding the storage requirement for these. Note that we 
present the algorithm in the form as shown above for the 
sake of clarity and without any sacrifice in the asymptotic 
time complexity. 

3. APPLICATIONS TO QUASICONFORMAL 
MAPPING 

3.1. A Numerical Method 

We seek a quasiconformal mapping of the interior of the 
unit disk 101 < 1, onto the exterior of a simple, closed and 
smooth curve r in the z-plane such that the unit disk maps 
onto the curve r and the origin g = 0 on to z = co. Coor- 
dinates in the z-plane are chosen so that z = 0 is inside the 
curve r. The curve r is such that it can be parametrized by 
4 as follows: 

44) = P(d) ei4, o<Cj<2rc. (35) 

We seek to construct the solution of this quasiconformal 

mapping problem which can be formulated as follows: find 
a z(a), 1~1 < 1, such that 

ze = A(a) z,; I4 G 4 
Z(U): r+ 1~1 = I, 

lim Iz(o)l = co. 
0-O 

(QP) 

Since the solution variable z(a) is singular at c = 0, it will 
be convenient to reformulate the above problem into the 
following equivalent problem: find a z(a), 161 < 1, such that 

w, = I(a)(ln z), E h(o); I4 G 1, 
Z(U): r+ 101 = 1, PQP) 

Iw(a=O)I =o, 

where 

w(a) = ln(za). (36) 

The complex dilatation A(c) should be prescribed care- 
fully as described in the next section. The formal statement 
of boundary correspondence in (DQP) can be translated 
into an appropriate equation which will be required in 
the solution algorithm for this problem. We have from (35) 
and (36), 

G(a) = In p(a) + i(d + a); O<a<2n, (37) 

where we have used 

G(a) = w(a = eia); iW = d4(a)). (38) 

Note that the quasiconformal mapping problem (DQP) 
is now exactly identical to the problem (P) discussed in 
Section 2.2 except that the statement of boundary corre- 
spondence in (DQP) should be replaced by the following 
equation which follows from (37): 

Real[@(a)] = In p(a). (39) 

Note that even though the p(a) is not known a priori, this 
can be updated during the iterative procedures of the solu- 
tion algorithms mentioned in (2.2). Since p(Q) is known 
from (35), the a(a) can be updated from the equation 

(In b(a)F+’ = ln d@(a)), (40) 

where 

@(a) = Imag[w”(a)] -a, (41) 
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which follows from (37). Here the superscripts k and k + 1 
refer to the level of iteration in the algorithms mentioned in 
Section 2.2. 

3.2. Choice of Complex Dilatation A(a) 

The Jacobian of the Q-mapping is given by [ 1 ] 

.I= Iz,12- lz,12=(1- In(o)l2) lz,l2. 

Note that the mapping is sense preserving if 

(42) 

I4fJ)l-c 1, in lal<l. (43) 

Also n(a) should be chosen so that L(o) N O(a3) as cr -+ 0. 
This and Eq. (43) will guarantee that the solution to the 
quasiconformal mapping problem exists for the foaowing 
reasons. From (DQP) we can write 

and 

W(O) = Ph(o) + g(a) (44) 

W,(~) = ma) + go(a), (45) 

where g(a) is an analytic function. We assume a priori that 
h(a) is in CK and therefore the T-transform is well defined 
and’is in C’“[ 11. Therefore it follows from (45) that 

w,(a) - O(1) as o-,0; 

whence from using (36), we have 

1 
(In Z)~N 0 - 0 as o-,0. 

CT 

(46) 

(47) 

FIG. 1. Absolute value of the complex dilatation, Iz = 1~1’ e”.65(iu5-2.0), 
where (I = re”; 0 Q r Q 1,O < dl Q 2x. The plot is shown here in rectangular 
co-ordinate system where the point (j, k) refers to the point 
e = (j/SO) e‘2n*‘M; 0 Q j Q 50, 0 < k Q 64. Thus the point (0, k) Vk E [ 1,641 
is the origin and (51, k) Vk E [ 1,641 is the unit circle in the u-plane. 

FIG. 2. Absolute value of thecomplexdilatation, I = 0.5~~ sin(5(a+ a)), 
where cr= re”; O<r< 1 ..> OCa<2z. The plot is shown here in 
rectangular co-ordinate system, where the point (j, k) refers to the point 
c = (j/SO) ei2si&i; 0 Q j C 50, 0 < k < 64. Thus the point (0, k) Vk E [ 1,641 
is the origin and (51, k) Vk E [l, 641 is the unit circle in the tr plane. 

Therefore it follows that 

40) = 4fl)(ln z),, 
- O(a2) as G --, 0, if L(o) N O(c3) (48) 

in support of our assumption that h(a) is in Ci. 

3.3. Numerical Experiments 

In this section we present some results of our numerical 
experiments on conformal and quasiconformal mappings 
with the numerical method of the previous section. In 
particular we have used Algorithm I discussed in the 
previous section. The results with Algorithm II, which is 
under implementation, are expected to be about the same. 
The numerical results to be presented for quasiconformal 
mappings will pertain to the following complex dilations: 

A, = InI2 e0.65(ias-2.0), (49) 

and 

A2 = 0.5 loI2 sin(2.5(o + a)). (50) 

TABLE I 

Ellipse with Minor-Axis to Major-Axis Ratio: 
0.6:1;1=1,,tol=l.W5 

N CPU time Iterations Lm-error L*-error 

16 1.2 13 0.427E - 03 O.l67E-03 
32 3.0 14 0.802E - 04 0.328E - 04 
64 8.6 16 O.l83E-04 0.807E - 04 

128 22.0 15 0.463E - 05 0.19E - 05 
256 71.7 16 O.l14E-05 0.34E - 06 
512 239.7 16 - - 
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FIG. 3. Conformal mapping and associated Jacobian around the 
ellipse with minor axis to major axis ratio: 0.6:1. Some of the grids 
generated by conformal mapping of the interior of the unit disk onto the 
exterior of the ellipse are shown. 

These functions are shown in Fig. 1 and Fig. 2, respectively, 
in rectangular co-ordinate systems, where (i, k) refers to 
0 = (j/5()) $nikf64. Note that both these functions decay 
rapidly away from the circle. The complex dilatation A, 
behaves as required by our analysis of the previous section. 
Even though the complex dilatation A2 is 0(a*) as rr + 0, 
numerically it is set to zero near the origin if its absolute 
value is less than 0.001. We should mention that we have 
done calculations with many dilatations and not all 
dilatations work on all profiles. However, quasiconformal 

TABLE II 

Ellipse with Minor-Axis to Major-Axis Ratio: 
0.6: 1; 1= 12, to1 = 1.0&X 

N CPU time Iterations Lm-error L*-error 

16 1.3 13 0.315E-03 O.l83E-03 
32 3.3 15 0.562E - 04 0.302E - 04 
64 8.41 16 0.157E -04 0.892E - 05 

128 23.3 16 0.462E - 05 0.218E-05 
256 71.6 16 0.103E - 05 0.452E - 06 
512 239.1 16 

TABLE III 

Perturbed Circle: r(a) = (1 + 0.08 sin 4cr) e”; 
o,<a<2n, A=&, to1=1.0&5 

N CPU time Iterations L”-error Lz-error 

16 1.5 15 0.527E - 03 0.237E - 03 
32 3.1 14 0.102E - 03 0.499E - 04 
64 7.6 14 0.238E - 04 0.106E - 04 

128 20.7 14 0.609E - 05 0.276E - 05 
256 63.3 14 0.127E - 05 0.563E - 06 
512 212.8 14 - 

mappings seem to succeed on many profiles with the above 
dilatations. 

Even though we have done calculations over many 
profiles, we present results only for the following profiles 
exterior of which have been mapped conformally and 
quasiconformally onto the interior of a unit circle: 

(1) An ellipse with minor-axis to major-axis ratio: 0.6 : 1 
(2) Perturbed circle: r(a) = (1 + 0.08 sin 4a) e’“; 0 < 

u<2n. 

Calculations have been carried out with N= 16, 32, 
64, . . . . 512 for each of M= 11, 21, 31, 41, 51. The results for 
these cases with M= 51 are presented in Tables I through 
IV. CPU times in the tables are in seconds on the MIPS 
computer which is approximately 15 times slower that the 
CRAY-YMP at Texas A & M University. Columns three 
and four in the tables give L* and L" errors. The L* and L" 
errors in these tables are measured with respect to the 
results obtained with N = 512. 

The mappings for the case N = 64, M = 5 1 are presented 
in Fig. 3 through 8. In each of these ligures, we have shown 
the images of some of the circular grids under the 
appropriate mapping mentioned in the figures. We have 
also shown the associated Jacobian of the mapping as 
defined by Eq. (42). The front view gives the Jacobian of the 
mapping on the innermost contour (i.e., the body). There 
are 65 grid points on each closed grid line. 

TABLE IV 

Perturbed Circle: r(a) = (1 + 0.08 sin 4a) e’“; 
0 <a < 2n, a = a,, to1 = l.Oe&lS 

N CPU time Iterations Lm-error L2-error 

16 1.9 22 0.637E - 03 0.303E - 03 
32 4.4 21 O.l91E-03 0.634E - 04 
64 10.91 21 0.418E -04 0.215E-04 

128 30.0 21 0.980E - 05 0.48E - 05 
256 92.4 21 0.278E - 05 O.l24E-05 
512 310.8 21 - 
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FIG. 4. Quasiconformal mapping and associated Jacobian around the 
ellipse with the dilatation shown in Fig. 1. Some of the grids generated by 
quasiconformal mapping of the interior of the unit disk onto the exterior 
of the ellipse are shown. 

FIG. 6. Conformal mapping and associated Jacobian around the 
perturbed circle. Some of the grids generated by conformal mapping of the 
interior of the unit disk onto the exterior of the perturbed circle are shown. 

FIG. 5. Quasiconformal mapping and associated Jacobian around the 
ellipse with the dilatation shown in Fig. 2. Some of the grids generated by 
quasiconformal mappings of the interior of the unit disk onto the exterior 
of the ellipse are shown. 

FIG. 7. Quasiconformal mapping and associated Jacobian around the 
perturbed circle with the dilatation shown in Fig. 1. Some of the grids 
generated by quasiconformal mapping of the interior of the unit disk onto 
the exterior of the perturbed circle are shown. 

581/106/2-12 
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FIG. 8. Quasiconformal mapping and associated Jacobian around the 
perturbed circle with the dilatation shown in Fig. 2. Some of the grids 
generated by quasiconformal mapping of the interior of the unit disk onto 
the exterior of the perturbed circle are shown. 

In Figs. 9 and 10, we show the Jacobian of the mappings 
on the surface of the profiles. We notice quite a few things 
in these figures and also in Figs. 3 through 8. The Jacobian 
of the mapping is symmetrical about the centerline for con- 
formal mapping and the case of quasiconformal mapping 
with A= AZ. This is consistent with the theory since the 
dilatation and the profiles are symmetrical about the cen- 
terline. However, in the case of the Q-mapping with I = 1,) 
the Jacobian is not symmetrical because the dilatation A, 
does not have this symmetry. In particular, we note that the 
absolute value of A., is symmetric about the centerline, as 
shown in Fig. 1. In Figs. 9 and 10, we also show the surface 
values of the Jacobian for conformal maps. We see that for 

’ 10 20 30 40 50 60 surface *Ode 

FIG. 9. The Jacobian of the conformal and quasiconformal mappings 
as a function of the nodes on the surface of the ellipse. There are 65 nodes 
on the surface. Sold line: conformal, dashed line: Q-map with I = 1i, 
dotted line: Q-map with ,l = 1,. 

Z 
l .  

’ 10 20 30 40 50 60 surface *Ode 

FIG. 10. The Jacobian of the conformal and quasiconformal 
mappings as a function of the nodes on the surface of the perturbed circle. 
There are 65 nodes on the surface Sold line: conformal, dashed line: 
Q-map with 1= rl,, dotted line: Q-map with L = I,. 

a Q-map with A= A,, these values decrease almost 
everywhere for the case of a perturbed circle. However for 
the case of an ellipse, these values decrease over only a small 
portion of the ellipse. In fact, over some portion of the 
ellipse, the values of the Jacobian increase considerably. 
However, the effect of the Q-map with A=& is quite 
different on these two profiles. Its effect on the surface values 
of Jacobian is stronger in the case of the perturbed circle 
than in the case of the ellipse. 

In Figs. 11 and 12, we show the convergence rates of the 
algorithm for these quasiconformal mappings. In case of 
the ellipse, the mappings with these dilatations have 
significantly different rates of convergence initially. 
However, in the case of the perturbed circle, the dilatations 
seem to have no effect on the rates of convergence. 

We make the following observations from these figures 
and tables: 

(1) The number of iterations seems almost independent 
of the number “N” of nodes on the body, with the complex 
dilatation fixed. 

(2) The number of iterations may depend strongly or 
weakly on the complex dilatation according to the shape of 
the body. 

(3) The CPU time seems to be of the order of our 
theoretical estimate O(N In N) for small N and slightly 
higher than this estimate for large N. Slightly higher 
estimate for large N is due to excessive amount of high 
data-output associated with these cases. 

error 
0.14 
0.12, \ 

0.1, 
0.08,. ’ 

2 4 6 8 10 12 14 &erations 

FIG. 11. L, error as a function of the number of iterations for 
quasiconformal mappings of the ellipse. Dashed line with I = 1,) solid line 
with I = &. 
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error 
0.14, 
0.12, 

0.1 
0 . 08,. 
0.06, 

0.04.9 
0.02, i 

2-i -6-8-10-12-14 i6-i8 2'4terations 

FIG. 12. L, error as a function of the number of iterations for 
quasiconformal mappings of the perturbed circle. Dashed line with I = I,, 
dots with I = A,. 

(4) The Jacobian of the mapping can be adjusted easily 
by changing the value of the complex dilatation. This extra 
flexibility will allow one to control the crowding 
phenomenon associated with the Jacobian of the mapping. 

(5) The same dilatation may have different effects on 
different profiles. 

4. CONCLUSIONS 

In this paper we have presented two fast algorithms to 
solve the boundary value problems associated with the 
Beltrami equation (1). We have also provided a fast algo- 
rithm to evaluate the principal value integral that arises in 
these problems. We have shown that this problem is the 
building block for constructing quasiconformal mappings, 
and we have presented a method for such mappings. 
Numerically we have constructed quasiconformal mappings 
for various profiles and various dilatations. Some results 
have been presented. In particular we have shown the effect 
of dilatations on the Jacobian of the mappings which con- 
trols what is known as the crowding phenomenon in the 

literature. Currently we are undertaking generalizations of 
various conformal mapping methods to the quasiconformal 
case and a detailed numerical study of these will be reported 
in the future. 
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