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Abstract

We rigorously derive nonlinear instability of Hele-Shaw flows moving with a constant velocity in the
presence of smooth viscosity profiles where the viscosity upstream is lower than the viscosity downstream.
This is a single-layer problem without any material interface. The instability of the basic flow is driven by
a viscosity gradient as opposed to conventional interfacial Saffman–Taylor instability where the instability
is driven by a viscosity jump across the interface. Existing analytical techniques are used in this paper to
establish nonlinear instability.
© 2008 Elsevier Inc. All rights reserved.

MSC: 35L; 35P; 35Q; 76B; 76E

Keywords: Nonlinear stability; Spectral theory; Hele-Shaw flows; Viscosity gradient driven instability

1. Introduction

Hele-Shaw flows refer to flows in a Hele-Shaw cell. Such flows of incompressible viscous
fluid are governed by linear field equations, namely Darcy’s law and incompressibility condition.
In two-layer immiscible Hele-Shaw flows of such incompressible viscous fluids, the nonlinear
dynamic boundary condition at the interface makes the problem of immiscible displacement
nonlinear. Displacement of a low mobility (high viscosity) fluid such as oil by a low viscosity
fluid such as water in a Hele-Shaw cell is considered to be a very good approximate model
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of similar displacement processes in porous media for the following reasons. In contrast with
Hele-Shaw flows, porous media flows are additionally governed by one more equation, called
Buckley–Leverett (B-L for short) equation (see Daripa et al. [2]), which is an evolution equation
for saturation (the volume fraction of water in oil at the microscopic level). This is a nonlinear
equation which couples the velocity with the saturation. Therefore, the system of field equations
for porous media flows is nonlinear as opposed to linear system of field equations for Hele-Shaw
flows. A consequence of this is that the front displacing the low mobility fluid in a porous media
flow is a shock-wave (Daripa et al. [2]) and that in a Hele-Shaw flow is a contact discontinuity
(material interface). The jump in mobility across the front in both types of flows has significant
influence on its dynamics. It is useful in this subject to make use of this analogy and use linear
field equations of Hele-Shaw flows instead of nonlinear equations of porous media flows to gain
insight into some of the fundamental aspects of the dynamics of the front. For example, one
of the classical problems in this context has been the interfacial instability in two-layer Hele-
Shaw flows in which a constant viscosity fluid is displacing a more viscous fluid having uniform
viscosity. This problem has been very well studied since early fifties (see [10]) from which it is
well known that this displacement process is linearly unstable. This instability plays an important
role in many applied fields including secondary oil recovery (Daripa et al. [2,3]).

There is another aspect of immiscible displacement processes in porous media which is phys-
ically important and can be modeled by Hele-Shaw flows. We discuss it here because it has
relevance to the problem that we address in this paper. The nonlinear field equations of immisci-
ble displacement of oil by water in porous media admit solutions that usually involve shock front
followed by rarefaction waves in saturation. Because of these rarefaction waves, mobility behind
the shock front gradually decreases to that of water. Modeling the effect of this graded mobility
behind the front using Hele-Shaw flows requires the viscous fluid behind the interface to have a
smooth viscous profile with viscosity gradually decreasing away from the interface. This changes
the character of the field equations in Hele-Shaw flows from linear to nonlinear (see equations in
(2.1)) even without taking into consideration the nonlinear boundary conditions at the front. The
implication is that the system of equations governing even single-phase Hele-Shaw flows with
graded viscosity is essentially nonlinear in character, as opposed to the uniform viscosity case
when the system of equations is linear. Nonlinear stability of this nonlinear single-phase problem
has not been addressed to-date which is necessary before similar problems in multi-phase flows
with one or more fronts with graded mobility can be properly investigated.

In this paper, we establish linear and nonlinear instability of such single-phase Hele-Shaw
flows with smooth viscosity profiles. These are single-layer problems with smooth viscous pro-
files where the viscosity upstream is lower than the viscosity downstream. The Hele-Shaw equa-
tions now form a system of nonlinear partial differential equations. The basic flow, V0 = (V0,0),
of this equation in the presence of viscosity gradient of the type discussed above is linearly
unstable. However, it is not obvious that this flow is also nonlinearly unstable to perturbations
governed by the full nonlinear equations. In this paper, we establish nonlinear instability of the
basic flow in the presence of smooth viscosity profiles using a variational technique which has
been recently introduced by Hwang and Guo (see [6]) in the context of nonlinear Rayleigh–
Taylor instability.

There are no dissipative mechanisms in the Rayleigh–Taylor case where as the Hele-Shaw
system that we consider here has built-in dissipation due to viscosity. The problem of passage
from linear to nonlinear instability in a nonlinear PDE system such as ours is, in general, very
subtle. Some methods, mostly problem driven, have been devised (for instance [1,6,7,9]) but yet
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no systematic framework exists for establishing nonlinear instability from linear instability. The
proof of nonlinear instability in this paper consists of the following steps.

1. A variational characterization of the spectral problem for the unstable viscosity profile. The
hyperbolic type of systems arising in mathematical physics may have continuum spectra
(for example linearized Euler equation has a continuum spectrum) which makes it difficult
to estimate the complicated spectra and the spectral radii [5]. In particular, only point or
discrete spectrum estimate may not be sufficient for the estimate of the spectral radius due to
the possible presence of the continuum spectrum. Therefore, a variational characterization of
the spectral radius by eigenvalue estimates, not of eigenvalues only, has been used to locate
a dominant eigenvalue from the spectrum. A similar approach has been used by Hwang and
Guo [6] in the context of Rayleigh–Taylor instability.

2. Construction of higher-order approximate solutions by solving an equation for approximate
evolution of the dominant growing eigenmode in powers of initial amplitude. This method
is similar in spirit to the one introduced by Grenier [8]. This step also has subtlety since
one may encounter severe higher-order perturbations, unbounded in L2 norms for instance.
Although it is natural in the formal sense, it is not obvious that we could really construct
such approximate solutions if we did not have a dominant eigenvalue. However, a dominant
eigenvalue obtained from the analysis in the crucial step 1 (see Theorem 1) allows control of
higher-order perturbations in Hs norms for all s � 3.

3. Showing that the actual solution remains close to the exponentially growing approximate
solution of step 2 up to a time that scales logarithmically with initial amplitude but for times
smaller than possible blow-up time of actual solution via a delicate bootstrap argument which
was introduced by Guo and Strauss [9].

2. Formulation and main results

We consider the following Hele-Shaw equations of fluid flows for time t � 0 in the periodic
strip D := {−∞ < x < ∞,0 � y � 2π} = R × T:

ηt + V · ∇η = 0, ∇P = −η V, ∇·V = 0. (2.1)

Here η(t, x, y),V(t, x, y),P (t, x, y) are respectively the varying viscosity, the velocity, and the
pressure. The first equation is the advection equation for viscosity (see [3]), the second equation
is the Darcy’s law, and the third equation is the continuity equation for incompressible flow. We
impose the periodic condition on the boundary. A steady state is given by

V0 = (V0,0), η0(t, x) = η0(x − V0t), ∇P0(t, x) = −η0V0, (2.2)

where η0(t, ·) ∈ Hs(R), s � 3, is a smooth viscosity profile satisfying

0 < c � η0 � C < ∞, lim|x|→∞η0x = 0, (2.3)

where c and C are constants. Note that the above condition (2.3) includes profiles which assume
constant values outside a fixed interval. Such profiles are special cases of viscous profiles in
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three-layer Hele-Shaw flows often used for control of instabilities (see [3]). The criterion for
instability is that there exists −∞ < x0 < ∞ such that

V0η0x(x0) > 0. (2.4)

It means that fluid upstream is less viscous than fluid downstream which is physically relevant.
We now consider a perturbation (μ,v,p) around such a steady state (η0,V0,P0).

In a moving frame (x′ = x−V0t, t
′ = t), equations for perturbed quantities take the following

form where, with slight abuse of notations, we have used the same variable x for x′ and t for t ′:

μt + v · ∇(η0 + μ) = 0, (η0 + μ)v = −∇p − μV0, ∇·v = 0. (2.5)

From (2.5), we obtain with v = (v1, v2) the linearized system

μt + η0xv1 = 0, η0v = −∇p − μV0, ∇·v = 0. (2.6)

Note that η0t = 0 in the moving frame. A key step in the passage from linear instability to
nonlinear instability lies in a variational characterization of the spectral radius of the whole linear
operator by a discrete set of eigenvalues. This involves two steps.

1. We make the following variational formulation in Section 3 for the eigenvalues λk for any
fixed k ∈ N:

λk = sup
u∈H 1(R)

∫
V0η0xu

2 dx∫
η0[u2 + u2

x

k2 ]dx
> 0. (2.7)

Notice that (2.4) ensures positivity of λk in (2.7), i.e. linear instability and that from the
regularity (2.3) for η0, all integrals in (2.7) (i.e.

∫
η0xu

2 dx,
∫

η0u
2 dx,

∫
η0u

2
x dx) are finite.

2. We then derive in Section 4 (see Theorem 1) the exact spectral radius Λ of the linearized
Hele-Shaw system as the limit of λk :

Λ = sup
v∈L2(D)

∫∫
V0η0x |v|2 dx dy∫∫

η0|v|2 dx dy
, lim

k→∞λk = Λ. (2.8)

This enables one to locate from the spectrum so-called a dominant eigenvalue which plays
a very important role in the construction of higher-order approximate solutions in Section 5. In
Section 6, we present an energy estimate for the difference between the approximate solution and
the exact solution to the full system followed by an application of a delicate bootstrap argument
to the estimate. In Section 7, everything is brought together to establish nonlinear instability.
The estimate on the spectral radius which is sharper and simpler than the Rayleigh–Taylor case
(see [6]) is obtained using a variational approach commonly used for such purposes.

Before we state our main theorems, we introduce an equivalent linear system which will be
used in the variational formulation. Taking t-derivative of (2.6)2 and plugging in (2.6)1 into the
resulting equation of v leads to the first-order linearized equation in v, namely,

η0vt = −∇pt + η0xv1V0 =: L(v), ∇·v = 0, (2.9)
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which is equivalent to the linear system (2.6) subject to the following qualifications. It is easy
to see that a solution of system (2.6) also solves (2.9). To address the reverse, first note that
system (2.6) is four equations for four unknowns: (μ, v1, v2,p). System (2.9) is three equations
for three unknowns (v1, v2,p). Assume that one has a solution to system (2.9). Then one can
define μ which will be a solution of Eq. (2.6)1:

μ(x, t) = C −
t∫

t0

η0xv1(x, s) ds.

Integrating Eq. (2.9)1 in time, one then finds

η0(x)v(x, t) + ∇p(x, t) + μ(x, t)V0 = η0(x)v(x, t0) + ∇p(x, t0) + CV0.

One needs to find an integration constant C and a time t0 such that the right-hand side is zero.
Assuming that one can do this, (μ, v1, v2,p) is a solution of (2.6) and the two systems (2.6) and
(2.9) are equivalent.

For purposes below, we introduce the following notations.

Notation 1. ‖u‖ = (
∫∫

η0u
2 dx dy)1/2 and ‖v‖ = (‖v1‖2 + ‖v2‖2)1/2 for v = (v1, v2). Notice

that this is an equivalent norm to the usual L2-norm due to (2.3).

Notation 2. ‖u‖s = ∑
|α|�s ‖∂αu‖ and ‖v‖s = (‖v1‖2

s + ‖v2‖2
s )

1/2 for v = (v1, v2).

We obtain the following theorem on the sharp growth rate Λ for the linearized system (2.6).

Theorem 1. Let (μ(t, x, y), v1(t, x, y), v2(t, x, y)) ∈ [C([0, T ];Hs(D))]3 be a solution to the
linearized system (2.6) and let η0 be a steady state satisfying (2.3) and (2.4). Then, for any fixed
integer s � 0, there exists a constant C = C(s,Λ,‖η0‖s+1) such that

∥∥μ(t, ·),v(t, ·)∥∥
s
� CeΛt

∥∥μ(0, ·),v(0, ·)∥∥
s
, (2.10)

where Λ is defined in (2.8).

In general, a spectral radius may not be same as a growth bound of the linear operator of
interest. Theorem 1 shows that it is the case for the linear operator (2.6) which is established
using a variational method. This theorem is central to locating a dominant eigenvalue of the
spectrum of the linearized system. It enables us to establish the following instability result in a
fully nonlinear setting.

Theorem 2. The steady state (η0(t, x),V0) of (2.1) defined in (2.2) is nonlinearly unstable. For
any integer s � 0 large, there exists ε0 > 0 such that for any small δ > 0 there exists a family of
classical solutions (ηδ(t, x, y),Vδ(t, x, y)) of (2.1) satisfying

∥∥ηδ(0, ·) − η0(0, ·)∥∥ s + ∥∥Vδ(0, ·) − V0
∥∥

s � δ,

H (×) H (×)
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but for T δ = O(| ln δ|),
sup

0�t�T δ

{∥∥ηδ(t, ·) − η0(t, ·)
∥∥

L2(×)
+ ∥∥Vδ(t, ·) − V0

∥∥
L2(×)

}
� ε0.

Remark 1. The instability time T δ occurs before the possible blow-up time which is shown in
the proof.

3. Linear growing modes with λk

The existence of smooth linear growing normal modes to the linear system (2.6) or equiva-
lently (2.9) is established in this section using the method of normal modes. Hence we use the
following ansatz for the temporal evolution of the wave components of arbitrary perturbations
μ(t, x, y), v1(t, x, y), v2(t, x, y) and p(t, x, y):

μ(t, x, y) = μ̃(x) cos(ky) exp(λkt),

v1(t, x, y) = ṽ1(x) cos(ky) exp(λkt),

v2(t, x, y) = ṽ2(x) sin(ky) exp(λkt),

p(t, x, y) = p̃(x) cos(ky) exp(λkt),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

where (μ̃(x), ṽ1(x), ṽ2(x), p̃(x)) ∈ C∞(R) and μ̃(x), ṽ1(x), ṽ2(x), p̃(x) → 0 as |x| → ∞.
Plugging (3.1) into (2.9) yields

λkη0ṽ1 = −λkp̃x + η0x ṽ1V0,

λkη0ṽ2 = kλkp,

ṽ1x + kṽ2 = 0.

By eliminating p̃, p̃x and ṽ2 in the above equations, we obtain the following second-order ordi-
nary differential equation with smooth coefficients

η0ṽ1 − 1

k2
(η0ṽ1x)x = V0η0x

λk

ṽ1, (3.2)

where ṽ1(x) → 0 as |x| → ∞. Next we show existence of a smooth growing normal mode using
a variational method which implies linear instability. Note that existence of a smooth growing
mode is equivalent to existence of (μ̃(x), ṽ(x), p̃(x)) ∈ [C∞(R)]4 as above. For a notational
simplicity, we use (μ(x),v(x),p(x)) for (μ̃(x), ṽ(x), p̃(x)) without tilde.

Lemma 1. For any fixed wave number k ∈ N, there exists a smooth linear growing mode; that is,
there exists (μ(x),v(x),p(x)) ∈ [C∞(R)]4 in (3.1) with μ(x),v(x),p(x) → 0 as |x| → ∞ and
with the growth rate λk in (2.7).

Proof. We solve the following variational problem:

inf
u∈H 1(R)

∞∫
η0

[
u2 + u2

x

k2

]
dx (3.3)
−∞
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with the constraint

∞∫
−∞

V0η0xu
2 dx = 1. (3.4)

Since u up to a multiplicative constant in the definition of λk (see (2.7)) does not change λk (note
u2 appears in the numerator as well as in the denominator in (2.7)), (3.4) is not a new assumption.
Therefore, without any loss of generality (3.4) holds due to the definition (2.7) of λk .

Notice that (2.4) ensures existence of a u ∈ H 1(R) satisfying (3.4). By the definition of λk in
(2.7), there exists a minimizing sequence un such that

∞∫
−∞

η0

[
u2

n + (un)
2
x

k2

]
dx → 1

λk

satisfying

∞∫
−∞

V0η0xu
2
n dx = 1. (3.5)

Since {un} is bounded in H 1(R), uniformly in n, there exists u0 ∈ H 1(R) such that un ⇀ u0
weakly in H 1(R) up to a subsequence. Our viscosity profile η0 in (2.3) satisfies η0x(x) → 0 as
x → ±∞. We then deduce that u0 fulfills the constraint (3.5) as follows. If η0x has a compact
support in R, then it follows from Rellich’s theorem. In the general case when η0x → 0 at infinity
as in (2.6), we choose a family of smooth compactly supported functions {ηK}K→∞, which
approximates η0x such that supp ηK ⊂ (−K,K) for K > 0 and ‖ηK − η0x‖L∞ → 0 as K → ∞.

Then we have

∣∣∣∣
∫

η0xu
2
n dx −

∫
η0xu

2
0 dx

∣∣∣∣
�

∣∣∣∣
∫ [

η0xu
2
n − ηKu2

n

]
dx

∣∣∣∣ +
∣∣∣∣
∫ [

ηKu2
n − ηKu2

0

]
dx

∣∣∣∣ +
∣∣∣∣
∫ [

ηKu2
0 − η0xu

2
0

]
dx

∣∣∣∣
� ‖ηK − η0x‖L∞

∫
u2

n dx +
∣∣∣∣
∫ [

ηKu2
n − ηKu2

0

]
dx

∣∣∣∣ + ‖ηK − η0x‖L∞
∫

u2
0 dx

→ 0 as K → ∞.

Thus u0 satisfies (3.5). By lower semi-continuity of Lp-norm, we have

∞∫
−∞

η0

[
u2

0 + (u0)
2
x

k2

]
dx � lim inf

n

∞∫
−∞

η0

[
u2

n + (un)
2
x

k2

]
dx = 1

λk

.

Hence u0 is a minimizer of the variational problem (3.3).
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Next we show that u0 satisfies Euler–Lagrange equation (3.2) associated with the above vari-
ational problem (3.3). Any perturbed function W(τ) = u0 + τu around a minimizer u0, for any
τ ∈ R and any u ∈ H 1(R), obeys

0 �
∞∫

−∞

[
η0

(
W 2

x (τ )

k2
+ W 2(τ )

)
− 1

λk

V0η0xW
2 (τ )

]
dx =: J (τ).

Thus we have, for any u ∈ H 1(R),

0 = J ′(0) = 2

∞∫
−∞

[
η0

k2
u0xux + η0u0u − 1

λk

V0η0xu0u

]
dx.

By integration by parts, we easily deduce (3.2). Finally, smoothness of a minimizer u0 follows
from the second-order uniformly elliptic equation (3.2) since η0 is smooth and minη0 > 0. To
see this, first elliptic regularity theory gives v1 ∈ H 3(R) from v1 ∈ H 1(R) and so by repeating
this argument, we obtain v1 ∈ Hs for all s � 1. Hence v1 ∈ C∞(R) by Sobolev inequality. Then
the regularity of v2,p,μ follows. Since v1, v2,p,μ ∈ Hs for all s � 1, they vanish at infinity as
desired. Therefore, the proof is complete. �

Next we show that {λk} has a limit Λ as k → ∞ which will be shown to be the optimal growth
bound of solutions to the linear operator in the following section.

Lemma 2. Let λk and Λ be as in (2.7) and (2.8), respectively. Then λk is increasing with k and
it satisfies

lim
k→∞λk = Λ.

Proof. Let u ∈ H 1(D). Then we have

2π∫
0

( ∞∫
−∞

[
u2(x, y) + u2

x(x, y) + u2
y(x, y)

]
dx

)
dy < ∞.

It means that

∞∫
−∞

[
u2(x, y) + u2

x(x, y)
]
dx < ∞, almost everywhere y ∈ [0,2π].

In other words, we have u(·, y) ∈ H 1(R) almost everywhere y ∈ [0,2π] and thus using the
definition λk in (2.7) yields

∞∫
V0η0xu

2(x, y) dx � λk

∞∫
η0

[
u2(x, y) + u2

x(x, y)

k2

]
dx, almost everywhere y ∈ [0,2π].
−∞ −∞
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By integrating the inequality above in y, we obtain

∫ ∫
D

V0η0xu
2(x, y) dx dy � λk

∫ ∫
D

η0

[
u2(x, y) + u2

x(x, y)

k2

]
dx dy.

We first note that λk � Λ. To see this precisely, pick a u(x) ∈ H 1(R) and extend it as a
constant in the y-direction. Then with the extension u(x, y) ∈ H 1(D), we have

∫ ∞
−∞ V0η0xu

2 dx∫ ∞
−∞ η0[u2 + u2

x

k2 ]dx
=

∫∫
D

V0η0xu
2 dx dy∫∫

D
η0[u2 + u2

x

k2 ]dx dy
.

Then

λk = sup
u∈H 1(R)

∫ ∞
−∞ V0η0xu

2 dx∫ ∞
−∞ η0[u2 + u2

x

k2 ]dx
= sup

u∈H 1(R)

∫∫
D

V0η0xu
2 dx dy∫∫

D
η0[u2 + u2

x

k2 ]dx dy

� sup
w∈L2(D)

∫∫
D

V0η0xw
2 dx dy∫∫

D
η0w2 dx dy

= Λ.

Next we show that Λ is indeed the limit of λk . For any ε > 0 such that ε < λ1 (> 0), we fix
w ∈ L2(D) such that

Λ − ε <

∫∫
D

V0η0xw
2 dx dy∫∫

D
η0w2 dx dy

.

Then we choose k large enough such that

∫∫
D

V0η0xw
2 dx dy∫∫

D
η0w2 dx dy

<

∫∫
D

V0η0xw
2 dx dy∫∫

D
η0[w2

x

k2 + w2]dx dy
+ ε � λk + ε.

Therefore Λ � λk + 2ε. This completes the proof. �
4. Λ as the spectral radius of the linear operator

In this section, for the linearized system we derive a sharp growth rate Λ > 0 which is obtained
as the limit of λk > 0 in (2.7). This means that this number Λ serves as the spectral radius for the
whole linear spectrum which is crucial in constructing approximate solutions in the next section.
Before presenting the analysis of Λ, we address the issue of global existence of solutions to the
linearized system (2.6).

Lemma 3. Let T > 0 and s � 0 be an integer. Then, for any given initial data (μ0(x, y),v0(x, y),
p(x, y)), there exists a unique solution (μ(t, x, y),v(t, x, y),p(x, y)) ∈ [C([0, T ];Hs(D))]4 to
the linearized system (2.6).
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Proof. We give a brief sketch. From (2.6), we get

‖v‖2 =
∫ ∫

−V0μv1 � 1

2
‖v‖2 + C‖μ‖2,

which implies

‖v‖2 � C‖μ‖2,

where C is a generic constant which depends only on V0 and η0 and varies from line to line.
Multiplying Eq. (2.6)1 by μ and integrating in x and y, we get

1

2

d

dt
‖μ‖2 � C1‖μ‖2 + C2‖v‖2 � C‖μ‖2,

where C1,C2,C are constants which depend on V0, η0, and η0x . Using Gronwall inequality, we
obtain a priori estimates for global bound in L2(D) and similarly in Hs(D) for s > 1. Applying
a standard contraction mapping theorem to the linearized system (2.6) yields local existence as
follows:

μ(t) = μ0 −
t∫

0

η0xv1 dτ,

∥∥(
μ1 − μ2)(t)∥∥ � t‖η0x‖L∞

∥∥v1
1 − v2

1

∥∥,
∥∥v1 − v2

∥∥ � |V0|
∥∥μ1 − μ2

∥∥,

which implies

∥∥(
μ1 − μ2)(t)∥∥ � t |V0|‖η0x‖L∞

∥∥μ1 − μ2
∥∥.

Then for short time, we can apply contraction mapping theorem to obtain the existence. Once
we get μ, we obtain p and v from (2.6). Combined with the above estimates, we obtain the
lemma. �

For purposes below, we let w(t, x, y) = (μ(t, x, y), v1(t, x, y), v2(t, x, y)). Now we prove
Theorem 1 which has been stated in Section 2.

Proof of Theorem 1. The proof below is by induction on s̄ (= the number of x-derivatives).
When s̄ = 0, we multiply (2.9) by v and integrate over x and y to obtain

1

2

d

dt

∫ ∫
D

η0|v|2 dx dy =
∫ ∫
D

V0η0xv
2
1 dx dy � Λ

∫ ∫
D

η0|v|2 dx dy,

where we have used incompressibility condition for v and the definition of Λ in (2.8). Thus
applying Gronwall inequality yields the growth rate Λ for v:

∥∥v(t, ·)∥∥ � eΛt
∥∥v(0, ·)∥∥.
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From (2.6), we have

∥∥μ(t, ·)∥∥ � CeΛt
∥∥w(0, ·)∥∥,

where C = C(Λ,‖η0‖C1). In order to treat vy , we use the observation that this variational struc-
ture is preserved by taking y-derivative due to the independence of η0 on the y variable. To see
this precisely, we take y-derivative of (2.9). Then we have

η0∂yvt = −∇∂ypt + η0x∂yv1V0.

We then multiply the above equation by ∂yv and integrate to obtain

∥∥∂yv(t, ·)∥∥ � eΛt
∥∥∂yv(0, ·)∥∥,

∥∥∂yμ(t, ·)∥∥ � CeΛt
∥∥∂yv(0, ·)∥∥.

Notice that this works for any order of y-derivatives of v and μ. For s̄ = 1, we take the curl of
∂m
y of (2.6)2 to have

η0 scalar curl∂m
y v = −η0x∂

m
y v2 + V0∂

m
y ∂yμ,

where ∂m
y is a pure y-derivative of order m and the scalar curl refers to the only non-zero compo-

nent of the curl (e.g., a vector w = (w1,w2) ∈ R
2 is a vector (w1,w2,0) ∈ R

3. Then curl w has
only the last component non-zero in R

3, by which the scalar curl w is defined above). Clearly
the right-hand side has the growth rate Λ by the induction hypothesis, i.e.

∥∥scalar curl∂m
y v

∥∥ � C
(
m,Λ,‖η0‖C1

)
eΛt

∥∥w(0, ·)∥∥
m+1.

Using the divergence-free condition for v and (2.6)1, we obtain

∥∥∂m
y w

∥∥ � C
(
m,Λ,‖η0‖C1

)
eΛt

∥∥w(0, ·)∥∥
m+1.

Thus we obtain the growth rate Λ for s̄ = 1.
Now we suppose that any derivative whose order of x is less than s̄ (� 2) has growth rate Λ.

Let ∂α be a derivative of a multi-index α whose order of x is s̄ − 1, then we take curl of ∂α of
(2.6)2 to get

η0 scalar curl∂αv = − scalar curl∂α(η0v) + η0 scalar curl∂αv + V0∂α∂yμ.

The terms on the right-hand side have derivatives whose order of x is still less than s̄. Therefore,
we apply our induction hypotheses and use divergence-free condition for v to obtain

‖∂x∂αv‖ � C
(
s̄,Λ,‖η0‖Cs̄

)
eΛt

∥∥w(0, ·)∥∥|α|+1.

Using the equation for μ yields

‖∂x∂αμ‖ � C
(
s̄,Λ,‖η0‖Cs̄+1

)
eΛt

∥∥w(0, ·)∥∥|α|+1.

Therefore we conclude (2.10) and complete the proof. �
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5. Approximate solutions

In this section we construct approximate solutions based on a dominant eigenvalue and a
method introduced by Grenier [8]. For our purposes here, we fix a dominant eigenvalue λ = λk0

corresponding to the growing normal mode obtained in Section 3, satisfying Λ < 2λ which is
possible due to Lemma 2. With δ an arbitrary small parameter and θ a small but fixed positive
constant, independent of δ, we show below instability at the following scaled time T δ defined by

θ = δ exp
(
λT δ

)
, (5.1)

or equivalently by T δ = λ−1 ln(θ/δ). We are now ready to construct a higher-order approximate
solution via the dominant eigenvalue λ.

Lemma 4. For any fixed N > 0 and a smooth viscosity profile satisfying (2.3) and (2.4), there
exists an approximate solution to the full system (2.5) of the form

μa(t, x, y) =
N∑

j=1

δj χj (t, x, y),

va(t, x, y) =
N∑

j=1

δj�j (t, x, y),

pa(t, x, y) =
N∑

j=1

δj qj (t, x, y),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

satisfying

μa
t + ∇(

μa + η0
) · va = Ra

N,(
η0 + μa

)
va + ∇ pa + μaV0 = Sa

N ,

∇·�j = 0 (1 � j � N).

⎫⎪⎬
⎪⎭ (5.3)

Furthermore, for every integer s � 0 there is a θ > 0 sufficiently small such that if 0 � t � T δ as
in (5.1), then χj (t, x, y), �j (t, x, y), qj (t, x, y), Ra

N(t, x, y), Sa
N(t, x, y) satisfy

∥∥χj (t)
∥∥

Hs � Cs,N exp(jλt), 1 � j � N, (5.4)∥∥�j (t)
∥∥

Hs � Cs,N exp(jλt), 1 � j � N , (5.5)∥∥∇qj (t)
∥∥

Hs � Cs,N exp(jλt), 1 � j � N, (5.6)∥∥Ra
N(t)

∥∥
Hs � Cs,N δN+1 exp

{
(N + 1)λt

}
, (5.7)∥∥Sa

N(t)
∥∥

Hs � Cs,NδN+1 exp
{
(N + 1)λt

}
. (5.8)

Proof. We proceed by induction on j to construct χj , �j , qj , Ra
j , and Sa

N . For j = 1, we take
the smooth growing wave solution as constructed in Section 3, corresponding to our dominant
eigenvalue λ = λk of the form
0
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χ1(t, x, y) = μ̃(x) cos(k0y) exp(λt),

�1(t, x, y) = (
ṽ1(x) cos(k0y) exp(λt), ṽ2(x) sin(k0y) exp(λt)

)
,

q1(t, x, y) = p̃(x) cos(k0y) exp(λt),

where k0 is the wave number associated with λ. Then it is easy to see that

Ra
1 = δ2�1 · ∇χ1, Sa

1 = δ2χ1�1.

Thus χ1,�1, q1,R
a
1 ,Sa

1 fulfill (5.4)–(5.8) since χ1,�1, q1 ∈ C∞ and so the lemma holds true
for j = 1. Suppose now that χk,�k, qk,R

a
k ,Sa

k have been constructed satisfying (5.4)–(5.8) for
1 � k � j < N . Then we will construct χj+1, �j+1, qj+1, Ra

j+1, Sa
j+1 in the following. Let

μj =
j∑

k=1

δkχk, uj =
j∑

k=1

δk�k, pj =
j∑

k=1

δkqk. (5.9)

We then define Fj+1(δ) and Gj+1(δ) as the nonlinear part of the system at (μj ,uj )

Fj+1(δ) := uj · ∇μj , Gj+1(δ) := μj uj . (5.10)

Plugging (5.9) into (2.5) and matching the (j + 1)th coefficients of δ defines (j + 1)th-order
coefficients χj+1, �j+1, and qj+1 as solutions of the following inhomogeneous linear system

∂tχj+1 + �j+1 · ∇η0 = −F
(j+1)

j+1 (0)

(j + 1)! ,

η0�j+1 + ∇qj+1 + χj+1V0 = −G(j+1)

j+1 (0)

(j + 1)! ,

∇·�j+1 = 0,

with initial data χj+1(0, x, y) = 0, �j+1(0, x, y) = (0,0). For 0 � t � T δ and θ small, we have

F
(j+1)

j+1 (0)

(j + 1)! =
∑

j1+j2=j+1

Aj1j2�j1 · ∇χj2 ,
G(j+1)

j+1 (0)

(j + 1)! =
∑

j1+j2=j+1

Bj1j2χj1�j2,

where 1 � jk � j and Aj1j2 ,Bj1j2 depend on η0 and V0. Applying induction hypotheses (5.4)–
(5.6) yields, for every s � 0,

∥∥∥∥F
(j+1)

j+1 (0)

(j + 1)!
∥∥∥∥

s

� Cs,N exp
{
(j1 + j2)λt

} = Cs,N exp
{
(j + 1)λt

}
, (5.11)

∥∥∥∥G(j+1)

j+1 (0)

(j + 1)!
∥∥∥∥

s

� Cs,N exp
{
(j1 + j2)λt

} = Cs,N exp
{
(j + 1)λt

}
. (5.12)

By applying Duhamel’s principle, Theorem 1, (5.11) and (5.12), we obtain



1832 P. Daripa, H.J. Hwang / J. Differential Equations 245 (2008) 1819–1837
‖χj+1‖s � C

t∫
0

eΛ(t−τ)

∥∥∥∥F
(j+1)

j+1 (0)

(j + 1)! (τ )

∥∥∥∥
s

dτ � Cs,N

t∫
0

eΛ(t−τ)e(j+1)λτ dτ � Cs,Ne(j+1)λt ,

‖�j+1‖s � C

t∫
0

eΛ(t−τ)

∥∥∥∥G(j+1)

j+1 (0)

(j + 1)! (τ )

∥∥∥∥
s

dτ � Cs,N

t∫
0

eΛ(t−τ)e(j+1)λτ dτ � Cs,Ne(j+1)λt ,

‖∇qj+1‖s � C

(
‖χj+1‖s + ‖�j+1‖s +

∥∥∥∥G(j+1)

j+1 (0)

(j + 1)!
∥∥∥∥

s

)
� Cs,Ne(j+1)λt ,

due to j + 1 � 2 and Λ < 2λ. Notice that our construction is possible since we were able to
choose a dominant eigenvalue λ from the spectrum. Thus (5.4)–(5.6) hold true for j + 1. Having
constructed all χj , �j , qj for 1 � j � N , we define

μa =
N∑

j=1

δjχj , va =
N∑

j=1

δj�j , pa =
N∑

j=1

δj qj .

Then we have

μa
t + va · ∇η0 = −

N∑
j=1

δj+1
F

(j+1)

j+1 (0)

(j + 1)! ,

η0va + ∇pa + μaV0 = −
N∑

j=1

δj+1
G(j+1)

j+1 (0)

(j + 1)! .

Hence (μa,va,pa) satisfies (5.3) with the remainder

Ra
N = va · ∇μa −

N∑
j=1

δj+1
F

(j+1)

j+1 (0)

(j + 1)! ,

Sa
N = μava −

N∑
j=1

δj+1
G(j+1)

j+1 (0)

(j + 1)! .

Notice that the (j + 1)th-order terms in δ of the first and the second terms of the right-hand sides
in the remainders Ra

N, Sa
N are the same for 1 � j + 1 � N by our construction. To see this, we

note that only the first j terms of μa,va contribute to the (j + 1)th-order terms of the nonlinear
parts va · ∇μa and μava . Furthermore the contributions of the first j terms of μa,va in va · ∇μa

and μava were defined above (5.10) as Fj+1(δ) and Gj+1(δ). Hence by the Taylor expansion
in δ, we see the first N terms in Ra

N, Sa
N vanish. Thus we deduce (5.7)–(5.8) and complete the

lemma. �
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6. Bootstrap argument

In this section, we estimate the difference of an exact solution to (2.5) and an approximate
solution to (5.3) based on a bootstrap argument which was introduced by Guo and Strauss [9].
Before the energy estimate for the difference we state local existence to the full system (2.5),
which can be obtained by a straight-forward method (see [4]).

Lemma 5. For every integer s � 3 and any given initial data (μ0,v0,p0) ∈ [Hs(D)]4 with
η(0) := η0(x) + μ0(x, y) � m > 0, there is a time T > 0 such that there exists a unique solution
(μ,v,p) ∈ [C([0, T ];Hs(D))]4 to (2.5) with η(t) = η0(x) + μ(t, x, y) > 0.

Proof. Using the incompressibility condition ∇ ·v =0, we have, as long as η0(x)+μ(x, y) > 0,

min
(x,y)∈D

(
η0(x) + μ(x, y)

)∫
|v|2 dx dy �

∫
(η0 + μ)|v|2 dx dy = −

∫
V0μv1 dx dy,

1

2

d

dt
‖μ‖2 =

∫
−η0xv1μdx dy.

Since η0(x) + μ0(x, y) � m > 0, it is easy to see that there exists a time T such that
‖v(t)‖L2,‖μ(t)‖L2 are bounded for 0 � t � T . Similarly, we can argue for ‖v(t)‖Hs ,‖μ(t)‖Hs .
Combined with a standard contraction mapping theorem as in Lemma 3 and noting we can re-
cover p from the second equation in (2.5), we deduce the lemma. �

Let (μ,v,p) ∈ C([0, T ];Hs(D)) be a local-in-time solution as in Lemma 5 and (μa,va,pa)

be an approximate solution as constructed in Lemma 4. Set the difference to be

μd = μ − μa, vd = v − va, pd = p − pa.

Then it satisfies

μd
t + v · ∇μd + vd · ∇(

μa + η0
) = −Ra

N, (6.1)(
η0 + μa

)
vd + ∇pd + μd(V0 + v) = −Sa

N , (6.2)

∇ · vd = 0. (6.3)

We obtain the following energy estimate for the difference (μd,vd,pd).

Lemma 6. For any integer s � 3, let (μd(t, x, y),vd(t, x, y),pd(t, x, y)) ∈ [L∞
loc(H

s(D))]4

as in (6.1)–(6.3), (μa(t, x, y),va(t, x, y),pa(t, x, y)) ∈ [L∞
loc(H

s(D))]4, and (Ra
N(t, x, y),

Sa
N(t, x, y)) ∈ [L∞

loc(H
s(D))]3 as in Lemma 4. Then there exists a universal constant C0 =

C0(s,‖η0‖Cs ) and C = C(s, |V0|,‖η0‖Cs+1) such that

d

dt

∥∥μd
∥∥2

s
� C

(∥∥vd
∥∥

s
+ ∥∥va

∥∥
s
+ ∥∥μa

∥∥2
s+1 + 1

)∥∥μd
∥∥2

s
+ C

∥∥vd
∥∥2

s
+ ∥∥Ra

N

∥∥2
s
, (6.4)∥∥vd

∥∥ � C0
(∥∥μa

∥∥ + ∥∥μd
∥∥ )∥∥vd

∥∥ + C
(∥∥va

∥∥ + 1
)∥∥μd

∥∥ + ∥∥Sa
∥∥ , (6.5)
s s s s s s N s
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d

dt

∥∥μa
∥∥2

s
� C

(∥∥va
∥∥

s
+ 1

)∥∥μa
∥∥2

s
+ C

∥∥va
∥∥2

s
+ ∥∥Ra

N

∥∥2
s
, (6.6)

∥∥va
∥∥

s
� C0

∥∥μa
∥∥

s

∥∥va
∥∥

s
+ C

∥∥μa
∥∥

s
+ ∥∥Sa

N

∥∥
s
. (6.7)

Proof. We first treat vd . For s = 0, using Sobolev imbedding in (6.2) and incompressibility (6.3)
yields

∥∥vd
∥∥ � C

(∥∥μa
∥∥

2 + ∥∥μd
∥∥

2

)∥∥vd
∥∥ + (|V0| + C

∥∥va
∥∥

2

)∥∥μd
∥∥ + ∥∥Sa

N

∥∥
� C0

(∥∥μa
∥∥

2 + ∥∥μd
∥∥

2

)∥∥vd
∥∥ + C

(
1 + ∥∥va

∥∥
2

)∥∥μd
∥∥ + ∥∥Sa

N

∥∥, (6.8)

where C0 depends only on Sobolev imbedding constant. For s > 3, we take ∂α-derivative of (6.2)
with |α| = s to get

η0∂αvd = ∂α

(
η0vd

) − η0∂αvd − ∇∂αpd − ∂α

(
μavd + μdV0 + μdv

) − ∂αSa
N .

Then we use (6.3), Gagliardo–Nirenberg–Moser inequality, and Sobolev imbedding for s � 3 to
deduce

∥∥vd
∥∥

s
� C

∥∥vd
∥∥

s−1 + C
(∥∥μd

∥∥
s
+ ∥∥μa

∥∥
s

)∥∥vd
∥∥

s
+ C

(∥∥va
∥∥

s
+ 1

)∥∥μd
∥∥

s
+ ∥∥∂αSa

N

∥∥
� 1

2

∥∥vd
∥∥

s
+ C

∥∥vd
∥∥ + C

(∥∥μd
∥∥

s
+ ∥∥μa

∥∥
s

)∥∥vd
∥∥

s
+ C

(∥∥va
∥∥

s
+ 1

)∥∥μd
∥∥

s
+ ∥∥∂αSa

N

∥∥,

where we have used interpolation between Hs and L2 for ‖vd‖s−1. Using (6.8) yields

∥∥vd
∥∥

s
� C0

(∥∥μa
∥∥

s
+ ∥∥μd

∥∥
s

)∥∥vd
∥∥

s
+ C

(∥∥va
∥∥

s
+ 1

)∥∥μd
∥∥

s
+ ∥∥Sa

N

∥∥
s
,

where C0 depends only on s and ‖η0‖Cs .

We now turn to μd . Taking ∂α-derivative of (6.1) with |α| = s and then multiplying by ∂αμd

we obtain

1

2

d

dt

∥∥∂αμd
∥∥2 =

∫ ∫
D

∂αμd
t ∂αμd

= −
∫ ∫
D

∂α

(
v · ∇μd

)
∂αμd −

∫ ∫
D

∂α

{
vd · ∇(

μa + η0
)}

∂αμd −
∫ ∫
D

∂αRa
N∂αμd.

Using (6.3), Gagliardo–Nirenberg–Moser inequality, and Sobolev imbedding for s � 3 yield

∫ ∫
D

∂α

(
v · ∇μd

)
∂αμd =

∫ ∫ {
∂α

(
v · ∇μd

)
∂αμd − v · ∇∂αμd∂αμd

} +
∫ ∫

v · ∇∂αμd∂αμd

� C
(∥∥vd

∥∥ + ∥∥va
∥∥ )∥∥μd

∥∥2
.

s s s
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Treating the second and third terms in a similar manner we obtain

d

dt

∥∥μd
∥∥2

s
� C

(∥∥vd
∥∥

s
+ ∥∥va

∥∥
s
+ ∥∥μa

∥∥2
s+1 + 1

)∥∥μd
∥∥2

s
+ C

∥∥vd
∥∥2

s
+ ∥∥Ra

N

∥∥2
s
.

Thus we deduce (6.4). Similarly, we obtain (6.6)–(6.7) which completes the proof. �
We now apply bootstrap argument to Lemma 6 to establish the following lemma which allows

one to control the growth of ‖μd‖s and ‖vd‖s by the growth of the remainder ‖Ra
N‖s and ‖Sa

N‖s

for sufficiently large N > 0 (i.e. 2(N + 1)λ).

Lemma 7. We suppose the same assumptions as in Lemma 6 and assume that with C0 in
Lemma 6,

C0 × {∥∥μa
∥∥

s+1 + ∥∥μd
∥∥

s

}
� 1

2
. (6.9)

Then there exist universal constants C1 = C1(s,‖η0‖Cs ) and C = C(s, |V0|,‖η0‖Cs+1) such that

d

dt

∥∥μd
∥∥2

s
� C1

∥∥μd
∥∥2

s
+ C

{∥∥Sa
N

∥∥2
s
+ ∥∥Ra

N

∥∥2
s

}
, (6.10)∥∥vd

∥∥
s
� C

∥∥μd
∥∥

s
+ C

∥∥Sa
N

∥∥
s
. (6.11)

Proof. Applying (6.9) to (6.5) and (6.7) yields

∥∥vd
∥∥

s
� C

(∥∥va
∥∥

s
+ 1

)∥∥μd
∥∥

s
+ C

∥∥Sa
N

∥∥
s
, (6.12)∥∥va

∥∥
s
� C

(
1 + ∥∥Sa

N

∥∥
s

)
. (6.13)

We substitute (6.13) in (6.12) and apply (6.9) again to (6.12) to obtain (6.11). Substituting (6.13)
and (6.11) for (6.4) and using (6.9) yields

d

dt

∥∥μd
∥∥2

s
� C

(∥∥μd
∥∥

s
+ ∥∥μa

∥∥2
s+1 + ∥∥Sa

N

∥∥
s
+ 1

)∥∥μd
∥∥2

s
+ C

∥∥vd
∥∥2

s
+ C

∥∥Ra
N

∥∥2
s

� C
(∥∥μd

∥∥
s
+ ∥∥μa

∥∥2
s+1 + 1

)∥∥μd
∥∥2

s
+ ∥∥μd

∥∥2
s

∥∥Sa
N

∥∥
s
+ C

{∥∥Sa
N

∥∥2
s
+ ∥∥Ra

N

∥∥2
s

}
� C1

∥∥μd
∥∥2

s
+ C

{∥∥Sa
N

∥∥2
s
+ ∥∥Ra

N

∥∥2
s

}
.

Note that (6.9) implies C(‖μd‖s +‖μa‖2
s+1 +1) � C(1+ 1

2C0
+ ( 1

2C0
)2) =: C1. Thus we deduce

our lemma. �
7. Nonlinear instability by a dominant eigenvalue

In this section we establish nonlinear instability using the dominant eigenvalue λ and bootstrap
Lemma 6. We now prove our main Theorem 2 which has already been stated in Section 2.

Proof of Theorem 2. We first choose N > 0 large such that

N >
C1 − 1, (7.1)

2λ
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where λ = λk0 is the dominant eigenvalue with which approximate solutions were constructed in
Section 5 while C1 = C1(s,‖η0‖Cs ) is the constant in (6.10) of Lemma 7.

Let (μa(t, x, y),va(t, x, y)) ∈ [L∞
loc(H

s(D))]3 be the approximate solution in Lemma 4 with
the choice of N in (7.1). Then we construct a family of solutions (μδ(t, x, y),vδ(t, x, y)) to (2.5)
which will be shown to be unstable using the approximate solution (μa(t, x, y),va(t, x, y)).

For given small δ > 0, there exists a local-in-time solution (μδ(t),vδ(t)) with initial data
(μa(0),va(0)). Then the difference satisfies μd(0) = 0, vd(0) = 0 initially. Define T > 0 by

T = sup

{
t

∣∣∣ C0 × {∥∥μa
∥∥

s+1 + ∥∥μd
∥∥

s

}
� 1

2

}
, (7.2)

where C0 = C0(s,‖η0‖Cs ) is the constant in Lemma 6. It is easy to see that T is well defined
since μd(0) = 0 and ‖μa‖s = O(δ).

We show that instability time T δ in (5.1) occurs before the possible blow-up time by contra-
diction, i.e. T δ < T if θ is chosen small enough. Suppose T δ � T . Then for t � T (� T δ), we
have by (5.2)

∥∥μa(t)
∥∥

s+1 � C

N∑
j=1

δj
∥∥χj (t)

∥∥
s+1 �

N∑
j=1

Cjδ
j exp(jλt)

�
N∑

j=1

Cjδ
j exp

(
jλT δ

) =
N∑

j=1

Cjθ
j <

1

4C0
for small values of θ.

We apply (6.10) in the bootstrap Lemma 7 together with (5.7)–(5.8) to obtain for t � T

d

dt

∥∥μd(t)
∥∥2

s
� C1

∥∥μd(t)
∥∥2

s
+ C

{∥∥Sa
N(t)

∥∥2
s
+ ∥∥Ra

N(t)
∥∥2

s

}
� C1

∥∥μd(t)
∥∥2

s
+ Cδ2(N+1) exp

[
2(N + 1)λt

]
.

Using inequality (7.1) for N and applying Gronwall inequality yields for t � T

∥∥μd(t)
∥∥

s
� CδN+1 exp

[
(N + 1)λt

]
� CδN+1 exp

[
(N + 1)λT δ

]
= CθN+1 <

1

4C0
if θ is small. (7.3)

Thus we have, for t = T

∥∥μa(T )
∥∥

s+1 + ∥∥μd(T )
∥∥

s
<

1

2C0
.

This contradicts the definition of T and therefore we conclude T δ < T . Notice also that (6.12)–
(6.13) implies that ‖vd(t)‖s is bounded for all 0 � t � T .

We now show that nonlinear instability occurs at t = T δ . By our choice of �1 as the growing
normal mode with the dominant eigenvalue λ and by (5.2), we have, at t = T δ
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∥∥va
(
T δ

)∥∥ � δ
∥∥�1

(
T δ

)∥∥ −
N∑

j=2

δj
∥∥�j

(
T δ

)∥∥ � Cδ exp
(
λT δ

) −
N∑

j=2

Cjδ
j exp

(
jλT δ

)

= Cθ −
N∑

j=2

Cjθ
j � C

2
θ if θ is small.

By (6.11) in the bootstrap Lemma 7 and by (7.3), we obtain for all 0 � t � T δ,

∥∥(
vδ − va

)
(t)

∥∥
s
� CδN+1 exp

(
(N + 1)λt

)
� CθN+1. (7.4)

By (7.3) and (7.4), we deduce

∥∥vδ
(
T δ

)∥∥ �
∥∥va

(
T δ

)∥∥ − ∥∥(
vδ − va

)(
T δ

)∥∥
�

∥∥va
(
T δ

)∥∥ − ∥∥(
vδ − va

)(
T δ

)∥∥
s

� C

2
θ − CθN+1 � C

4
θ ≡ ε0 > 0.

In a similar way, we deduce the same for μδ and thus complete the proof. �
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