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Abstract. The pulsatile blood flow in an eccentric catheterized artery is studied numerically by making use of
an extended version of the fast algorithm of Borges and Daripa [J. Comp. Phys., 2001]. The mathematical model
involves the usual assumptions that the arterial segment is straight, the arterial wall is rigid and impermeable,
blood is an incompressible Newtonian fluid, and the flow is fully developed. The flow rate (flux) is considered
as a periodic function of time (prescribed). The axial pressure gradient and velocity distribution in the eccentric
catheterized artery are obtained as solutions of the problem. Through the computed results on axial pressure
gradient, the increases in mean pressure gradient and frictional resistance in the artery due to catheterization are
estimated. These estimates can be used to correct the error involved in the measured pressure gradients using
catheters.
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1. Introduction

Catheters are of extensive use in contemporary medical science. Typically, a catheter consists
of a long flexible cylindrical tube at the tip of which various functional tools (e.g., pressure
transducers, flow meters, inflatable balloons, etc.) are positioned. The principle is to insert
the catheter-tool device into a peripheral artery and then to position the device in the desired
part of the arterial network by passing an appropriate length of the catheter through the artery.
These catheter-tool devices are usually used for the measurement of various physiological
flow characteristics (e.g., arterial blood pressure or pressure gradient and flow velocity or
flow rate) as well as for the diagnosis (e.g., X-ray angiography and intravascualar ultrasound)
and treatment (e.g., coronary balloon angioplasty) of various arterial diseases (see [1–6] for
details).

The insertion of a catheter into an artery leads to the formation of an annular region
between the catheter wall and the arterial wall. This alters the flow field and disturbs the
hemodynamic conditions in the artery that existed before the catheterization. In fact, this
results in an increase in frictional resistance to flow through the artery and modifies the pres-
sure distribution. Therefore, the pressure or the pressure gradient recorded by the transducer
attached to the catheter differs from that of an uncatheterized artery. In order to obtain an
accurate pressure reading, it is essential to know the catheter-induced errors. This necessitates
to study the Navier–Stokes equations governing the flow of blood in catheterized arteries.
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In a series of papers, Petterson and co-workers [7–11] studied extensively the hydro- and
hemodynamic effects of catheterization of vessels with and without stenosis by the help of var-
ious experimental models. Through a detailed mathematical model, MacDonald [12] studied
the pulsatile blood flow in a catheterized artery and obtained theoretical estimates for pressure-
gradient corrections for catheters which are positioned eccentrically as well as coaxially with
the artery. Back [2] and Back et al. [3, 4], using analytical flow modeling coupled with in vitro
experimental evidence and angiographic data, studied the important hemodynamical charac-
teristics like the wall shear stress, pressure drop, and frictional resistance in a catheterized
coronary artery under normal as well as the pathological situation of a stenosis present and
estimated the mean-flow resistance increase due to catheterization for concentric and eccentric
catheter configurations.

Taking into account the non-Newtonian behavior of blood described by the Casson fluid
model, Dash et al. [13] studied the changed flow pattern (both steady and pulsatile) in a narrow
artery when a catheter is inserted into it and estimated the increase in frictional resistance in
the artery due to catheterization. Taking into account the steady streaming effect, Sarkar and
Jayaraman [14] studied the pulsatile flow in a catheterized stenosed artery and estimated the
correction in the mean pressure drop along the stenosis due to catheterization. The effect of
catheterization on various flow characteristics in a curved artery with or without stenosis was
studied by Karahalios [15], Jayaraman and Tiwari [16], Dash et al. [17], and Jayaraman and
Dash [18].

In this paper, we study the pulsatile flow of blood in a straight eccentric catheterized artery
by modeling blood as an incompressible Newtonian fluid. MacDonald [12] has originally
studied this problem analytically using perturbation and asymptotic methods. This problem
is revisited here for the reasons mentioned below. The related steady fully developed flow
of incompressible Newtonian fluids in an eccentric annulus has been studied analytically by
Heyda [19], Snyder and Goldstein [20], and MacDonald [21].

One of the objectives of the paper is to extend the fast algorithm of Borges and Daripa
[22] (see also [23] and [24] for more details) for solving the Poisson equation inside a circular
disk to an annular domain, and to implement and apply the extended fast algorithm to solve
an applied physical problem. The problem of pulsatile blood flow in an eccentric catheterized
artery is chosen here since the flow domain is of an annular configuration and the analytic
solution to the problem is known from the study of MacDonald [12] for small and large
values of the eccentricity parameter. Using this fast algorithm, we have proposed an iterative
numerical scheme to compute accurately and rapidly the flow characteristics (i.e., the axial
pressure gradient and velocity distribution) in the eccentric catheterized artery. The computed
results on axial pressure gradient for several values of the Womersley frequency parameter α,
radii ratio a, and eccentricity parameter c have been used to estimate the increases in mean
pressure gradient and frictional resistance in the artery due to catheterization.

The layout of the paper is as follows. The details of the mathematical formulation of the
problem and the method of solution are presented in Sections 2 and 3, respectively. Since the
flow is pulsatile, the flow rate Q(t) is assumed to be a prescribed periodic function of time t .
The solutions for the axial pressure gradient ∂p/∂z(t) and velocity distribution w(x, y, t) are
then written as Fourier series with complex Fourier coefficients Pj and wj(x, y), respectively.
In the Fourier space, the problem is then reduced to solving a Helmholtz equation for each
wj(x, y)/Pj with Dirichlet conditions on the boundaries. The real and imaginary parts of each
of these Helmholtz equations are coupled Poisson equations. A suitable conformal mapping
is used which transforms the eccentric annular domain into a concentric annular domain. The
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Figure 1. Schematic diagram of a cross-sectional plane of the eccentric catheterized artery.

transformed coupled Poisson equations in this concentric annular domain are then solved by
use of an iterative numerical scheme and a fast algorithm. In Section 4, we present a fast
algorithm to solve a Poisson equation in an annular disk with Dirichlet conditions on the
boundaries by modifying the fast algorithm of Borges and Daripa [22] for solving Dirichlet
and Neumann problems inside a circular disk. This Poisson solver is then used to solve the
coupled Poisson equations presented in Subsection 3.3. The case of zero eccentricity is dealt
with separately in the Appendix. In Section 5, the numerical results are discussed and the
estimates for the increased mean pressure gradient and frictional resistance are made. The
concluding remarks are presented in Section 6.

2. Mathematical formulation

Figure 1 shows a typical cross-section of the eccentric catheterized artery. It is an eccentric
annular region � bounded by ∂� = �1 ∪ �2 where

�1 : x2 + y2 = r2
0 and �2 : / (x − b)2 + y2 = r2

i . (2.1)

Here r0 and ri are the radii of the outer (artery) and inner (catheter) tubes, respectively. The
origin (0, 0) of the coordinate system is chosen as the center of the outer tube and the x-axis
is chosen to pass through the center of the inner tube in the cross-sectional plane. We denote
the center of the inner tube by (b, 0) with b a constant. The fluid (blood) is considered to be
incompressible and Newtonian, and the flow is assumed to be due to a pulsatile (oscillatory)
axial pressure gradient ∂p/∂z(t) with period 2π/ω. We denote the velocity field as (0, 0, w).
It is further assumed that the artery and the catheter are infinitely long and the pressure-sensing
device is mounted on the catheter at a large distance upstream from the tip of the catheter, so
that the effects of entrance and the catheter tip can be neglected. In this case, the flow can
be considered as laminar and fully developed. Since the flow is axial (i.e., in the z-direction),
the only non-zero stress components are τxz and τyz. Therefore, the simplified Navier-Stokes
equation and the no-slip boundary conditions governing the flow (see [12]) are given by

ρ
∂w

∂t
= −∂p

∂z
+ µ

[
∂2w

∂x2
+ ∂2w

∂y2

]
in � (2.2)
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and

w = 0 on ∂�, (2.3)

where ρ and µ are the density and viscosity of the fluid, respectively. It is convenient to
work with non-dimensional variables. Therefore, we introduce the characteristic length as r0,
characteristic pressure gradient as −Pg (mean pressure gradient), characteristic velocity as
Pgr

2
0/µ, and the characteristic time as ω−1. In non-dimensional form, Equations (2.1) and

(2.2) are reduced to

α2 ∂w

∂t
= ∂p

∂z
+ ∂2w

∂x2
+ ∂2w

∂y2
in � (2.4)

and

w = 0 on ∂�, (2.5)

where α =
√
r2

0ω/(
µ

ρ
) is the Womersley frequency parameter. The boundary curves �1 and

�2, in non-dimensional form, are reduced to

�1 : x2 + y2 = 1 and �2 : / (x − c)2 + y2 = a2, (2.6)

where a = ri/r0 and c = b/r0. During flow simulation in a catheterized artery, it is often
desirable to estimate the increase in axial pressure gradient due to the insertion of a catheter
into an artery. In this case, the flux (flow rate) is assumed to be known (constant) which can
be expressed in the form of a Fourier series:

Q(t) =
∫∫
�

w(x, y, t) dx dy =
∞∑

j=−∞
Qje

ij t , (2.7)

where i = √−1. The flow-rate is non-dimensionalized with respect to the characteristic flow
rate Pgr4

0/µ. The problem for the case of zero eccentricity (i.e., c = 0) is dealt with separately
in the Appendix.

3. Method of solution

Since the flow rateQ(t) is a periodic function of time t (prescribed), we seek the solutions for
∂p

∂z
(t) and w(x, y, t) in the form of Fourier series

∂p

∂z
(t) =

∞∑
j=−∞

Pje
ij t and w(x, y, t) =

∞∑
j=−∞

wj(x, y)e
ij t . (3.1)

Substituting the series (3.1) in the Dirichlet problem consisting of the Equations (2.4) and
(2.5) and equating the coefficients of eij t on both the sides, we get the Dirichlet problem

∂2Ej

∂x2
+ ∂2Ej

∂y2
= iγjEj − 1 in � (3.2)

and

Ej = 0 on ∂�, (3.3)
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for j = 0,±1,±2, · · · ,±∞. Here

Ej(x, y) = wj(x, y)

Pj
and γj = jα2. (3.4)

It can be easily shown that the coefficients Ej ’s satisfy

Ej = E−j for j = ±1,±2, . . . ,±∞. (3.5)

It is worth noting here that Equation (3.2) is a complex Helmholtz equation for the complex
coefficient Ej . Solving the Dirichlet problem (3.2) and (3.3) provides Ej which can be used,
as described below, to obtain the axial pressure gradient in the eccentric annulus.

Note: We note that the axial pressure gradient has at least the same degree of regularity as the
two dimensional Laplacian of axial velocity in Equation (2.4). Therefore, the axial velocity w
is more regular than the axial pressure gradient ∂p/∂z, and hence, the Fourier coefficients wj
decay more rapidly than the Fourier coefficients Pj (see Equation (3.1)). This guarantees the
existence of the function Ej for all j as defined in Equation (3.4).

3.1. EVALUATION OF PRESSURE GRADIENT

Substituting the expression (3.1) for w(x, y, t) in Equation (2.7) and equating the coefficient
of eij t on both the sides, we get∫∫

�

wj(x, y) dx dy = Qj, (3.6)

which gives

Pj = Qj
/ ∫∫

�

Ej (x, y) dx dy, (3.7)

for j = 0,±1,±2,±∞. The axial pressure gradient in the eccentric annulus can be obtained
through Equations (3.1) and (3.7).

In the following subsection, we describe our approach for solving the Dirichlet problem
consisting of the complex Helmholtz equation (3.2) and boundary condition (3.3) in the ec-
centric annular domain �. In order to take advantage of the recently developed fast solvers
(see Section 4) for real elliptic problems which are well suited for concentric circles, we first
conformally transform the eccentric annular domain � into a concentric annular domain D
and then transform the complex Helmholtz equation into a two coupled Poisson equations.
We discuss this procedure next.

3.2. CONFORMAL MAPPING

It is easy to see that the conformal mapping (see [21, 12])

ξ = f (z) = z− β1

z− 1/β1
, (3.8)

maps the circles �1 : |z| = 1 and �2 : |z − c| = a into the circles ∂D1 : |ξ | = β1 and
∂D2 : |ξ | = β2, respectively, where β1 is the smallest real root of the quadratic algebraic
equation

cs2 + (a2 − c2 − 1)s + c = 0, (3.9)
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and

β2 =
√
β1(β1 − c)

1 − β1c
. (3.10)

It is easy to check that, if c > 0 and a + c < 1, then

0 < c < β1 < a + c < 1 and 0 < β2 < β1. (3.11)

Therefore, the eccentric annular region � bounded by the circles �1 and �2 in the z-plane is
mapped onto the concentric annular region D bounded by ∂D = ∂D1 ∪ ∂D2 in the ξ -plane. If
we write ξ = reiθ , then the conformal mapping (3.8) transforms the Dirichlet problem (3.2)
and (3.3) into

(Ej = F(r, θ)(iγjEj − 1) in D (3.12)

and

Ej = 0 on ∂D, (3.13)

where the Laplacian ( and the function F(r, θ) are defined, by

( = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
(3.14)

and

F(r, θ) =
∣∣∣∣ β2

1 − 1

β1(ξ − 1)2

∣∣∣∣
2

= (β2
1 − 1)2

β2
1 (1 − 2r cos θ + r2)2

, (3.15)

respectively. The expression (3.7) for the Fourier coefficient Pj is transformed into

Pj = Qj
/∫ 2π

0

∫ β1

β2

F(r, θ)Ej (r, θ)r dr dθ. (3.16)

3.3. PRECISE MATHEMATICAL PROBLEM AND NUMERICAL SCHEME

For convenience, we write the function Ej(r, θ) in the form

Ej(r, θ) = Gj(r, θ)+ iHj(r, θ). (3.17)

Then the Dirichlet problem (3.12) and (3.13) is reduced to

(Gj = −F(r, θ)(γjHj + 1), (Hj = F(r, θ)γjGj , (r, θ) ∈ D, (3.18)

and

Gj = Hj = 0 on ∂D. (3.19)

The above Dirichlet problem consiting of the two coupled Poisson equations (3.18) and bound-
ary conditions (3.19) is solved numerically by the following iterative scheme

(Ḡ
(k+1)
j = −F(r, θ)(γjH (k)

j + 1), (H̄
(k+1)
j = F(r, θ)γj Ḡ(k+1)

j , (r, θ) ∈ D, (3.20)
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subject to the boundary conditions

Ḡ
(k+1)
j = H̄ (k+1)

j = 0 on ∂D, (3.21)

where k refers to the level of iteration. We obtain the updated values of G(k+1)
j and H(k+1)

j

for the next level from the intermediate values of Ḡ(k+1)
j and H̄ (k+1)

j , using the following
relaxation technique

G
(k+1)
j = λḠ(k+1)

j + (1 − λ)G(k)j , H
(k+1)
j = λH̄ (k+1)

j + (1 − λ)H (k)
j , in D, (3.22)

where 0 < λ ≤ 1 is a relaxation (or smoothing) parameter. The above overall iterative proce-
dure is equivalent to the Gauss-Seidel SOR method. An initial guessG(0)0 (r, θ) = H(0)

0 (r, θ) =
0, ∀ (r, θ) ∈ D starts the iteration procedure. For j ≥ 1, the converged solution for the
previous value of j is used as the initial guess solution. The iteration is continued until the
following convergence criterion is met with ε as a tolerance parameter:

‖G(k+1)
j (r, θ)−G(k)j (r, θ)‖2 ≤ ε, and ‖H(k+1)

j (r, θ)−H(k)
j (r, θ)‖2 ≤ ε. (3.23)

It is worth mentioning that the initial-guess solution G(0)j (r, θ), as well as the smoothing

solution G(k+1)
j (r, θ), k ≥ 1, obtained from Equation (3.22), are not really used in the above

iterative scheme. However, these are used in the convergence criterion (3.23).
The above numerical scheme requires solving two Poisson equations in each iteration for

each j . Therefore we need to solve approximately 2KL Poisson equations, where K is the
number of Fourier coefficients used for numerical purposes and L is the average number of
iterations required for each j in the above iteration. Since this could be expensive numerically,
in particular if K and/or L are large, we adapt a recently developed fast algorithm for the
Poisson equation in a circular disk [22] to our annular region with appropriate modification.
We discuss this algorithm next.

4. A fast algorithm for the Poisson equation in an annular disk

In this section, we present a fast algorithm for the Poisson equation in an annular disk with
Dirichlet boundary condition which is used to solve the iteration scheme (3.20) and (3.21).
Various fast algorithms to solve elliptic equations exist, but here we use the one originally
developed by Daripa and co-workers [22, 23, 24] for this kind of problem. In [22] a fast
algorithm is presented to solve the Poisson equation in a circular disk with Dirichlet and
Neumann boundary conditions. Here that algorithm is modified suitably to extend it to an
annular disk. We consider the problem

(w = f (r, θ) in D

w = g(θ) on ∂D

}
, (4.1)

where D = {ξ ∈ R
2 : /β1 < |ξ | < β2} and ∂D = {ξ ∈ R

2 : |ξ | = β1 or |ξ | = β2}. Let

g(θ) =
{
g1(θ), if ξ = β1eiθ , θ ∈ [0, 2π ],
g2(θ), if ξ = β2eiθ , θ ∈ [0, 2π ]. (4.2)

We can express the solution of the problem (4.1) in the form
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w(r, θ) = u(r, θ) + v(r, θ), (4.3)

where u(r, θ) and v(r, θ) satisfy,

(u = f (r, θ) in D, (4.4)

and

(v = 0 in D

v = g − u on ∂D

}
, (4.5)

respectively. In Subsections 4.1 and 4.2 we present fast algorithms to find solutions of Equa-
tion (4.4) and problem (4.5).

4.1. A SOLUTION OF EQUATION (4.4)

A particular solution of Equation (4.4) can be written as

u(ξ) =
∫∫
D

f (η)G(ξ, η) dη1 dη2, ξ ∈ D, (4.6)

where

G(ξ, η) = 1

2π
log |ξ − η|, (4.7)

is the free-space Green’s function for the Laplacian in the domain D; ξ = ξ1 + iξ2 and
η = η1 + iη2. For numerical evaluation of the singular integral in Equation (4.6), the annular
domain D is divided into a grid formed by a set of radial lines and a set of circular lines
concentric with the boundaries |ξ | = β1 and |ξ | = β2. The use of standard quadrature rules
to evaluate the integral in Equation (4.6) leads to poor accuracy. Moreover, the complexity
of the quadrature method is O(N4) for a N2 grid points in the annular domain D. For large
N , the method becomes expensive in terms of computational time. However, the integrals
in Equation (4.6) can be computed accurately and rapidly by extending the fast algorithm
originally developed by Daripa and collaborators [22, 23, 24] to the annular domain.

The mathematical foundation of the fast algorithm to evaluate the particular solution (4.6)
is embedded in the following theorem. Here, we represent the particular solution u(r, θ) as
a Fourier series with radius-dependent Fourier coefficients un(r). These Fourier coefficients
un(r) are obtained in terms of one-dimensional integrals in the radial direction. We will not
present the proof of the theorem, since it can be proved easily following the method given in
[22] for a circular disk.

Theorem 1. If fn(r) is the nth Fourier coefficient of the function f (r, θ), then the nth Fourier
coefficient un(r) of the solution u(r, θ) can be written as

un(r) =
∫ r

β2

pn(r, ρ)dρ +
∫ β1

r

qn(r, ρ)dρ, (4.8)

where

pn(r, ρ) =



ρ log rf0(ρ), n = 0,

− ρ

2|n|
(
ρ

r

)|n|
fn(ρ), n �= 0,

(4.9)



Pulsatile blood flow in an eccentric catherized artery 9

and

qn(r, ρ) =



ρ log ρf0(ρ), n = 0,

− ρ

2|n|
(
r

ρ

)|n|
fn(ρ), n �= 0.

(4.10)

Despite the fact that the above theorem presents the mathematical foundation of the algorithm,
an efficient implementation can be made by devising suitable recursive relations to carry out
the one-dimensional integration in Equation (4.8) and to evaluate the Fourier coefficients un(r)
of the solution u(r, θ). Let the annular domain D = {ξ ∈ R

2 : β2 ≤ |ξ | ≤ β1} be discretized
into NxM grid points with N equidistant points in the angular direction and M equidistant
points in radial direction. Theorem 1 leads to the following corollary.

Corollary 1. Let β2 = r1 < r2 < · · · < rM = β1. Define

Ci,jn =




rj∫
ri

ρ

2n

(
rj

ρ

)n
fn(ρ)dρ, n < 0,

rj∫
ri

ρfn(ρ)dρ, n = 0,

(4.11)

and

Di,jn =




−
∫ rj

ri

ρ

2n

(
ri

ρ

)n
fn(ρ) dρ, n > 0,∫ rj

ri

ρ log ρfn(ρ)dρ, n = 0.

(4.12)

Let rj > ri and define

u−
n (r1) = 0, n ≤ 0,

u−
n (rj ) =

(
rj

ri

)n
u−
n (ri)+ Ci,jn , n ≤ 0,

(4.13)

and

u+
n (rM) = 0, n ≥ 0,

u+
n (ri) =

(
ri

rj

)n
u+
n (rj )+Di,jn , n ≥ 0.

(4.14)

Then, for i = 1, 2, . . . , n, we have

un(ri) =




u−
n (ri)+ u+−n(ri), n < 0,

log(ri)u−
n (ri)+ u+

n (ri), n = 0,

u+
n (ri)+ u−−n(ri), n > 0.

(4.15)



10 P. Daripa and R. K. Dash

The above corollary defines the recursive relations to obtain the Fourier coefficients un(r) of
the solution u(r, θ) based on the sign of the index n of un. Equation (4.13) constructs n ≤ 0
modes from the smallest radius r1 towards the largest radius rM . Conversely, Equation (4.14)
constructs n ≥ 0 modes from rM to r1. The steps involved in computing a particular solution
u(r, θ) of Equation (4.4) in an annular region D are presented in Algorithm 1 below.

Algorithm 1: Computation of solutions of Equation (4.4) in the annular domain D.

For given grid sizeM ×N , equidistant grid points (rl = β2 + (l− 1)(β1 −β2)/(M − 1), θk =
2πk/N), and specified grid values f (rleiθk ), the algorithm returns the solution values u(rleiθk )

for l ∈ [1,M] and k ∈ [1, N].
1. Compute the Fourier coefficients fn(rl), n ∈ [−N/2, N/2], for each l ∈ [1,M] of the

grid data f (rleiθk ), l ∈ [1,M], k ∈ [1, N], using FFT.
2. For l ∈ [1,M − 1], compute the one-dimensional radial integrals Cl,l+1

n , n ∈ [−N/2, 0],
and Dl,l+1

n , n ∈ [0, N/2], as defined in Equations (4.11) and (4.12) using the trapezoidal
rule.

3. Compute the coefficients u−
n (rl), n ∈ [−N/2, 0], l ∈ [1,M], as defined by Equa-

tion (4.13):
(a) Set u−

n (r1) = 0, n ∈ [−N/2, 0].
(b) For l = 2, · · · ,M, compute

u−
n (rl) =

(
rl

rl−1

)n
u−
n (rl−1)+ Cl−1,l

n , n ∈ [−N/2, 0].
4. Compute the coefficients u+

n (rl), n ∈ [0, N/2], l ∈ [1,M], as defined by Equation (4.14):
(a) Set u+

n (rM) = 0, n ∈ [0, N/2].
(b) For l = M − 1, · · · , 1, compute

u+
n (rl) =

(
rl

rl+1

)n
u+
n (rl+1)+Dl,l+1

n , n ∈ [0, N/2].
5. Compute the Fourier coefficients un(rl), n ∈ [−N/2, N/2], l ∈ [1,M], by combining

coefficients u−
n (rl) and u+

n (rl) as in Equation (4.15).
For l = 1, 2, · · · ,M, compute

un(rl) = u−
n (rl)+ u+

−n(rl), n ∈ [−N/2,−1],
u0(rl) = log(rl)u

−
0 (rl)+ u+

0 (rl),

un(rl) = u−n(rl), n ∈ [1, N/2].
6. Compute the solution values u(rleiθk ), l ∈ [1,M], k ∈ [1, N], from the Fourier coeffi-

cients un(rl), l ∈ [1,M], n ∈ [−N/2, N/2], using FFT.

4.2. SOLUTION OF PROBLEM (4.5)

The solution for the harmonic function v(r, θ) in the annular domain D satisfying the Dirich-
let boundary conditions (see Equations (4.5)) can be represented as an infinite series. This
solution is available in many elementary books on partial differential equations and/or applied
mathematics. Below, for the sake of completeness, we present this solution as a theorem (and
also its proof).

Theorem 2. Let an and bn be the nth Fourier coefficients of the boundary functions h1(θ) and
h2(θ) defined by
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h1(θ) = g1(θ)− u(β1, θ) and h2(θ) = g2(θ)− u(β2, θ). (4.16)

Then the Fourier coefficients vn(r) of the solution v(r, θ) of (4.5) are given by

vn(r) =
{
C0 log r +D0, if n = 0,

Cnr
−n +Dnrn, if n �= 0,

(4.17)

where

C0 = a0 − b0

log(β1/β2)
and D0 = b0 log β1 − a0 log β2

log(β1/β2)
, (4.18)

and

Cn = βn1β
n
2 (bnβ

n
1 − anβn2 )

(β2n
1 − β2n

2 )
and Dn = (anβ

n
1 − bnβn2 )

(β2n
1 − β2n

2 )
. (4.19)

Proof. If we represent the solution v(r, θ) of problem (4.5) by the Fourier series

v(r, θ) =
∞∑

n=−∞
vn(r)e

inθ , (4.20)

then the Fourier coefficients vn(r) satisfy Euler’s differential equation

d2vn

dr2
+ 1

r

dvn
dr

− n2

r2
vn = 0, (4.21)

and the boundary conditions

vn(r = β1) = an and vn(r = β2) = bn. (4.22)

Now it is easy to see that the vn(r) described by Equations (4.17)–(4.19) satisfy the boundary-
value problem (4.21) and (4.22). This completes the proof of the Theorem 2.

Note: It can be easily shown that Cn = D−n.

Algorithm 2: Computation of the solution of Equation (4.5) in the annular domain D.
For given grid sizeM×N , the equidistant grid points (rl = β2+(l−1)(β1−β2)/(M−1), θk =
2πk/N), and given boundary values h1(θk) and h2(θk), the algorithm returns the solution
values v(rleiθk ), l ∈ [1,M], k ∈ [1, N].

1. Compute the Fourier coefficients an and bn, n ∈ [−N/2, N/2], of the boundary data
h1(θk) and h2(θk), k ∈ [1, N], using FFT.

2. Compute the coefficients Cn and Dn, n ∈ [−N/2, N/2], using Equations (4.18) and
(4.19).

3. Compute the Fourier coefficients vn(rl), n ∈ [−N/2, N/2], l ∈ [1,M], for the solution
v(r, θ) using Equation (4.17).

4. Compute the solution values v(rleiθk ), l ∈ [1,M], k ∈ [1, N], from the Fourier coeffi-
cients vn(rl), l ∈ [1,M], n ∈ [−N/2, N/2], using FFT.
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Finally, we add the solutions obtained from Algorithm-1 for Equation (4.4) and from Algorithm-
2 for problem (4.5) to obtain the desired solution of problem (4.1).

4.3. THE ALGORITHMIC COMPLEXITY

Here we consider the computational complexity of the above algorithm. In steps 1 and 5 of
Algorithm-1, there are 2M FFT’s of length N and all other computations in steps 2, 3 and 4
are of lower order. Similarly, in steps 1 and 4 of Algorithm-2, there are 2M FFT’s of length
N and all other computations in steps 2 and 3 are of lower order. With each FFT of length
N contributing N logN operations, the asymptotic operation count and hence the asymptotic
time complexity is O(MN logN). It is easy to see that the asymptotic storage requirement is
of the orderO(MN). Finally, we remark that the above algorithms are both very parallelizable
on multi-processor machines (see [22] for details).

5. Numerical results and discussions

The objective of the present study is to apply an iterative technique and an efficient fast
algorithm to compute accurately and rapidly the flow characteristics corresponding to the
pulsatile flow of blood in an eccentric catheterized artery. The fast algorithm basically solves
the Poisson equation in an annular domain with Dirichlet conditions on the boundaries. In fact,
it is a modified version of the fast algorithm of Borges and Daripa [22] developed originally
for the Poisson equation in a circular disk with Dirichlet and Neumann conditions on the
boundary.

The flow modeling involves the usual assumptions that (i) the arterial segment is straight,
(ii) the arterial wall is rigid and impermeable, (iii) the artery and the catheter are infinitely long
and the pressure-sensing device is mounted on the catheter at a large distance upstream from
the tip of the catheter, (iv) blood is an incompressible Newtonian fluid, and (v) the flow is fully
developed. The flux (flow rate)Q(t) is considered to be a prescribed periodic function of time
t . With these assumptions and conditions, numerical results for the axial pressure gradient
∂p

∂z
(t) and velocity distribution w(x, y, t) in the eccentric catheterized artery are obtained for

several values of the Womersley frequency parameter α, the radii ratio a, and the eccentricity
parameter c. These results are used to obtain the estimates of the increased mean pressure
gradient and frictional resistance in the artery due to the insertion of a catheter into it. The
above - mentioned results and estimates in a concentric catheterized artery (i.e., when c = 0)
are also obtained in this paper based on the analysis presented in the Appendix.

The model problem in the Fourier space reduces to solving two coupled Poisson Equa-
tions (3.18) with Dirichlet boundary conditions (3.19), for each Fourier mode j ∈ [−K,K],
where K is the number of harmonics in the Fourier series representation of the prescribed
periodic flow rateQ(t) (see below in (5.1) the representation ofQ(t) for whichK is 6). These
Dirichlet problems are solved numerically by means of the iterative scheme (3.20) and (3.21),
smoothing technique (3.22), and convergence criterion (3.23). The corresponding iterative
scheme in the case of zero eccentricity is given by Equations (A7) and (A8). Numerical
experiments are performed with the error tolerance ε in (3.23) set at 10−7, the number of
grid points in the radial direction (M + 1) set at 101, and the number of grid points in the
angular direction (N) set at 128. The values of the radii ratio a and the eccentricity parameter
c are chosen to satisfy a < 1, c ≥ 0 and a + c < 1. The values of the Womersley frequency
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Figure 2. (A) Time variation of flow rateQ(t) during a cycle of oscillation. (B) Behavior of the Fourier coefficients
Qj of the flow rateQ(t).

Table 1. The amplitudes and moduli of the harmonics of the flow rate Q(t)
which is defined by Equation (5.1) and shown in Figure 2(A).

j 0 1 2 3 4 5 6

Q∗
j 0·0916 0·2040 0·2292 0·1011 0·0464 0·0291 0·0106

ψj 0·0 0·5482 2·6100 3·4670 4·1670 5·3035 6·2832

parameter α are chosen up to 3·5, the value α ≈ 3·35 being suitable for a canine femoral
artery as well as for a coronary artery [12, 25].

It is found that the convergence of the overall iterative scheme (3.20)–(3.23) depends
largely on the values of the Womersley frequency parameter α, radii ratio a, and eccentricity
parameter c. Based on our numerical experiments with the smoothing or relaxation parameter
λ fixed at λ = 1 (i.e., Gauss-Seidel type of iteration technique without smoothing), we have
made the following observations regarding the convergence of the iterative scheme for Fourier
modes j ∈ [−6, 6]. (i) For α ≤ 1, the scheme converges for almost all values of a and c in
the range given above. (ii) For higher values of a (e.g., a = 0·75) and lower values of c (e.g.,
c = 0·15), the scheme converges for higher values of α (e.g., α ≤ 3). (iii) Finally, as the value
of a decreases and c increases, the scheme converges for relatively lower values of α.

To achieve the convergence of the scheme for all j ∈ [−6, 6] and all physically realistic
values of α, a and c, we use the smoothing technique (3.22) with a suitably chosen smoothing
parameter 0 < λ ≤ 1. The choice of λ exerts a control over the convergence of the overall
iterative scheme (3.20)–(3.23) in the sense that, if the scheme tends to diverge for a given
value of λ, the gradual reduction in the value of λ eventually brings out convergence. So, the
choice of λ depends largely on the values of the parameters α, a and c. We have observed that
the value of λ for which the scheme converges decreases as the value of α or c increases or the
value of a decreases. It was difficult to find a single optimum value of λ for which the scheme
converges very rapidly for all j ∈ [−6, 6] and for all values of α, a and c.

Figure 2(A) shows the plot of Q(t) versus t during a cycle of oscillation that is used
to compute the axial pressure gradient ∂p/∂z(t) and velocity distribution w(x, y, t) in the
eccentric catheterized artery for several values of the Womersley frequency parameter α, the
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Figure 3. Plots of |Fj | vs. j ; plots in (A) and (B) are for several values of α with (A) a = 0·25, c = 0
and (B) a = 0·5, c = 0; plots in (C) and (D) are for several values of c with (C) a = 0·25, α = 1 and
(D) a = 0·25, α = 3·5; plots in (E) and (F) are for several values of a with (E) c = 0·25, α = 1 and (F)
c = 0·25, α = 3·5.

radii ratio a, and the eccentricity parameter c. This plot represents an approximation to the
measured flow rate (flux) in a canine femoral artery [12, 25]. It is specified by the equation

Q(t) =
6∑
j=0

Q∗
j cos(j t − ψj), (5.1)

where Q∗
j and ψj, j = 0, 1, . . . , 6, are the amplitudes and moduli of the harmonics of the

flow rate Q(t) which are specified in Table 1. The series (5.1) can be written in the form of
complex Fourier series (2.7) if we define
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Q0 = Q∗
0 cos(ψ0), Qj = 1

2Q
∗
je

−iψj , and Q−j = Qj, j > 0. (5.2)

The magnitude, real, and imaginary parts of the Fourier coefficients Qj for 0 ≤ j ≤ 6 are
plotted in Figure 2(B). The Fourier coefficients Qj for |j | > 6 are set to zero.

The behavior of the computed solutions Ej of the Dirichlet problem (3.12) and (3.13),
when c > 0 and boundary-value problem (A3) and (A4) when c = 0, are described through
various plots in Figure 3. It shows the plots of |Fj | vs. j for several values of Womersley
frequency parameter α in Figures 3(A) and 3(B) with (A) a = 0·25, c = 0 and (B) a =
0·5, c = 0; for several values of eccentricity parameter c in Figures 3(C) and 3(D) with (C)
a = 0·25, α = 1 and (D) a = 0·25, α = 3·5; and for several values of radii ratio a in
Figures 3(E) and 3(F) with (E) c = 0·25, α = 1 and (F) c = 0·25, α = 3·5. Here the variables
Fj ’s are related to the functions Ej ’s by

Fj =




2π
∫ 1

a

Ej (r)rdr, if c = 0,

∫ 2π

0

∫ β1

β2

F(r, θ)Ej (r, θ)rdrdθ, if c > 0.

(5.3)

In fact, Fj represents the denominator in Equations (3.16) and (A12). From the various plots
in Figure 3, it is seen that (i) |Fj | decreases with increasing j (i.e., ∂|Fj |/∂j < 0). However,
the |Fj |’s are almost independent of j for lower values of α and c and higher values of a.
(ii) |Fj | decreases with the increasing value of α (i.e., ∂|Fj |/∂α < 0). Also, the variation of
|Fj | with α is quite large for lower values of a and higher values of c and j ; the zeroth mode
|F0| is independent of α. (iii) |Fj | increases with increasing value of c (i.e., ∂|Fj |/∂c > 0) for
smaller values of α. Also, the |Fj |’s for j ≥ 2 are almost independent of c for higher values
of α, as shown in Figure 3(D) with α = 3·5. (iv) Finally, |Fj | decreases with the increasing
value of a (i.e., ∂|Fj |/∂a < 0). The case (iv) is consistent with the fact that the cross-sectional
area of the catheterized artery decreases with an increase in the radii ratio a.

The behavior of the Fourier coefficients Pj of the axial pressure gradient ∂p/∂z(t), com-
puted from Equation (3.16), is described by Figure 4. It shows the plots of |Pj | vs. j for
several values of the Womersley frequency parameter α in Figures 4(A) and 4(B) with (A)
a = 0·25, c = 0 and (B) a = 0·5, c = 0; for several values of eccentricity parameter c
in Figures 4(C) and 4(D) with (C) a = 0·25, α = 1 and (D) a = 0·25, α = 3·5; and for
several values of radii ratio a in Figures 4(E) and 4(F) with (E) c = 0·25, α = 1 and (F)
c = 0·25, α = 3·5. The time variation of the corresponding axial pressure gradient ∂p/∂z(t),
as computed from Equation (3.1), during a cycle of oscillation is plotted in Figure 5.

It is seen from Figure 4 that |Pj | decays very rapidly for j > 2. Also, |P0| is independent
of the Womersley frequency parameter α. In fact, the zeroth Fourier mode P0 corresponds to
the desired pressure gradient in a catheterized artery in steady-state flow conditions. The other
modes account for the unsteady (pulsatile) state of the flow. It is again seen from Figure 4 that
|Pj | increases with increasing values of α and a, but decreases with increasing values of c.
Also, the |Pj |s vary considerably with α and a, but not with c. In fact, for higher values of α
(e.g., α = 3·5), the |Pj |s are almost independent of c for j > 2, as seen in Figure 4(D).

Figure 5 gives a complete description of the axial pressure gradient ∂p/∂z(t) in a catheter-
ized artery for almost all physically as well as physiologically realistic values of Womersley
frequency parameter α, radii ratio a, and eccentricity parameter c. This includes results for a
concentric catheterized artery too. Actually, this is the amount of pressure gradient required
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Figure 4. Plots of |Pj | vs. j ; plots in (A) and (B) are for several values of α with (A) a = 0·25, c = 0
and (B) a = 0·5, c = 0; plots in (C) and (D) are for several values of c with (C) a = 0·25, α = 1 and
(D) a = 0·25, α = 3·5; plots in (E) and (F) are for several values of a with (E) c = 0·25, α = 1 and (F)
c = 0·25, α = 3·5.

in the catheterized artery for generating the prescribed mass-flow rate (flux). Therefore, this
is the elevated pressure gradient in the artery due to the insertion of a catheter into it. We can
estimate the amount of increased pressure gradient from Figure 5.

We can infer the following regarding the dependence of ∂p/∂z(t) on the values of α, a
and c from the various plots in Figure 5: (i) Unlike the prescribed mass flux Q(t), the axial
pressure gradient ∂p/∂z(t) varies considerably during a cycle of oscillation. (ii) ∂p/∂z(t)
depends strongly on α and a, but only weakly on c. To exemplify this, consider some results
in a concentric catheterized artery shown in Figures 5(A) and 5(B). When the value of a is
0·25, the maximum value of ∂p/∂z(t) is approximately 4·7 for α = 1 and 8·4 for α = 3·5.
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Figure 5. Time variation of the axial pressure gradient ∂p
∂z
(t) during a cycle of oscillation; plots in (A) and (B)

are for several values of α with (A) a = 0·25, c = 0 and (B) a = 0·5, c = 0; plots in (C) and (D) are for several
values of c with (C) a = 0·25, α = 1 and (D) a = 0·25, α = 3·5; plots in (E) and (F) are for several values of a
with (E) c = 0·25, α = 1 and (F) c = 0·25, α = 3·5.

But, as the value of a increases to 0·5, the maximum value becomes 13·3 for α = 1 and
16·3 for α = 3·5. So, the maximum value of ∂p/∂z(t) over the duration of a cycle depends
strongly on α and a. (iii) For smaller values of α, ∂p/∂z(t) varies smoothly during a cycle
of oscillation for almost all values of a and c and, therefore, shows the qualitative behavior
of the prescribed mass-flow rate Q(t). In these cases, the inertial effects are not significant.
However, as the value of α increases, the curves tend to become irregular for lower values of
a and higher values of c due to the increased inertial effects. (iv) It is seen from Figures 5(A)
and 5(B) that the time at which ∂p/∂z(t) attains its maximum during a cycle of oscillation
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Table 2. The mean (time-averaged over a cycle of oscillation) ax-
ial pressure gradient ∂p̃/∂z in the catheterized artery as a function
of radii ratio a and eccentricity parameter c. The mean flow rate is
Q0 = Q∗

0 cos(ψ0) = Q∗
0 = 0·0916.

c\a 0·1 0·2 0·3 0·4 0·5 0·6 0·7
0·0 0·406 0·548 0·767 1·142 1·852 3·403 7·607

0·1 0·402 0·538 0·748 1·100 1·753 3·120 6·538

0·2 0·389 0·512 0·696 0·994 1·513 2·503 4·610

0·3 0·368 0·474 0·625 0·858 1·237 1·892 –

0·4 0·347 0·432 0·550 0·725 0·992 – –

0·5 0·323 0·389 0·480 0·609 – – –

0·6 0·300 0·351 0·420 – – – –

decreases with increasing values of α. Thus, the moduli (phase shift) of various harmonics of
the axial pressure gradient ∂p/∂z(t) vary with the Womersley frequency parameter α. These
moduli are almost independent of the radii ratio a and eccentricity parameter c for lower values
of α, but vary with a and c for higher values of α. These results are in good qualitative and
quantitative agreement with the results of MacDonald [12], in particular with the Figures 2(B)
and 3(A,B) of MacDonald [12].

The time-averaged mean axial pressure gradient ∂p̃/∂z in a catheterized artery obtained
as a function of radii ratio a and eccentricity parameter c is presented in Table 2. Since
∂p̃/∂z is equal to the zeroth Fourier mode P0 of ∂p/∂z(t), these results are independent
of the Womersley frequency parameter α. The entries missing in this table correspond to
inadmissible values of the pair (a, c) for which computation has not been done, as these are
physically meaningless. The time-averaged mean flow rate Q̃ obtained from Equation (5.1) is
0·0916. The mean frictional resistance is calculated from these values as the ratio of the mean
pressure gradient to mean flow rate. So, this table basically indicates how the mean axial
pressure gradient and frictional resistance will vary with the radii ratio a and eccentricity
parameter c when a catheter is inserted into the artery. It is seen that ∂p̃/∂z increases with
an increase in the values of a, but decreases with an increase in the values of c, the variation
with a being quite high as compared to that with c. From this table, the factor by which
the mean pressure gradient, or equivalently, the mean frictional resistance increases due to
catheterization can be calculated.

Figure 6 shows the velocity profiles on the x-axis at various time levels during a cycle
of oscillation with a = 0·2 and c = 0·3. The plots in Figure 6(A) show w(x, y, t) vs. x
when x ∈ [c + a, 1], y = 0, and t = 0, π/4, · · · , 7π/4, and the plots in Figure 6(B) show
w(x, y, t) vs. x when x ∈ [−1, c − a], y = 0, and t = 0, π/4, · · · , 7π/4. These figures
clearly show that the velocity profile is skewed towards the inner boundary of the eccentric
annulus; the skewness being more prominent when x ∈ [−1, c − a] as seen in Figure 6(B).
The skewed shape of the profile is perhaps due to the greater shear force acting on the fluid
near the outer boundary of the eccentric annulus. The velocity profile also shows the behavior
of the boundary layer at certain times during the cycle of oscillation.
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Figure 6. Axial velocity distribution w(x, y, t) on x-axis (y = 0) at time t = 0, π/4, · · · , 7π/4, with a = 0·2
and c = 0·3; (A) x ∈ [c + a, 1] and (B) x ∈ [−1, c − a].

6. Concluding remarks

The fast algorithm of Borges and Daripa [22] for Dirichlet problems in a circular disk has
been extended here for solving Dirichlet problems in an annular disk. This fast algorithm
has been implemented and applied to study pulsatile (oscillatory) blood flow in a straight
eccentric catheterized artery by modeling blood as an incompressible Newtonian fluid. The
axial pressure gradient ∂p/∂z(t) and velocity distributions w(x, y, t) in the catheterized artery
have been obtained as solutions of the problem by prescribing the flow rate Q(t) as a suitable
periodic function of time t typical of that of a canine femoral artery. Numerical results have
been obtained for various values of the Womersley frequency parameter α, radii ratio a (nor-
malized catheter radius), and eccentricity parameter c (normalized distance between the center
of the catheter and the center of the artery). From these numerical results, changes in the mean
pressure gradient and frictional resistance due to the insertion of a catheter into an artery have
been estimated. These estimates can be used to correct the error involved in the measured
pressure gradients using catheters.

The present study shows that the axial pressure gradient ∂p/∂z(t) in the catheterized artery
varies significantly with the Womersley frequency parameter α and radii ratio a. However, it
does not vary considerably with the eccentricity parameter c for higher values of the Womer-
sley frequency parameter α. Also, the mean axial pressure gradient as well as mean frictional
resistance increases with the increasing catheter radius, but decreases with the increasing
distance between the center of the catheter and the center of the artery.
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Appendix: The case of zero eccentricity

The case of zero eccentricity (i.e., c = 0) can not be derived from our analysis since the
conformal mapping (3.8) breaks down as c → 0. Therefore, it has to be treated separately
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which is done in this appendix. In the case of c = 0, it is convenient to use polar co-ordinates
(r, θ, z) to formulate and analyze the problem. Since the flow becomes axially symmetric
(i.e., ∂

∂θ
() = 0), the Navier-Stokes equation and the no-slip boundary conditions, in non-

dimensional form, are reduced to

α2 ∂w

∂t
= ∂p

∂z
+ ∂2w

∂r2
+ 1

r

∂w

∂r
for a ≤ r ≤ 1, (A1)

and

w = 0 at r = a and r = 1. (A2)

So, if the flow rate Q(t) is given by Equation (2.7), then the pressure gradient ∂p/∂z(t) and
the velocity distribution w(r, t) can be expressed in the form of the Fourier series (3.1). Here
the Fourier coefficients wj are functions of r only. The above Dirichlet problem then reduces
to the following boundary-value problem (BVP) for an ordinary differential equation.

d2Ej

dr2
+ 1

r

dEj
dr

= iγjEj − 1 for a ≤ r ≤ 1 (A3)

and

Ej = 0 at r = a and r = 1, (A4)

for j = 0,±1,±2, · · · ,±∞. Here Ej(r) = wj(r)/Pj and γj = jα2. An iterative numerical
scheme for solving the BVP (A3) and (A4) analogous to the scheme (3.20) and (3.21) can be
written as(

d2

dr2
+ 1

r

d

dr

)
G
(k+1)
j = −(γjH (k)

j + 1), a ≤ r ≤ 1,

(
d2

dr2
+ 1

r

d

dr

)
H
(k+1)
j = γjG(k+1)

j , a ≤ r ≤ 1,

(A5)

subject to the conditions

G
(k+1)
j = H(k+1)

j = 0, at r = a and r = 1, (A6)

where Gj and Hj are the real and imaginary parts of the coefficient Ej . In integral form, the
above iterative numerical scheme can be written as

G
(k+1)
j (r) =

[
C
(k+1)
j −

∫ r

a

(
γjH

(k)
j + 1

)
ρdρ

]
log r

−
[ ∫ 1

r

ρ log ρ
(
γjH

(k)
j + 1

)
dρ

]
, a ≤ r ≤ 1,

H
(k+1)
j (r) =

[
D
(k+1)
j + γj

∫ r

a

G
(k+1)
j ρdρ

]
log r

+
[
γj

∫ 1

r

ρ log ρG(k+1)
j dρ

]
, a ≤ r ≤ 1,

(A7)

where the constants of integration C(k+1)
j and D(k+1)

j are given by
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C
(k+1)
j = 1

log a

∫ 1

a

ρ log ρ
(
γjH

(k)
j + 1

)
dρ and D

(k+1)
j = − γj

log a

∫ 1

a

ρ log ρG(k)j dρ.

(A8)

In conjunction with the smoothing technique (3.22) (which treats left side of Equation (A7)
as intermediate values in Equation (3.22)) and convergence criterion (3.23), the iterative
scheme (A7) is used to solve for Gj(r) and Hj(r) and hence Ej(r) for a < r < 1.

We have also found the exact analytic solution of the BVP (A3) and (A4) in terms of Bessel
functions with complex arguments. For the sake of completeness, we will present these below.
However, we have not done any computation with these exact solutions because of the peculiar
complex argument of the Bessel functions. Rather, we have found the above iterative scheme
more suitable for the computation of the solutions. The analytic solutions for the Ej s are given
by

Ej = 1

iγj

[
1 − AjJ0(i

3/2γ
1/2
j r)− BjY0(i

3/2γ
1/2
j r)

]
, (A9)

where the constants of integration Aj and Bj are given by

Aj =
[
Y0(i3/2γ

1/2
j )− Y0(i3/2γ

1/2
j a)

]
[
J0(i3/2γ

1/2
j a)Y0(i3/2γ

1/2
j )− J0(i3/2γ

1/2
j )Y0(i3/2γ

1/2
j a)

] , (A10)

Bj =
[
J0(i3/2γ

1/2
j )− J0(i3/2γ

1/2
j a)

]
[
J0(i3/2γ

1/2
j a)Y0(i3/2γ

1/2
j )− J0(i3/2γ

1/2
j )Y0(i3/2γ

1/2
j a)

] . (A11)

With the help of the prescribed flux given by Equation (2.7), the Fourier coefficients Pj of the
axial pressure gradient ∂p/∂z(t) can be written as

Pj = Qj
/

2π
∫ 1

a

Ej (r)rdr, (A12)

where∫ 1

a

Ej rdr = 1

iγj

[
1 − a2

2
− Aj

i3/2γ 1/2
j

[
J1(i

3/2γ
1/2
j )− aJ1(i

3/2γ
1/2
j a)

]

− Bj

i3/2γ 1/2
j

[
Y1(i

3/2γ
1/2
j )− aY1(i

3/2γ
1/2
j a)

]]
.

(A13)
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