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Abstract. We consider a non-standard eigenvalue problem arising in stability studies of 3-layer immiscible porous media
and Hele-Shaw flows which contain the viscous profile of the middle layer as a coefficient in the eigenvalue problem. We
characterize the eigenvalues and eigenfunctions of this eigenvalue problem. We then apply this characterization to an
exponential viscous profile and numerically compute the associated eigenvalues and eigenfunctions. We provide an explicit
sequence of numbers that give upper and lower bounds on the eigenvalues. We also discuss the limiting cases when either
the length of the middle layer approaches zero or the exponential viscous profile approaches a constant viscosity profile.
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1. Introduction

Three phase flows in porous media play an important role in many technical applications ranging from oil
recovery to ground water remediation to storage of carbon dioxide. In such flows, hydrodynamic stability
of the displacement process drives some of the phenomena whose control can maximize the performance
of these displacement processes and requires an in-depth study. For immiscible displacement processes,
of which we are interested in this paper, instability of the individual layers due to a non-uniform mobility
profile in the layers interacts with that of the individual interfaces which are unstable due to jumps in
mobilities at the interfaces, leading to complex fingering patterns on the interfaces as well as complex flow
patterns in the layers. This study aims to quantify some of these complex stability issues by analyzing
them at the linear stage of the development of these patterns. We do so here by studying porous media
flow within a Hele-Shaw model, which is justified, especially when studied in the presence of a mobility
profile in the layers; see Daripa [4,5] for a discussion on the similarity between these flows. Therefore, we
study the problem of three-phase flow within a Hele-Shaw cell. An interesting direct application of this
flow is three immiscible phase flow in thin fracture in porous media with intermediate transition region.

There have been numerous theoretical and numerical studies on two-layer immiscible Hele-Shaw flow
since the early 1950s, starting with the work of Saffman and Taylor [13]. There are many review articles on
these studies, for example see [10,12]. These studies were originally motivated by displacement processes
arising in secondary oil recovery, even though these studies have much wider appeal in the sciences and
engineering. In the late 1970s, tertiary displacement processes involved in chemical enhanced oil recovery
generated interest in three-layer and multi-layer Hele-Shaw flows (see [3,4,6,9]). In this paper, we briefly
describe the three-layer case from [3] before moving onto our studies of the associated eigenvalue problem.

Three regions of fluid in the Hele-Shaw cell (Fig. 1) are separated by sharp interfaces that are initially
at x = −L and x = 0 along which there is interfacial tension given by the values T1 and T0, respectively.
The fluid upstream (−∞ < x < −L) has a constant viscosity μl and a velocity u = (U, 0) as x → −∞.
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Fig. 1. Three-layer rectilinear Hele-Shaw flow in which the middle layer has a smooth viscous profile. The physical set-up
as well as the viscous profile are shown in this figure

The fluid downstream (0 < x < ∞) has a constant viscosity μr. The middle layer, which has length L,
contains a fluid of viscosity μ(x, t) where μl < μ(x, t) < μr for all x ∈ (−L, 0). We assume here that
μ(x, t) and its spatial derivative are continuous.

The governing equations for the system are

∇ · u = 0, ∇p = −μu,
∂μ

∂t
+ u · ∇μ = 0. (1)

Equation (1)1 is the continuity equation for incompressible flow, Eq. (1)2 is Darcy’s Law, and Eq. (1)3 is an
advection equation for viscosity, which holds when viscosity is an invertible function of the concentration
of polymer.

This system admits a simple basic solution in which all of the fluid moves with constant velocity u =
(U, 0) and the interfaces remain planar. The pressure, p(x), of the basic solution is found by integrating
(1)2. In a moving frame with velocity U , the basic solution is stationary. We perturb the basic solution
by (ũ, ṽ, p̃, μ̃). The linearized equations for ũ = (ũ, ṽ), p̃ and μ̃ are

∇ · ũ = 0, ∇p̃ = −μũ − μ̃(U, 0),
∂μ̃

∂t
+ ũ

dμ

dx
= 0. (2)

We decompose the disturbances into normal modes. They take the form

(ũ, ṽ, p̃, μ̃) = (f(x), τ(x), ψ(x), φ(x))eiky+σt, (3)

where k is the wavenumber and σ is the growth rate of the disturbances. This ansatz is used in the
linearized equations (2) along with linearized kinematic and dynamic boundary conditions to derive an
eigenvalue problem for f(x). More details on this derivation can be found in Daripa [3]. The eigenvalue
problem is

(μf ′)′ − (k2μ− k2U
σ μ′)f = 0, −L < x < 0

μ(−L)f ′(−L) =
(
μlk − E1

σ

)
f(−L)

−μ(0)f ′(0) =
(
μrk − E0

σ

)
f(0),

⎫
⎬

⎭
(4)

where E0 = k2U(μr − μ(0)) − T0k
4 and E1 = k2U(μ(−L) − μl) − T1k

4.
In order to simplify our analysis of these equations, we use the variable λ = 1

σ . Then, the above
equations can be written as

(μf ′)′ − (k2μ− k2Uμ′λ)f = 0, −L < x < 0
μ(−L)f ′(−L) = (μlk − E1λ)f(−L)
−μ(0)f ′(0) = (μrk − E0λ)f(0).

⎫
⎬

⎭
(5)
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Equation (5)1 looks like a typical Sturm–Liouville problem, but note that the boundary conditions (5)2
and (5)3 contain the spectral parameter, λ. Therefore, much of the classical theory does not apply.

The maximum value of the growth rate, σ, determines the stability of the system. Therefore, it is of
physical significance to understand the minimum value of λ and its dependence on the parameters. To this
end, we study the nature of the spectrum of the above differential operator. A complete understanding
of the eigenvalues and eigenfunctions can shed light on strategies to stabilize the flow through control of
the physical quantities.

2. Characterization of the Eigenvalues and Eigenfunctions

We now investigate the nature of the eigenvalues and eigenfunctions associated with the eigenvalue
problem (5). This section follows the techniques of Churchill [2].

Theorem 1. Let f(x) solve (5). Let E0, E1, U , k, μl, μr > 0. Let μ(x) be a positive, strictly increasing
function in C1([−L, 0]). Then the eigenvalue problem has a countably infinite number of real eigenvalues
that can be ordered

0 < λ0 < λ1 < λ2 < · · ·
with the property that for the corresponding eigenfunctions, {fi}∞

i=0, fi has exactly i zeros in the interval
(−L, 0). Additionally, the eigenfunctions are continuous with a continuous derivative.

Proof. The fact that there are a countably infinite number of real eigenvalues that can be ordered and
corresponding eigenfunctions with the prescribed number of zeros is proven by Ince [11, p. 232–233] in
Theorem I and Theorem II. The regularity of the eigenfunctions comes from the existence theorem of
Ince [11, p. 73]. It remains to show that all of the eigenvalues are both real and positive. Let (f, λ) satisfy
the eigenvalue problem. We take the inner product of (5)1 with f∗(x), the complex conjugate of f(x).

∫ 0

−L

(μ(x)f ′(x))′f∗(x)dx− k2

∫ 0

−L

(μ(x) − Uμ′(x)λ)|f(x)|2dx = 0.

We then perform integration by parts on the first integral and use the boundary conditions (5)2 and (5)3.

− (μrk − E0λ)|f(0)|2 − (μlk − E1λ)|f(−L)|2 −
∫ 0

−L

μ(x)|f ′(x)|2dx

− k2

∫ 0

−L

(μ(x) − Uμ′(x)λ)|f(x)|2dx = 0.

Solving for λ,

λ =
μrk|f(0)|2 + μlk|f(−L)|2 +

∫ 0

−L
μ(x)

{|f ′(x)|2 + k2|f(x)|2} dx
E0|f(0)|2 + E1|f(−L)|2 + k2U

∫ 0

−L
μ′(x)|f(x)|2

. (6)

Note that all terms are real and positive. Therefore, λ > 0 [7]. �

2.1. An Orthogonality Property of the Eigenfunctions

We now note the following property of the eigenfunctions for later use. Let fi and fj be eigenfunctions
of (5). Then (

μf ′
ifj − μfif

′
j

)′ = (μf ′
i)

′fj − (μf ′
j)

′fi = (λj − λi)k2Uμ′fifj . (7)
Using the boundary conditions (5)2 and (5)3,

(λj − λi)
∫ 0

−L

fifj(k2Uμ′)dx =
(
μf ′

ifj − μfif
′
j

) ∣∣
∣
0

−L

=(λi − λj) {E0fi(0)fj(0) + E1fi(−L)fj(−L)},
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and therefore, if λi �= λj ,
∫ 0

−L

fifj(k2Uμ′)dx+ E0fi(0)fj(0) + E1fi(−L)fj(−L) = 0. (8)

2.2. Transformation to a Regular Sturm–Liouville Problem

We now wish to connect the eigenvalue problem (5) to a related eigenvalue problem whose properties are
known. Since f0(x) is non-zero on [−L, 0], we can define the function, for each integer i ≥ 1,

Fi(x) = μ(x)
d

dx

(
fi(x)
f0(x)

)
. (9)

We use the following lemma.

Lemma 1. Let E0, E1, U , k, μl, μr > 0 and μ(x) be a positive, strictly increasing function in C1([−L, 0]).
Additionally, let μ(x) be twice differentiable. Let {Fi}∞

i=1 be the set of functions defined by (9) where
μ(x) is a strictly increasing, positive function on [−L, 0] and {fi}∞

i=0 is the set of eigenfunctions of (5)
corresponding to the eigenvalues {λi}∞

i=0. Then for each i ∈ N, (Fi, λi) is a solution to the regular Sturm-
Liouville problem

⎧
⎪⎪⎨

⎪⎪⎩

(
f2
0

μ′ F
′
)′

+
{

2
(μ′)2 (μ′f0f ′′

0 − μ′(f ′
0)

2 + μ′′f0f ′
0) + k2Uf2

0
μ (λ− λ0)

}
F = 0

E1f0(−L)F ′(−L) = {k2Uμ′(−L)f0(−L) − 2E1f
′
0(−L)}F (−L)

−E0f0(0)F ′(0) = {k2Uμ′(0)f0(0) + 2E0f
′
0(0)}F (0).

(10)

Furthermore, there are no other solutions to (10).

Proof. Let i ∈ N. By using the quotient rule on Eqs. (9) as well as (7), we get

(f2
0Fi)′ = (μf0f ′

i − μfif
′
0)

′ = (λ0 − λi)k2Uμ′f0fi. (11)

Therefore, (
1

k2Uμ′f2
0

(f2
0Fi)′

)′
=
(

(λ0 − λi)
fi

f0

)′
,

which can be rewritten as (
1

k2Uμ′f2
0

(f2
0Fi)′

)′
+ (λi − λ0)

Fi

μ
= 0. (12)

But after some simple calculations, this reduces to
(
f2
0

μ′ F
′
i

)′
+
{

2
(μ′)2

(μ′f0f ′′
0 − μ′(f ′

0)
2 + μ′′f0f ′

0) +
k2Uf2

0

μ
(λi − λ0)

}
Fi = 0, (13)

which is the Eq. (10)1. Next, we find the boundary conditions satisfied by the Fi. It follows from relation
(9) that

μf ′
i = f0Fi + fi

μf ′
0

f0
. (14)

Replacing the left-hand side of (14) with the boundary condition (5)2, we obtain

f0(−L)Fi(−L) +
{
μ(−L)f ′

0(−L)
f0(−L)

− (μlk − E1λi)
}
fi(−L) = 0.

Using the boundary condition (5)2 for f0,

f0(−L)Fi(−L) − E1(λ0 − λi)fi(−L) = 0. (15)

Using (11), we have that

(λ0 − λi)fi(−L) =
1

k2Uμ′(−L)
{f0(−L)F ′

i (−L) + 2f ′
0(−L)Fi(−L)}. (16)
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Combining Eqs. (15) and (16),

f0(−L)Fi(−L) − E1

k2Uμ′(−L)
{f0(−L)F ′

i (−L) + 2f ′
0(−L)Fi(−L)} = 0,

and therefore
E1f0(−L)F ′

i (−L) = {k2Uμ′(−L)f0(−L) − 2E1f
′
0(−L)}Fi(−L), (17)

which is the boundary condition (10)2. Similarly, we obtain the boundary condition (10)3 by repeating
the same process using (14) and (5)3. Therefore, Fi and λi satisfy the system (10).

It remains to show that the set {(Fi, λi)}∞
i=1 defined by (9) is all of the solutions to (10). Let (G(x), α)

solve (10). We will show that (G,α) = (Fi, λi) for some i. Define the function

g(x) = f0(x)
[∫ x

−L

G(t)
μ(t)

dt+ C

]
, (18)

where C is given by the expression

C =
f2
0 (−L)G′(−L) + 2f0(−L)f ′

0(−L)G(−L)
(λ0 − α)k2Uμ′(−L)f2

0 (−L)
, α �= λ0. (19)

Claim: g(x) and α satisfy (5). We prove this below.
Note that

g′ = f0
G

μ
+ f ′

0

[∫ x

−L

G(t)
μ(t)

dt+ C

]
. (20)

Therefore,

(μg′)′ = f0G
′ + 2f ′

0G+ (μf ′
0)

′
[∫ x

−L

G(t)
μ(t)

dt+ C

]
. (21)

Using (18),

(μg′)′ =
1
f0

{
(f2

0G)′ + g(μf ′
0)

′}.

We wish to show that (μg′)′−(k2μ−k2Uμ′α)g
k2Uμ′f0

is a constant. Using the above equality,

(μg′)′ − (k2μ− k2Uμ′α)g
k2Uμ′f0

=
1

k2Uμ′f2
0

(f2
0G)′ +

1
k2Uμ′f0

{
1
f0

(μf ′
0)

′ − (k2μ− k2Uμ′λ0) − k2Uμ′(λ0 − α)
}
g.

Since (f0, λ0) satisfies (5)1, we obtain

(μg′)′ − (k2μ− k2Uμ′α)g
k2Uμ′f0

=
1

k2Uμ′f2
0

(f2
0G)′ + (α− λ0)

g

f0
.

If we take the derivative of this expression, we see that
(

1
k2Uμ′f2

0

(f2
0G)′ + (α− λ0)

g

f0

)′
=
(

1
k2Uμ′f2

0

(f2
0G)′

)′
+ (α− λ0)

G

μ
.

But this is zero by the equivalence of (12) and (13) and the fact that (G,α) solves (10)1. Therefore, the
original expression is equal to some constant, D. That is,

(μg′)′ − (k2μ− k2Uμ′α)g
k2Uμ′f0

= D,

and therefore,
(μg′)′ − (k2μ− k2Uμ′α)g = Dk2Uμ′f0, ∀x ∈ [−L, 0]. (22)
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We now show that D = 0 and therefore g(x) and α solve (5)1. We replace g in this equation by using
our original definition of g, (18), along with Eq. (21).

f0G
′ + 2f ′

0G+ (μf ′
0)

′
[∫ x

−L

G(t)
μ(t)

dt+ C

]
− (k2μ− k2Uμ′α)f0

[∫ x

−L

G(t)
μ(t)

dt+ C

]
= Dk2Uμ′f0.

Using some algebraic manipulation and the fact that f0 satisfies (5)1,

G′ + 2
f ′
0

f0
G− k2Uμ′(λ0 − α)

[∫ x

−L

G(t)
μ(t)

dt+ C

]
= Dk2Uμ′,

therefore,

D =
1

k2Uμ′

(
G′ + 2

f ′
0

f0
G

)
− (λ0 − α)

[∫ x

−L

G(t)
μ(t)

dt+ C

]
. (23)

This expression holds for all values of x ∈ [−L, 0], so we may choose x = −L. Then

D =
1

k2Uμ′(−L)

(
G′(−L) + 2

f ′
0(−L)
f0(−L)

G(−L)
)

− (λ0 − α)C. (24)

Using our choice of C from (19), we get D = 0 as long as α �= λ0.
We now show that α �= λ0 by contradiction. Assume that α = λ0. Then, by (23)

D =
f2
0 (x)G′(x) + 2f0(x)f ′

0(x)G(x)
k2Uμ′(x)f2

0 (x)
, ∀x ∈ [−L, 0]. (25)

Note that the numerator above can be expressed as
(
f2
0 (x)G(x)

)′. Recall that E0, E1 ≥ 0. Therefore, we
can consider four separate cases:
1. E0, E1 �= 0

First note that Eq. (10)1 along with the initial conditions F (c) = α and F ′(c) = β for some point
c ∈ [−L, 0] and some constants α and β has a unique solution [11, p. 73]. By boundary condition
(10)2, if G(−L) = 0 and E1 �= 0, then G′(−L) = 0. Therefore, G(x) ≡ 0, which contradicts that G is
an eigenfunction of (10). Therefore, we can conclude that since E1 �= 0, G(−L) �= 0. Likewise, since
E0 �= 0, G(0) �= 0.
When E1 �= 0, we can rearrange the boundary condition (10)2 to get

f2
0 (−L)G′(−L) + 2f0(−L)f ′

0(−L)G(−L)
k2Uμ′(−L)f2

0 (−L)
=
G(−L)
E1

.

But by (25), the left-hand side of the above equation is D. Therefore, for all x ∈ [−L, 0],
(
f2
0 (x)G(x)

)′

k2Uμ′(x)f2
0 (x)

=
G(−L)
E1

. (26)

Multiplying by k2Uμ′(x)f2
0 (x) and integrating from −L to 0, we get

f2
0 (0)G(0) − f2

0 (−L)G(−L) = k2U
G(−L)
E1

∫ 0

−L

μ′(x)f2
0 (x)dx,

and therefore

f2
0 (0)G(0) = G(−L)

{
f2
0 (−L) +

k2U

E1

∫ 0

−L

μ′(x)f2
0 (x)dx

}
. (27)

Note that the coefficients of G(−L) and G(0) are both positive. Therefore, G(−L) and G(0) must
have the same sign.
When E0 �= 0, we can rearrange the boundary condition (10)3 to get

f2
0 (0)G′(0) + 2f0(0)f ′

0(0)G(0)
k2Uμ′(0)f2

0 (0)
= −G(0)

E0
.
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Again, the left-hand side is equal to D. Therefore, we can combine this with (26) to get

G(−L)
E1

= −G(0)
E0

. (28)

This tells us that G(−L) and G(0) have opposite signs, which is a contradiction.
2. E0 = 0 and E1 �= 0

When E0 = 0, the boundary condition (10)3 for G(x) becomes

k2Uμ′(0)f0(0)G(0) = 0,

which can only be true if G(0) = 0. Since E1 �= 0, Eqs. (26) and (27) still hold. Also, as seen in
the previous case, E1 �= 0 implies that G(−L) �= 0. However, (27) cannot be true if G(0) = 0 and
G(−L) �= 0. Thus, we have a contradiction.

3. E0 �= 0 and E1 = 0
When E1 = 0, the boundary condition (10)2 for G(x) becomes

k2Uμ′(−L)f0(−L)G(−L) = 0,

which can only be true if G(−L) = 0. Using this fact along with Eq. (25), we get that for all x ∈ [−L, 0],
(
f2
0 (x)G(x)

)′

k2Uμ′(x)f2
0 (x)

=
f2
0 (−L)G′(−L) + 2f0(−L)f ′

0(−L)G(−L)
k2Uμ′(−L)f2

0 (−L)
=

G′(−L)
k2Uμ′(−L)

.

Multiplying by k2Uμ′(x)f2
0 (x) and integrating from −L to 0, we get

f2
0 (0)G(0) − f2

0 (−L)G(−L) =
G′(−L)
μ′(−L)

∫ 0

−L

μ′(x)f2
0 (x)dx,

and therefore

f2
0 (0)G(0) =

G′(−L)
μ′(−L)

∫ 0

−L

μ′(x)f2
0 (x)dx. (29)

Note that by the uniqueness theorem stated in Case 1 and the fact that G(x) �≡ 0, G′(−L) �= 0.
Since E0 �= 0, we know from Case 1 that G(0) �= 0. Also, for all x ∈ [−L, 0]

f2
0 (x)G′(x) + 2f0(x)f ′

0(x)G(x)
k2Uμ′(x)f2

0 (x)
= −G(0)

E0
.

In particular, this is true at x = −L. Therefore,
G′(−L)

k2Uμ′(−L)
= −G(0)

E0
. (30)

However, Eq. (29) implies that G(0) and G′(−L) are of the same sign and Eq. (30) implies that G(0)
and G′(−L) have opposite signs, which is a contradiction.

4. E0 = E1 = 0
When E0 = E1 = 0, G(−L) = G(0) = 0. Since E1 = 0, Eq. (29) still holds. Therefore, G′(−L) = 0.
But then, by the uniqueness theorem, G(x) ≡ 0 which is a contradiction.

Therefore, since all cases lead to a contradiction, we have shown that α �= λ0. Therefore, (g(x), α) solves
(5)1.

We claim that (g(x), α) also satisfies the boundary conditions (5)2 and (5)3. From (10)2, we know that

E1f0(−L)G′(−L) = {k2Uμ′(−L)f0(−L) − 2E1f
′
0(−L)}G(−L),

and therefore

f0(−L)G(−L) − E1

k2Uμ′(−L)
{f0(−L)G′(−L) + 2f ′

0(−L)G(−L)} = 0. (31)

Since G(x) = μ
(

g(x)
f0(x)

)
and g(x) solves (5)1, we can follow the steps used to derive (11) to get

(f2
0G)′ = (μf0g′ − μgf ′

0)
′ = (λ0 − α)k2Uμ′f0g.
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Dividing by f0 and evaluating at x = −L yields

f0(−L)G′(−L) + 2f ′
0(−L)G(−L) = (λ0 − α)k2Uμ′(−L)g(−L).

Substituting this into (31), we get

f0(−L)G(−L) − E1(λ0 − α)g(−L) = 0.

We use the boundary condition (5)2 for the function f0 to get that

μ(−L)f ′
0(−L)

f0(−L)
− (μlk − E1λ0) = 0.

Multiplying this by g(−L) and combining with the previous expression gives

f0(−L)G(−L) − E1(λ0 − α)g(−L) +
{
μ(−L)f ′

0(−L)
f0(−L)

− (μlk − E1λ0)
}
g(−L) = 0.

Using (20) and (18) evaluated at x = −L and rearranging terms yields

(μlk − E1α)g(−L) = μ(−L)g′(−L).

Therefore, (g(x), α) satisfies (5)2. Following the same process, we can see that (g(x), α) also satisfies (5)3.
Therefore, (g(x), α) satisfies (5), which proves our claim.

Since (g(x), α) solves (5), g ≡ fi for some i and α = λi. This means that G ≡ Fi. �
Lemma 1 shows us that the set {(Fi, λi)}∞

i=1 is the set of solutions to a regular Sturm–Liouville
problem. Therefore, the set {Fi}∞

i=1 forms an orthonormal basis of the space

L2
w(−L, 0) =

{
f(x)

∣
∣
∣
∣

∫ 0

−L

|f(x)|2w(x)dx < ∞
}
,

where w(x) = k2Uf2
0 (x)

μ(x) . In addition, it verifies the fact that the eigenvalues {λi}∞
i=1 are real and only

have a limit point at infinity.
We now wish to show that a certain class of functions can be written as a linear combination of the

eigenfunctions, {fi}∞
i=0. Since {(Fi, λi)}∞

i=1 is an orthonormal basis of L2
w(−L, 0), any function f(x) ∈

L2
w(−L, 0) can be expanded as

f(x) =
∞∑

i=1

ciFi,

where ci =
∫ 0

−L
f(x)Fi(x)w(x)dx.

We define the bilinear form

B(f, g) =
∫ 0

−L

fg(k2Uμ′)dx+ E0f(0)g(0) + E1f(−L)g(−L). (32)

Recall from (8) that for any distinct eigenfunctions fi and fj of (5), B(fi, fj) = 0. Using this bilinear
form, we may now expand any function in terms of the eigenfunctions using the following theorem.

Theorem 2. Let E0, E1, U , k, μl, μr > 0 and μ(x) be a twice differentiable, positive, strictly increasing
function in C1([−L, 0]). Let {fi}∞

i=0 be the eigenfunctions of (5). Let w(x) = k2Uf2
0 (x)

μ(x) . Let

H1
w(−L, 0) =

{
f(x) ∈ L2

w(−L, 0)|f ′(x) ∈ L2
w(−L, 0)

}
.

Then for any function f(x) ∈ H1
w(−L, 0),

f(x) =
∞∑

i=0

Aifi(x), (33)

where equality is in the sense of L2
w(−L, 0) and the constants Ai are given by

Ai =
B(f, fi)
B(fi, fi)

. (34)
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Proof. Let f ∈ H1
w(−L, 0). Then, since μ and f0 are in C1([−L, 0]), μ

(
f
f0

)′
∈ L2

w(−L, 0). Since the set

{Fi}∞
i=1 is complete in L2

w(−L, 0), we can write

μ

(
f

f0

)′
=

∞∑

i=1

AiFi, (35)

where

Ai =
∫ 0

−L

μ

(
f

f0

)′
Fiw(x)dx. (36)

Dividing (35) by μ and integrating gives us that for any x ∈ [−L, 0],
∫ x

−L

(
f

f0

)′
dt =

∞∑

i=1

Ai

∫ x

−L

Fi

μ
dt.

Using that Fi

μ =
(

fi

f0

)′
, we get

f(x)
f0(x)

− f(−L)
f0(−L)

=
∞∑

i=1

Ai

[
fi(x)
f0(x)

− fi(−L)
f0(−L)

]
,

and therefore

f(x)f0(−L) − f(−L)f0(x) =
∞∑

i=1

Ai[fi(x)f0(−L) − fi(−L)f0(x)] ∀x ∈ [−L, 0]. (37)

Let w̃(x) = k2Uμ′(x). Multiply the above equation by f0w̃ and integrate from −L to 0. Then

f0(−L)
∫ 0

−L

f(x)f0(x)w̃(x)dx− f(−L)
∫ 0

−L

f2
0 (x)w̃(x)dx

=
∞∑

i=1

Ai

[
f0(−L)

∫ 0

−L

fi(x)f0(x)w̃(x)dx− fi(−L)
∫ 0

−L

f2
0 (x)w̃(x)dx

]
.

Recall the bilinear form (32)

B(f, g) =
∫ 0

−L

fgw̃dx+ E0f(0)g(0) + E1f(−L)g(−L),

and, from (8), that for all i �= j

B(fi, fj) = 0.

If we replace the integrals above using that
∫ 0

−L

fgw̃dx = B(f, g) − E0f(0)g(0) − E1f(−L)g(−L),

and cancel like terms, we get

f0(−L)B(f, f0) − f(−L)B(f0, f0) − E0f0(0) [f(0)f0(−L) − f(−L)f0(0)]

= −B(f0, f0)
∞∑

i=1

Aifi(−L) − E0f0(0)
∞∑

i=1

Ai [fi(0)f0(−L) − fi(−L)f0(0)] . (38)

Equation (37) with x = 0 gives

f(0)f0(−L) − f(−L)f0(0) =
∞∑

i=1

Ai[fi(0)f0(−L) − fi(−L)f0(0)].
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Plug this into (38) to get

f(−L) =
∞∑

i=1

Aifi(−L) + f0(−L)
B(f, f0)
B(f0, f0)

.

If we define

A0 =
B(f, f0)
B(f0, f0)

,

then

f(−L) =
∞∑

i=0

Aifi(−L). (39)

If we now plug this into Eq. (37), we get that ∀x ∈ [−L, 0]

f(x)f0(−L) −
∞∑

i=0

Aifi(−L)f0(x) =
∞∑

i=1

Ai[fi(x)f0(−L) − fi(−L)f0(x)]

Solving for f(x) gives

f(x) =
∞∑

i=0

Aifi(x). (40)

It remains to show that

Ai =
B(f, fi)
B(fi, fi)

, for i �= 0.

Recall that these coefficients came from the expression (36). Consider a function h ∈ H1
w(−L, 0). Using

integration by parts and (11), we have that
∫ 0

−L

(
h

f0

)′
f2
0Fidx =

[
h

f0
(μf0f ′

i − μf ′
0fi)
]0

−L

+ (λi − λ0)
∫ 0

−L

hfik
2Uμ′dx. (41)

Using the boundary conditions (5)2 and (5)3 to replace the derivatives,
[
h

f0
(μf0f ′

i − μf ′
0fi)
]0

−L

= (λi − λ0) {E0h(0)fi(0) + E1h(−L)fi(−L)}.

Therefore, using this in (41),
∫ 0

−L

(
h

f0

)′
f2
0Fidx = (λi − λ0)

{∫ 0

−L

hfik
2Uμ′dx+E0h(0)fi(0) + E1h(−L)fi(−L)

}
,

or ∫ 0

−L

(
h

f0

)′
f2
0Fidx = (λi − λ0)B(h, fi). (42)

In particular, using h = f ,
∫ 0

−L

(
f

f0

)′
f2
0Fidx = (λi − λ0)B(f, fi). (43)

On the other hand, it follows from (35) that
∫ 0

−L

μ

(
f

f0

)′
f2
0Fi

μ
dx =

∞∑

j=1

Aj

∫ 0

−L

f2
0FiFj

μ
dx.

But since {Fi}∞
i=1 is orthonormal in L2

w(−L, 0),
∫ 0

−L

μ

(
f

f0

)′
f2
0Fi

μ
dx = Ai

∫ 0

−L

f2
0F

2
i

μ
dx.
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Equating this with (43) yields

Ai

∫ 0

−L

f2
0F

2
i

μ
dx = (λi − λ0)B(f, fi). (44)

But using (42) with h = fi and recalling from the definition of Fi that Fi

μ =
(

fi

f0

)′
,

∫ 0

−L

f2
0F

2
i

μ
dx =

∫ 0

−L

(
fi

f0

)′
f2
0Fidx = (λi − λ0)B(fi, fi).

Combining this with (44), we get

Ai(λi − λ0)B(fi, fi) = (λi − λ0)B(f, fi).

which leads to our desired result, (34). This concludes the proof of Theorem 2. �

3. Exponential Viscous Profile

We now apply the above theory to the case where the viscosity of the middle layer follows an exponential
profile where μ(−L) < μ(0). Note that this meets the condition of the previous section since μ(x) is
positive, strictly increasing, and smooth. So for all k such that E0, E1 > 0, there are infinitely many
positive values of σ which can be ordered σ1 > σ2 > · · · with a limit point at 0 and any function in
H1

w(−L, 0) can be expanded in terms of the eigenfunctions. The viscous profile can be written as

μ(x) = μ(−L)eα(x+L), −L < x < 0, (45)

where α = 1
L ln
(

μ(0)
μ(−L)

)
. Therefore, μ′(x) = αμ(x). Plugging this into Eq. (5)1, for −L < x < 0,

f ′′(x) + αf ′(x) + k2 (Uαλ− 1) f(x) = 0.

This is a homogeneous, constant coefficient, second order differential equation. Therefore, the fundamental
solutions are er1(λ)x and er2(λ)x for

r1(λ) =
−α
2

+ iβ, r2(λ) =
−α
2

− iβ, (46)

where

β2 = k2(Uαλ− 1) − α2

4
. (47)

The general solution can be written as

f(x) = e− αx
2 (A cos(βx) +B sin(βx)). (48)

This holds except when r1 = r2 (i.e. when β = 0). We will consider this special case later. For now,
assume that β �= 0. Then

f ′(x) = −α

2
f(x) + βe− αx

2 (−A sin(βx) +B cos(βx)). (49)

Therefore
f(0) = A, f(−L) = e

αL
2 (A cos(βL) −B sin(βL)),

and
f ′(0) = −α

2
f(0) + βB, f ′(−L) = −α

2
f(−L) + βe

αL
2 (A sin(βL) +B cos(βL)).

Plugging these into the boundary condition (5)3,
(
μrk − E0λ

μ(0)
− α

2

)
A+ βB = 0.

Author's personal copy



C. Gin and P. Daripa JMFM

Likewise, from the boundary condition (5)2,
{

−
(
μlk − E1λ

μ(−L)
+
α

2

)
cos(βL) + β sin(βL)

}
A+
{(

μlk −E1λ

μ(−L)
+
α

2

)
sin(βL) + β cos(βL)

}
B = 0.

This gives us a matrix equation of the form Mx = 0 where

M =

( μrk−E0λ
μ(0) − α

2 β

−
(

μlk−E1λ
μ(−L) + α

2

)
cos(βL) + β sin(βL)

(
μlk−E1λ

μ(−L) + α
2

)
sin(βL) + β cos(βL)

)

,

and

x =
(
A
B

)
.

This equation has a nontrivial solution if and only if the determinant of M is zero. Let H(λ, k) = det(M).
Then

H(λ, k) = H1(λ, k) sin(βL) + βH2(λ, k) cos(βL), (50)

where

H1(λ, k) =
(
μrk − E0λ

μ(0)
− α

2

)(
μlk − E1λ

μ(−L)
+
α

2

)
− β2, (51)

and

H2(λ, k) =
{
μlk − E1λ

μ(−L)
+
μrk − E0λ

μ(0)

}
. (52)

The roots of H(λ, k) are the values of λ that are solutions to the eigenvalue problem. However, note that
β = 0 implies H(λ, k) = 0. As stated above, the analysis used to derive H does not hold when β = 0. We
treat this case next.

We define the number

γ0 :=
α2 + 4k2

4k2Uα
. (53)

By examining (47), it is seen that β = 0 ⇐⇒ λ = γ0. Since the characteristic equation now has repeated
roots, the eigenfunctions will be of the form f(x) = Ae− α

2 x +Bxe− α
2 x. Then

f ′(x) = e− α
2 x
{

−α

2
A+
(
1 + −α

2
x
)
B
}
.

Therefore,
f(0) = A, f(−L) = e

αL
2 (A−BL),

and

f ′(0) = −α

2
A+B, f ′(−L) = e

αL
2

{
−α

2
A+
(

1 +
αL

2

)
B

}
.

Pluggin these into the boundary condition (5)2,
(
μlk − E1λ

μ(−L)
+
α

2

)
A−
{
L

(
μlk − E1λ

μ(−L)

)
+ 1 +

αL

2

}
B = 0.

Likewise, using the boundary condition (5)3,
(
μrk − E0λ

μ(0)
− α

2

)
A+B = 0.

This gives us a matrix equation of the form M̃x = 0 where

M̃ =

(
μlk−E1λ

μ(−L) + α
2 −
{
L
(

μlk−E1λ
μ(−L)

)
+ 1 + αL

2

}

μrk−E0λ
μ(0) − α

2 1

)

.
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Again, solutions occur when det(M̃) = 0. Let H̃(λ, k) = det(M̃). Then

H̃(λ, k) =
{
μlk − E1λ

μ(−L)
+
μrk − E0λ

μ(0)
+ L

(
μrk − E0λ

μ(0)
− α

2

)(
μlk − E1λ

μ(−L)
+
α

2

)}
. (54)

Recall that when β �= 0, we seek values of λ such that H(λ, k) = 0. However, when β = 0, λ is fixed
(λ = γ0). Therefore, this is only an eigenvalue of the problem for a wavenumber k such that H̃(γ0, k) = 0.

We now return to the case when β �= 0. Note that when λ > γ0, β is real-valued, but when λ < γ0, β
is imaginary. In the latter case, using that sinh(ix) = i sin(x) and cosh(ix) = cos(x),

H(λ, k) = i {H1(λ, k) sinh(|β|L) + |β|H2(λ, k) cosh(|β|L)}, (55)

and H is purely imaginary. Therefore, when λ < γ0 we can find the zeros of Im(H). In summary, we
have that

H(λ, k) =

{
real, if λ > γ0

imaginary, if λ < γ0.
(56)

In order to investigate the zeros of H, we define the sequence of positive numbers {γn}∞
n=0 by

γn :=
4n2π2 + α2L2 + 4k2L2

4k2L2Uα
. (57)

Here, the definition of γ0 coincides with (53). Note that γn > γ0 for any n ≥ 1, which implies that β will
be real when λ = γn. Also, for any n ≥ 1, if λ = γn, then β = nπ/L. Therefore sin(βL) = 0 and

H(γn, k) =

{
−nπ

L H2(γn, k), n odd
nπ
L H2(γn, k), n even.

(58)

Therefore, if H2(γn, k) = 0, then γn is an eigenvalue of the system (5). More generally, if n ≥ 1 and
H2(γn, k) and H2(γn+1, k) have the same sign, then H(γn, k) and H(γn+1, k) will have opposite signs.
Therefore, H(λ, k) = 0 for some γn < λ < γn+1.

This knowledge allows us to understand the behavior of H. In particular, we will show that for any k,
H has infinitely many zeros with a limit point at infinity. Consider the function H2. Using (52), H2 = 0
when

λ =
μl

μ(−L) + μr

μ(0)

E1
μ(−L) + E0

μ(0)

k. (59)

Note that for a fixed k, there is only one value of λ such that H2 = 0. Let λ∗(k) denote this value. Using
the definitions of E0 and E1,

λ∗(k) =
μl

μ(−L) + μr

μ(0)

kU
(

μr

μ(0) − μl

μ(−L)

)
− k3

(
T1

μ(−L) + T0
μ(0)

) . (60)

There will be at most one value of n such that λ∗(k) ∈ [γn, γn+1). For all values of n such that λ∗(k) /∈
[λn, λn+1], we have the following lemma.

Lemma 2. Fix k and let λ∗(k) be defined by (60). For all n ≥ 1 such that λ∗(k) /∈ [γn, γn+1], problem (5)
has an eigenvalue λ such that

γn < λ < γn+1, (61)
and the corresponding eigenfunction f has either n or n+ 1 zeros on the interval (0, L).

Proof. Since λ∗(k) /∈ [γn, γn+1], H2(λ, k) has no zeros in [γn, γn+1]. Therefore, H2(γn, k) and H2(γn+1, k)
have the same sign. By (58), H(γn, k) and H(γn+1, k) have opposite signs, and therefore, H(λ, k) = 0 for
some λ ∈ (γn, γn+1). So λ is an eigenvalue of (5).

Recall that the eigenfunctions are of the form f(x) = e− αx
2 (A cos(βx)+B sin(βx)) for some constants

A and B. If λ ∈ (γn, γn+1), then nπ
L < β < (n+1)π

L . Therefore, the oscillatory part of f has between n
2 and

n+1
2 periods on the interval (−L, 0). Therefore, f must have either n or n+ 1 zeros in the interval. �
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This provides an infinite sequence of unbounded, increasing eigenvalues, as predicted by Theorem 1.
We now wish to characterize the relationship between the wavenumber, k, and the value of n such

that λ∗(k) ∈ [γn, γn+1). If we add a condition to the parameters μr, μ(0), μ(−L), μl, T0, and T1, then we
get the following fact.

Lemma 3. Let μr, μ(0), μ(−L), μl, T0, and T1 be such that there exists a value kc such that E0 and E1

are positive for k < kc and E0 = E1 = 0 when k = kc. Then there is a sequence of wavenumbers {kn}∞
n=1

such that
1. For all n, kn is the maximum wavenumber such that 0 < kn < kc and H2(γn, kn) = 0.
2. k1 < k2 < k3 < k4 < · · ·
3. limn→∞kn = kc.
4. For all n such that kn ≥ kc√

3
and all k such that kn ≤ k < kn+1, γn ≤ λ∗(k) < γn+1 (where

γn = λ∗(k) ⇐⇒ kn = k).
5. For all n such that kn ≥ kc√

3
and all k such that kn < k < kn+1, there is an eigenvalue λ such that

γj < λ < γj+1 for all j �= n.

Proof. 1. Fix a value of n. Recall (60) which gives the value λ∗(k) such that H2(λ∗(k), k) = 0. Also
recall that γn depends on k and is given by (57) as γn(k) = 4n2π2+α2L2+4k2L2

4k2L2Uα . Therefore, we must
show that there is a value kn ∈ (0, kc) such that γn(kn) = λ∗(kn). Note that γn(k) = O( 1

k2 ) as k → 0,
and λ∗(k) = O( 1

k ) as k → 0. Therefore, λ∗(k) < γn(k) for small enough k. However, as k → kc,
λ∗(k) → ∞. This comes from the expression (59) for λ∗(k) along with the fact that E0, E1 → 0
as k → kc. In contrast, γn(k) has a finite limit as k → kc. Therefore, λ∗(k) > γn(k) when k is
sufficiently close to kc and there must be at least one value of k ∈ (0, kc) such that λ∗(k) = γn(k).
Since both λ∗(k) and γn(k) are rational functions of k, there will be finitely many such points.
Therefore, we choose kn to be the maximum number in the interval (0, kc) such that λ∗(k) = γn(k).

2. Note that γn+1(k) > γn(k) for all n and k. Therefore, γn+1(kn) > γn(kn) = λ∗(kn) for all n. But as
we saw above, λ∗(k) > γn+1(k) for k sufficiently close to kc. Therefore, there is a k ∈ (kn, kc) such
that γn+1(k) = λ∗(k). This proves that kn < kn+1.

3. Fix k < kc. Since limn→∞γn = ∞, we may choose an N large enough so that γn(k) > λ∗(k) for all
n > N . Let n > N . Since limk→kc

λ∗(k) = ∞ and limk→kc
γn(k) is finite, there is a k̃ ∈ (k, kc) such

that γn(k̃) = λ∗(k̃), and therefore, kn > k. Therefore, we have shown that kn > k for all n > N .
4. Let kn ≥ kc√

3
and kn ≤ k < kn+1. The fact that γn ≤ λ∗(k) with equality only when k = kn holds for

all values of n (not just when kn ≥ kc√
3
) and follows from our choice of kn as a maximum in item 1.

It remains to show that λ∗(k) < γn+1. Note that γn+1(kn) > γn(kn) = λ∗(kn). Also note that γn+1

is a decreasing function of wavenumber. For wavenumbers in [ kc√
3
, kc), λ∗ is an increasing function of

wavenumber. Therefore, there is at most one wavenumber in (kn, kc) such that γn+1 = λ∗. kn+1 is
this unique value. Therefore, λ∗(k) < γn+1.

5. This follows from item 4 and Lemma 2.
�

3.1. Numerical Results

We now choose values for the parameters and investigate the behavior of the system. Let

μl = 2, μ(−L) = 4, μ(0) = 8, μr = 10, U = 1, L =, 1 T0 = T1 = 1.

Using these values, E0 and E1 are positive for 0 < k <
√

2. Therefore, these are the wavenumbers for
which our theory in Sect. 2 holds. In particular, for each k there are infinitely many values of σ which
are positive, can be put in decreasing order, and have zero as a limit point. Figure 2 shows a plot of the
fifteen largest values of σ using a pseudo-spectral method (see “Appendix A.1”). For 0 < k <

√
2, the

values of σ behave as expected. Starting near k =
√

2, some values of σ become negative as expected.
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Fig. 2. (Color plot online) A plot of the dispersion curves for the fifteen largest values of σ

Table 1. The fifteen largest values of σ for several different values of k

k = 0.05 k = 0.20 k = 0.70 k = 1.20 k = 1.35

σ0 3.2860 × 10−2 1.2499 × 10−1 3.3920 × 10−1 3.7208 × 10−1 3.4761 × 10−1

σ1 5.9690 × 10−4 8.7902 × 10−3 7.1555 × 10−2 1.0256 × 10−1 9.1769 × 10−2

σ2 1.0464 × 10−4 1.6506 × 10−3 1.7766 × 10−2 3.4771 × 10−2 3.2629 × 10−2

σ3 3.6704 × 10−5 5.8457 × 10−4 6.7805 × 10−3 1.5787 × 10−2 1.5734 × 10−2

σ4 1.7881 × 10−5 2.8548 × 10−4 3.3990 × 10−3 8.6584 × 10−3 9.0778 × 10−3

σ5 1.0430 × 10−5 1.6667 × 10−4 2.0071 × 10−3 5.3685 × 10−3 5.8527 × 10−3

σ6 6.7943 × 10−6 1.0862 × 10−4 1.3156 × 10−3 3.6204 × 10−3 4.0651 × 10−3

σ7 4.7651 × 10−6 7.6200 × 10−5 9.2600 × 10−4 2.5935 × 10−3 2.9778 × 10−3

σ8 3.5222 × 10−6 5.6332 × 10−5 6.8597 × 10−4 1.9435 × 10−3 2.2700 × 10−3

σ9 2.7074 × 10−6 4.3305 × 10−5 5.2805 × 10−4 1.5080 × 10−3 1.7848 × 10−3

σ10 2.1451 × 10−6 3.4312 × 10−5 4.1880 × 10−4 1.2028 × 10−3 1.4384 × 10−3

σ11 1.7409 × 10−6 2.7849 × 10−5 3.4014 × 10−4 9.8092 × 10−4 1.1829 × 10−3

σ12 1.4409 × 10−6 2.3050 × 10−5 2.8167 × 10−4 8.1486 × 10−4 9.8921 × 10−4

σ13 1.2121 × 10−6 1.9391 × 10−5 2.3705 × 10−4 6.8742 × 10−4 8.3906 × 10−4

σ14 1.0337 × 10−6 1.6537 × 10−5 2.0222 × 10−4 5.8755 × 10−4 7.2038 × 10−4

The values of σ are given for several different values of k in Table 1.
Our choice of parameters satisfies the assumptions of Lemma 3 with kc =

√
2. Therefore, Lemma 3

ensures a sequence {kn}∞
n=1. There is also a unique wavenumber k0 ∈ (0,

√
2) such that H̃(γ0, k0) = 0.

The first several values of kn are given below. Note that k1 >
kc√
3
. Therefore, parts 4 and 5 of Lemma 3

hold for all n ≥ 1.

k0 = 0.126, k1 = 1.282, k2 = 1.375, k3 = 1.396. (62)
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Fig. 3. (Color plot online) Plots of H(λ, k) when k = 0.05. The left plot shows the range of λ for which λ < γ0 and the
right plot shows the range of λ for which λ > γ0. The x’s denote γ0 and γ1

The eigenvalues exhibit different behaviors depending on the wavenumber relative to these values. We
will now explain the behavior in each region and plot the function H(λ, k) for some particular k in that
region.

First consider when k < k0. This is the only region for which there is an eigenvalue λ such that
λ < γ0. Figure 3 shows a plot of H versus λ for k = 0.05. The plot on the left is the region in which H is
imaginary (i.e. when λ < γ0). Note that H has one zero in this region. Since this is the smallest value of
λ which satisfies H(λ, k) = 0, this is the λ0 given by Theorem 1. Therefore, the associated eigenfunction
has no zeros on (−L, 0).

The plot on the right is the region in which H is real (i.e. when λ > γ0). The x’s on the λ axis
correspond to λ = γ0 and λ = γ1. We see thatH has a zero between these two values and the eigenfunction
corresponding to this eigenvalue must have one zero in (−L, 0). So this is λ1 given by Theorem 1. Note
that with these values of the parameters, λ∗(0.05) < γn for all n ≥ 1. Therefore, Lemma 2 gives us
upper and lower bounds for an infinite sequence of eigenvalues. We claim that this is all of the remaining
eigenvalues. To see this, consider the eigenvalue given by Lemma 2 with n = 1, that is, γ1 < λ < γ2. The
eigenfunction corresponding to this eigenvalue must have either one or two zeros. So this value must be
λ1 or λ2. But we already know that λ1 < γ1. Therefore, it must be λ2. Likewise, for any n, the λ given by
Lemma 2 must correspond to λn+1. To show this behavior, we plotted H for larger values of λ in Fig. 4.
The x’s denote the values of γn. In the plot, we see that H has a zero between each value of γn and γn+1

as H continues to oscillate.
The behavior we see for k = 0.05 holds for all values of k such that k < k0. In summary, we have

λ0 < γ0 < λ1 < γ1 < λ2 < γ2 < λ3 < γ3 < · · ·
In order to illustrate these results, Table 2 shows the first fifteen values of γi and λi. Additionally, we
plotted several of the eigenfunctions corresponding to k = 0.05 in Fig. 5.
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Fig. 4. (Color plot online) A plot of H(λ, k) when k = 0.05 in the range of λ for which λ > γ0. The x’s denote the values
of γn

Table 2. The values of γi and λi for 0 < i < 14 for k = 0.05

i γi λi

0 7.0757 × 101 3.0432 × 101

1 5.7663 × 103 1.6753 × 103

2 2.2853 × 104 9.5569 × 103

3 5.1331 × 104 2.7245 × 104

4 9.1199 × 104 5.5925 × 104

5 1.4246 × 105 9.5879 × 104

6 2.0511 × 105 1.4718 × 105

7 2.7915 × 105 2.0986 × 105

8 3.6458 × 105 2.8391 × 105

9 4.6141 × 105 3.6936 × 105

10 5.6962 × 105 4.6619 × 105

11 6.8923 × 105 5.7441 × 105

12 8.2023 × 105 6.9402 × 105

13 9.6262 × 105 8.2502 × 105

14 1.1164 × 106 9.6741 × 105

Next, we investigate the case when k0 < k < k1. For k in this region, λ∗(k) < γn for all n ≥ 1.
Therefore, there will be an eigenvalue λ such that γn < λ < γn+1 for all n ≥ 1. However, there is no
eigenvalue that is less than γ0. To see this, consider Fig. 6 in which we plot H(λ, k) for k = 1.2. The plot
on the left shows that H has no zeros in this region. However, H has two zeros in the region between γ0

and γ1. These two eigenvalues are λ0 and λ1. Therefore, following the argument above, for n ≥ 1, the
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Fig. 5. (Color plot online) A plot of several eigenfunctions when k = 0.05

eigenvalue between γn and γn+1 is λn+1. So

γ0 < λ0 < λ1 < γ1 < λ2 < γ2 < λ3 < γ3 < · · ·

The first fifteen values of γi and λi when k = 1.2 are given in Table 3. Several eigenfunctions are plotted
in Fig. 7.

For values of k such that kn < k < kn+1 for some n ≥ 1, Lemma 3 tells us that γn < λ∗(k) < γn+1.
Therefore, there will be exactly one eigenvalue between γi and γi+1 except when i = n. In this case, we
always get two eigenvalues. We see this in Fig. 8 in which we plotted H(λ, k) for k = 1.35. Note that this
falls in the range k1 < k < k2. Again, there are no eigenvalues that are less than γ0. λ0 is between γ0 and
γ1. Then there are two eigenvalues between γ1 and γ2. So

γ0 < λ0 < γ1 < λ1 < λ2 < γ2 < λ3 < γ3 < · · ·

The first fifteen values of γi and λi for k = 1.35 are given in Table 4. Several eigenfunctions are plotted
in Fig. 9.

In general, for n ≥ 2 and kn < k < kn+1

γ0 < λ0 < · · · < γn−1 < λn−1 < γn < λn < λn+1 < γn+1 < λn+1 < · · ·

As we’ve seen, for k > k1, the first positive eigenvalue, λ0 is between γ0 and γ1. As k increases, λ0 gets
closer to γ1. Recall that γ1 = 4π2+α2L2+4k2L2

4k2L2Uα . Therefore, as k → ∞, γ1 → 1
Uα . Therefore, the growth

rate of the most dangerous mode for large wavenumbers approaches 1
Uα . This is seen in Fig. 10 in which

we plot the largest value of σ = 1
λ verses k as well as 1

γ1
and Uα.
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Fig. 6. (Color plot online) Plots of H(λ, k) when k = 1.2. The left plot shows the range of λ for which λ < γ0 and the
right plot shows the range of λ for which λ > γ0. The x’s denote γ0 and γ1

Table 3. The values of γi and λi for 0 < i < 14 for k = 1.20

i γi λi

0 1.5630 × 100 2.6876 × 100

1 1.1451 × 101 9.7506 × 100

2 4.1115 × 101 2.8760 × 101

3 9.0556 × 101 6.3341 × 101

4 1.5977 × 102 1.1549 × 102

5 2.4876 × 102 1.8627 × 102

6 3.5753 × 102 2.7621 × 102

7 4.8608 × 102 3.8558 × 102

8 6.3440 × 102 5.1453 × 102

9 8.0250 × 102 6.6313 × 102

10 9.9037 × 102 8.3142 × 102

11 1.1980 × 103 1.0194 × 103

12 1.4254 × 103 1.2272 × 103

13 1.6726 × 103 1.4547 × 103

14 1.9396 × 103 1.7020 × 103

3.2. Limiting Cases

We now investigate several limiting cases. First, we will look at the case when the viscous gradient in
the middle layer vanishes (α → 0, see (45)). There are two different physical situations in which this
can happen. The first is for the middle layer to maintain a constant, finite length while the viscosities at
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Fig. 7. (Color plot online) A plot of several eigenfunctions when k = 1.20

k = 1.35
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Fig. 8. (Color plot online) Plots of H(λ, k) when k = 1.35. The left plot shows the range of λ for which λ < γ0 and the
right plot shows the range of λ for which λ > γ0. The x’s denote γ0 and γ1
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Table 4. The values of γi and λi for 0 < i < 14 for k = 1.35

i γi λi

0 1.5378 × 100 2.8768 × 100

1 9.3506 × 100 1.0897 × 101

2 3.2789 × 101 3.0648 × 101

3 7.1853 × 101 6.3556 × 101

4 1.2654 × 102 1.1016 × 102

5 1.9686 × 102 1.7086 × 102

6 2.8280 × 102 2.4600 × 102

7 3.8437 × 102 3.3582 × 102

8 5.0156 × 102 4.4053 × 102

9 6.3437 × 102 5.6028 × 102

10 7.8282 × 102 6.9521 × 102

11 9.4689 × 102 8.4539 × 102

12 1.1266 × 103 1.0109 × 103

13 1.3219 × 103 1.1918 × 103

14 1.5328 × 103 1.3882 × 103
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Fig. 9. (Color plot online) A plot of several eigenfunctions when k = 1.35

the endpoints of the middle layer approach each other (μ(−L) → μ(0)). In the limit, this amounts to a
finite middle layer with constant viscosity. The other physical situation is for the viscosity at each end of
the layer to remain the same, but the length of the middle layer to increase to infinity. In this limit, the
effects of the two interfaces are decoupled. We investigate both of these cases in Sect. 3.2.1.

The other limiting case we investigate is when the length of the middle layer goes to zero. We handle
this case in Sect. 3.2.2.
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Fig. 10. (Color plot online) For large k, the largest value of σ behaves like 1
γ1

3.2.1. limα→0 Case. We first consider the limit as α → 0. Considering (47), β2 → −k2 as α → 0. Recall
that the cutoff value between real and complex values of H is at γ0 = α2+4k2

4k2Uα which goes to ∞ like 1
α

as α → 0. Therefore, as α vanishes, the infinite sequence of eigenvalues found in the previous section
become arbitrarily large. In particular, the values of λ that occur when H is real are bounded below by
1

Uα (and therefore the corresponding σ values bounded above by Uα). Now, consider the function H(λ, k)
as α → 0 in the region λ < γ0. Note that as α → 0,

H1(λ, k) →
(
μrk − E0λ

μ(0)

)(
μlk − E1λ

μ(−L)

)
+ k2, (63)

and H2 is independent of α. Recall

H2(λ, k) =
{
μlk − E1λ

μ(−L)
+
μrk − E0λ

μ(0)

}
. (64)

Using (63) and (64) in (55), and with some algebraic manipulation,

H(λ, k) → i
(
c̃λ2 + b̃λ+ ã

)
,

where

c̃ =
k2

2μ(0)μ(−L)
E0E1

k2

(
ekL − e−kL

)
,

b̃ = − k2

2μ(0)μ(−L)

{(
μrE1

k
+
μlE0

k

)
(
ekL − e−kL

)
+
(
μ(0)E1

k
+
μ(−L)E0

k

)
(
ekL + e−kL

)
}
,

ã =
k2

2μ(0)μ(−L)
{
[μrμl + μ(0)μ(−L)]

(
ekL − e−kL

)
+ [μlμ(0) + μrμ(−L)]

(
ekL + e−kL

)}
.

Author's personal copy



A Study of a Non-Standard Eigenvalue Problem

Therefore, using that λ = 1/σ, the condition H(λ, k) = 0 is equivalent to the quadratic equation aσ2 +
bσ + c = 0 where

a = − ekL(μr + μ(0))(μl + μ(−L)) + e−kL(μr − μ(0))(μl − μ(−L)),

b =
{
(μr + μ(0))ekL + (μ(0) − μr)e−kL

}
(
E1

k

)
+
{
(μl + μ(−L))ekL + (μ(−L) − μl)e−kL

}
(
E0

k

)
,

c =
E0E1

k2

(
e−kL − ekL

)
.

(65)

There are two different ways in which α → 0. The first is for μ(−L) → μ(0). In this case, the
middle layer is of finite length, but the viscosity of the middle layer is essentially constant. If we denote
μ ≡ μ(−L) = μ(0), then a, b, and c correspond to the coefficients found for a constant viscosity middle
layer [4]. Therefore, the exponential viscous profile reduces to the constant viscosity case.

The other way in which α → 0 is to preserve the size of the viscous jumps at the interfaces, but let
L → ∞. Then

c → − E0

k

E1

k
ekL,

b →
[
(μr + μ(0))

E1

k
+ (μl + μ(−L))

E0

k

]
ekL,

a → − (μr + μ(0))(μl + μ(−L))ekL.

The two solutions to the quadratic equation, σ± = −b±√
b2−4ac
2a , are given by

σ+ =
E0

k(μr + μ(0))
, σ− =

E1

k(μl + μ(−L))
.

These are the usual Saffman-Taylor growth rates of each interface [13].

3.2.2. limL→0 Case. Next, we consider the limit as L → 0. Recall that α = 1
L ln
(

μ(0)
μ(−L)

)
. Therefore,

α → ∞ at a rate of 1
L as L → 0. Using (47), β2 → −α2

4 . Like the previous case, γ0 → ∞ as L → 0, but
this time, γ0 → α

4k2U . Therefore, the values of λ that occur when H is real are bounded below by α
4k2U

(and therefore the corresponding σ values bounded above by 4k2U
α ). Now, consider the function H(λ, k)

as L → 0 in the region λ < γ0. Note that H2(λ, k) is independent of L. As L → 0,

H1(λ, k) → α

2

(
μrk − E0λ

μ(0)
− μlk − E1λ

μ(−L)

)
. (66)

Therefore, using (66) and our estimate for β,

H(λ, k) → iα

2
e− αL

2

{(
μrk − E0λ

μ(0)

)
eαL +

(
μlk − E1λ

μ(−L)

)}
.

Since eαL = μ(0)
μ(−L) , H(λ, k) = 0 if and only if

λ =
(μr + μl)

kU(μr − μ(0) + μ(−L) − μl) − k3(T0 + T1)
.

Therefore, the growth rate is

σ =
kU(μr − μ(0) + μ(−L) − μl) − k3(T0 + T1)

(μr + μl)
, (67)

which is the Saffman–Taylor growth rate for a single interface with a viscosity jump equal to the sum of
the viscosity jumps at the two interfaces and with interfacial tension equal to the sum of the interfacial
tensions of the two interfaces. This implies that even an infinitely small middle layer will be less unstable
than the two layer flow.
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4. Conclusions

We studied the spectrum of a non-standard eigenvalue problem that arises from the linear stability analysis
of three-layer Hele-Shaw flows with a variable viscosity middle layer. This problem differs from regular
Sturm-Liouville problems because of the presence of the eigenvalue in the boundary conditions. However,
we were able to show that there is an infinite set of discrete eigenvalues and that the corresponding
eigenfunctions are complete in a certain Hilbert space. We then applied this theory to the case of an
exponential viscous profile. Not only were we able to verify the theoretical results of the previous section,
but also provide a sequence of numbers, {γn}, that alternate with the eigenvalues of the system. We
verified this with numerical computation of the eigenvalues using a pseudo-spectral method. Finally, we
investigated several limiting cases. The first was when the viscous profile of the middle layer approaches
a constant viscosity, both in the case of a fixed-length middle layer and also as the length of the middle
layer goes to infinity. The second limiting case was when the length of the middle layer approaches zero.
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Appendix A. Computation of the Eigenvalues and Eigenfunctions

A.1. Computing the Eigenvalues

In order to numerically compute the eigenvalues, we use a pseudo-spectral method. We first describe the
method and then its application to our specific problem. For a more detailed treatment and proofs of
convergence rates, see [1,15].

Let Tn(y) denote the nth Chebyshev polynomial, which can be defined in terms of trigonometric
functions as

Tn(y) = cos(n cos−1(y)), y ∈ [−1, 1]. (68)
The Chebyshev polynomials satisfy the orthogonality condition

∫ 1

−1

Tn(y)Tm(y)
√

1 − y2
dy = Cnδnm, (69)

where C0 = π and Cn = π
2 for n �= 0. Additionally, the Chebyshev polynomials form a complete set with

respect to the weight function w(y) = 1√
1−y2

. Therefore, for any f ∈ L2
w([−1, 1]), we may expand f as

f(y) =
∞∑

n=0

anTn(y), an =
1√
Cn

∫ 1

−1

f(y)Tn(y)
√

1 − y2
dy. (70)

In order to use this expansion to solve our eigenvalue problem, we approximate the solution as the finite
sum of the first N Chebyshev polynomials

f(y) ≈
N∑

n=0

anTn(y). (71)

In order to optimize the rate of convergence, we evaluate these at the extremal values of the Chebyshev
polynomials (the Gauss–Chebyshev–Lobatto points), which are given by

yj = cos
(
jπ

N

)
, j = 0, . . . , N. (72)
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Using these points, Tn(yj) = cos
(

njπ
N

)
. In order to solve an eigenvalue problem, we also need an expansion

for the derivatives of f . We write the kth derivative of f as

f (k)(y) =
N∑

n=0

anT
(k)
n (y). (73)

Using the change of variables y = cos(θ) and (68), we get Tn(y) = cos(nθ). Therefore

T ′
n(y) =

n sin(nθ)
sin(θ)

. (74)

Using some trigonometric identities in (74), we arrive at the recurrence relation

T ′
n(y) = 2nTn−1(y) +

(
n

n− 2

)
T ′

n−2(y).

In general, for k ≥ 1,the kth derivative satisfies the recurrence relation

T
(k)
0 (y) = 0, T

(k)
1 (y) = T

(k−1)
0 (y), T (k)

n (y) = 2nT (k−1)
n−1 (y) +

(
n

n− 2

)
T

(k)
n−2(y). (75)

We may use this relation to build differentiation matrices in the following way. Let a = {a0, . . . , aN}T

where the ai’s are the coefficients from (71). Let D0 be an (N + 1) × (N + 1) matrix such that the entry
in row i and column j is given by

(D0)i,j = Tj−1(yi−1). (76)

Then D0a = f where f = {f(y0), f(y1), . . . , f(yN )}T . We denote the kth differentiation matrix by Dk.
Using (75), we can recursively build Dk from Dk−1 using

(Dk)i,j = T
(k)
j−1(yi−1) =

⎧
⎪⎪⎨

⎪⎪⎩

0, j = 1,
(Dk−1)i,j−1, j = 2,

2(j − 1)(Dk−1)i,j−1 +
(

j−1
j−3

)
(Dk)i,j−2, 3 ≤ j ≤ N + 1.

(77)

Then, for any k ≥ 0, Dka = fk where fk = {f (k)(y0), f (k)(y1), . . . , f (k)(yN )}T . For an explicit example
of a MATLAB program that builds these matrices, see Schmid and Henningson [14, p. 491–492].

With these matrices, we can solve the eigenvalue problem (5). Recall equation (5)1:

(μf ′)′ − (k2μ− k2Uμ′λ)f = 0, −L < x < 0.

Note that the Gauss–Chebyshev–Lobatto points are in the interval [−1, 1]. We map these points to the
interval [−L, 0] using the affine map x = L

2 (y − 1). Therefore, our collocation points are xi = L
2 (yi − 1).

Additionally, since d
dx = 2

L
d
dy , we let Dx

k =
(

2
L

)k
Dk. Note that (5)1 can be rewritten as

− μ(x)f ′′(x) − μ′(x)f ′(x) + k2μ(x)f(x) = λk2Uμ′(x)f(x). (78)

We require that this equation hold at each collocation point, xi, which gives a system of N +1 equations.
Let V and V′ be the matrices defined by

(V)i,j =

{
μ(xi), j = i,

0, otherwise
, (V′)i,j =

{
μ′(xi), j = i,

0, otherwise
. (79)

Then the ith entry of the vector VDx
ka is μ(xi)f (k)(xi) and likewise for V′Dx

ka. Therefore, the condition
that (78) holds for each xi is given by the matrix equation

− VDx
2a − V′Dx

1a + k2VDx
0a = λk2UV′Dx

0a. (80)

Let A = −VDx
2 −V′Dx

1 +k2VDx
0 and B = k2UV′Dx

0. Then we have the generalized eigenvalue problem
Aa = λBa. However, we must enforce the boundary conditions by amending the first and last rows of A
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and B, which correspond to x0 = 0 and xN = −L, respectively. The boundary conditions (5)2 and (5)3
can be rewritten as

μ(0)f ′(0) + μrkf(0) = E0λf(0),

μ(−L)f ′(−L) − μlkf(−L) = −E1λf(−L).

Therefore, the first and last rows of A and B are
(A)1,j = μ(0)(Dx

1)1,j + μrk(Dx
0)1,j , (B)1,j = E0(Dx

0)1,j ,

(A)N+1,j = μ(−L)(Dx
1)N+1,j − μlk(Dx

0)N+1,j , (B)N+1,j = −E1(Dx
0)N+1,j .

We solve the generalized eigenvalue problem using MATLAB’s “eig” command.

A.2. Finding the Eigenfunctions

Once the eigenvalues are known, we can compute the eigenfunctions from the general form (48):

f(x) = e− αx
2 (A cos(βx) +B sin(βx)).

This can be rewritten in terms of the values at the endpoints as,

f(x) = e− αx
2

(

f(0) cos(βx) +
f(0) cos(βL) − f(−L)e− αL

2

sin(βL)
sin(βx)

)

. (81)

Therefore,

f ′(x) = −α

2
f(x) + βe− αx

2

(

−f(0) sin(βx) +
f(0) cos(βL) − f(−L)e− αL

2

sin(βL)
cos(βx)

)

. (82)

Using these expressions in the boundary condition (5)3 and rearranging terms,

e− αL
2

sin(βL)
f(−L) =

(
μrk − E0λ

μ(0)β
− α

2β
+

cos(βL)
sin(βL)

)
f(0). (83)

Using (83) in (81),

f(x) = f(0)e− αx
2

(
cos(βx) +

(
α

2
− μrk − E0λ

μ(0)

)
sin(βx)
β

)
. (84)

This gives the eigenfunction up to an arbitrary constant, f(0). We choose this constant so that
∫ 0

−L

f(x)dx = 1. (85)

Using that
∫ 0

−L

e− αx
2 cos(βx)dx =

−α
2 + e

αL
2 (α

2 cos(βL) + β sin(βL))
α2

4 + β2
,

and ∫ 0

−L

e− αx
2 sin(βx)dx =

−β + e
αL
2 (β cos(βL) − α

2 sin(βL))
α2

4 + β2
,

condition (85) yields

f(0) =
α2

4 + β2

−α+ e
αL
2

(
α cos(βL) +

(
β2 − α2

4

) sin(βL)
β

)
+
(

μrk−E0λ
μ(0)

)(
1 + e

αL
2

(
α
2

sin(βL)
β − cos(βL)

)) .

(86)
Plugging (86) into (84) gives the normalized eigenfunction. Note that λ appears explicitly in the expression
for the eigenfunctions in addition to the fact that β depends on λ. When we have obtained the eigenvalues
{λi}, we get fi(x) by plugging λi into (86) and (84).
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