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Abstract. Upper bound results on the growth rate of unstable multi-layer
Hele-Shaw flows are obtained in this paper. The cases treated are constant
viscosity layers and variable viscosity layers. As an application of the bound,
we obtain some sufficient conditions for suppressing instability of two-layer flows
by introducing an arbitrary number of constant viscosity fluid layers in between.
This sufficient condition has very practical relevance because it narrows the choice
of internal-layer fluids on the basis of the surface tensions of all interfaces and
viscosities of fluids in various layers. The importance of this condition which
has been hitherto unknown is also discussed. Other consequences of these upper
bounds and sufficient conditions are discussed. The case of internal fluid layers
having stable and unstable viscous profiles is also treated for three-layer and
four-layer flows. The connection of these variable viscosity results to viscous
fingering in complex fluids is also established. Implications of these stability
results for these various multi-layer flows are discussed and compared from a
practical standpoint.
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1. Introduction

Interfacial flows are ubiquitous in Nature and play very important roles in many areas of
science and technology. Over the last few decades, there have been significant advances in
the theory and modeling of flows involving only one interface. However, research on flows
involving more than one interface, though ongoing, is still very primitive. Quantitatively
useful theory and efficient accurate modeling techniques for such multi-interface flows
are few in comparison, though interaction of interfaces with each other and with the
incompressible fluid around these can be explained easily in a qualitative sense using laws
of physics. We take the fluid to be incompressible for ease of explanation. Since the fluid
between any two interfaces is incompressible, the amount of fluid between two interfaces
cannot change due to conservation of mass. Therefore, in general an arbitrary motion of
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one interface, however small, must induce motion of the other interface; otherwise it will
violate the principle of conservation of mass. The only way it can do this is to cause fluid
flow in between the interfaces. This basic mechanism in multi-layer flows explains that
an infinitesimal disturbance of even one interface will cause fluid flows and motion of all
other interfaces, however small. Similarly, using conservation laws one can understand the
mechanism behind stabilization or destabilization of any specific interface. We provide a
simplistic explanation: for destabilization of an interface, energy of the fluid surrounding
this interface will feed into its motion and vice versa for stabilization.

Mathematical equations governing the evolution of interfacial disturbances are well
understood and it is accessible to mathematical analysis within linear theory in the single-
interface case for many flows. This allows reliable prediction of the effect of various
fluids and interfacial properties on the growth of interfacial disturbances. In turn, this
knowledge also guides selection of correct fluid and interfacial properties a priori to
achieve desirable enhancement or suppression of instability of interfacial flows. In contrast,
the mathematical theory of stability of multi-interface flows is much less well developed.
Understanding of similar issues even for two-interface, or equivalently three-layer, flows
is incomplete. The prediction and the selection problems, similar to the ones discussed
above for the single-interface case, are open problems for most multi-interface flows. Such
problems are commonly solved from extrapolation of single-interface results due to lack
of useful theoretical results for such multi-interface flows. This aspect of multi-interface
flow problems is further discussed below using viscosity driven instability in Newtonian
incompressible fluids.

The displacement of a more viscous fluid by a less viscous one is known to be
potentially unstable in a Hele-Shaw cell. Such flows first studied by Hele-Shaw [1] are
known as Hele-Shaw flows and have similarities with flows through porous media [2] in
the sense that in both of these flows, fluid velocity is proportional to the pressure gradient.
Because of this analogy and relative ease and accuracy with which such Hele-Shaw flows
can be experimentally studied in comparison to flows in porous media, Hele-Shaw flows
have been studied extensively over many decades. The instability theory in this context,
also known as Saffman–Taylor instability [3], is now well developed for single-interface
flows. Exact growth rates of interfacial disturbances for such flows are well known and
well documented in standard textbooks on hydrodynamic stability theory, e.g. Drazin
and Reid [4]. For our introduction below and later reference in this paper, it is worth
citing some exact results for rectilinear flows. If μr is the viscosity of the displaced fluid,
μl (μl < μr) is the viscosity of the displacing fluid, U is the constant velocity of the
rectilinear flow, and the surface tension at the interface is T , then the growth rate σst of
the interfacial disturbance having wavenumber k is given by

σst(k) =
Uk(μr − μl) − k3T

μr + μl

, (1)

from which it follows that the growth rate of any unstable wave cannot exceed σu
st:

σst ≤ σu
st =

2T

(μr + μl)

(
U(μr − μl)

3T

)3/2

. (2)

These formulae imply that increasing the interfacial surface tension suppresses instability
whereas increasing the positive viscosity jump at the interface in the direction of flow
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further enforces instability [4]. On the basis of this understanding, it is common practice
to use a layer of third fluid in between having viscosity less than that of the displaced
fluid and more than that of the displacing fluid, in the hope that it will suppress the
growth of instability that is otherwise present in the absence of this middle layer [5]–
[7]. This expectation is justified on the basis of the application of our understanding
of single-interface flows to multi-interface case under the assumptions that (i) there is
minimal or favorable interfacial interaction and (ii) surface tensions at two interfaces are
similar to the surface tension at the original interface between the displaced and the
displacing fluid in the absence of the middle layer. This makes each of these interfaces
less unstable individually due to reduction in the viscosity jump across them. However,
when surface tensions as well as the viscosity jumps at two interfaces are significantly
modified due to the middle-layer fluid, it is not easy to correctly predict the outcome of
these collective effects on the overall instability of these flows from simple extrapolation
of our understanding of single-interface flows. This problem becomes even more daunting
in the case of flows with arbitrary number of interfaces. This paper makes a theoretical
attempt to partially address these issues by extending and building on our previous work
on the upper bound on growth rates of disturbances in three-layer flows.

For the three-layer case, an absolute upper bound of the growth rate, using
Gerschgorin’s localization theorem on a discrete version of the continuous flow problem,
has been derived earlier in [8]. A simpler derivation of the same bound using a weak
formulation has been derived recently in [9]. The absolute upper bound reported there
is in non-strict inequality form meaning, in practice, that this bound will not be reached
for a non-trivial disturbance as discussed in [10]. In [10], it was shown how this bound
reduces to a strict inequality for a non-trivial disturbance and how to improve upon it
by taking physics into consideration. Several interesting theoretical results were reported
there that are independent of the length of the middle layer as well as a numerical study
of the interfacial instability transfer mechanism being presented.

In this paper, we further build on these works in several respects. In particular, in
Part I we consider interfacial flows which have arbitrary number of individually unstable
interfaces (meaning that the viscosity jump is positive in the direction of flow at each of the
interfaces) but individually stable constant viscosity layers. In Part II, we have partially
extended the results of Part I when layers themselves are also individually unstable. This
case is significantly more difficult as we will see later. To be specific:

(1) In section 2, the problem is formulated mathematically.

(2) In section 3.1, the stability problem (see section 5 of [8]) for three-layer flows with
constant viscosity layers is revisited and the old classic result on the upper bound on
the growth rate is presented. To improve upon this bound, a new inequality involving
an integral is derived in section 3.2. Then using this new inequality, continuous
families of upper bound estimates (see inequality (45)) indexed by two parameters
are obtained in section 3.4. By sweeping over the range of values that these parameters
can take, an estimate (see (47)) of the modal upper bound σm

1 (the subscript ‘1’ above
refers to one internal layer or equivalently a three-layer case) is obtained. From this,
an absolute upper bound σu

1 (see (49)) on the growth rate of a non-trivial disturbance
is obtained in a non-strict form without taking into account any ad hoc physical
considerations. This new bound is shown to be an improvement over the upper
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bounds known to date. An explicit and useful good approximation (see (53)) to this
absolute upper bound is also derived here. In section 3.6, roles of short and long
waves are first investigated. Then in section 3.6.3, as an application of this new
absolute upper bound, we obtain an exact theoretical result embodying collective
competing effects of interfacial viscosity jumps and surface tension forces. This result
provides a family of sufficient conditions for suppression of instability which is useful
in the selection of middle-layer fluid based on its interfacial surface tension properties
with the extreme-layer fluids and their viscosities. Strikingly, this family includes a
sufficient condition that does not depend on the viscosity of the middle-layer fluid.

(3) In section 4, we extend the above results first to four-layer flows which are more
amenable to and provide an inductive basis for generalization to flows involving
arbitrary number of unstable interfaces separated by constant viscosity layers.

(4) In section 5, using results of section 4 as an inductive basis we generalize results of
section 3 to flows with arbitrary number of constant viscosity layers. In addition,
in section 5.3 as another application of our results we prescribe a solution to the
following inverse problem: determine the number of layers of constant viscosity fluid
from the prescribed maximal growth rate of the instability.

(5) In section 6, we briefly revisit the stability problem [9] for three-layer flows with
unstable viscosity profile in the middle layer. Extending results from flows with
constant viscosity layers to flows with two or more individually unstable internal
layers is difficult, which has been discussed in section 7. In section 7 where four-layer
flows with internal layers having unstable viscosity profiles are treated, we are able to
obtain some results on the upper bound and some interesting consequences of these
results. This section makes it clear that the tools of analysis that are used in this
paper are not sufficient to provide any interesting results on an upper bound for flows
with arbitrary number of individually unstable internal fluid layers beyond 1.

(6) Finally we conclude and provide a summary of this work in section 8.

In closing this section, it is important to emphasize that though this work was
originally motivated by enhancing oil recovery from porous media, the paper mainly deals
with stability of multi-layer Hele-Shaw flows and provides many new stability results of
fundamental interest. In fact, there are no theoretical results on multi-layer Hele-Shaw
flows and this paper is the first of its kind. Moreover, the technique applied in the paper
is of general interest and may be applicable to other multi-layer flows such as multi-layer
Rayleigh–Taylor instabilities.

2. Background

We first review the physical set-up of the problem and its mathematical formulation [11].

The physical set-up consists of two-dimensional fluid flows in a three-layer Hele-Shaw
cell as shown in figure 1. The domain Ω of interest is then Ω := (x, y) = R

2 (with a
periodic extension of the set-up in the y direction). The fluid upstream (i.e., as x → −∞)
has a velocity u = (U, 0). The fluid in the left layer with constant viscosity μl extends up
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Figure 1. Three-layer fluid flow in a Hele-Shaw cell.

to x = −∞, the fluid in the right layer with constant viscosity μr extends up to x = ∞,
and the fluid in between middle layer of length L has a smooth viscous profile μ(x) with
μl < μ(x) < μr. The underlying equations of this problem are

∇ · u = 0, ∇p = −μu,
∂μ

∂t
+ u · ∇μ = 0, (3)

where ∇ = ( ∂
∂x

, ∂
∂y

). The first equation (3)1 is the continuity equation for incompressible

flow, the second equation (3)2 is the Darcy law [2], and the third equation (3)3 is
the advection equation for viscosity [11, 12]. Equation (3)2 has been used successfully
in modeling Hele-Shaw flows for a long time [1]. For example, Taylor showed in
physical experiments development of fingers in a Hele-Shaw cell which were also obtained
analytically by Saffman and Taylor [3] using the Darcy law (3)2 for modeling velocity.
There is a rich history to this in fluid mechanics [13, 14]. The advection equation (3)3 for
viscosity arises from the continuity equation of species such as polymer in water which is
simply being advected and viscosity of this poly-solution (polymer in water) is an invertible
function of the polymer concentration. More details of this can be found in [11].

The above system admits a simple basic solution: the whole fluid set-up moves with
speed U in the x direction and the two interfaces, namely the one separating the left layer
from the middle layer and the other separating the right layer from the middle layer, are
planar (i.e. parallel to the y–z plane). The pressure corresponding to this basic solution is
obtained by integrating (3)2. In a frame moving with velocity (U, 0), the above system is
stationary along with two planar interfaces separating these three fluid layers. Here and
below, with slight abuse of notation, the same variable x is used in the moving reference
frame.

In the moving frame, the basic solution (u = 0, v = 0, p0(x), μ(x)) is perturbed by
(εũ, εṽ, εp̃, εμ̃), where ε is a small parameter. We write equations (3)1–(3)3 in the above
moving frame and then substitute the perturbed variables in these modified equations. We
equate to zero the coefficients of the small parameter ε to obtain the following linearized
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equations for ũ = (ũ, ṽ), p̃, and μ̃:

∇ · ũ = 0, (4)

∇ p̃ = −μ ũ− μ̃ (U, 0), (5)

∂μ̃

∂t
+ ũ

dμ

dx
= 0. (6)

We study temporal evolution of arbitrary perturbations by the method of normal modes.
Hence, we consider typical wave components of the form

(ũ, ṽ, p̃, μ̃) = (f(x), τ(x), ψ(x), φ(x)) e(i k y+σt), (7)

where k is a real axial wavenumber, and σ is the growth rate which could be complex.
The ansatz (7) is consistent with (4)–(6) provided

τ(x) = ik−1fx, ψ(x) = −k−2μ(x)fx, φ(x) = −σ−1f(x)μx, (8)

where fx denotes the derivative function of f(x). In general, functions f(x), τ(x), ψ(x),
and φ(x) could be complex since the disturbances ũ, ṽ, p̃, μ̃ in the ansatz (7) are real.
However, it has been shown in [9] that these are real including the growth rate σ.
Therefore, these variables will be treated as real for our purposes below.

Cross differentiating the x and y components of the vector pressure equation (5) and
using the ansatz (7) and (8), we obtain

μ(fxx − k2f) + μxfx +
k2U

σ
μxf = 0, x �= −L, 0. (9)

Note that coefficients of this equation depend on k only in its even power (2 to be specific).
Therefore, without any loss of generality, below we take k ≥ 0 which is equivalent
to writing |k| for k below, which is consistent with the above equation. Recall that
μ(x) = μl, x < −L and μx = μr > μl, x > 0. Therefore, in the two extreme layers this
equation simplifies to

fxx − k2f = 0, x < −L, x > 0. (10)

The far-field boundary conditions f → 0 as x → ∓∞ then give the following solutions in
the exterior of middle layer:

f(x) = f(−L) exp(k(x + L)), for x < −L,

f(x) = f(0) exp(−kx), for x > 0.
(11)

We know that the basic state has two planar interfaces at x = 0 and −L in the moving
frame. For general treatment of the derivation of the boundary conditions at these
interfaces, let a planar undisturbed interface be located at x = x0. If this planar surface
is disturbed slightly such that its equation becomes x = x0 + η̃(y, t), then the kinematic
condition that each particle remains there gives

η̃t = ũ(x, y, t) ≈ ũ(x0, y, t), on x = x0 + η̃(y, t), (12)

and the last approximation in the above equation uses linear approximation assuming
that the perturbation is small. It then follows from (7)1 and (12) that

η̃(y, t) = (f(x0)/σ) exp(iky + σt). (13)
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Thus kinematic boundary condition at the interface provides the equation of the
interface in terms of function f(x). This is used below to obtain relevant equations
from the dynamic boundary condition for the interface. This condition, within linear
approximation, is given by

p+(x) − p−(x) = T η̃yy(x), on x = x0 + η̃(y, t), (14)

where the superscripts ‘+’ and ‘−’ are used to denote the ‘right’ and ‘left’ limit values
(direction from ‘left’ to ‘right’ is in the positive direction of the x axis), T is the surface
tension and η̃yy is the approximate curvature of the perturbed interface. Above and below,
hy denotes the derivative of an arbitrary function h(y) with respect to y.

The pressure at the perturbed interfaces will be discontinuous due to curvature effects
and associated surface tension force. We have the following expression for the pressure at
the interface x = x0 + η̃(y, t) as we approach it from the right:

p+(x0 + η̃(y, t)) = p+
0 (x0 + η̃(y, t)) + p̃+(x0 + η̃(y, t))

≈ p0(x0) + η̃(y, t) · (∂p+
0 /∂x)|x=x0 + p̃+(x0), (15)

where the approximation above retains only the linear term in perturbation. The basic
pressure p0(x0) is continuous across the planar interface profile of the basic state. The
right limit values (∂p+

0 /∂x)|x=x0 from (6) and p̃+(x0) from (7) and (8) are given by

∂p+
0 /∂x(x0) = −Uμ+(x0), p̃+(x0) = −(μ+(x0) f+

x (x0)/k
2) exp(iky + σt), (16)

and similar expressions can be obtained for corresponding left limit values.
Substituting (16) into (15) provides the right limit value of the pressure at the perturbed
interface x = x0 + η̃(y, t) and similar expressions and manipulations provide the left limit
value of the pressure at the interface. These are

p+(x0 + η̃(y, t)) = p0(x0) − μ+(x0)

{
f+

x (x0)

k2
+

U

σ
f(x0)

}
exp(iky + σt), (17)

p−(x0 + η̃(y, t)) = p0(x0) − μ−(x0)

{
f−

x (x0)

k2
+

U

σ
f(x0)

}
exp(iky + σt). (18)

Using (17) and (18) in the linearized dynamic condition (14) gives

μ−(x0)

{
f−

x (x0)

k2
+

U

σ
f(x0)

}
− μ+(x0)

{
f+

x (x0)

k2
+

U

σ
f(x0)

}
= −T

k2f(x0)

σ
, (19)

or equivalently

(μ−f−
x f)(x0) − (μ+f+

x f)(x0) =
k2U [μ+(x0) − μ−(x0)] − k4T

σ
f 2(x0). (20)

This equation holds at each of the two interfaces, one at x0 = 0 with surface tension T0

and the other at x = −L with surface tension T1. In this equation for the interface at
x0 = −L, we use f−

x (−L) = kf(−L) from (11), and similarly for the interface at x0 = 0,
we use f+

x (0) = −kf(0) from (11). Therefore, from equation (20) for these two interfaces
we obtain

−(μ−f−
x f)(0) = μr k f 2(0) − E0

σ
f 2(0),

(μ+f+
x f)(−L) = μl k f 2(−L) − E1

σ
f 2(−L),

(21)
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where

E0 = k2U [μr − μ−(0)] − T0k
4, E1 = k2U [μ+(−L) − μl] − T1k

4. (22)

The mathematical problem for this three-layer case is defined by the field equation (9),
far-field boundary conditions (11) and two interfacial conditions (21).

In Part I below, we first consider the above problem with constant viscosity fluid in the
middle layer and obtain results which go beyond our previously reported results in [15] on
this problem. Then we generalize these results to a multi-layer case with arbitrary number
of interfaces separating constant viscosity fluids. In Part II, we provide results on upper
bounds and their consequences for three-layer and four-layer flows with variable viscous
profiles for the internal layers. Difficulties for extending these results to a multi-layer case
are addressed in this part.

Part I: Constant viscosity fluid layers

3. Three-layer flows

3.1. A classic result on the upper bound

Consider that the fluid in the intermediate layer has constant viscosity μ1 with μl < μ1 <
μr. Then the problem for the middle region [−L, 0] defined by equation (9) and the two
interfacial conditions (21) reduces to

fxx − k2f = 0,

−μ1(f
−
x f)(0) = (μrk − σ−1E0)f

2(0),

μ1(f
+
x f)(−L) = (μlk − σ−1E1)f

2(−L),

(23)

where

E0 = {[μ]r Uk2 − T0k
4}, E1 = {[μ]l Uk2 − T1k

4}. (24)

Above and below, we have used the notation [μ]l = (μ1 − μl) and [μ]r = (μr − μ1).
Multiplying (23)1 with f(x) and then integrating on the interval (−L, 0) leads to

(f+
x f)(−L) − (f−

x f)(0) +

∫ 0

−L

f 2
x dx + k2

∫ 0

−L

f 2 dx = 0, (25)

where we have used (f1f2)(x) = f1(x)f2(x). Using boundary conditions (23)2 and (23)3

in (25) and then simplifying leads to

σ =
E0 f 2(0) + E1 f 2(−L)

μr k f 2(0) + μl k f 2(−L) + μ1

∫ 0

−L
(k2 f 2 + f 2

x) dx
. (26)

All the terms in the denominator above are positive.
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In (26), if we neglect appropriate positive terms from the denominator and negative
terms from the numerator if any; then we get the following four cases:

k2 > max

{
U [μ]l
T1

,
U [μ]r
T0

}
⇒ E0 < 0, E1 < 0 ⇒ σ < 0, (27)

U [μ]r
T0

< k2 <
U [μ]l
T1

⇒ E0 < 0, E1 > 0 ⇒ σ <
E1

μlk
, (28)

U [μ]l
T1

< k2 <
U [μ]r
T0

⇒ E0 > 0, E1 < 0 ⇒ σ <
E0

μrk
, (29)

k2 < min

{
U [μ]l
T1

,
U [μ]r
T0

}
⇒ E0 > 0, E1 > 0 ⇒ σ <

E0f
2(0) + E1f

2(−L)

μrkf 2(0) + μlkf 2(−L)
, (30)

for a non-trivial disturbance. We first consider the upper bound on the growth rates of
waves in the range

k2 < min

{
U [μ]r
T0

,
U [μ]l
T1

}
, (31)

where the inequality (30) for the growth rate σ holds. To this inequality, we apply the
following relation from [9] which holds for arbitrary n under the condition Ai > 0, Bi >
0, Xi > 0, for i = 1, . . . , n,

∑n
i (AiXi)∑n
i (BiXi)

≤ max
i

{
Ai

Bi

}
. (32)

Then we obtain for waves in the range (31)

σ(k) < max

{
E0

kμr
,

E1

kμl

}
= max

{(
[μ]r Uk − T0k

3

μr

)
,

(
[μ]l Uk − T1k

3

μl

)}
, (33)

where we recall [μ]r = (μr − μ1), and [μ]l = (μ1 − μl). Since the upper bound (33) is
not less than the estimates (28) and (29) for the upper bounds on growth rates for waves
outside the range (31), (33) is a modal upper bound for all waves. The absolute upper
bound (i.e., the growth rate of any unstable wave cannot exceed this bound) is then given
by

σ < max

{
2T0

μr

(
U [μ]r
3T0

)3/2

,
2T1

μl

(
U [μ]l
3T1

)3/2
}

. (34)

Below, in lemma 1 we obtain an estimate for the integral in the denominator of (26)
which was neglected in the above estimate. This estimate will then be used to obtain
a new upper bound for this three-layer case which, as we will see, is an improvement
over (33) and (34).
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3.2. A useful lemma

We need the following lemma to obtain the improved upper bound.

Lemma 1. Consider the function f and the integral I such that

fxx(x) − k2f(x) = 0, ∀ x ∈ (−L, 0), I =

∫ 0

−L

(k2f 2 + f 2
x) dx. (35)

Then we have the inequality

I ≥ k tanh(kL)(λ1 f 2(−L) + λ2 f 2(0)), (36)

where tanh(x) = (exp(x) − exp(−x))/(exp(x) + exp(−x)), λi ≥ 0, and λ1 + λ2 ≤ 1.

Proof. The general solution of equation in (35) in terms of boundary data for the
eigenfunction f is given by

f(x) =
f(0) sinh(kx + kL) − f(−L) sinh(kx)

sinh(kL)
, (37)

from which we have

fx(0) =
k

sinh(kL)
{f(0) cosh(kL) − f(−L)},

fx(−L) =
k

sinh(kL)
{f(0) − f(−L) cosh(kL)}.

(38)

We use (35), (38) and get

I =

∫ 0

−L

(fxf)x dx = f(0)fx(0) − f(−L)fx(−L)

=
k

sinh(kL)
{f(0)2 cosh(kL) − 2f(0)f(−L) + f 2(−L) cosh(kL)}. (39)

It is easy to see that the following inequality holds for the quadratic form F given below:

F (ζ, χ) =
1

sinh b
{ζ2 cosh b − 2ζχ + χ2 cosh b} ≥ tanh b χ2. (40)

For this, a new form of the above inequality is considered which is useful for our purposes:

ζ2 cosh b − 2ζχ + χ2

{
cosh b − sinh2 b

cosh b

}
≥ 0. (41)

We recall the formula cosh2 b − sinh2 b = 1. Then the last inequality is equivalent to

ζ2 cosh b − 2ζχ + χ2 1

cosh b
=

(
ζ
√

cosh b − χ√
cosh b

)2

≥ 0. (42)
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Since F (ζ, χ) is symmetric in ζ and χ, the inequality (40) also holds if ζ and χ are
interchanged in this equality. Then we have

F (χ, ζ) =
1

sinh b

{
ζ2 cosh b − 2ζχ + χ2 cosh b

}
≥ tanh b ζ2. (43)

Recall that cosh b ≥ 1, sinh b > 0, ∀ b > 0. Taking a convex combination of the
two inequalities (40) and (43) and then using the resulting inequality in (39) with
ζ = f(0), χ = f(−L), b = kL, we obtain the inequality (36) with λ1 + λ2 = 1. However, if
the inequality (36) holds for λ1 + λ2 = 1, then it must also hold for λ1 + λ2 ≤ 1 as each
of the two additive terms in this inequality is positive. ��

Lemma 2. The integral I defined in (35) satisfies the following inequality:

I ≥ max
{
k tanh(kL)f 2(−L), k tanh(kL)f 2(0)

}
≥ k tanh(kL)(λ1 f 2(−L) + λ2 f 2(0)),

(44)

where λi ≥ 0, and λ1 + λ2 ≤ 1.

Proof. Regarding the best choice for the pair (λ1, λ2) in lemma 1 above so that we have
the upper lower bound of integral I in (35), the following main result of linear programing
theory (also known as the simplex method) is useful: ‘The maximum value of a linear
function f on a convex set S is attained at one of the edges of S.’

Let S = {x, y|x, y,≥ 0, x + y ≤ 1} be the convex set between the lines x = 0, y = 0,
y = 1 − x. Edges of S are the points A = (0, 0), B = (1, 0), and C = (0, 1). The linear
function is f(x, y) = ax + by, a, b > 0, x, y ≥ 0. The maximum value of f on S is attained
either at A or at B or at C. But f(A) = 0 < f(B) and f(A) = 0 < f(C). Then the
maximum value of f on S is attained in B or in C, which are the edges of the segment
x + y = 1 intersecting with S. Then the conclusion is that the maximum value of f is
attained either at (1, 0) or at (0, 1), Then the best possible choices of the two parameters
are (λ1 = 1, λ2 = 0) and (λ1 = 0, λ2 = 1). This proves (44). ��

To obtain an improved absolute upper bound compared to (34), the inequality (44)
needs to be used in (26) for the integral in the denominator which was earlier neglected
to obtain (34). Because the inequality (44) depends on two parameters and the tanh(kL)
term, a straightforward use of this will give a bound that depends on these, as we will see
below. We have to seek values of the parameters and k which give the best absolute upper
bound. To methodically do this, we introduce below different types of upper bounds and
by analyzing these bounds, we obtain best absolute upper bound but only in terms of two
constants which arise due to the tanh(kL) term. To get estimates of these constants, some
analysis involving short and long waves is necessary for reasons discussed in section 3.6.

3.3. Some notation

For the rest of Part I (constant viscosity fluid layers) of the paper, the above two lemmas
will be used to obtain several results on the upper bound on the growth rate in several
kinds of flows. Because of there being two parameters (see inequalities (36) and (44))
in the above lemma, these parameters will appear often and we need a convention for
notation for various upper bounds, some of which will depend on these parameters and
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some of which will not. For ease of reference, whenever necessary while reading the rest
of the paper, we give this notation here.

• λi,j: this notation is a generalization of the notation λ1 and λ2 used in the lemma
above. This is required for multi-layer flows as we will see in later sections. The first
subscript ‘i’ on λi,j can be either 1 or 2 in the spirit of the lemma (see (36)). As
we will see below, an inequality of the type (36) will appear for each internal layer
for multi-layer flows. The second index ‘j’ on λi,j refers to the specific internal-layer
number ‘j’ in multi-layer flows. Below, we do not use this second index when there
is only one internal layer, i.e., in the three-layer case, because there is no source of
confusion in not using this second index in this case. In general, however, for flows
with more than one internal layer we will use λi,j in the notation when using the
above lemma.

• σn(k): this notation stands for the exact value of the growth rate σn(k) of a mode with
wavenumber k in (n+2)-layer Hele-Shaw flows which has n internal layers (n = 1, 2, N
are of interest below).

• σm
n (k; λi,j): this notation stands for the modal upper bound on σn(k) which depends

on parameters λi,j. In other words, σn(k) ≤ σm
n (k; λi,j) for all allowable values of λi,j

according to lemma 1. The exact number of parameters that it will depend on will
be exactly 2n and this will be explicit in the expression for σm

n (k; λi,j).

• σm
n (k): this stands for the modal upper bound independent of parameters λi,j.

Physically, this is of interest. Thus it is defined as

max
λ1,j+λ2,j≤1

σm
n (k; λi,j) ≤ σm

n (k).

This maximum is to be taken over all layers, i.e., λ1,j + λ2,j ≤ 1, ∀ 1 ≤ j ≤ n.

• σu
n(λi,j): this is the absolute upper bound over all wavenumbers for any specific choice

of parameters within the constraint of lemma 1.

• σu
n: this is the absolute upper bound over all wavenumbers and over all allowable values

of the parameters λi,j. Growth rates cannot exceed this value regardless of the value
of k and parameters λi,j. Thus

max
k

σm
n (k) ≤ σu

n = max
λi,j

σu
n(λi,j).

Below, when necessary we will use either s or l subscript on σ in addition to n to
denote short wave or long wave regimes respectively.

3.4. New improved results on the upper bound

Using inequality (36) of the above lemma in (26) and then using inequality (32) gives the
following modal upper bound σm

1 (k; λ1, λ2) (subscript 1 on σ is now used here to indicate
the case of one internal layer or equivalently three-layer flows) for any specific choice for
the values of (λ1, λ2) within the constraint of lemma 1:

σ1(k) ≤ ([μ]r Uk − T0k
3) f 2(0) + ([μ]l Uk − T1k

3) f 2(−L)

(μr + λ2μ1 tanh(kL))f 2(0) + (μl + λ1μ1 tanh(kL))f 2(−L)

≤ max

{
[μ]l Uk − T1k

3

μl + λ1μ1 tanh(kL)
,

[μ]r Uk − T0k
3

μr + λ2μ1 tanh(kL)

}
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= max {Ql(k, λ1), Qr(k, λ2)}
= σm

1 (k; λ1, λ2). (45)

For purposes below, we have used above the notation

Ql(k, λ1) = ([μ]l Uk − T1k
3)/(μl + λ1μ1 tanh(kL)),

Qr(k, λ2) = ([μ]r Uk − T0k
3)/(μr + λ2μ1 tanh(kL)).

(46)

Since the modal upper boundσm
1 (k; λ1, λ2)is in terms of two parameters λ1 and λ2, we have

two families of upper bounds in (45). We derive such formulae in sections 4 and 5 for four-
layer (see (90)) andN -layer (see (99)) flows respectively. For the choice of (λ1, λ2) = (0, 0),
the modal upper bound σm

1 (k; λ1, λ2) given by (45) reduces to the already known upper
bound result given by (33). Since tanh(kL) is an increasing function of kL, the new upper
bound σm

1 (k; λ1, λ2) given by (45) is certainly an improvement over (33) for any choice of
(λ1, λ2) �= (0, 0). The modal upper bound σm

1 (k; λ1, λ2) for λ1 = λ2 = 1
2

is an interesting
upper bound because of the equal effects that these parameters produce on Ql(k, λ1) and
Qr(k, λ2) (see (46) and (45)).

3.5. Best estimates on modal and absolute upper bounds

For the best possible estimate of the upper bound within the limitation of lemma 1, we
need to use values of (λ1, λ2) for which the estimate (45) is the least over all admissible
values of λ1 and λ2. Therefore, using lemma 2, it is clear from the expression (45) that
the desired estimate σm

1 (k) of the modal upper bound over all allowable values of λ1 and
λ2 is given by

σ1(k) ≤ min (σm
1 (k; 1, 0), σm

1 (k; 0, 1))

= min
(
max

{
Ql(k, λ1 = 1),

Qr(k, λ2 = 0)
}
, max {Ql(k, λ1 = 0), Qr(k, λ2 = 1)}

)

= min

(
max

{
[μ]l Uk − T1k

3

μl + μ1 tanh(kL)
,
[μ]r Uk − T0k

3

μr

}
,

max

{
[μ]l Uk − T1k

3

μl

,
[μ]r Uk − T0k

3

μr + μ1 tanh(kL)

})

= σm
1 (k). (47)

The functions Ql(k, λ1 = 0) and Qr(k, λ2 = 0) take their maximum values Ql,max(λ1 = 0)
and Qr,max(λ2 = 0) at k = kc,1 and k = kc,2 respectively which are given by

kc,1 =

√
U [μ]l
3T1

, kc,2 =

√
U [μ]r
3T0

,

Ql,max(λ1 = 0) =
2T1

μl

(
U [μ]l
3T1

)3/2

, Qr,max(λ2 = 0) =
2T0

μr

(
U [μ]r
3T0

)3/2

.

(48)

The denominator of Ql(k, λ1) is an increasing function of k for λ1 �= 0 and therefore its
effect on the parabolic profile in k of the numerator is to reduce the maximum value
Ql,max(λ1 = 0) given by (48) and it appears as one of the terms in old estimate (34) of
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the absolute upper bound. And similarly for Qr,max(λ2 = 0). Therefore, it should be clear
that the estimate σu

1 of the absolute upper bound based on the maximum values of the
terms in (47) is an improvement over the previous estimate (34).

The following improved estimate σu
1 of the absolute upper bound follows from (47)

and (48):

σ1(k) ≤ min

(
max

{
Ql,max(λ1 = 1),

2T0

μr

(
U [μ]r
3T0

)3/2
}

,

max

{
2T1

μl

(
U [μ]l
3T1

)3/2

, Qr,max(λ2 = 1)

})

= σu
1 , (49)

where

Ql,max(λ1 = 1) = max
k

(
[μ]l Uk − T1k

3

μl + μ1 tanh(kL)

)
=

(
[μ]l Uk∗

1 − T1(k
∗
1)

3

μl + μ1 tanh(k∗
1L)

)
, (50)

and k∗
1 is the value of k that solves the following equation:

[μ]l Uk − T1k
3

μl + μ1 tanh(kL)
=

([μ]l U − 3T1k
2) cosh2(kL)

μ1 L
. (51)

Similarly, formulae analogous to (50) and (51) can be written down for Qr,max(λ2 = 1)
and the corresponding value of k∗

2 respectively. One has to take recourse to numerical
computation to first find k∗

1, k
∗
2 from (51) etc, and then find the upper bound σu

1 using
the above formulae (49). Below, we derive an approximation σa

1 (see (53) below) of the
bound σu

1 (see (49) above) that does not require numerical computation.
Since tanh(kL) is an increasing function of its argument, we can obtain from (46)

that

Ql,max(λ1) = max
k

(
[μ]l Uk − T1k

3

μl + λ1μ1 tanh(kL)

)

≤ max
k

(
[μ]l Uk − T1 k3

μl + λ1μ1 c1

)

=
2T1

μl + λ1μ1 c1

(
U [μ]l
3T1

)3/2

, (52)

where 0 < c1 < tanh(k∗
1L) ≈ tanh(kc,1 L) (kc,1 has been defined in (48)). Since k∗

1 < kc,1

(see the explanation given earlier in the paragraph preceding (49)), it is safe to choose a
value for c1 ≤ tanh(kc,1 L). Note that formulae similar to (52) exist for Qr,max(λ2) with
a constant c2 ≤ tanh(kc,2 L). Using these facts in (50) and in an analogous formula for
Qr,max(λ2 = 1), we obtain from (49) the following approximate upper bound σa

1 given
explicitly in terms of the parameters of the problem, unlike the bound σu

1 given in (49):

σ1(k) ≤ min

(
max

{
2T1

μl + μ1 c1

(
U [μ]l
3T1

)3/2

,
2T0

μr

(
U [μ]r
3T0

)3/2
}

,

max

{
2T1

μl

(
U [μ]l
3T1

)3/2

,
2T0

μr + μ1 c2

(
U [μ]r
3T0

)3/2
})

= σa
1 ∼ σu

1 . (53)
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Note that the selection procedure for values of c1 and c2 in this formula has been discussed
above. It should be clear that the bound σu

1 given in (49), though requiring numerical
computation for evaluating its value, is the best absolute upper bound obtained so far on
the growth rate. The approximate one σa

1 given above in (53) may not be an improvement
over σu

1 . However, both of these estimates are significant improvements over the previously
known result (34).

3.6. Stability enhancement

In two-layer flows, a reduction in the jump in viscosity μr − μl (see equation (2)) at
an unstable interface has a stabilizing effect whereas a reduction in the value of the
surface tension has a destabilizing effect. Therefore, stabilizing an unstable interface in
an otherwise two-layer flow (fluid with viscosity μl pushing fluid with viscosity μr) by
introducing a third fluid having viscosity μ1 with μl < μ1 < μr (the notation has been
discussed above) requires that interfacial surface tensions must have reasonable values so
as not to offset any gain in stabilization due to reduction in viscosity jump at the leading
interface in this three-layer set-up. It is of interest to be able to mathematically quantify
this in terms of fluid viscosities and interfacial surface tensions for the three-layer flows.
We will do this below in this section after discussing the roles of short and long waves in
this stabilization process.

Since surface tension primarily affects short waves and not long waves, it is possible
that middle-layer fluid with μl < μ1 < μr in the three-layer flow suppresses the instability
of long waves regardless of the surface tension values at the two interfaces. We need to
mathematically investigate this issue in this three-layer case for several reasons. If this is
indeed the case (as we will see below), then it will allow us to obtain estimates for the
constants c1 and c2 that appear in the formula (53).

3.6.1. Role of long waves. Below we use subscript l to refer to ‘long’ wave regime. For
the modal upper bound σm

1,l(k; λ1, λ2) for long waves (kL � 1), the inequality (45) is
approximated as

σ1,l(k) < σm
1,l(k; λ1, λ2) ≈ max

{
kU(μ1 − μl)

μl + λ1k L μ1
,

kU(μr − μ1)

μr + λ2k L μ1

}
. (54)

This approximate upper bound σm
1,l(k; λ1, λ2) for long waves will be less than the Saffman–

Taylor growth rate for long waves (see formulae (1)) if both of the following inequalities
hold:

kU(μ1 − μl)

μl + λ1k L μ1
<

kU(μr − μl)

μr + μl
, (55)

and

kU(μr − μ1)

μr + λ2k L μ1
<

kU(μr − μl)

μr + μl
. (56)

The inequality (55) leads to

μ1 − μl <
μr − μl

μr + μl

(μl + λ1kLμ1) <
μr − μl

μr + μl

(μl + Lμ1). (57)
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Since μl + Lμ1 < μr + Lμr = μr(1 + L), the above inequality becomes

μ1 < μl +
μr − μl

μr + μl
μr(1 + L). (58)

Similarly, inequality (56) leads to

μr − μ1 <
μr − μl

μr + μl
(μr + λ2kLμ1) <

μr − μl

μr + μl
(μr + Lμ1). (59)

Since μr + Lμ1 < μr + Lμr = μr(1 + L), the above inequality becomes

μr −
(μr − μl)μr(1 + L)

μr + μl

< μ1. (60)

From (58) and (60),

μr −
(μr − μl)μr(1 + L)

μr + μl
< μ1 < μl +

(μr − μl)μr(1 + L)

μr + μl
. (61)

This is consistent with the requirement μl < μ1 < μr. From (61), we have

μr −
(μr − μl)μr(1 + L)

μr + μl

< μl +
(μr − μl)μr(1 + L)

μr + μl

, (62)

or equivalently

(μr − μl) < 2
(μr − μl)μr(1 + L)

μr + μl
, (63)

which, after cancelation of (μr − μl) from both sides, simplifies to

(L + 1) >
μr + μl

2μr
⇒ L >

μl − μr

2μr
. (64)

This relation always holds since L > 0 and μl < μr. Therefore, all long wave disturbances
(kL � 1) are less unstable in this three-layer set-up than in the two-layer set-up regardless
of the values of interfacial surface tensions. Therefore, only stabilities of short waves are
affected by surface tension whereas the viscosity μ1 of the middle-layer fluid (with μl and
μr fixed) affects the stability of all waves.

3.6.2. Role of short waves. For kL ≥ 1 (short wave regime), inequality (45) is

σ1,s(k) < σm
1,s(k; λ1, λ2) = max

λ1+λ2=1

{
kU [μ]l − k3T1

μl + λ1c1μ1

,
kU [μ]r − k3T0

μr + λ2c2μ1

}
. (65)

The subscript s above refers to the short wave regime: kL ≥ 1. Recall from the line after
equation (52) that c1 ≤ tanh(k∗

1L) with k∗
1 defined as a root of equation (51) and c2 is

defined similarly. It is clear that we can take c1 = c2 = tanh(1) = 0.7616 in the above
relation (65) as well as in (53). This value of c will only provide a conservative estimate of
the absolute upper bound since the actual value of c will usually be higher (but less than
1) as tanh(kL) is an increasing function of its argument. The terms in these modal upper
bounds are similar in form to the formula (1) for the exact growth rate in the two-layer
case, only μ1 in the denominator now has a multiplicative term involving μ1. Below, we
write c for both c1 and c2 and as justified above, we can safely take c = tanh(1).
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3.6.3. Sufficient conditions for stability enhancement. Improvement in stability for these
three-layer flows over the two-layer case requires that σu

1 < σst. We, instead, use

σa
1 < σst, (66)

where we recall that the approximate upper bound σa
1 on the growth rate is given by (53)

and σst by (2). This leads to two inequalities:

2T1

μl + λ1cμ1

(
U(μ1 − μl)

3T1

)3/2

<
2T

(μr + μl)

(
U(μr − μl)

3T

)3/2

, (67)

and

2T0

μr + λ2cμ1

(
U(μr − μ1)

3T0

)3/2

<
2T

(μr + μl)

(
U(μr − μl)

3T

)3/2

. (68)

These two inequalities are written in terms of λ1 and λ2 so that they cover all four cases
arising from the above requirement of enhancement of stability. The inequalities (67)
and (68), after simple manipulation, lead to respectively

μ1 < μl +

(
T1

T

)1/3

(μr − μl)

(
μ1l

μl + μr

)2/3

, (69)

and

μr −
(

T0

T

)1/3

(μr − μl)

(
μr1

μl + μr

)2/3

< μ1, (70)

where

μ1l = (μl + λ1μ1 c), and μr1 = (μr + λ2μ1 c). (71)

The inequalities (69) and (70) when put together give

μr −
(

T0

T

)1/3

(μr − μl)

(
μr1

μl + μr

)2/3

< μ1 < μl +

(
T1

T

)1/3

(μr − μl)

(
μ1l

μl + μr

)2/3

. (72)

Now, the above inequality (72) arising from the requirement of stability enhancement
gives a lower (upper) bound on μ1 in terms of μr (μl), not inconsistent with μl < μ1 < μr.
The leftmost and rightmost parts of this inequality, after simple manipulation, give(

T0

T

)1/3 (
μr1

μl + μr

)2/3

+

(
T1

T

)1/3 (
μ1l

μl + μr

)2/3

> 1, (73)

or equivalently

α

(
T0

T

)1/3

+ β

(
T1

T

)1/3

>

(
μl + μr

μ∗
r

)2/3

, (74)

where

α =

(
μr1

μ∗
r

)2/3

, and β =

(
μ1l

μ∗
r

)2/3

, (75)
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with μ∗
r = μr + max(λ1, λ2)cμ1. The form of the inequality (74) is amenable to

generalization for multi-layer flows as we will see later. For purposes below, it is better
to rewrite (74) equivalently as(

T0

T

)1/3

+

(
μl + λ1μ1c

μr + λ2μ1c

)2/3 (
T1

T

)1/3

>

(
μr + μl

μr + λ2μ1c

)2/3

. (76)

The significance of (76) should not be underestimated as it allows, for the purpose of
enhancement of stability, selection of middle-layer fluids purely based on its interfacial
tension properties for the extreme-layer fluids. It is appropriate here to recall the
importance of the constraint μl < μr. Only when μl < μ1 < μr can criterion (76) be used
to identify a class of middle-layer fluids for the purpose of enhancement of stability of two-
layer fluid flows. Next, we consider some specific sufficient conditions arising from (76)
for specific choices of the parameters λ1 and λ2.

For the choice (λ1, λ2) = (0, 0) corresponding to the upper bound (34), inequality (76)
reduces to the sufficient condition(

T0

T

)1/3

+

(
μl

μr

)2/3 (
T1

T

)1/3

>

(
1 +

μl

μr

)2/3

. (77)

Note that this particular sufficient condition (77) does not depend on the viscosity of the
middle-layer fluid but it does depend on the interfacial tensions which certainly depend on
this middle-layer fluid since both interfaces separate this middle-layer fluid from extreme-
layer fluids. Notice that if T0 = T1 = T , then (77) reduces to an inequality which is always
satisfied since, in general, it can be easily shown that (1 + xp) ≥ (1 + x)p, p ∈ (0, 1), x ∈
[0, 1]. (The proof for this is simple: consider the function F (x) = (1 + xp) − (1 + x)p.
Then F ′(x) = p[xp−1 − (1 + x)p−1]. Since (1 + x) ≥ 1 for 0 ≤ x ≤ 1 and (p − 1) < 0,
we have 0 < (1 + x)p−1 ≤ 1 and xp−1 ≥ 1. Therefore F ′(x) > 0 and since F (0) = 0, we
have F (x) > 0 ∀ x ∈ [0, 1].) Therefore, if the surface tensions at interfaces separating
every pair of these three fluids are the same, then we can always expect an enhancement
of stability: a fact expected from physical insight.

For any other choice of (λ1, λ2), the sufficient condition (76) depends on the viscosity
μ1 of the middle-layer fluid directly. For example, the choice of (λ1, λ2) = (1, 0) in (76)
gives the inequality(

T0

T

)1/3

+

(
μl + μ1c

μr

)2/3 (
T1

T

)1/3

>

(
μr + μl

μr

)2/3

. (78)

On the other hand, (λ1, λ2) = (0, 1) in (76) gives the inequality(
T0

T

)1/3

+

(
μl

μr + μ1c

)2/3 (
T1

T

)1/3

>

(
μr + μl

μr + μ1c

)2/3

. (79)

4. Four-layer flows

In this four-layer case, fluid flows at a constant velocity U in the direction of increasing
viscosity with four layers, each having different but constant viscosity with positive
viscosity jump in the direction of flow at each of the three planar interfaces (see figure 2).
In a reference frame moving in the same direction as the flow with speed U , a fluid of
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Figure 2. Four-layer fluid flow in a Hele-Shaw cell. The surface tensions at three
interfaces are shown as T0, T1, and T2. The constant viscosities are increasing in
the direction of flow: μl < μ2 < μ1 < μr.

viscosity μl occupies an infinite region x < −2L and a fluid of viscosity μr > μl occupies
an infinite region x > 0. Two intermediate regions −L < x < 0 and −2L < x < −L have
fluids of constant viscosities μ1 and μ2 respectively such that μl < μ2 < μ1 < μr. It is
clear that there are three interfaces located at x = 0, −L, and −2L with corresponding
interfacial surface tensions denoted by T0, T1, and T2 respectively.

In this four-layer case, the relation (10) still holds away from all three interfaces and
hence the relation (11) still holds in the exterior of the two internal layers of fluids with
the obvious modification:

f(x) = f(−2L) exp(k(x + 2L)), for x < −2L,

f(x) = f(0) exp(−kx), for x > 0.
(80)

Then we have f−
x (−2L) = kf(−2L) and f+

x (0) = −kf(0) in the exterior of the
intermediate regions. The limit values of fx on the boundaries of the two internal layers
are given by formulae similar to (38). Using these limit values at the interfaces in the
linearized dynamic and kinematic interfacial conditions, like in the three-layer case, after
some algebraic manipulation, leads to the following three conditions at three interfaces,
similar to (23):

−μ1(f
−
x f)(0) = (μr k − σ−1E0)f

2(0),

μ1(f
+
x f)(−L) − μ2(f

−
x f)(−L) = −σ−1E1f

2(−L),

μ2(f
+
x f)(−2L) = (μl k − σ−1E2)f

2(−2L),

(81)

where

E0 = k2 U(μr − μ1) − k4T0,

E1 = k2 U(μ1 − μ2) − k4T1,

E2 = k2 U(μ2 − μl) − k4T2.

(82)

As before, we integrate equation (10) (which (9) reduces to in each layer) after multiplying
with f(x) on the interval x ∈ (−2L, 0). In this interval, there is an interior interface at
x = −L across which there is a jump in the values of μ and fx(x). Therefore, we split the
integral into two parts, namely on the intervals (−2L,−L) and (−L, 0). Thereby we get

−μ2

∫ −L

−2L

(fxf)x dx − μ1

∫ 0

−L

(fxf)x dx +

∫ 0

−2L

μf 2
x dx + k2

∫ 0

−2L

μf 2 dx = 0. (83)
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Upon integration and simplifying, we get

−μ2(f
−
x f)(−L) + μ2(f

+
x f)(−2L) − μ1(f

−
x f)(0)

+ μ1(f
+
x f)(−L) +

∫ 0

−2L

μ(f 2
x + +k2f 2) dx = 0. (84)

Using (81) in (84) and then simplifying, the growth rate can be expressed as

σ2(k) =
E0 f 2(0) + E1f

2(−L) + E2f
2(−2L)

μrkf 2(0) +
∫ 0

−2L
μ(f 2

x + k2f 2) dx + μlkf 2(−2L)

=
E0f

2(0) + E1f
2(−L) + E2f

2(−2L)

μrkf 2(0) + μ1 I1 + μ2 I2 + μl kf 2(−2L)
, (85)

where

I1 =

∫ 0

−L

(f 2
x + k2f 2) dx, and I2 =

∫ −L

−2L

(f 2
x + k2f 2) dx.

The subscript 2 on σ above refers to the four-layer case. We use lemma 1 for these two
integrals I1 and I2 in the above inequality. For each of these two integrals in lemma 1, we
use different pairs of constants (see lemma 1). Our convention below will be to use a pair
of constants λ1,j and λ2,j for internal layer j defined as the layer in −jL < x < −(j−1)L.
Thus for integral I1 which is over layer 1 (the rightmost internal layer), we use λ1,1 and
λ2,1 in place of λ1 and λ2 respectively in lemma 1 (also see section 3.3). And similarly for
other layers. Applying the lemma in this way, we obtain

μ1I1 + μ2I2 ≥ μ1{λ1,1f
2(−L) + λ2,1f

2(0)}k tanh(kL)

+ μ2

{
λ1,2f

2(−2L) + λ2,2f
2(−L)

}
k tanh(kL). (86)

The above two inequalities give us

σ2(k) ≤ E0f
2(0) + E1f

2(−L) + E2f
2(−2L)

F0f 2(0) + F1f 2(−L) + F2f 2(−2L)
, (87)

where the Ei are defined in (82) and the Fi are defined as follows:

F0 = k {μ1λ2,1 tanh(kL) + μr} ,

F1 = k (μ1λ1,1 + μ2λ2,2) tanh(kL),

F2 = k {μl + μ2λ1,2 tanh(kL)} .

(88)

We are interested in the modal upper bounds on the growth rates of all waves. For reasons
mentioned earlier in section 3.1, it is sufficient to analyze (87) for the upper bound when
all Ei > 0, i = 0, 1, 2, in (87), i.e., when wavenumber k is in the range

k2 ≤ min

{
U(μ2 − μl)

T2

,
U(μ1 − μ2)

T1

,
U(μr − μ1)

T0

}
. (89)
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Therefore we apply inequality (32) (for k in the range given by (89)) to (87) and obtain
the following estimate of the upper bound on the growth rates of all waves:

σ2(k) ≤ max

{
E0

F0

,
E1

F1

,
E2

F2

}

= max
λ1,j+λ2,j=1

{
(μ2 − μl) Uk − T2k

3

μl + λ1,2μ2 tanh(kL)
,

(μ1 − μ2) Uk − T1 k3

(μlλ1,1 + μ2λ2,2) tanh(kL)
,

(μr − μ1) Uk − T0k
3

μr + λ2,1μ1 tanh(kL)

}

= σm
2 (k; λ1,1, λ2,1, λ1,2, λ2,2) ≡ σm

2 (k; λi,j). (90)

The procedure that we outlined in section 3 after (46) can be used to derive estimates
analogous to (47) and (49). Since this is straightforward, we omit this here.

4.1. Upper bounds based on asymptotics

It is difficult to obtain an absolute upper bound from (90) over the entire spectrum of
wavenumbers for arbitrary values of the λ parameters within the constraint of lemma 1.
However, for short waves and long waves, the asymptotic approximations to modal upper
bound (90) are useful for the purposes of stability enhancement as before.

For kL � 1, the upper bound (90) can be approximated as

σ2,l(k) ≤ max

{
kU(μ2 − μl)

μl + λ1,2kLμ2

,
U(μ1 − μ2)

L(λ2,2μ2 + λ1,1μ1)
,

kU(μr − μ1)

μr + λ2,1kLμ1

}

= σm
2,l(k; λi,j). (91)

The second term in the above expression does not depend on k. Therefore, the modal
upper bound (91) is not arbitrarily small for long waves, i.e., when k tends to zero.
Compare this with modal upper bounds σst(k) (see (1)) for the two-layer case and σm

1,l(k)
(see (54)) for the three-layer case. This shows that the stability of long waves may
not always be enhanced in going from two- or three-layer flows to the four-layer flows
considered here.

For short waves kL ≥ 1, we have from (90)

σ2,s(k) ≤ max

{
(μ2 − μl) Uk − T2k

3

μ2l

,
(μ1 − μ2) Uk − T1 k3

μ12

,
(μr − μ1) Uk − T0k

3

μr1

}

= σm
2,s(k; λi,j), (92)

where c ≤ tanh(k∗L) and

μr1 = (μr + λ2,1μ1 c), μ12 = (λ1,1μ1 + λ2,2μ2)c, μ2l = (μl + λ1,2μ2 c). (93)

The subscript s in (92) refers to the ‘short’ wave regime as before. The terms in these
modal upper bounds are similar in form to the formula (1) for the exact growth rate in
the two-layer case. An absolute upper bound (i.e., independent of k but dependent on
the parameters λi,j), denoted by σu

2,s(λi,j) and defined by σu
2,s(λi,j) = max

k
{σm

2,s(k; λi,j)} for
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waves in this short wave regime, is then given by

σ2,s(k) ≤ max

{
2T0

μr1

(
U [μ]0
3T0

)3/2

,
2T1

μ12

(
U [μ]1
3T1

)3/2

,
2T2

μ2l

(
U [μ]2
3T2

)3/2
}

= σu
2,s(λi,j), (94)

where λi,j can take values within the constraint of lemma 1.

4.2. Sufficient conditions for stability enhancement

Improvement in stability for such four-layer flows over the two-layer case requires that
the upper bound on the growth rate given by (94) be less than σst (see (2)). Using a
procedure described in section 3.6.3, we obtain the following formula analogous to (73) of
section 3.6.3:

i=2∑
i=0

αi

(
Ti

T

)1/3 (
μi,i+1

μl + μr

)2/3

> 1 +
(μ2 − μ1)

(μr − μl)
, (95)

where μ0,1 = μr1 and μ2,3 = μ2l as defined above in (93). Above, α0 = 1, α1 = 2, α2 = 1.

5. Multi-layer flows

Consider N intermediate regions of equal length L in the interval (−NL, 0) in the
rectilinear Hele-Shaw cell of infinite length. Each of these regions contains constant
viscosity fluids with fluid of viscosity μl occupying the leftmost infinite region x < −NL
and fluid of viscosity μr occupying the rightmost infinite region x > 0. In the region
(−pL,−pL + L), with p = 1, 2, . . . , N , the viscosity of the fluid is μp such that
μl = μN+1 < μN < μN−1 < · · · < μp < μp+1 < · · · < μ1 < μ0 = μr. We have
(N + 1) number of interfaces located at xi = −iL, i = 0, 1, 2 . . . , N , and labeled as the
ith interface. For i = 0, 1, . . . , N , we denote the surface tension coefficient on the ith
interface at x = xi as Ti. Similarly, we use [μ]i = μi − μi+1 for the viscosity jump at
the ith interface, i = 0, 1, . . . , N . The flow, as before, in the cell is in the direction of
increasing viscosity. Recall the previous section. A quite similar procedure and lemma 1
give the following estimate:

σN ≤
∑N

i=0 Ei f
2(xi)∑N

i=0 Fi f 2(xi)
, (96)

where Ei = k2U [μ]i − k4 Ti, i = 0, 1, . . . , N , and the Fi are defined as follows:

F0 = k (μ1λ2,1 tanh(kL) + μr) ,

Fi = k (μiλ1,i + μi+1λ2,i+1) tanh(kL), i = 1, . . . , (N − 1),

FN = k (μl + μNλ1,N tanh(kL)) ,

(97)

with λ1,i ≥ 0, λ2,i ≥ 0 such that λ1,i + λ2,i ≤ 1, ∀ i = 1, . . . , N . For reasons
mentioned earlier in section 3.1, it is sufficient to analyze (96) for the upper bound for all
Ei > 0, i = 0, . . . , N , in (96), i.e., when wavenumber k is in the range given by

k2 ≤ min
i

{
U(μi − μi+1)

Ti

}
, i = 0, 1, . . . , N. (98)
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Applying the inequality (32) to the above formula (96) for waves in the range given by (98),
we obtain the following estimate of the modal upper bounds on the growth rates of all
waves:

σN (k) ≤ max
λ1,i+λ2,i=1

{
E0

F0
,
E1

F1
, . . . ,

Ei

Fi
, . . . ,

EN−1

FN−1
,
EN

FN

}

≤ max
λ1,i+λ2,i=1

{Q0, Q1, . . . , Qi, . . . , QN−1, QN}

= σm
N (k; λi,j), (99)

where

Q0 =
E0

F0
=

kU [μ]0 − k3 T0

(μr + λ2,1μ1 tanh(kL))
,

Qi =
Ei

Fi
=

kU [μ]i − k3 Ti

(λ1,iμi + λ2,i+1μi+1) tanh(kL)
, i = 1, . . . , (N − 1),

QN =
EN

FN

=
kU [μ]N − k3 TN

(μl + λ1,NμN tanh(kL))
.

(100)

Following the procedure outlined in section 3 after (46), one can judiciously choose
the parameters λi,j for the best modal upper bound σm

N (k), analogous to (47), and for
the best absolute upper bound σu

N , analogous to (49). The absolute upper bound arising
from (99) will depend on parameters λ1,j and λ2,j, j = 1, . . . , N . In this parameter
space, this estimate is better with (λ1,j, λ2,j) �= (0, 0) even for some j ∈ [1, N ] than with
λ1,j = λ2,j = 0, ∀ j = 1, . . . , N . The best estimate of this absolute upper bound σu

N

can be derived from (99) by the procedure outlined for the four-layer case in the previous
section. In fact, it is easy to see that a similar procedure will give an expression for σu

N

similar in form to (94) except that there will be N + 1 terms in its expression instead of
three (see (94)). Since all this is straightforward along the lines of three-layer case treated
earlier, we omit any further details here.

5.1. Sufficient conditions for stability enhancement

Using a procedure similar to those used for other cases (see section 3.6.3), we obtain the
following generalization of the sufficient condition (95) from the four-layer case to this
(N + 2)-layer case:

i=N∑
i=0

αi

(
Ti

T

)1/3 (
μi,i+1

μl + μr

)2/3

> 1 +
(μN − μ1)

(μr − μl)
, (101)

where α0 = 1, αN = 1, αi = 2, for i = 2, . . . , (N − 1), and

μ0,1 ≡ μr1 = μr + λ2,1μ1 c,

μi,i+1 = (λ1,iμi + λ2,i+1μi+1)c, i = 1, 2, . . . , (N − 1),

μ
N,N+1

≡ μ
Nl

= μl + λ
1,N

μ
N

c.

(102)
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5.2. Upper bounds based on asymptotics

For long waves (i.e. kL � 1), using (96), (97), (99), and tanh(kL) ∼ kL, we obtain the
modal upper bound σm

N,l(k; λi,j) for the individual wave with wavenumber k:

σN,l(k) ≤ σm
N,l(k; λi,j) = max

{
Ql

0, . . . , Q
l
p, . . . , Q

l
N

}
, (103)

where

Ql
N =

kU(μN − μl)

μl + μNλ1,NkL
, Ql

0 =
kU(μr − μ1)

μr + μ1λ2,1kL
,

Ql
p =

U(μp − μp+1)

(μpλ1,p + μp+1λ2,p+1)L
, p = 1, . . . , (N − 1).

(104)

For short waves with kL ≥ 1, using (96), (97), and (99), we obtain an upper bound
σu

N,s(λi,j) on the growth rate of waves in this short wave range:

σN,s(k) ≤ σu
N,s(λi,j) = max

{
Qs

0, . . . , Q
s
p, . . . , Q

s
N

}
, (105)

where

Qs
0 =

2T0

μr + λ2,1cμ1

(
U(μr − μ1)

3T0

)3/2

, Qs
N =

2TN

μl + λ1,NcμN

(
U(μN − μl)

3TN

)3/2

,

Qs
p =

2Tp

(λ1,pμp + λ2,p+1μp+1)c

(
U(μp − μp+1)

3Tp

)3/2

, p = 1, 2, . . . , (N − 1).

(106)

5.3. Determination of the number of layers from the prescribed arbitrary growth rate of
instability

In this section, we want to show that one can estimate the number of internal layers
(N) that will ensure that the growth rate does not exceed a prescribed value, however
small, when the viscosity jumps across all layers are equal. In this case, μi − μi+1 =
(μr − μl)/(N + 1). Therefore all viscosity jumps are equal. Moreover, we choose
λi,p = 1/2, ∀ i, p, for our estimations below. We estimate the above for short and long
waves separately.

First, we estimate for long waves. It then follows from (104), after using the fact that
ka/(b + kc) < a/c for positive k, a, b, c, that

Ql
0 < Q∗, Ql

N < Q∗, Ql
p < Q∗/2, where Q∗ =

2U(μr − μl)

(N + 1)Lμl
, (107)

and hence from (103),

σN,l(k) ≤ Q∗ =
2U(μr − μl)

(N + 1)Lμl

.

From this, we see that the number of layers can be determined a priori from the desired
growth rate for long waves which can be as small as we please. For the growth rate not
to exceed ε, this gives

(N + 1) >
2U(μr − μl)

ε L μl

. (108)
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Now for short waves, we use the estimate (106). Using the conditions μi > μl, (λ1,i +
λ2,i)c ≤ 1, ∀ i = 1, . . . , N , in (106), we obtain from (105)

σN,s ≤
2Tmin

μl c

(
U(μr − μl)

3(N + 1)Tmin

)3/2

. (109)

Therefore, to obtain a growth rate less than ε, however small, we get the following estimate
for the number of layers of fluid:

(N + 1) ≥
(

2

εμl c
√

Tmin

)2/3 (
U(μr − μl)

3

)
, (110)

where Tmin = min{T0, T − 1, . . . , TN}. Finally, using the above results (108) and (110),
we get

(N + 1) > max

{
2U(μr − μl)

ε L μl
,

41/3U(μr − μl)

3(εμl c)2/3(Tmin)1/3

}
, (111)

which gives the number of layers required for σ ≤ ε. Therefore, we can obtain a maximal
growth rate as small as we please by increasing the number N of internal layers. Therefore,
the two-layer Saffman–Taylor interfacial instability σst can be reduced by any factor
desired simply by increasing the number of layers according to the relation (111). The
number of layers according to (111) is likely to be so high (due to the small value of ε)
that sufficient condition (101) will be automatically satisfied.

Part II: Variable viscosity fluid layers

We consider three- and four-layer flows below each layer having a smooth viscous profile
with μx > 0 in each layer. Below, we first review three-layer flows from [9] very briefly
to recall the procedure in this variable viscosity case and to highlight the significance of
the result. The procedure outlined will then be helpful in explaining the mathematical
difficulty in obtaining similar results for the case of more than three layers in general.
Moreover, the procedure provides a way for us to obtain some interesting results for the
four-layer case as we will shortly see.

6. Three-layer flows

The three-layer case (see figure 3) is briefly reviewed here from [9] for reasons cited above.
Multiplying (9) by f(x) and then integrating on the interval (−L, 0), we obtain

(μ+f+
x f)(−L) − (μ−f−

x f)(0) +

∫ 0

−L

μ(f 2
x + k2 f 2) dx = σ−1k2U

∫ 0

−L

μxf
2 dx. (112)

We recall the notation (f1f2)(x) = f1(x)f2(x) used before. Using boundary condition (21)
in (112) and then simplifying leads to

σ =
E1 f 2(−L) + E0 f 2(0) + k2 U

∫ 0

−L
μxf

2 dx

μl k f 2(−L) + μr k f 2(0) +
∫ 0

−L
μ (f 2

x + k2 f 2) dx
. (113)

Note that all terms in the denominator of (113) are positive. As in earlier sections,
it is sufficient to analyze (113) for the upper bound when Ei > 0, i = 0, 1, i.e., when
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Figure 3. Three-layer fluid flow in a Hele-Shaw cell. The surface tensions at two
interfaces are shown as T0 and T1. The middle layer has variable viscosity. The
flow is potentially unstable.

wavenumber k is in the range

k2 < min

{
U [μ]r
T0

,
U [μ]l
T1

}
, (114)

where [μ]r = (μr − μ−(0)), and [μ]l = (μ+(−L) − μl). As before, applying the
inequalities (32)–(113) for k in the range given by (114) (so that E1 and E2 are positive),

we obtain after neglecting the positive term
∫ 0

−L
μ f 2

x in the denominator of (113) the
following estimate of the upper bound on the growth rates of all non-trivial waves:

σ < max

{
E1

kμl
,

E0

kμr
,

U

μl
sup

x
{μx}

}

= max

{
[μ]r Uk − T0k

3

μr

,
[μ]l Uk − T1 k3

μl

,
U

μl

sup
x
{μx}

}
. (115)

The absolute upper bound (i.e., the growth rate of any unstable wave cannot exceed this
bound) is then given by

σ < max

{
2T0

μr

(
U [μ]r
3T0

)3/2

,
2T1

μl

(
U [μ]l
3T1

)3/2

,
U

μl
sup

x
{μx}

}
. (116)

For the ‘optimal’ viscosity profile given by

sup
x

(μx) ≤
μl

U
max

{
2T0

μr

(
U [μ]r
3T0

)3/2

,
2T1

μl

(
U [μ]l
3T1

)3/2
}

, (117)
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the estimate (115) becomes

σ < max

{
2T0

μr

(
U [μ]r
3T0

)3/2

,
2T1

μl

(
U [μ]l
3T1

)3/2
}

. (118)

Note the significance of this result: if the limit viscosities μ+(−L) and μ−(0) at
the two interfaces are close enough to μl and μr respectively and if we use the optimal
profile (117) for the middle layer, then the upper bound on the growth rate becomes
arbitrarily small and the flow is almost stable. However, to generate the optimal profile
on the basis of this upper bound, length L of the middle layer can, in principle, be very
large since the gradient of the viscosity at any point in the interior layer cannot exceed
a predetermined small value which is dependent on the growth rate itself and (μl/U)
according to relation (117).

We see from (113) that μx > 0 for the middle layer has a destabilizing effect and μx < 0
has a stabilizing effect. This also holds in the two-layer case with the middle-layer profile
extending all the way up to −∞ because in this case the first terms from the numerator
and the denominator of (113) drop out. Such viscous profiles are automatically created
when a shear thinning or shear thickening fluid is used as a displacing fluid. Therefore,
if we just use this non-Newtonian property of these complex fluids within the Newtonian
framework of this paper, then we expect similar kinds of stabilizations and destabilizations
of instabilities when such fluids are used as displacing fluids. In fact, recent works on
viscous fingering in complex fluids [16]–[21] show this to be the case even in the highly
non-linear regime of viscous fingering. Therefore, in the absence of understanding based on
exact non-linear theory of non-Newtonian complex fluids, we believe that our results and
approach presented in this paper may be useful in interpreting some of the experimental
results on viscous fingering in complex fluids.

7. Four-layer flows

The physical set-up here is same as in the constant viscosity case addressed in section 4
except that each of the two internal fluid layers has a smooth viscous profile μ(x) with
μx > 0. This flow has three interfaces, one at x = 0 with surface tension T0, and another
two at x = −L,−2L with surface tensions T1, T2 respectively. We assume that each of
the two extreme interfaces at x = −2L and 0 has positive viscosity jump in the direction
of flow. The middle interface at x = −L can have a similar positive viscosity jump in the
direction of flow but, as we will see below, some interesting results can be obtained when
the viscosity jump at this middle interface in the direction of flow is negative.

The mathematical problem is still defined by equation (9) in each layer, though this
equation simplifies to (10) in the exterior layers: x < −2L, x > 0, Because of this, far-
field behavior defined by (80) still holds, because of which f−

x (−2L) = kf(−2L) and
f+

x (0) = −kf(0) on the exterior side of the outer two interfaces. The limit values of fx on
the boundaries of the two internal layers are given by formulae similar to (38). Using these
limit values at the interfaces in the linearized dynamic and kinematic interfacial conditions,
like in the four-layer constant viscosity case of section 4, after some algebraic manipulation,
leads to the following three interfacial boundary conditions at x = −2L, x = −L, x = 0,
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similar to (81):

−(μ−f−
x f)(0) = μr kf 2(0) − σ−1E0 f 2(0),

(μ+f+
x f)(−L) − (μ−f−

x f)(−L) = −σ−1E1 f 2(−L),

(μ+f+
x f)(−2L) = μl kf 2(−2L) − σ−1E2 f 2(−2L),

(119)

where

E0 = E0(k) = k2U [μr − μ−(0)] − k4T0,

E1 = E1(k) = k2U [μ+(−L) − μ−(−L)] − k4T1,

E2 = E2(k) = k2U [μ+(−2L) − μl] − k4T2.

(120)

In contrast with the constant viscosity case in section 4 where equation (10) was
integrated, now equation (9) is integrated on the interval x ∈ (−2L, 0) after multiplying
with f as in the previous section. In this interval, μ(x)fx(x) is discontinuous at the interior
interface location x = −L. Therefore the integral is split into two parts, namely on the
intervals (−2L,−L) and (−L, 0). Thus we get

−(μ−f−
x f)(−L) + (μ+f+

x f)(−2L) − (μ−f−
x f)(0) + (μ+f+

x f)(−L) +

∫ 0

−2L

μf 2
x dx

+ k2

∫ 0

−2L

μ f 2 dx = σ−1k2U

∫ 0

−2L

μxf
2 dx. (121)

Using relations (119) in (121) and then simplifying we obtain

σ =
E2f

2(−2L) + E1f
2(−L) + E0f

2(0) + k2
∫ 0

−2L
μx f 2

μl kf 2(−2L) + μr kf 2(0) +
∫ 0

−2L
μ(f 2

x + k2f 2) dx
. (122)

We see that the numerator of (122) contains f 2(−L) which does not appear in the
denominator. Because of this, for positive viscosity jump in the direction of basic flow
at each of the three interfaces (when E0, E1, E2 > 0 for waves in the range given earlier
in (89)) (122) cannot be reduced to a form to which the inequality (32) can be applied
as we have done in previous cases to obtain an estimate of the upper bound in terms
of the parameters of the problem. We can do so only if we allow the viscosity jump
(μ+(−L)−μ−(−L)) at the interior interface at x = −L to be negative, instead of positive,
in the direction of basic flow. Then E1 < 0 for waves in the range (89) and the term
involving f 2(−L) in the numerator of (122) is negative. Therefore, separating E1 from
the numerator recasts (122) as the difference between the ‘first part’ and the ‘second part’
where the ‘first part’ is a ratio similar in form to (113) and the ‘second part’ is a positive
quantity proportional to (μ−(−L) − μ+(−L)). A consequence of this observation is that
an absolute upper bound similar to (116) is obtained by neglecting the ‘second part’,
namely

σ < max

{
2T0

μr

(
U [μ]r
3T0

)3/2

,
2T2

μl

(
U [μ]l
3T2

)3/2

,
U

μl

sup
x
{μx |x �= −L,−2L, 0}

}
. (123)

We see that this absolute upper bound for the optimal profile (117) will be arbitrarily
small if positive viscosity jumps at the x = −2L and 0 interfaces in the direction of
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Figure 4. Four-layer fluid flow in a Hele-Shaw cell. The two internal layers have
variable viscosity and thus each of these layers is potentially unstable individually.
The two extreme interfaces are also unstable individually except for the internal
interface. This multi-layer flow could be overall potentially stable if the internal
interface is strongly stable on its own.

flow are small enough for reasons given after (117). Therefore, the maximum growth
rate will be less than this absolute upper bound by a positive amount proportional to
μ−(−L)−μ+(−L) > 0. If (μ−(−L)−μ+(−L)) > 0 is large enough, the maximum growth
rate could be negative and the flow could be stable. Thus, in spite of the fact that internal
layers and outer interfaces are individually unstable, this four-layer flow overall is stable
only due to the middle interface being strongly stable on its own. Such a potentially
stable configuration is shown in figure 4; keep in mind that the jumps in viscosities are
not shown on a true scale.

Part III: Discussion and concluding remarks

8. Conclusions

In this paper, we have obtained the following results.

(1) For three-layer Hele-Shaw flows with constant viscosity layers, a new absolute upper
bound (53) on the growth rate of instabilities is obtained as a non-strict inequality.
Thus, this bound can in principle be reached for a non-trivial disturbance. This is
a considerable improvement over the absolute upper bound (34) which could not be
reached for a non-trivial disturbance. A potential application of this is to control
the instability of an interface separating low viscosity fluid from a high viscosity fluid
that it is displacing. The way to do this is to introduce an intermediate layer of fluid
with properties that will satisfy the two-parameter family of sufficient conditions (76)
for enhancement of stability. The condition (77) is interesting because it does not
depend on the viscosity μ ∈ (μl, μr) of the fluid in the middle layer. These results are
of significance for the design of effective enhanced oil recovery methods.

(2) We extended the above results to four-layer flows (see section 4), all layers having
constant but different viscosity fluids. This four-layer case is important in setting the
stage for a generalization to arbitrary number of layers of constant viscosity fluids and
in exemplifying the difficulties associated with deriving similar results when internal
layers have potentially unstable viscous profiles.

(3) In section 5, the above mentioned results were generalized to arbitrary number of
layers. As an application of these results, we have shown that the instability of
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potentially unstable two-layer or three-layer flows with constant viscosity fluid layers
can be significantly reduced to any desired level, however small, by increasing the
number of layers (see section 5.3).

(4) An absolute upper bound result for the three-layer case with potentially unstable
middle layer is revisited. It is shown that extension of this to the four-layer case
when both the internal layers and the three interfaces are individually unstable runs
into difficulty with our approach. Thus this is an open problem. However, in this
four-layer set-up, an absolute upper bound is obtained using our approach provided
the middle interface is individually stable (meaning that the viscosity jump is negative
in the direction of flow at this interface). In fact, we have shown that if this viscosity
jump at the middle interface is large enough, the upper bound on the growth rate
could in fact be negative and the flow overall could be stable.

Within the framework of the results itemized above, if one is to devise ways to
significantly stabilize a viscosity jump driven unstable two-layer flow, there are three
alternatives:

(i) use of successive constant viscosity fluid layers with appropriate interfacial surface
tensions so that sufficient conditions for stability enhancements are satisfied;

(ii) use of a fluid layer in between whose viscous profile is optimal, given by (117), and
where the limit viscosities μ+(−L) and μ−(0) at the two interfaces are close enough
to μl and μr respectively;

(iii) use of two internal fluid layers with viscous profiles of the internal layers such that
the middle interface is strongly stable.

Towards this end, we must stress that many of the results obtained in this paper
are general in character and that the techniques used hold promise for applications to
other unstable multi-layer flows such as Rayleigh–Taylor unstable flows, coating flows, jet
flows, and Kelvin–Helmholtz flow, to mention but a few. These results are obviously of
fundamental and practical importance to many applications where stability of flows plays
a decisive role. One instance of such an application is that of enhanced oil recovery by
polymer flooding [5]–[7].
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