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1 Department of Mathematics, Texas A&M University, College Station,
TX-77843, USA
2 Institute of Mathematics ‘Simion Stoillow’ of Romanian Academy, Bucharest,
RO-70700, Romania
E-mail: prabir.daripa@math.tamu.edu and Gelu.Pasa@imar.ro

Received 6 May 2009
Accepted 28 May 2009
Published 2 July 2009

Online at stacks.iop.org/JSTAT/2009/L07002
doi:10.1088/1742-5468/2009/07/L07002

Abstract. In experiments involving dip coating flows on an infinite flat
substrate which is withdrawn from an infinite liquid bath, the thin film deposited
far up on the plate usually thickens in the presence of insoluble interfacial
surfactant. Using perturbation analysis within the lubrication approximation
we prove that the film thickens in the presence of interfacial surfactant for low
capillary numbers if surface tension away from the transition and meniscus regions
increases in the direction of withdrawal of the plate, a condition that should truly
emerge from the solution of the full problem. Thus, we essentially show that fine
scale properties of the interfacial dynamics and the dynamics in the bulk of the
fluid near the transition and meniscus regions are, in fact, not important. We
show that it is only the surface tension gradient far away from the transition and
meniscus regions that matters. This result is arrived at by first deriving upper
and lower bounds on the film thickness in terms of Marangoni and capillary
numbers. An estimate based on these results and interfacial surfactant dynamics
also yields a qualitative profile of the interfacial surfactant concentration that
results in an increase in film thickness.
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In coating, thin liquid films are applied on a solid surface. Thin liquid films are used for
many reasons in various applications, e.g., they find uses in manufacture of photographic
films, aesthetic coatings, protective coatings, adhesives, magnetic tapes, coating of CD-
ROM surfaces [1], to name just a few. Uses of thin films are also ubiquitous in Nature,
e.g., they appear as membranes, as linings of mammalian lungs [2] and as tear films
in the eye [3]. Because of such diverse and useful roles of thin liquid films in so many
applications, coating is applied to geometries of various shapes such as planar plates [4]–
[11], cylindrical exteriors as in coating on a roller or a fibre [11]–[13], interiors of tubes [6],
[14]–[16], and discs [1]. Coating in general has been a subject whose various aspects have
been extensively studied; many of these are discussed in the comprehensive book by Kistler
and Schweizer [17]. Towards this end, review articles on general coating flows [18, 19] and
on fibre coating [20] should also be cited.

Even though coating involves application of thin liquid films, the problem in itself
is far from trivial because of the complexity of physical phenomena associated with thin
film flows in coating. These flows mostly involve one or more free boundaries along which
waves can travel and steepen under certain conditions for high flow rates causing rupture
of thin films, entrapment of air bubbles, and exposure of substrates to the ambient gas,
all of which are usually undesirable in most coating processes. Moreover, in many coating
problems there are application-specific design requirements on thin films. For example,
it is desirable in many coating processes that the thin films be of certain thickness under
prevailing operating conditions of the coating processes. Therefore, it is of interest to
determine the dependence of thickness of these thin films on various parameters of the
problem. One such problem that has been extensively studied in recent years is the
determination of the effect of surfactants on the film thickness in a variety of settings
including what is now known as the Landau–Levich–Derjaguin problem.

The problem of depositing a thin film on a flat plate by withdrawing it from a liquid
bath has come to be known as the Landau–Levich–Derjaguin (LLD for short) problem in
the literature, even though there have been others before Landau and Levich [5], such as
Morey [4], who have used the above drag-out process for coating purposes. The seminal
theoretical work of Landau and Levich [5] on this drag-out problem, now recognized as
the method of matched asymptotic expansion, uses the lubrication approximation for
low capillary number and then solves governing equations by matching the thin film
region far away from the bath with the static meniscus (near the horizontal liquid bath)
through a ‘transition’ region (see figure 1) in between. During this matching process, a

numerical method is used to obtain the film thickness hLLD = 0.945lcCa2/3 far away from
the meniscus. Here lc =

√
γ/ρg is the capillary length and Ca = Uμ/γ is the capillary

number where U is the speed of the plate, (μ, ρ) = (viscosity, density) of the fluid, γ is the
surface tension and g is the gravity. Later, this same problem was studied by Wilson [11]
within the same lubrication approximation using by then well developed perturbation
theory, thus justifying the matching procedure used by Landau and Levich [5]. Wilson [11]
also generalized the result for the case of thin films deposited on rotating cylinders.

Almost two decades after the work of Landau and Levich [5], White and Tallmadge [9]
integrated a simplified form of the Navier–Stokes equations for flow in thin films given
by Levich [21] and obtained a numerical estimate of the film thickness as a function of
the capillary number. A new theoretical treatment, significantly different from previous
theories, of the same physical problem was later presented by Spiers et al [10], who
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Figure 1. Sketch of the drag-out coating problem with coordinates.

required numerical integration to obtain an estimate of the film thickness as a function
of the capillary number. All these estimates are found to agree favourably well with each
other and with experimental results, though it is claimed by Spiers et al [10] that their
estimates agree better than others [5, 9] with experimental data for Ca ≤ 2.

The thickness of thin films in these coating processes is a subject of significant interest
as this is a design requirement in many applications, as mentioned above. One way to
control this thickness is to add surfactant in the solution. In recent years, there have been
extensive experimental and analytical-cum-numerical studies in examining the effect of
surfactant (either in the bulk or on the interface) on the film thickness on substrates of
various geometries such as inner walls of circular tubes [15, 26], fibre [20, 22, 23], and flat
plate [24, 25]. All of these works unequivocally show a thickening effect of surfactant on
the thin film.

Our interest here is in gaining a better theoretical understanding of the effect
of interfacial surfactant on the film thickness in the LLD problem, which has been
previously studied by Groenveld [24] and Park [25]. White and Tallmadge [9, 27] had
observed experimentally film thickness significantly higher than the estimate of Landau
and Levich [5]. Groenveld [24] speculated that this excess in the thickness of the film
is perhaps due to the effect of impurities on the interface of the film. Later this
problem was re-investigated by a combination of analytical and numerical methods by
Park [25], surprisingly without any reference to the work of Groenveld [24]. In particular,
Park [25] considered the drag-out problem with an insoluble surfactant on the surface
of the liquid bath. Using an asymptotic analysis of this LLD problem within the
lubrication approximation, Park [25] obtained simple equations for the case of small
capillary and Marangoni numbers which were then solved numerically using Runge–Kutta
and ‘shooting’ methods. In this way, it was found that the presence of Marangoni forces
increases the film thickness. It is worth mentioning here that, at variance with this
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huge body of work on the thickening effect of insoluble surfactants on thin films, there
is an interesting paper of very recent origin [28] where numerical findings with soluble
surfactants support film thinning instead of film thickening. The complexity of the
equations governing the full problem even when only interfacial insoluble surfactant is
present (with no surfactant in the bulk) defy a proof of the thickening effect based on the
full problem.

In this letter, using perturbation analysis within the lubrication approximation we
prove that the film thickens in the presence of interfacial surfactant for low capillary
numbers if the surface tension away from the transition and meniscus regions decreases
in the direction of withdrawal of the plate, a condition that should truly emerge from the
solution of the full problem. Thus, we essentially show that fine scale properties of the
interfacial dynamics and the dynamics in the bulk of the fluid near the transition and
meniscus regions are, in fact, not important. We show that it is only the surface tension
gradient (equivalently the Marangoni number and the gradient of the interfacial surfactant
concentration) far away from the transition and meniscus regions that matters. This result
is arrived at by first deriving upper and lower bound results on the film thickness which
have been justified as being consistent with the above mentioned analytical-cum-numerical
and experimental results. An estimate based on these results and interfacial surfactant
dynamics yields a qualitative profile of the surfactant concentration along the interface in
the far field.

Here and below all dimensional variables are denoted with an overbar and
dimensionless variables without an overbar. Consider a vertical flat plate being pulled
out from a horizontal bath of an incompressible fluid. The x̄ axis is downward in the
direction of the force of gravity with the ȳ axis perpendicular to the plate as shown in
figure 1. The plate velocity (Ū , 0) is vertically upward and its equation is taken to be
ȳ = 0. The equation of the free surface of the liquid bath far from the plate is x̄ = 0.
The film thickness at finite (negative) x̄ on the plate is denoted by h̄ and the (constant)
film thickness far up on the plate is denoted by H̄c (=hLLD) for the clean case and H̄s for
the case with surfactant. We denote by ū the velocity component in the x̄ direction, by p̄
the pressure, and by ȳ = h̄(x̄) the free surface of the liquid film for x̄ < 0. The surfactant
concentration on the free surface is denoted by Γ and γ(Γ) denotes surface tension which
depends on Γ. The Γ∞ and γ∞ are the corresponding values far up on the plate for the
surfactant case, γc = γ(Γ = 0) denotes the constant surface tension for the clean case.
Note that γ∞ = γc if Γ∞ = 0.

We consider first the ‘clean case’: the LLD problem defined earlier. We use the
following lubrication model for the flow in the thin film far from the meniscus:

νūȳȳ =
1

ρ
p̄x̄ − g, and p̄ȳ = 0, for x̄ < 0, 0 < ȳ < h̄. (1)

p̄ = −γch̄x̄x̄, and ūȳ = 0, on ȳ = h̄(x̄). (2)

ū = −U, on ȳ = 0. (3)

In dimensionless variables: u = ū/U, x = x̄/lc, y = ȳ/lc, p = p̄lc/γc, h = h̄/lc, the
problem (1)–(3) becomes

Ca · uyy = px − 1, and py = 0, for x < 0, 0 < y < h(x). (4)
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p = −hxx, and uy = 0, on y = h(x). (5)

u = −1, on y = 0. (6)

An exact solution of the clean case problem defined by (4)–(6) for the velocity u in
terms of the pressure p is easily seen to be

u(x, y) =
px − 1

2Ca
(y2 − 2yh) − 1. (7)

The above formula can be used to obtain an upper limit for the constant thickness Hc

far up on the plate using an expression for the ‘surface’ velocity us = (us, 0) for large
negative values of x. Since limx→−∞ h(x) = Hc, limx→−∞ px = − limx→−∞ hxxx = 0, it
follows from (7) that

us(−∞) =
H2

c

2Ca
− 1. (8)

In the far field (i.e., as x → −∞), the ‘surface’ velocity is negative (recall that the positive
x axis is downward—see figure 1) since the fluid moves up together with the plate there,
which is expected on physical grounds and is not an assumption. If there is any stagnation
point on the interface, it should be far away from the far field, i.e., it should be in the
meniscus or transition regions. In fact, such findings should emerge from the full solution
of the problem (see [21, 29]) though we stress that we do not impose such assumptions.
Then from relation (8), we obtain the upper bound Hu

1c for Hc. The subscript ‘1’ is used
here to distinguish this bound from another (improved) bound which will carry a subscript
‘2’ as we will see below.

us < 0 ⇒ Hc < Hu
1c =

√
2Ca. (9)

We shall show that an improved upper estimate can be obtained using the flux on the
plate, denoted by Q:

Q(x) =

∫ h

0

u(x, y) dy =
(−px + 1)h3

3Ca
− h. (10)

The corresponding value of Q for large (negative) values of x is

Q(−∞) =
H3

c

3Ca
− Hc. (11)

Due to the incompressibility of the fluid, Q(x) = Q(−∞), which, upon using the above
two relations, leads to

h3

3Ca
(−px + 1) − h =

H3
c

3Ca
− Hc. (12)

Using (5)1, this equation can be rewritten as

h3

3Ca
(hxxx + 1) − h =

H3
c

3Ca
− Hc. (13)
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Consider α = h/Hc, α(−∞) = 1; then from the last relation we obtain

H3
c

3Ca
αxxx +

H2
c

3Ca
−

{
(α − 1) +

H2
c

3Ca

}
1

α3
= 0. (14)

Far up on the plate, the film thickness varies from Hc by a small amount and hence we
can use for this regime the following approximations: α = 1 + δ, δ � 1. To leading order,
we get from (14)

H3
c

3Ca
δxxx − δ

{
1 − H2

c

Ca

}
= 0. (15)

Using the condition that δ(−∞) = 0, the solution of this equation that approaches the
thickness in the far field monotonically must be of the form δ(x) ∼ exp(kx) with a
positive k and hence the term within curly brackets in (15) must be positive. Thus, we
obtain the following improved upper bound Hu

2c for Hc; the subscript ‘2’ here distinguishes
it from the previous upper bound Hu

1c which carries a subscript ‘1’:

Hc < Hu
2c =

√
Ca. (16)

To this end, we mention that there is the possibility of another thicker solution which can
support oscillations at the free surface and consistent with equation (15). Such solutions,
though they have been found only recently (see [30]), are not of interest in this work.
From (9) and (16), we obtain Hu

2c < Hu
1c. Thus (16) provides an improved upper bound.

It is worth mentioning that a simple force balance between gravity and viscosity suggests
a thickness of the order of Hu

2c whereas the more definitive approach given above shows
that it is an upper bound.

The thickness (scaled by capillary length lc) of the film far up on the plate obtained in

Landau and Levich [5] and Wilson (1982) (for the clean case) is HLLD = 0.945Ca2/3. This

and our upper bound result Hc < Ca1/2 given by (16) then yield 0.945Ca2/3 < Ca1/2. This
implies Ca < (1.058)6 = 1.404 which falls within the lubrication approximation regime
(low Ca).

Now, we consider the ‘surfactant case’: the free surface of the thin film in the LLD
problem is now doped with insoluble surfactant. The surfactant concentration on the free
surface of the film is denoted by Γ which is a function of x with the property that Γ = Γ∞
as x → −∞ which defines the concentration far up on the surface of the thin film. The
surface tension γ(x) = γ(Γ(x)) and we define γ∞ = γ(Γ∞), the surface tension far up on
the thin film surface. To show the effect of surfactant on the film thickness, the surfactant
concentration and its variation along the film surface are taken as small.

The boundary condition uy = 0 on y = h(x) for the previous case (i.e., the case with
no surfactant) is replaced by the second condition (18) (see below) involving the derivative
of the surface tension γ. In this case, the problem in non-dimensional variables is defined
by (see also [26])

Ca · uyy = px − 1, and py = 0, for x < 0, 0 < y < h(x). (17)

p = −hxx, and Ca · uy = γx, on y = h(x). (18)

u = −1, on y = 0, (19)
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where Ca = Uμ/γ∞ and γ in (18) is normalized by γ∞. For proper and fair comparison
of the film thickness in the presence of surfactant with that in the clean case, we will be
interested in film whose profile decays monotonically to the far field thickness Hs. The
exact solution of the problem defined by (17)–(19) is given by

u(x, y) =
px − 1

2Ca
(y2 − 2hy) +

γx

Ca
y − 1. (20)

From this we get the surface velocity us(x) = u(x, y = h(x)) as

us =
h2

2Ca
(−px + 1) +

γx

Ca
h − 1. (21)

In the above equation, we consider x → −∞ and since the surface velocity must be
negative in the far field (for reasons mentioned after (8)), we obtain the same upper
bound as in (9) for Hs assuming γx = 0 as x → −∞.

Hs < Hu
1c =

√
2Ca. (22)

Below we use the flux method as used for the ‘clean’ case. But we shall see that it
is difficult to apply the method in a similar way. Instead, we will use some physical
considerations and weak formulations to obtain a lower and a upper bound for the film
thickness. We use (20) and get the fluxes Q(x) and Q(−∞):

Q(x) =
h3

3Ca
(−px + 1) +

h2

2

γx

Ca
− h. (23)

Q(−∞) =
H3

s

3Ca
− Hs, (24)

because px → 0 and γx → 0 as x → −∞. From the incompressibility condition
Q(x) = Q(−∞), we obtain the following equation for the film thickness h:

h3

3Ca
(hxxx + 1) +

h2

2

γx

Ca
− h =

H3
s

3Ca
− Hs, (25)

subject to boundary conditions: h(−∞) = Hs, hx(−∞) = 0, hxx(−∞) = 0. As before,
consider β = h/Hs. Then from (25) we get

H3
s

3Ca
βxxxβ

3 +
H2

s

3Ca
β3 +

Hs

2

γx

Ca
β2 −

{
(β − 1) +

H2
s

3Ca

}
= 0, (26)

with boundary conditions β(−∞) = 1, βx(−∞) = 0, βxx(−∞) = 0. Away from the
transition region and far up on the plate, the film thickness β changes very slowly
as it approaches the far field film thickness (normalized) of 1. Therefore we assume
β = 1 + δ; 0 < δ � 1. Thus within the linearized approximation, we obtain the following
problem for δ to leading order:

aδxxx + b δ = f(x) (1 + 2 δ), (27)

subject to the use of notation f(x) = −(Hs/2)(γx/Ca), a = (H3
s /3Ca), b = ((H2

s /Ca) −
1) above and the boundary conditions: δ(−∞) = 0, δx(−∞) = 0, δxx(−∞) = 0.
Multiplying (27) by δ and after some manipulation, we obtain

a
(
δδxx − 0.5(δx)

2
)

x
+ b δ2 = f(x)δ (1 + 2 δ). (28)
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Integrating this equation from −∞ to some finite value x∗ and then using the conditions
for δ, we obtain

a
(
δ(x∗)δxx(x∗) − 0.5(δx(x∗))

2
)

+ b

∫ x∗

−∞
δ2(x) dx =

∫ x∗

−∞
f(x)δ(x)(1 + 2 δ(x)) dx.

It is convenient to rewrite this equation as follows:

b =

∫ x∗
−∞ f(x)δ(x)(1 + 2 δ(x)) dx − a (δ(x∗)δxx(x∗) − 0.5(δx(x∗))

2)
∫ x∗
−∞ δ2(x) dx

. (29)

Since the term (δ(x∗)δxx(x∗) − 0.5(δx(x∗))
2) in the numerator above is second order in

perturbation, to leading order this can be neglected. Moreover, since δ(x) � 1, we can
neglect this in comparison to 1 in the numerator. Then the above relation becomes

b =

∫ x∗
−∞ f(x)δ(x) dx
∫ x∗
−∞ δ2(x) dx

. (30)

Since f(x) = −(Hs/2)(γx/Ca) > 0, assuming γx < 0 and δ(x) > 0, since h → Hs

as x → ∞, the numerator above is positive and so is the denominator. Therefore
b = ((H2

s /Ca) − 1) > 0, from which we conclude that

Hs > H l
s =

√
Ca. (31)

Note that the strict upper bound given in (16) for the film thickness in the ‘clean’ case is
equal to the strict lower bound given in (31) for the film thickness in the surfactant case.
This proves the thickening effect of surfactant.

In the surfactant case, Park [25] obtained H = 0.945× 42/3Ca2/3. This and the strict

lower bound result Hs > Ca1/2 (see (31)) then give the following regime of validity of the
results: Ca > 5.4786 × 10−3. It is interesting to recall that a good agreement between
experimental and theoretical results was obtained in [15] also for Ca > 10−3.

The strict upper bound (31) can be used in the following way to estimate the leading
order dependence of h on γ in the asymptotic limit. Equation (25) can be rewritten as

h3 − H3
s

3Ca
= (h − Hs) −

γxh
2

2Ca
− h3hxxx

3Ca
, (32)

or equivalently in the form

h2 + h Hs + H2
s = 3 Ca − 3h2 γx

2(h − Hs)
− h3hxxx

(h − Hs)
. (33)

Since the thickness h(x) usually approaches Hs exponentially fast as x → −∞, the last
term in the above equation drops out and we have

lim
h→Hs

(h2 + h Hs + H2
s ) = lim

h→Hs

{
3 Ca − 3h2 γx

2(h − Hs)

}
. (34)

Then in the limit we obtain the bound given in (31), i.e., Hs > H l
s =

√
Ca, provided

−γx = O(h − Hs), as h → Hs; thereby we obtain dependence of h on γx for large negative
values of x.
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In our deliberation above, we have avoided the use of the Marangoni number which
however enters through the relation of γx (gradient of surface tension) and the Marangoni
number M as follows. Within the linear approximation for small variation of Γ from Γ∞
along the interface, we can write γ − γ∞ = −M(Γ − Γ∞), where M = −dγ/dΓ|Γ∞ > 0
is the Marangoni number and γ∞ = γ(Γ∞). Then it follows that γx = −MΓx. Then
γx < 0 implies Γx > 0. The interfacial surfactant dynamics in the far field governed by
qΓx = DsΓxx (given in dimensional form here) then implies Γxx < 0. Thus the far field
surfactant concentration profile is defined by Γxx < 0 and Γx > 0 from which one can
easily draw the qualitative shape of the profile Γ(x) in the far field.

It is a pleasure to thank Professor Howard Stone for sharing his insight into this and other
thin film problems.
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