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Abstract. In experiments involving slow steady motion of a long finite bubble
of fluid with very small viscosity in a capillary tube filled with a liquid of viscosity
µ, a thin film of liquid of uniform thickness adheres to the tube walls between
the front and the rear menisci of the bubble. Taking the contact angle of the
liquid at the walls as zero and neglecting the gravitational effects, Bretherton
(1961) obtained the film thickness as proportional to Ca2/3 where Ca is the
capillary number. In the range Ca < 5 × 10−3, however, the thickness obtained
experimentally was significantly larger than the theoretical values. Bretherton
speculated that the presence of small traces of surfactant at the bubble–liquid
interface may explain this thickening phenomenon and could be the source of
this discrepancy, but he did not provide a proof. In this article we give a
theoretical proof for the above thickening phenomenon using perturbation theory
and a lubrication approximation of the flow equations. We consider the case
of a small amount of surfactant at the bubble interface with a small variation
of concentration. The main new result is a lower bound on the film thickness
in terms of the Marangoni number M and Γ for small capillary number. A
comparison with the ‘clean’ case proves the thickening effect of the interfacial
surfactant.
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1. Introduction

The displacement of a viscous liquid by a gas bubble in capillary tubes has been studied
by many and findings have been reported in a large number of papers ([5, 7], [9]–[11],
[19], [22]–[24]). An important parameter in this flow is the capillary number defined as
Ca = μU/γ where U is the bubble velocity, μ is the liquid viscosity and γ is the surface
tension on the bubble–liquid interface. In the general case, a surfactant can exist on the
bubble–liquid interface (or in the bulk liquid) and the surface tension γ is a function of the
concentration of the surfactant. If we do not have surfactant along the interface, then the
surface tension on the bubble–liquid interface is constant. In this connection, the book of
Levich [14] should be mentioned. When the displaced viscous liquid is wetting, a thin film
of liquid is deposited on the walls. In the case of constant γ, this phenomenon was first
studied by Fairbrother and Stubbs [9]. A dimensional analysis was performed and the
film thickness was found to be proportional to Ca1/2 in the range 7.5×10−5 ≤ Ca ≤ 0.14.
Some experiments were carried out by Taylor [24] who confirmed the above result and
extended it for large Ca. There are other parameters based on other effects beside the
capillary number which play a role but to a negligible proportion comparison to Ca. In
order to place our work here in proper perspective, it is appropriate here for us to comment
on these additional effects within a broader framework which we do next before reverting
back to the essential aspects of our problem.

In general, there are many effects that play a role on the motion of a bubble. However,
depending on the specific problem and the specific flow regime of interest, some of the
effects may be negligible in comparison to the others. Dropping the negligible effects
can simplify the mathematical formulation of the problem, thereby making the problem
easier to analyze. This process of analysis has the potential to either explain some of the
experimentally observed phenomena or discover the most important effects causing an
experimentally observed phenomenon. For example, this approach has been successful in
explaining thickening effect in Landau–Levich problem (see [8]). In this paper, we show
similarly the thickening effect in the problem of bubble motion through a capillary tube
(see [9, 5]). In the bubble motion through a capillary tube, number of effects that come
into play also depends on the nature of the displaced fluid and the type of the interface
displacing the fluid. For complex fluids (we do not consider such fluids in this paper)
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being displaced by a surfactant laden interface of a bubble, there are many more effects
that can come into play. For example, consider polymer and surfactant laden complex
fluids which are used in chemical enhanced oil recovery process. Presence of polymer and
surfactant in the aqueous solution changes the rheological properties of the fluid as well
as properties on the interface. Due to polymer, viscosity of the fluid depends nonlinearly
on the local shear rate or equivalently local velocity.

The presence of surfactant also induces nonlinear effects on the overall flow
characteristics. If the surfactant is soluble in the bulk, then transfer of surfactant from
the bulk into the interface and vice versa causes non-uniform interfacial surface tension.
Moreover, surface tension is usually dynamic and anisotropic (see Bonn et al [3, 4]). In
addition, surface tension will depend on a characteristic velocity defined by the rate of
transfer of surfactant from the bulk into the interface. These issues are not important for
this paper since we do not consider surfactant in the bulk. However, we refer the reader
to a series of papers by Bonn et al , and Ben Amar et al ([1, 6, 3, 4], [15]–[18]). In these
papers, authors study mostly the effect of complex fluids on the viscous finger dynamics
through a Hele-Shaw cell. We study only the effect of interfacial surfactant. This will be
the case in general when the surfactant is insoluble in the bulk. We study this specific case
for several reasons: (i) it allows us to distinguish the effect of interfacial surfactant on the
problem; (ii) it makes the problem relatively simpler allowing analysis that is otherwise
not possible; and lastly (iii) we believe that it possibly captures the essence of the problem
even when surfactant is present in the bulk.

Evolution of interfacial surfactant concentration from any initial distribution is
governed by a convection–diffusion equation with a source term to account for the
stretching/shrinkage of the interface [26]. In this interfacial dynamics, Peclet number
(which is a measure of the ratio of interfacial advection and interfacial diffusion) is the
main parameter. For the steady state motion of the bubble as is the case in this paper,
the equilibrium distribution of surfactant concentration is determined by a balance of
advection and diffusion along the interface. Thus, in general, concentration and hence the
surface tension is not uniform along the interface which gives rise to Marangoni stress.
However, the surface tension is not dynamic as would be the case during the transient
stage until an equilibrium profile along with steady motion of the bubble sets in. Again
we want to emphasize here that the problem we consider has only insoluble surfactant at
the interface and nothing in the bulk.

In the bubble motion through a capillary tube of simple Newtonian fluid that we
consider here, surface tension, viscous force, gravity, inertia all play a role to various
degrees. The dimensionless numbers associated with these forces are

ρ rU2/γ, ρ gr2/γ, μU/γ,

where ρ is the density, r is the radius of the capillary tube and g is the gravitational
acceleration. In the steady state where there is a thin film on the wall and the bubble
moving with a constant speed U , experiments of [9, 5] have confirmed that Reynolds
number based on the tube radius, namely ρ rU/μ � 1, and the surface tension forces
are much more dominant than the gravitational forces, i.e., ρ gr2/γ � 1. Under these
conditions, only parameter of importance for our problem here is the capillary number.
Thus other dimensionless parameters as mentioned above are essentially dropped in the
formulation of the problem. The justification of this has been shown by Bretherton [5].
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An important contribution in this field was made by Bretherton [5]: he used the
asymptotic analysis in terms of Ca and a matching procedure to estimate the film
thickness. The flow was approximated by the lubrication equations and the solution
was matched with constant curvature solution near the front of the gas bubble. A
quite similar matching procedure was used by Landau and Levich [13] in the case of
coating of a flat plate by withdrawing it from a stagnant liquid bath. In the paper of [5]
a good agreement between theoretical and experimental results was reported only for
Ca > 5 × 10−3. However, the experimentally obtained thickness was significantly larger
than the theoretical values in the range Ca < 5 × 10−3. This was very unusual because
an asymptotic method is conventionally expected to give more accurate results when
the small parameter tends to zero but that was not the case here for Ca < 5 × 10−3.
Bretherton speculated that the presence of small traces of surfactant on the bubble–liquid
interface could be the source of this discrepancy, but he did not provide a proof. The
formal perturbations techniques were used by Park and Homsy [21] where the Bretherton’s
results were confirmed. They also extended the technique to two-phase displacements in
Hele-Shaw cells.

Theoretical, numerical and experimental results concerning the displacement in
capillary tubes were obtained by Marchessault and Mason [19], Goldsmith and Mason [10],
Teletzke [25], Schwartz et al [23], but no theoretical explanation was given for the
discrepancy reported by Bretherton. The experimental results of [7] confirmed the
significant deviation at low Ca from the Bretherton theory. In all of the works done
to-date on this bubble problem, the surfactant concentration has been small. To the
authors’ best knowledge to-date, effect of large concentration of surfactant on the bubble
motion has not been studied yet.

Ginley and Radke [11] studied the influence of soluble surfactants on the long
bubbles through capillaries. In foam transport through porous media (one of the
enhanced oil recovery processes), bubbles surrounded by aqueous surfactant solutions
in the pores appear all over in the media. Thus, motion of bubbles through the aqueous
surfactant plays an important role in the process of which there is very little quantitative
understanding. Motivated by this fact, Ginley and Radke [11] studied the role of soluble
surfactants in bubble flow using regular perturbation expansion in large adsorption
rates within the low capillary number, singular perturbation hydrodynamic theory of
Bretherton. They solve the equations numerically using Runge–Kutta scheme and find
the two-third power law to hold in the presence of bulk surfactant.

Some analytical-cum-numerical results concerning the surfactant effect in the
Bretherton problem were obtained by Ratulowski and Chang [22]. A numerical approach
used there showed an increase in liquid film thickness due to the surfactant. Compared
with the ‘clean’ case, they reported an increase of the film thickness with the multiplicative
factor 42/3. A similar thickening effect of surfactant was reported by Park [20] for the
Landau–Levich problem. Numerical results were obtained in support of an increase in the
film thickness with the same multiplicative factor 42/3, compared with the ‘clean’ case.
Krechetnikov and Homsy [12] considered the Landau–Levich problem taking into account
the dynamic menisci in the matching procedure. The numerical method of boundary
element was used. The conclusion of this paper is that, in general, the surfactant can
produce also a thinning effect of the liquid film adhering on the plate and that a pure
hydrodynamic approach can not yet explain the discrepancy reported by Bretherton.
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Daripa and Pasa [8] studied the surfactant effect in the Landau–Levich problem.
An asymptotic analysis was used. The film thickness in the ‘clean’ case (respectively
surfactant case) was denoted by Hc (respectively Hs). An upper bound for Hc and
a lower bound for Hs were obtained in terms of Marangoni and capillary numbers
(Marangoni number is related with the derivative of the surface tension as function of
the surfactant concentration). In particular, their main result is the following inequality:
Hc ≤ Ca1/2 ≤ Hs, thereby proving the thickening effect of the surfactant.

In this letter, using the boundary layer method and lubrication approximation we
prove the thickening effect of surfactants for the Bretherton problem. On the bubble–
liquid interface, the surfactant concentration Γ is taken very small. The tangential stress
along the interface in the liquid is related with the surface tension γ which is a function of
Γ and the normal stress obeys the Laplace’s law. Using the matching procedure described
in [13, 5], we obtain a lower bound on the thickness bS in the presence of surfactant. This
lower bound is shown to be greater than the thickness bC for the clean case by at least
(3r/2)MΓ(xB) where M is the Marangoni number, r is the radius of the tube and Γ(xB) is
the surfactant concentration at the point connecting the front menisci to the transition re-
gion. This proves the thickening effect of surfactant. Moreover, it shows that bS is in excess
of bC by at least an amount proportional to r, M and Γ. Below, this proof is given in detail.

In the next two sections 2 and 3, we discuss the model and the estimate of the
thickness of the thin film in the presence of interfacial surfactant. Lastly, we conclude in
section 4.

2. The model

We describe here the mathematical model of slow steady flow of a long bubble in a
horizontal capillary tube of radius r filled with a liquid of viscosity μ. The bubble velocity
is denoted by U and the fluid inside the bubble is of negligible viscosity. The flow is
considered axi-symmetric and analogous to that used in [5]. It is known that only axi-
symmetric shape with no singularities on the tube axis is a portion of a sphere if the
contact angle with the tube walls is zero as is the case here. Therefore, for small U , the
front and the rear menisci must have shapes of hemispheres.

We follow the boundary layer method, used by Bretherton, by decomposing the bubble
interface in several regions starting with the edge of the front meniscus, denoted by A, on
the tube symmetry axis. The edge point of the rear meniscus of the bubble is also on the
tube axis and is denoted by F as shown in the figure 1. The two menisci are separated
by a region CD where a thin film of liquid of viscosity μ and uniform thickness bS � r
adheres on the walls of the tube. We consider this region to be long compared with the
film thickness. Near the wall tube, we consider a planar approximation of the flow. The
positive Ox axis is in the flow direction of the bubble. The axis Oy is orthogonal to Ox.
Between the points C and A along the interface, we consider two regions: the part AB of
the front meniscus, starting from the point A, will be of one shape in its entirety. Therefore
curvature in this region AB is a constant given by 1/r approximately. The segment BC
shown in figure 2 is a transition (or intermediate) region between the constant curvature
(or inner) region AB and the constant thickness film (outer) region CD. The goal is
to obtain the solution of flow equations in the region BC using a matching procedure
prevalent in boundary layer theory.
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Figure 1. The bubble in the capillary tube. The transition region BC is matched
with the constant film thickness region CD and with the constant curvature
region AB.

Figure 2. The transition region BC.

The surface tension gradient on the interface CD in the outer region is zero. It has
been observed experimentally (see [5]) that the thin film region CD of constant thickness
is almost stationary as the bubble moves with speed U . This is possibly due to the fact
the film is so thin that no-slip condition on the wall and the slip condition on the portion
CD does not generate any flow in the film. Thus there is no flux through in the region
CD. On the other hand the bubble interface BC in the transition region pushes the fluid
generating flow in the region between the wall and BC and beyond. This is the flow
scenario at any instant and as bubble moves so does the interface between the wall and
point C on the interface. The best way to understand the flow in the region ahead of
the thin film is through the analogy: think of the thin film as a piston and the bubble
ahead pushing the fluid. We direct the readers to [9, 5, 11] for an understanding of the
flow between the bubble and the wall tube.

In the region between BC and the tube wall, the flow equations within the lubrication
approximation are:

ux + vy = 0, μuyy = px, 0 = py, (1)

where u = (u, v), p are velocity and pressure respectively and subscripts x and y denote
the partial derivatives. These equations need to be solved subject to no-slip boundary
condition on the wall, namely

u = 0, on the wall y = 0, (2)

the kinematic boundary condition, again approximating, u(h(x)) = U (see [5]), u·n = Uhx

on y = h(x) neglecting higher order terms in h(x), and the dynamic boundary conditions
on the interface y = h(x):

n · Tn = γ(∇s · n), t · Tn = −t · ∇sγ (3)

∂Γ1

∂t
+ ∇s · (Γ1u

s) = Ds∇2
sΓ1. (4)
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Above n, t are the normal and the tangent to the interface respectively, T is the stress
tensor, and ∇s = ∇ − n(n · ∇) is the surface gradient operator on y = h(x). Also
us = u − (n · u)n is the surface velocity and Ds is the surface diffusion coefficient. Since
the steady state case is of interest here, the interfacial advection transport of surfactant
only fixes the steady state profile of the variable surface tension. Since the exact profile
of the variable surface tension is not of interest, we do not need to consider this equation
in our treatment here. The interfacial advection-transport equation is thus neglected as
has been done in other similar problems (see [8]).

It is necessary to rewrite these boundary conditions in terms of h(x) which we do
next. The normal n and tangent t to the free surface y = h(x) are given by

n = (−hx, 1)/(1 + h2
x)

1/2, t = (1, hx)/(1 + h2
x)

1/2. (5)

The surface gradient operator is then given by

∇s = ∇ − n(n · ∇) =

(
∂

∂x
,

∂

∂y

)
− (−hx, 1)

1 + h2
x

(
−hx

∂

∂x
+

∂

∂y

)

=
1

1 + h2
x

(
∂

∂x
, hx

∂

∂x

)
. (6)

The last equality above is obtained after dropping the y-derivative terms which is valid
in lubrication approximation. From the above relations we get

∇s · n = (∇s)1n1 + (∇s)2n2 =
1

1 + h2
x

((n1)x + hx(n2)x) . (7)

Since

(n1)x = −(1 + h2
x)hxx − h2

xhxx

(1 + h2
x)

3/2
= − hxx

(1 + h2
x)

3/2
, (n2)x = − hxhxx

(1 + h2
x)

3/2
, (8)

we finally obtain from substituting (8) in (7) the following expression for the curvature.

∇s · n = − hxx

(1 + h2
x)

3/2
. (9)

Using the stress tensor

Tij = pδij − μ {(ui)xj
+ (uj)xi

} = pδij − τij , (10)

we find

n · T n ≡ ni(pδij − τij)nj

= p − [n1τ11n1 + 2n1τ12n2 + n2τ22n2]

= p − 2

1 + h2
x

(h2
xμux − hx μ(uy + vx) + μvy), (11)

and

t · T n ≡ ti(pδij − τij)nj

= −[t1τ11n1 + t1τ12n2 + t2τ21n1 + t2τ22n2]

= (2μuxhx − μ (uy + vx) + μ h2
x(vx + uy) − 2 μhxvy)/(1 + h2

x)

=
2

1 + h2
x

[
μhx(ux − vy) − μ

2
(uy + vx)(1 − h2

x)
]
. (12)
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It also follows from (5)2 and (6) that

−∇sγ · t = −(i + jhx)
γx

1 + h2
x

· (i + jhx)
1√

1 + h2
x

= − γx√
1 + h2

x

. (13)

Using calculus and leaving out the details of calculations, the above dynamic boundary
conditions are reduced to the following useful forms:

p − 2

(1 + h2
x)

[μvy − hxμ(vx + uy) + h2
xμux] = − γ · hxx

(1 + h2
x)

3/2
, (14)

and

μ[(1 − h2
x)(uy + vx) + 2hx(vy − ux)] = γx

√
1 + h2

x. (15)

Equation (14) above is the modified Laplace’s law at an interface displacing viscous
fluid within lubrication approximation. If it were not for the lubrication approximation,
this law will depend on the gradient of surface tension (see [4]). However, above derivation
shows such gradients within lubrication approximation does not appear in equation (14).
Again approximating the boundary conditions (14) and (15) for the thin film within
lubrication theory, we obtain following useful forms of these conditions.

p = −γ hxx and μuy = γx, on y = h(x). (16)

Note from (16)1 that the viscous stress on the interface does not contribute anything in
the normal direction which is a consequence of the steady state and is consistent with the
treatment in [5]. In the paper of [5], the surface tension γ is constant in equations (16)1

and (16)2. In this paper, the surface tension γ varies along the interface according to
some prescribed function. It is perhaps worth mentioning that surface tension is a surface
force and not a volume one. Therefore, Laplace’s law (3)1 does not change even in the
presence of Marangoni convection (non-zero gradient of surface tension). It has been
argued (see [4]) that the γ in the right-hand side of the Laplace’s law (3)1 should have an
additive term γ′′ where a prime denotes derivative of surface tension γ with respect to an
interface parameter. However, we find here that for low concentration of Γ all variations
in surface tension are of lower order than the surface tension itself. It is easy to see in the
forgoing analysis that additive term γ′′ in (3) drops out during lubrication approximation
process leaving the equation (16) same.

3. Estimate on the thickness of the thin film

Next we get the film thickness bS in the region CD by solving the above equations in the
region BC and using matching conditions with the inner and outer regions AB and CD
respectively. A comparison with thickness bC for the ‘clean’ case is given later (subscript
‘C’ has been used to refer to the clean case). Taking pressure p as a function of x only
due to (1)3, solution of the problem defined by (1)2, (2) and (16)2 is then given by

u =
px

μ

(
y2

2
− yh

)
+

γx

μ
y. (17)
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We eliminate the pressure term in (17) using the dynamical boundary condition (16)1.

u(y) = −1

μ
(γ hxx)x

(
y2

2
− yh

)
+

γx

μ
y. (18)

This can be used to compute the flux Q through the thin film which is

Q =

∫ h(x)

0

u(y) dy =
h3

3μ
(γhxx)x +

h2

2μ
γx. (19)

The flux Q can also be easily calculated using conservation of mass and the kinematic
boundary condition. It turns out within an approximation (see [5]) that

Q = U(h(x) − c), (20)

where c is a constant. It follows from (19) and (20) that

6Uμ(h(x) − c) = 2(γ hxx)xh
3 + 3γxh

2. (21)

This is valid in the transition region BC. Matching this with the outer region CD where
h(x) = bS, all its derivatives are zero, and γx = 0, we obtain c = bS. Therefore, for the
region BC we get

6Uμ(h(x) − bS) = 2(γ hxx)xh
3 + 3γxh

2. (22)

Following [5], we introduce here the non-dimensional function g and the non-dimensional
variable z:

h(x) = bS g(x), x = bS (3Ca)−1/3z, (23)

where Ca = Uμ/γ0 is the capillary number based on the surface tension γ0 of the clean
interface. The above equation (22) then becomes

g − 1

g3
= {γ̃gzz}z +

3γ̃z

2g(3Ca)2/3
, (24)

where γ̃ = γ/γ0. The scaling (23) shows us that for small enough Ca and for a given
solution of the above equation, we have regions where

g = h/bS � 1, h/r = bS g/r � 1, hx = (3Ca)1/3gz � 1, (25)

and the equation (24) still holds. Since the goal is to match the inner region with the
transition region, it is convenient to select in the transition region for matching purpose
the region where g ≈ 1 and therefore we are interested to characterize the region where
g ≈ 1. The flow equation and the above considerations show us that in this region the
interface can be approximated by

(γ̃gzz)z ∼ − 3γ̃z

2(3Ca)2/3
. (26)

We integrate once and then divide by γ̃ to obtain

gzz ≈ − 3

2(3Ca)2/3
+

K

γ̃
, (27)
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where K is a constant independent of z. Reverting back to dimensional variables x and
h(x), (27) becomes

bS hxx(3Ca)−2/3 ≈ − 3

2(3Ca)2/3
+

K

γ̃
. (28)

The matching of the intermediate region BC and the inner region AB is achieved by
equating the surface curvature at point B of these two regions. order. The approximate
curvature at B of the transition region is hxx and that of the inner region is 1/(r − bS) ≈
(1/r) since bS � r. In the case of clean interface, the same matching procedure between
these two regions has been used in [5]. Using this matching at B and rearranging the
relation (28) which is valid at x = xB, we obtain

bS = −3r

2
+

r K(3Ca)2/3

γ̃(xB)
. (29)

Note that this is a very approximate estimate of the thickness of the thin film in terms of
surface tension at x = xB and the as yet unknown constant K. It is worth mentioning that
we have an exact approximate formula for the thickness bS as opposed to the thickening
effect proved for the LLD problem [8] by estimation of the upper and the lower bounds.
However, below we prove the thickening effect by giving a lower bound on bS which does
not depend on the unknown constant K. Another distinction worth mentioning is that
the formula here is in terms of the surface tension at x = xB where as in the LLD problem
the bounds were obtained in terms of gradient of surface tension.

For the clean interface case, γ̃ = 1 and the above formula (29) becomes

bC = −3r

2
+ r K(3Ca)2/3, (30)

where subscript C has been used to refer to the clean interface. Since bC > 0, this formula
suggests that the constant K must be positive and in particular,

K >
3

2(3Ca)2/3
. (31)

Due to small traces of surfactants on the bubble interface, the surface tension decreases
from its value γ0 for the clean surface and hence γ̃ < 1. Hence it is proved here that the
film in the region CD thickens due to surfactant as was speculated by Bretherton due
to discrepancy in the experimental value exceeding the computed value of bC in the low
capillary number regime.

Towards this end, we give the above formula for the thickness in terms of Marangoni
number and surfactant concentration Γ when Γ is small. Within linear approximation,
we can write

γ(Γ) = γ0(1 − MΓ), where M = − 1

γ0

∂γ

∂Γ

∣∣∣∣
Γ=0

. (32)

Here M is the positive Marangoni number and γ0 is the surface tension of the clean
interface with no surfactant. Thus, we have γ̃ = (1 − MΓ) and 1/γ̃ ≈ (1 + MΓ) for Γ
small. Substituting these in (29), we obtain

bS = −3r

2
+ r K(3Ca)2/3(1 + MΓ(xB)), (33)
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and rearranging above we can write bS in terms of bC (see (30)) as

bS = bC + r K(3Ca)2/3MΓ(xB). (34)

It follows from using (31) in (34) that

bS > bC +
3r

2
MΓ(xB). (35)

Thus we have a lower bound on bS which is greater that bC by at least (3r/2)MΓ(xB).
This proves the thickening effect of surfactant and moreover it shows that bS is in excess
of bC by at least an amount proportional to r, M and Γ(xB).

It is worth emphasizing that the main result (35) is a strict inequality which supports
the experimentally observed phenomenon. Unfortunately, we do not have an exact formula
in an equality form or else it could have had a wide range of repercussions. We mention this
here in the hope that may be some readers will see more implications of the inequality (35)
than we have. The strict inequality (35) is valid in the presence of non-uniform interfacial
surfactant concentration. Note that it does not depend on γ′, the gradient of surface
tension (or equivalently gradient of Γ), along the interface. However it does not mean
that bS does not depend on γ′.

4. Conclusion

Using the leading order approximation within the boundary layer theory and the
lubrication approximation, we have obtained a relation in a strict inequality form between
the thickness of the clean thin film and that of the interfacial surfactant laden thin film.
This inequality (see (35)) clearly establishes the thickening effect of the surfactant in the
low concentration regime of surfactant. It is well known (see [2]) in the boundary layer
theory, that solution obtained by matching procedure we have used is an approximate one.
Inner or outer region solution alone is not sufficient to recover the solution that is valid in
the entire domain in the boundary layer theory. Therefore, even if the film thickness (i.e.,
the outer solution) found matches an experimental value, it does not imply that shape
(i.e., the entire solution) of the bubble has to follow. The appearance of the point xB in
the inequality (35) should be a reminder of this fact.

We have not made any assumptions beyond the fact that the parameters that are
not relevant according to experiments as mentioned in [5] have been ignored as well. The
work here was inspired by an experimentally observed phenomenon, namely the thickening
effect of interfacial surfactant on the thin film. The finding here is a strict inequality (35)
that proves the observed phenomenon. Thus, de facto, the finding (35) is valid and hence
does not need any discussion of the validity of this finding.
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