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Abstract� In this letter we investigate the effect of interfacial surfactant on the
motion of an air bubble rising in a vertical capillary tube filled with a viscous
fluid and sealed at one end. A thin layer of liquid, with almost constant thickness
b, exists between the bubble interface and the tube wall. The fluid displaced by
the front meniscus flows down through this layer because the tube is sealed far up
at the top. The steady rising velocity U of the bubble is related to the thickness
b. An upper bound for U is obtained in terms of b and other physical data of the
problem, which is in good agreement with previous experimental results. It is
proved here analytically that the presence of surfactant on the bubble interface
causes a thinning and a delay effect: the thickness of the liquid layer behind the
bubble and the rise velocity of the bubble are smaller than those for the ‘clean’
case. Exactly the opposite effect of surfactant in the horizontal case has been
derived analytically by Daripa and Pasa (2010 J� Stat� Mech� L02002) and
numerically by Ratulowski and Chang (1990 J� Fluid Mech� 21� 303). These
effects of interfacial surfactant are consistent with previous experimental and
numerical results.
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1� Introduction

Motion of bubbles through viscous fluids has received much attention over the years
because of its relevance to many problems of fundamental scientific and of technological
interest. For example, motion of two-dimensional bubbles in tubes has been studied using
potential analysis by many investigators including [5, 6]. Displacement of a viscous fluid by
a gas bubble in capillary tubes has been studied by Schwartz and Princen [23]. A general
review concerning the long bubble propagation is given in [10]. The rise of bubbles in
angular capillary tubes has been studied by Bico and Quere [2]. The bubble propagation
in capillary tubes with non-circular cross-section has been studied by Liao and Zhao [14]
and Clanet et �l [4].

One of the first theoretical and experimental results concerning this flow was given
by Bretherton [3]. As pointed out in [3] and reinforced in [18], the shape of the cap and
the base of the bubble are independent of the size of the bubble. The midsection of the
bubble is almost cylindrical, of radius of βR. The thickness of the layer between the wall
of the tube and the bubble interface is b = R− βR = R(1− β). For large surface tension
γ, this layer of fluid is very thin; we refer to this as a thin film. The thickness b of this
thin film and the speed of U of the bubble have usually been of interest in many studies
by various investigators. For example, with motivation from submarine technology, [9]
was one of the earliest studies this problem. Motivated by oil recovery technology and
fingering phenomena in displacement processes, Saffman and Taylor [20] also studied a
similar problem: displacement of a viscous fluid by a less viscous one. Extensive studies on
the long air bubbles in vertical cylindrical tubes have also been carried out by Zukoski [27]
and White and Beardmore [26].

There are several forces that come into play in this problem: surface tension (denoted
by γ0 in the clean case), viscous force, gravity and inertia. There are three dimensionless
associated parameters: the Reynolds number Re, the capillary number Ca and the bond
number B, defined as

Re = ρU R/µ� Ca = µU/γ0� B = ρ gR2/γ0�

where ρ is the density of the fluid neglecting the density of the air, R is the radius of the
capillary tube and g is the gravitational acceleration.The Reynolds number is the ratio of
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the force of inertia to the viscous force, the capillary number is the ratio of the viscous
force to the surface tension, and the bond number is the ratio of the force of gravity to
the surface tension. For the steady state where there is a thin film on the wall and the
bubble rises with a constant speed U , the experiment of Bretherton [3] suggests that the
Reynolds number is negligible in comparison to other parameters. Dropping Re from the
problem, there are now two parameters, Ca and B, in the problem. A simple dimensional
analysis shows then that the Ca and, hence, the speed U of the bubble are functions of
the bond number. The geometric parameter β, the ratio of the radius of the midsection
of the bubble to the radius of the tube, has been shown in [3, 18] to be a function of the
bond number B or equivalently a function of the capillary number Ca.

Bretherton used matched asymptotic expansion in powers of the capillary number Ca
to obtain the shape of the bubble. In so doing, he concluded that the bubble will not
rise at a constant velocity U if B < 0.842 and speculated that it may rise unsteadily for
B < 0.842. For B > 0.842, he obtained the following expression for very small values
of Ca:

B − 0.842 ∼ 1.25Ca2�3 + 2.24Ca1�3. (1)

This being an asymptotic series, the error can be estimated. This was done by Bretherton.
He found the error to be about 10� when Ca = 8� 10�5. Even smaller values than this
are required to make his analysis hold in practice. Later, Reinelt [18] constructed a
numerical approach based on the Stokes equation for computing the shape of the bubble
for values of the capillary number in the range 1 � 10�4 < Ca < 1 � 10�1. Reinelt’s
results compare favorably with that of Bretherton for very low values of Ca < 10�5.
In [26], based on experimental data for the rising velocity (cited also by Clanet et �l [4]),
the formula U = CρgR2/µ was proposed, which merely confirms that the Stokes law is
valid for low Reynolds number bubble flow in vertical tubes, namely the rising velocity
of the bubble is proportional to gR2/µ. This formula in terms of dimensionless numbers
is equivalent to B = C�1(Ca) where the constant C ≈ 0.038 for the experimental setup
of [26]. According to [26], the value of this constant C monotonically decreases with
decreasing bond number B. Experimental verifications of the formula (1) for low values
of Ca < 10�5 and of the prediction that the bubble will not rise at a constant speed for
values of B < 0.842 were attempted by Bretherton. He validated these qualitatively but
not quantitatively, without attributing the quantitative discrepancies to the presence of
impurities on the bubble surface.

In this letter, we study the effect of small traces of surfactant on the thickness b of
the thin film between the rising bubble interface and the vertical tube wall. Below, we
give some details concerning two related problems: surfactant effects on the bubble flow in
horizontal capillary tubes and in the Landau–Levich (LL for short in what follows) problem
(see [12]). Recently, [7] has studied the effect of surfactant in horizontal capillary tubes.
Using only theoretical estimates of the film thickness b in terms of the surface tension,
there it was shown that the interfacial surfactant thickens the thin film in comparison to
the clean case. This result was obtained also by Ratulowski and Chang [17], but using
a numerical method to compute solutions with and without surfactant. The thickening
factor obtained there is 42�3 (about 2.5).

The thickening effect of surfactant on the thin film in the LL problem has been
theoretically explained in [8] using two bounds for film thickness b. The upper bound in
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the clean case has been shown to be less than the lower bound in the surfactant case. The
same result was obtained by Park [15] but using a ‘shooting’ method to compute solutions
in clean and surfactant cases. Park obtained the same thickening factor, 42�3, as is given
by Ratulowski and Chang [17]. This is not surprising because the bubble in horizontal
tubes and the thin film LL problems are quite similar. A very interesting discussion of
these results can be found in [11] where a careful analysis and a numerical method are
given for the study of surfactant effect in the LL problem. In [7], other investigators’
work on the effect of surfactant on the bubble motion in horizontal tubes, on the motion
of fingers in Hele-Shaw cells and on the thin film in the LL problem has been discussed
in detail. We refer the reader to [7] for these works as well as for many references cited
there. We also mention here that the basic models for surfactant behavior on interfaces
between fluids can be found in [13].

The vertical case which we study here is different from the two problems above.
The bubble rises only if certain conditions (see [3]) are satisfied. In contrast, the bubble
is pushed in the horizontal tube and the plate is withdrawn from a bath in the (LL)
problem. For the vertical case, we suppose that appropriate conditions prevail (see [3])
for the bubble to rise in the tube. The tube is sealed and hence the fluid displaced by the
front meniscus of the bubble must flow down through the thin film between the bubble
surface and the tube walls. For this case, we have the direct relation (10) between U and
b which does not depend on the surface tension. This is not the case for the thin film
problem in the horizontal capillary tube and for the Landau–Levich LL problem, both of
which have the thin film almost at rest. The details about the governing equations for
the gas bubble motion (with surfactant concentration on the interface) in a tube are given
in [7]. We later mention only basic equations and boundary conditions.

The main result of this letter is the following: the interfacial surfactant gives a
thinning effect. The thickness b of the thin film and the rising velocity U of the bubble are
both smaller when compared with the ‘clean’ case. An upper bound of the rising velocity U
for the clean case is derived which is similar to the formula B = C�1(Ca) of [26], discussed
above. We obtain an upper bound of the constant C which is approximately 0.018 as
opposed to C ≈ 0.038 for the experimental setup of [26]. This is not in contradiction with
the value C = 0.038 obtained experimentally by White and Beardmore [26], who noted
that the value of the constant C decreases with increasing γ. We give also an (nonlinear)
algebraic formula for b and U in terms of the problem data. The retardation of moving
bubbles due to the presence of surfactants has been confirmed in the literature by the
experimental results of [1] and numerical results of [24].

The analysis is based on the experimental observation as well as physical intuition
that the flow past the bubble as it rises in a capillary tube is two-dimensional with hardly
any motion in the azimuthal, i.e., circumferential, direction. Therefore, equations of
motion for this axisymmetric flow can in principle be considered for analysis either in
local Cartesian coordinates like in [3] or in cylindrical coordinates like in [18]. We use
both of these approaches in our analysis, which leads to interesting results. The letter
is laid out as follows. In section 2 we obtain the thinning and delay effect of surfactant.
In section 3 we give some upper bounds of the rising velocity. Finally we conclude in
section 4, which also contains an unusually long discussion of many of the recent results
relating to the LL problem in complex fluids and of various time scales associated with
thin film problems in complex fluids.

doi:10.1088/1742-5468/2011/02/L02003 4
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The effect of surfactant on long bubbles rising in vertical capillary tubes

Figure 1� Section of a bubble in a vertical tube.

2� The thinning effect of surfactant

The section of the tube including the bubble is shown in figure 1. In the Cartesian frame,
the x axis is taken to be parallel to the right wall and its positive direction points upward.
The y axis is orthogonal to the right wall and its positive direction is towards the interior
of the tube, from the liquid to the gas. The gravity force is parallel with the x axis but
points downward. We recall that b denotes the thickness of the thin liquid layer behind the
front of the bubble, U is the rising velocity and R is the tube radius. The flow is ‘divided’
into three regions: the region AB of the front meniscus of the bubble, the intermediate
region BC and the flat region CD. The free surface of the bubble in the transition region
BC is denoted by h(x).

In the ‘clean’ case, the surface tension on the bubble interface is constant, denoted
by γ0. In the presence of insoluble interfacial surfactant, the surface tension on the
interface will not be constant. Due to the motion of the bubble, surfactant along the
interface will be swept downstream along the interface. This will cause the surfactant
concentration to increase and hence surface tension γ to decrease away from the front end
of the bubble along its interface. Therefore it seems natural to suppose that the surface
tension γ decreases on the bubble interface as the distance from A along the interface
increases. Since the positive x axis is upward (see figure 1), it follows that γx > 0 on ABC.
This may seem to be an assumption in the absence of detailed treatment of interfacial
surfactant motion by using an appropriate advection–diffusion equation that also accounts
for stretching of the interface. However, this assumption is physically sound, especially

doi:10.1088/1742-5468/2011/02/L02003 5
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when the time associated with interfacial diffusion of surfactant is much longer than the
transit time associated with convection, i.e. Ca� Pe�3 (see [19]) where Pe = bU/Ds with
Ds as the surface diffusion coefficient is the Peclet number. This condition will also hold
unless the bubble speed is very small. Thus, our results in this letter certainly hold under
these qualifications. However, our results in this letter will hold even in the absence of the
above assumption because the mere presence of surfactant, even if it were uniform, would
reduce the surface tension from its value for a clean surface. This fact together with the
formula (22) given below will then show, as we will see, the thinning effect of interfacial
surfactant. Thus this is a special case that is covered within our general treatment for
the case when Ca� Pe�3. More comments on these issues are given in the last section,
‘Conclusion and discussion’.

In the transition zone BC, we use the lubrication approximation

uyy =
1

µ
(px + ρg)� py = 0. (2)

These equations need to be solved subject to the following boundary conditions
(see [7, 15, 17]):

u(y = 0) = 0� uy(y = h(x)) = γx/µ� and p(y = h(x)) = −γhxx. (3)

The solution of the problem defined by (2), (3)1, and (3)2 is given by

u =
1

µ
(px + ρg)(y2/2− yh) + γx

y

µ
. (4)

We use the above expression for the liquid velocity and get the flux Q(x) =
� h�x)

0
u(y) dy

through the film at an arbitrary point x in the transition region BC, which is

Q(x) =
1

µ
(px + ρg)(−h3/3) + γx

h2

2µ
. (5)

On the other hand, as specified in [3], Q(x) = Uh(x) + C1, where U is the rising velocity
and C1 is a constant. Therefore we obtain

1

µ
(px + ρg)(−h3/3) + γx

h2

2µ
= Uh + Ud. (6)

The matching procedure allows us to consider that the above relation holds also near the
point C, where the flat region begins. As in CD we have px = 0, γx = 0, and h = b, the
last relation gives

−
ρgb3

3µ
= Ub + C1�

and we obtain the flow equation in the region BC:

1

µ
(px + ρg)(−h3/3) + γx

h2

2µ
= U

�

h− b−
ρgb3

3µU

�

. (7)

Therefore the flux at x = −∞ in the region CD is given by

Q(−∞) = −
ρgb3

3µ
. (8)

doi:10.1088/1742-5468/2011/02/L02003 6
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The effect of surfactant on long bubbles rising in vertical capillary tubes

The flux in front of the bubble is given by the flow with speed U through the area with
radius (R− b) and we obtain the following expression (per unit circumferential length):

Q(∞) = −U π(R− b)2 /(2πR) ≈ −UR/2� b� R. (9)

Let β = 1− b/R = 1− δ. We use Q(−∞) = Q(∞) and get

U =
2ρgb3

3µR
=

�
ρgR2

µ

�
2(1− β)3

3
. (10)

The relation (10) is used to estimate the magnitude of the terms in the right part of (7).
We have

ρgb2

3µU
=

R

2b
� 1� (11)

because b� R. Then the above term greatly exceeds (h− b) and we get

h− b−
ρgb3

3µU
= b

�
h

b
− 1−

ρgb2

3µU

�

≈ −
ρgb3

3µU
.

The relation (7) and above magnitude analysis give the final form of flow equation in BC
which is

(γhxx)x − ρg + γx
3

2h
= −

ρgb3

h3
. (12)

We considered here that the relation p = −γhxx holds also in the film and not only on
the free surface h(x), because p is not dependent on y.

We introduce the following dimensionless quantities:

γ̄ = γ/γ0� h = bη� x =
b1�3

T 1�3
z� T =

ρg

γ0
� (13)

and from the equation (12) we obtain

(γ̄ηzz)z =

�

1−
1

η3

�

−
3

2
γ̄z

1

T 2�3

1

b4�3η
. (14)

As the equation (14) holds also near the point C, we can consider η ≈ 1 and the interface
equation becomes

(γ̄ηzz)z ≈ −
3

2
γ̄z

1

T 2�3

1

b4�3
. (15)

We integrate equation (15) and get

ηzz ≈ −
3

2 T 2�3 b4�3
+

K

γ̄
� (16)

where K is a constant with respect to z. We use the relations (13) and return to the
function f and the variable x. From (16) we obtain

hxx

b1�3T 2�3
≈ −

3

2 T 2�3 b4�3
+

K

γ̄
. (17)

The above relation holds also near the point B, which belongs to the top meniscus
AB. Here Laplace’s law holds, and the (hydrostatic) pressure ρg xB is balanced by the

doi:10.1088/1742-5468/2011/02/L02003 7
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surface tension times the curvature. We approximate the (dimensional) curvature by
hxx(xB). Then we obtain

hxx(xB) = ρg xB/γ(xB)� (18)

where xB > 0 is the height of the location B above some fixed reference level. Similar
relations have also been used by Bretherton [3]. Using this relation in equation (17), we
obtain

ρg xB

γ̄(xB)γ0 b1�3T 2�3
+

3

2 T 2�3 b4�3
≈

K

γ̄(xB)
. (19)

We consider the bond number B = ρgR2/γ0 > 0.842� B ≈ O(1). With δ = b/R, the above
equation becomes

1

γ̄(xB)

�xB

R

� B1�3

δ1�3
+

3

2B2�3δ4�3
≈

K

γ̄(xB)
. (20)

We analyze the magnitude of the two terms in the left hand side. We have δ � 1; thus
δ4�3 < δ � δ1�3. Therefore, all other entries in the terms being of the order O(1), we can
write

1

γ̄(xB)

�xB

R

� B1�3

δ1�3
�

3

2B2�3δ4�3
. (21)

Therefore it follows from (20) and (21) that (3/2)B�2�3δ�4�3 ≈ K/(γ̄(xB)) and we obtain

b4�3 ≈
3 γ̄(xB)

2K T 2�3
(22)

which is an approximate formula for the film thickness in terms of the surface tension at
the point xB. We recall here the relation between the surface tension and the surfactant
concentration. Within the linear approximation, for small Γ, we have

γ(Γ) = γ0(1−MΓ)� M = −
1

γ0

∂γ

∂Γ

�
�
�
�
Γ=0

�

where M is the positive Marangoni number, γ0 is the surface tension in the ‘clean’ case
and Γ is the surfactant concentration. The maximum value of γ̄ = γ/γ0 is 1 for the clean
case when Γ = 0, and since the film thickness is an increasing function of γ̄(xB) according
to the relation (22), it then follows that we get as a limit process

b < bcl� (23)

where bcl is the film thickness in the clean case, γ̄ = 1. In this way, we show the thinning
effect of surfactant.

Next we show the delay effect due to the surfactant. In the clean case, γx = 0 at all
points of the bubble surface and Q(−∞) (see (8)) is given in terms of the film thickness
bcl. Therefore the formula (10) which holds for the clean case as well becomes

Ucl =
2ρgb3

cl

3µR
. (24)

From the relations (10), (23) and (24) we obtain the delay effect

U < Ucl. (25)

doi:10.1088/1742-5468/2011/02/L02003 8
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The effect of surfactant on long bubbles rising in vertical capillary tubes

3� An upper bound of the rising velocity

In this section we consider that the bubble is axisymmetric. Therefore, the flow in the
transition region is also axisymmetric and we use the equations in cylindrical coordinates
which we introduce here. The Ox axis now is the upward symmetry axis of the tube
(which is different from the convention used in the Cartesian frame before) and r is the
radial distance from the tube center to the tube walls. The gravity force is downward. We
use the moving reference with the bubble speed U . The flow equations in the transition
region BC are

1

r

d

dr
(rur) =

1

µ
(px + ρg)� pr = 0� (26)

which need to be solved subject to the boundary conditions

u(r = R) = −U� ur[r = R− h(x)] = −γx/µ� p[r = R− h(x)] = −γhxx� (27)

where r = R − h(x) is the bubble interface. The condition (27)2 involves (−γx), because
r is pointed from the gas (bubble) to the fluid. In section 2, the coordinate y was pointed
from the wall tube (the fluid) to the bubble interface (gas).

The solution of the above problem (26) and (27) in the transition region BC is

u(x� r) = −
γhxx + ρg

4µ

�
R2 − r2 + 2[R− h(x)]2 ln

� r

R

��

−
γx

µ
[R− h(x)] ln

� r

R

�
− U. (28)

The matching procedure allows us to consider that the relation (28) holds also near the
point C. Therefore far behind the top meniscus AB, in the flat region CD, the solution
is (because here hxx� γx = 0 and h = b)

u(−∞� r) = −
ρg

4µ

�
R2 − r2 + 2(R− b)2 ln

� r

R

��
− U. (29)

The flux at a point x ∈ BC is given by Q(x) =
� 2π

0

� R

R�h�x)
u(x� r)r dr dθ. Therefore far

behind AB, in the flat region CD, we get

Q(−∞) = −2π
ρg

16µ
R4 E(β)− 2πU

�
R2 − (R− b)2

2

�

(30)

where (recall β = 1− b/R)

E(β) = 1− 4β2 + 3β4 − 4β4 ln(β). (31)

With respect to our reference frame, the flux Q(∞) far up in front of the bubble is given
by

Q(∞) = −Uπ(R − b)2. (32)

Equating (30) and (32) we obtain

U =
ρgR2E(β)

8µ(2β2 − 1)
. (33)

doi:10.1088/1742-5468/2011/02/L02003 9
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The effect of surfactant on long bubbles rising in vertical capillary tubes

We prove that E(β) > 0 for β ∈ (0� 1). We have E �(β) = (−8β)D(β) where

D(β) = 1− β2 + 2β2 ln(β). (34)

For our domain of interest β ∈ (0� 1), D�(β) = (4β) ln(β) < 0, with D(0) = 1 and
D(1) = 0. It follows that D(β) > 0 ∀β ∈ (0� 1) and hence E �(β) = (−8β)D(β) < 0.
Therefore E(β) is a strictly decreasing function. We have E(0) = 1, E(1) = 0; then
E(β) > 0 ∀β ∈ (0� 1).

Since E(β) > 0 and U > 0, from the relation (33) it follows that

(2β2 − 1) > 0⇒ b < R(1− 1/
√
2) = 0.292 893R. (35)

The relations (10) and (35) are used to obtain the following upper limit for U in the
surfactant case:

U <
2ρgR2

3µ
(1− 1/

√
2)3 ≈ 0.018

ρgR2

µ
. (36)

Consider now the clean case (without surfactant). The same upper bound of the
rising velocity can be obtained. For this, we see that in the clean case the boundary
conditions (27)2, the solution (29) and the flux (30) do not depend on γx. That means
that in both the surfactant and the clean cases, the solution and the flux at x→ −∞ are
given in terms of the thin film thickness and do not contain γx. Then the rising velocity
Ucl in the clean case is given by a formula similar to (33):

Ucl =
ρgR2E(βcl)

8µ(2β2
cl − 1)

� (37)

where bcl = R(1 − βcl) is the film thickness in the clean case. We use again the analysis
following (33) and obtain 2β2

cl − 1 > 0; then we get bcl < R(1 − 1/
√
2). Therefore the

relation (24) gives the same upper bound (36) for Ucl.
The delay effect also holds in the case of an axisymmetric bubble considered here.

For this, we prove that the function F (x) = E(x)/(2x2 − 1) is decreasing in the interval
x ∈ (1/

√
2� 1). We have

F �(x) =
E �(x)(2x2 − 1)− 4x E(x)

(2x2 − 1)2
. (38)

The analysis after (33) gives us E �(x) < 0 and E(x) > 0. Therefore the numerator of the
above ratio is negative and we get F �(x) < 0. We obtained in section 2 the thinning effect
b < bcl. Therefore we have β > βcl. Since F (β) is a decreasing function of β, it follows
that U < Ucl.

4� Conclusion and discussion

In this letter, we have studied the effect of interfacial surfactant on the thin layer entrained
between a bubble rising through a viscous fluid in a capillary tube sealed at one end and
the tube wall. The fluid drains under the gravity effect and is not at rest. This is in
contrast with the horizontal case [7] in which the fluid in the thin layer between the
bubble and the wall is essentially at rest. In this letter, we obtain analytically that the
presence of surfactant on the bubble interface gives a thinning and a delay effect: the

doi:10.1088/1742-5468/2011/02/L02003 10
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thickness of the liquid layer behind the bubble and the rising velocity of the bubble are
smaller than those for the clean case (see formulas (23) and (25)). It is worth recalling
here the exactly opposite effect of surfactant in the horizontal case, namely thickening of
the thin film [3, 7]. An upper bound (see (36)) for the rising velocity is also given, varying
widely depending on the radius of the tube, as has also been observed in [26]. These
effects of surfactants have been confirmed by previous experimental and numerical results
in which surfactants were in the bulk as well as on the interface, though our study here
considers only interfacial surfactant.

Towards this end, it is worth discussing briefly some research results on very similar
problems, namely on thin film problems in the Landau–Levich geometry. These problems
arising in thin film coating on flat plates, on fibers, and on similar other geometries have
been studied in a lot more detail (see [19, 16, 22, 21]) than the rising bubble problem
studied in this letter. This discussion is necessary here as it may have a bearing on
providing directions for future studies of the problem studied here in the presence of many
other effects. The thickness b of the entrained film on a LL geometry being withdrawn at
speed U usually follows from the formula

b = 0.9458α lc Ca2�3� (39)

where lc =
�

σ/(ρg) is the capillary length and Ca = µU/σ is the capillary number
with ρ the density, µ the viscosity, and g the gravitational acceleration. Here α is the
thickening factor whose value is 1 for the pure Newtonian fluid with no trace of impurities
(surfactant) either in the bulk or on the interface. It takes the extreme value of 42�3

(about 2.5) in the presence of surfactants when the interface is immobile with respect to
the substrate. A thickening factor of 42�3 has been obtained by Park [15] by numerically
solving this problem in the presence of surfactants.

Actually, the problem of Marangoni thin film in the presence of insoluble interfacial
surfactant within Newtonian fluid approximation contains just about enough mechanisms
to lead to film thickening in Landau–Levich geometries and in horizontal capillary tubes
(see [7]) and film thinning in the present case of a vertical capillary tube. In problems
of this type involving only interfacial surfactant, there are only two time scales: one set
by the diffusion process and the other set by the interfacial advection process. Diffusion
takes place at a slower time scale than advection unless the velocity of the substrate (in
the Landau–Levich geometry) or the bubble (in the capillary tube case) is very small,
in which case Marangoni stress will be quickly wiped out, rendering the problem to
be one of equivalent pure fluid with the surface tension appropriately modified by the
uniform distribution of the surfactant. However, typically this is not the case and the time
associated with diffusion is much longer than the transit time associated with convection,
i.e. Ca� Pe�3 (see [19]) where Pe = bU/Ds, with Ds as the surface diffusion coefficient,
is the Peclet number. More precise modeling of interfacial transport of the surfactants can
be done using an advection–diffusion equation with a source term to account for interfacial
stretching (see [25]).

Challenging cases are the ones in which the surfactant is present in the bulk as well
as on the interface. The thickness of the thin film is then governed by not only the
interfacial advection–diffusion equation for the surfactant but also additional transport
equations that account for the exchange of surfactant between the bulk and the interface
and also between the bulk and the substrate due to adsorption. These processes set their

doi:10.1088/1742-5468/2011/02/L02003 11



J.
S

ta
t.

M
e
c
h
.

(2
0
1
1
)

L
0
2
0
0
3
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own characteristic time scales and the relative importance of these processes dictates the
thickness of the thin film. Such surfactant laden fluids are realistically complex fluids and
proper treatment (analysis, simulation) requires taking into account the non-Newtonian
character of these fluids as well as surface rheology/viscosity. There are more recent
experimental data (see [21]) in support of the thickening factor taking values between
extreme values 1 (pure Newtonian fluid) and 42�3 (immobile surface). In [21], it has
been shown that the thickening factor depends on a parameter (introduced by Quere and
Ryck [16]) which essentially measures the capacity of the ‘bulk reservoir’ to replenish the
interface with surfactant as necessary due to stretching of the interface. In experiments
where the surfactant concentrations were a few times the critical micellar concentration,
interesting results on a ‘dynamic transition of thickening’ occurring on increasing the
speed of the substrate speed (i.e. Ca) have been obtained by Scheid et �l [21]. In their
studies, Scheid et �l have demonstrated that thickening beyond the transition can be
rationalized by surface viscous effects.

In view of the results mentioned above, it would be interesting to do similar studies
on thin films entrained between a tube wall and moving bubble in horizontal and vertical
capillary tubes. Such exhaustive studies on thin film problems in capillary tubes have not
been done to date. In this letter, we have not studied the influence of surfactant in the
bulk or the effect of adsorption on the film thickness. In particular, it will be interesting
to do such studies in inclined tubes for various angles of inclination and for various bulk
surfactant concentrations, above and below the critical micellar concentrations. These are
open problems which will we hope be studied in the future.

In closing this section, after discussing above the frontiers of research in this area, it
is important that we explain very concisely why our results, even though different from
what is observed and predicted in the Landau–Levich geometry (a fiber or a plate pulled
out of a bath) where the surfactants induce systematically a thickening of the entrained
film, are not at all surprising. For this, one has to recognize the basic differences between
our problem in this letter and the other thin film problems (i.e. the thin film problem in
LL geometries and in a horizontal capillary tube with bubble motion inside).

In the Landau–Levich problem, the fiber or the plate is pulled up. In our case, the
bubble is self-rising in a capillary tube that is sealed at one end. Because the tube is sealed,
the fluid displaced by the front of the bubble must flow back exactly through the thin
layer between the bubble surface and the tube wall. This condition leads to formula (10)
through (8) and (9). From this follows the thickness, first given by Bretherton 1961 [3],

b =

�
3µRU

2ρg

�1�3

(40)

which remarkably does not depend on the surface tension σ. On the contrary, the thickness
depends on the surface tension σ in the Landau–Levich geometry (see (39)) and also in the
horizontal tubes with a bubble moving inside (see [3, 7]). In the latter case the formula,
given below, is also seen to be similar to the LL law (39):

b = 0.643R (3Ca)2�3. (41)

Thus, the thin film problems in a horizont�l capillary tube with a moving bubble inside
and the Landau–Levich problem are indeed similar, but some differences still exist for
which we refer the reader to [11]. One more instance of similarity between these two
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problems is hidden in the equation for the free surface: this equation for the LL problem
(see [8]) as well as for the horizontal capillary tube (see [3]) contains both b and U .
However, this is not so for the thin film problem in the vertical capillary tube considered
in this letter. In our case in this letter, the free surface equation contains only b (see
equation (12)). Of course, we can put b in terms of U using (40), but we do not need
both b and U . An estimate of b can be obtained directly from (22). In their experimental
study, Amatroushi and Borhan [1] proved the delay effect of surfactant, meaning that the
rising velocity U of the bubble is smaller in the presence of surfactants. Then the quantity
of fluid displaced by the bubble is smaller, and using (40) we find that the thickness b
is also smaller. A similar delay effect of surfactant has also been obtained by Tasoglu et

�l [24]. Thus our results on the thinning and delay effects are not so surprising and are
consistent with experimental results.
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