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Abstract

We study the singularly perturbed (sixth-order) Boussinesq equation recently introduced by Daripa and Hua
[Appl. Math. Comput. 101 (1999) 159]. This equation describes the bi-directional propagation of small amplitude
and long capillary-gravity waves on the surface of shallow water for bond number less than but very close to 1/3. On
the basis of far-field analyses and heuristic arguments, we show that the traveling wave solutions of this equation
are weakly non-local solitary waves characterized by small amplitude fast oscillations in the far-field. Using various
analytical and numerical methods originally devised to obtain this type of weakly non-local solitary wave solutions
of the singularly perturbed (fifth-order) KdV equation, we obtain weakly non-local solitary wave solutions of the
singularly perturbed (sixth-order) Boussinesq equation and provide estimates of the amplitude of oscillations which
persist in the far-field. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

Keywords:Capillary-gravity waves; Singularly perturbed Boussinesq equation; Weakly non-local solitary waves; Asymptotics
beyond all orders; Pseudospectral method

1. Introduction

In this paper we study the singularly perturbed (sixth-order) Boussinesq equation

ηtt = ηxx + (η2)xx + ηxxxx+ ε2ηxxxxxx (1)

whereε is a small parameter. This equation was originally introduced by Daripa and Hua [1] as a
regularization of the ill-posed classical (fourth-order) Boussinesq equation which corresponds toε = 0
in Eq. (1). It is well-known that the fourth-order Boussinesq equation possesses the traveling-solitary-wave
solutions (see [2,3]).

The physical relevance of Eq. (1) in the context of water waves was recently addressed by Dash and
Daripa [4]. It was shown that this equation actually describes the bi-directional propagation of small
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amplitude and long capillary-gravity waves on the surface of shallow water for bond number (surface
tension parameter) less than but very close to 1/3. So, it is closely related to the singularly perturbed
(fifth-order) KdV equation originally derived by Hunter and Scherule [5] which is restricted only to
uni-directional propagating waves.

The fifth-order KdV equation has been studied extensively over last decade. It has been shown that the
traveling wave solutions of this equation do not vanish at infinity. Instead, they possess small amplitude
fast oscillations at infinity (e.g. [5–15]). These are well-known as weakly non-local solitary waves. These
types of solutions are also known to exist for full non-linear water wave problem for positive bond number
less than 1/3 (e.g. [16–19]) and internal waves in stratified fluid for mode number greater than one (e.g.
[20,21]). The amplitude of oscillations associated with the weakly non-local solitary wave solutions of
the fifth-order KdV equation was estimated analytically by Akylas and Yang [6], Grimshaw and Joshi
[14] and Pomeau et al. [15], and numerically by Benilov et al. [9] and Boyd [10].

In this paper, we construct the weakly non-local solitary wave solutions of the sixth-order Boussinesq
Eq. (1) in the form of traveling waves by using analytical and numerical methods originally devised to
obtain this type of weakly non-local solitary wave solutions of the fifth-order KdV equation. We also
obtain the estimates of the amplitude of the oscillatory tails associated with these weakly non-local solitary
waves.

2. Analysis of the problem

Since Eq. (1) has solitary wave solutions forε = 0, the natural question arises whether Eq. (1) also
admits solitary wave solutions for small values ofε. Therefore, we seek a traveling wave solution of
Eq. (1) in the formη(x, t) = η(x − ct), wherec is the phase speed (velocity) of the wave. Substituting it
in Eq. (1) and usingx for the new variablex − ct yields

(1 − c2)ηxx + (η2)xx + ηxxxx+ ε2ηxxxxxx= 0 (2)

The question now becomes whether Eq. (2) admits solutions which decay exponentially to zero as
x → ±∞ for any small positive value ofε. Since we are interested in bounded solutions of Eq. (2) as
x → ±∞, on integrating Eq. (2) twice and taking the constants of integration as zero, we obtain

(1 − c2)η + η2 + ηxx + ε2ηxxxx = 0 (3)

It can be easily shown that an approximate solution of Eq. (3) can be obtained as a regular asymptotic
expansion inε2 in the form

η = η0 + ε2(−10γ 2η0 + 5
2n

2
0) + · · · (4)

whereη0 = 6γ 2 sech2(γ x) is the solitary wave solution of the fourth-order Boussinesq equation and
γ free parameter characterizing the width of the wave. The phase speedc is related toγ by c2 − 1 =
4γ 2+16ε2γ 4+O(ε4). It is to be noted here that the expansion (Eq. (4)) can be continued to any arbitrarily
higher order. The generalnth term in the series (Eq. (4)) will be annth order polynomial inη0. Since
η0 is symmetric aboutx = 0 and decays down to zero exponentially asx → ±∞, the form of solution
(Eq. (4)) implies thatη will also be symmetric aboutx = 0 and will decay down to zero exponentially as
x → ±∞. So, by the method of regular asymptotic analysis, we only get exponentially decaying solution
in the far-field. However, as we will see below, the far-field analysis contradicts this.
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If we assume thatη is small in the far-fieldx → ±∞, then Eq. (3) linearizes to

(1 − c2)η + ηxx + ε2ηxxxx = 0 as x → ±∞ (5)

Eq. (5) has solutions of the formη = exp(ipx) providedε2p4 − p2 = (c2 − 1). Since|c| > 1, this
characteristics equation has two real roots (which correspond to the oscillatory behavior ofη at infinity)
and two purely imaginary roots (which correspond to decaying and growing behavior ofη at infinity).
For a local solitary wave, only the root which corresponds to the decaying behavior ofη at infinity is
acceptable. This then implies the necessity of three independent boundary conditions onη asx → ∞,
with three more asx → −∞, leading altogether to the necessity of six independent boundary conditions
on η for a fourth-order differential Eq. (3). Therefore, we cannot forceη to vanish at bothx → ∞ and
x → −∞. There will be an oscillatory behavior at least on one side at infinity with the general form
given by

η = A± sin
[q

ε
(x + φ±)

]
as x → ±∞ (6)

whereq2 = ε2p2
Re = 1 + ε2(c2 − 1) + O(ε4) = 1 + 4ε2γ 2 + O(ε4), wherepRe is the real root of the

characteristics equation. HereA± andφ± are the amplitude and phase shift constant of the oscillatory
tails asx → ±∞. For symmetric weakly non-local solitary wave solutions,A+ = A− = A and
φ+ = φ− = φ. It is to be noted that the frequency of oscillations(q/ε) → (1/ε) asε → 0, and hence,
the far-field oscillations are very fast. In the following sections, we will obtain estimates of the amplitude
A of the tail oscillations withφ = 0 both analytically and numerically.

3. Perturbation analysis in the complex plane

In this section, we will construct the oscillatory tails and estimate their amplitude by extending the
problem into the complex plane and using a perturbation analysis in the complex plane as in Grimshaw
and Joshi [14], Kruskal and Segur [22] and Pomeau et al. [15]. This method is well-known as the technique
of asymptotics beyond all orders. We will see that the amplitude of tail oscillations is exponentially small
that lies beyond all orders in the regular asymptotic expansion of form (Eq. (4)) for the solutionη.

Sinceη0(x) is singular in the complexx-plane atx = ±(2n + 1)(iπ/2γ ), n = 0, 1, 2, . . . , the core
solution η(x) given by Eq. (4) cannot describe the actual behavior of the solution of Eq. (3) in the
neighborhood of these singular points. In fact, the perturbation termε2ηxxxx cannot be considered as of
lower order than the other terms in Eq. (3) in the neighborhood of these singular points. So, it is important
to consider the solution structure of Eq. (3) near these singular points. To do this, we need to consider a
rescaling through which the small parameterε2 is removed from the highest derivative term in Eq. (3).
This problem is called the inner problem.

We consider the singularity closest to the real axis in the upper half-plane. We introduce the inner
variablesy andηi defined byx = (iπ/2γ ) + εy andηi = ε2η, where the subscript i refers to the inner
problem. Substituting it in Eq. (3) and neglecting the term containing the small parameterε2, we obtain
the inner problem as

η2
i + ηiyy + ηiyyyy = 0 (7)
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To find the solution of the original problem (Eq. (3)), we need to solve the inner problem (Eq. (7)) and
connect the asymptotic behavior of the inner solution at large distances to that of the core (outer) solution
(Eq. (4)) by matching their asymptotic behaviors in a region where they both make sense.

To the leading order, the asymptotic behavior ofη0 near the singularity iπ /2γ is given byη0 =
−6γ 2 cosech2(γ εy) ≈ −6/(εy)2 asεy → 0. Therefore, to the leading order, the asymptotic behavior of
the outer solution (Eq. (4)) near the singularity iπ /2γ will be given by

η ≈ 1

ε2

(
− 6

y2
+ 90

y4

)
as εy → 0 (8)

Hence, it should be matched to a solution of the inner problem with the asymptotic behavior.

ηi ≈ 6

y2
+ 90

y4
as |y| → ∞ or |y| � 1 (9)

In view of Eq. (9), the solution of the inner problem (Eq. (7)) is constructed as an asymptotic series in
1/y2 of the form

ηi ≈ − 6

y2
+ 90

y4
+

∞∑
n=3

an

y2n
as |y| → ∞ or |y| � 1 (10)

When Eq. (10) is substituted into Eq. (7), the coefficients ofy−(2n+4) give

(2n − 2)(2n − 1)(2n)(2n + 1)an−1 + (2n + 4)(2n − 3)an +
n−1∑
k=2

akan+1−k = 0 for n ≥ 3 (11)

with a1 = −6 anda2 = 90. So,an can be obtained from Eq. (11) recursively. Asn → ∞, the non-linear
term in Eq. (11) becomes less important. Therefore, an asymptotic formula foran correct up to O(1/n2)
is given by

(2n − 2)(2n − 1)(2n)(2n + 1)an−1 + (2n + 4)(2n − 3)an ≈ 0 for largen (12)

Eq. (12) recursively gives

an ≈ (2n + 1)(2n − 1)

(2n + 2)(2n + 4)
(−1)n(2n − 1)!K for largen (13)

whereK is some constant. The value ofK is obtained by computing the exact values ofan from Eq. (11)
for some large values ofn and matching it with the asymptotic formula (Eq. (13)). The value ofK was
found to be 59.91.

With the coefficientsan given by Eq. (11) for alln ≥ 3 and by Eq. (12) or Eq. (13) for largen, the
asymptotic series solution (Eq. (10)) of the inner problem (Eq. (7)) diverges for ally. However, it can
still be summed using the method of Borel summation [23]. So, we expressηi (y) in the form of a Laplace
transform (also see [14,15]) given by

ηi(y) =
∫ ∞

0
V

p

y
e−p dp = y

∫ ∞

0
V (s)e−syds =

∫ ∞

0
V ′(s)e−syds (14)
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Fig. 1. Deformation of the integration path around the branch cut of the singularity atp = Y in a clockwise direction. The point
of singularityp = Y lies on the real axis in Re,p > 0.

whereV(s) is an unknown function withV (0) = 0, andV′(s) denotes the derivative ofV(s) with respect
to s. The integration path in first integral extends from 0 to∞ in the half-plane Re,p > 0, and in the
second and third integral extends from 0 to∞ in the half-plane Re(s) > 0.

We can find the unknown functionV(s) or V′(s) by substituting the asymptotic series (Eq. (10)) in
Eq. (14) and taking the inverse Laplace transform which yields

V (s) =
∞∑

n=1

bns
2n and V ′(s) =

∞∑
n=1

2nbns
2n−1 (15)

where

bn = an

(2n)!
≈ (2n + 1)(2n − 1)

(2n + 2)(2n + 4)
(−1)n

K

2n
for largen (16)

It is readily established that the series (Eq. (15)) forV(s) andV′(s) converges for|s| < 1 and has a
singularity ats = ±i. However, the singularity ofV(s) andV′(s) at s = ±i and the non-linear term in
Eq. (7) would imply thatV(s) andV′(s) will also have singularity ats = ±2i, ±3i, . . . , so on. Ify =
−iY, Y ∈ R+, then the integrandV(p/y) becomes singular atp = ±kY, k = 1, 2, . . . . The singularities
atp = +kYlie exactly on the integration path in Eq. (14), and therefore, it has to be deformed clockwise
to avoid the singularity, as shown in Fig. 1.

Now we study the behavior ofV(s) in the neighborhood of the singularity ats = +ki, k = 1, 2, . . . .
Sincebn ≈ (−1)nK/2n asn → ∞ we see thatV(s) behaves likeK ln(1 + i(s/k)) in the neighborhood
of the singularity ats = +ki. Therefore, we have

V ≈ K ln

(
1 + i

p

ky

)
as

p

y
→ +ki (17)

If y = −iY, Y ∈ R+, andp → kY−, then the value of the above logarithm will be real, and we will
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have Eq. (17) in the form

V ≈ K ln
(
1 − p

kY

)
as p → +kY− (18)

But, if y = −iY, Y ∈ R+, andp → kY+, then the value of the above logarithm will be complex, and
since we deform the integration path in clockwise direction near the singularity, we will have Eq. (17) in
the form

V ≈ K
[
ln

( p

kY
− 1

)
− iπ

]
as p → kY+ (19)

Therefore, wheny is purely imaginary and negative (i.e.y = −iY, Y ∈ R+), the integrand in Eq. (14),
in the neighborhood of the singularity atp = +kY, k = 1, 2, . . . , is obtained as

V
p

y
e−p = V

ip

Y
e−p ≈

{
K ln(1 − (p/kY))e−p for p = kY−
K ln((p/kY) − 1)e−p − iπKe−p for p = kY+

(20)

Therefore, from Eq. (14), we haveηi (y) as

ηi(y) = ηi(−iY ) ≈ PV
∫ ∞

0
V

ip

Y
e−p dp − iπK

∞∑
k=1

e−kY (21)

The integral in Eq. (21) is the Cauchy principal value (PV) integral which excludes the contributions
from the singularities atp = kY, k = 1, 2, . . . . The leading contribution from the singularities comes
from the singularity atp = Y , which is equal to−iπKe−Y . For largeY (i.e. |y| � 1), the Cauchy
principal value integral must agree with the asymptotic series (Eq. (10)) withy = −iY , and hence, we
obtain

ηi(y) = ηi(−iY ) ≈
∞∑

n=1

(−1)n
an

Y 2n
− iπK

∞∑
k=1

e−kY (22)

It is clear from Eq. (22) that, an exponentially small correction in the inner solution appears in the
asymptotic series of the inner solution beyond all orders. Therefore, there should be a corresponding
exponentially small correction in the outer solution which will appear in the algebraic asymptotic series
of the outer solution beyond all order. When we match the inner solution (Eq. (22)) to the outer solution,
we obtain the solution of Eq. (3) as

η(x) ≈ η0(x) + ε2

[
−10γ 2η0(x) + 5

2
η2

0(x)

]
+ · · · − iπK

ε2

∞∑
k=1

e−k((π/2γ ε)+i(x/ε)) (23)

Whenx is purely real,η(x) should be real. Therefore, the correct matching will lead to

η(x) ≈ η0(x) + ε2

[
−10γ 2η0(x) + 5

2
η2

0(x)

]
+ · · · + πK

ε2

∞∑
k=1

e−kπ/2γ ε sin
k|x|
ε

(24)

Therefore, the symmetric traveling wave solution of the singularly perturbed (sixth-order) Boussi-
nesq Eq. (1) has small amplitude oscillatory behavior at its tail ends which is explicitly given by
η(x) ≈ (πK/ε2)

∑∞
k=1e

−kπ/2γ ε sin(k|x|/ε) as x → ±∞. The dominant term in the above sum is
(πK/ε2)e−π/2γ ε sin(|x|/ε). It is worth pointing out that the frequency of oscillation of the oscillatory
tails is of O(1/ε) which is same as predicted in the far-field analysis of Section 2.
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4. Perturbation analysis in the Fourier domain

In this section, we will construct the oscillatory tails and estimate their amplitude by transforming
the problem into a Fourier domain and using a perturbation analysis in the Fourier domain as in Akylas
and Yang [6]. In this method, the amplitude of tail oscillations is determined easily without the need for
asymptotic matching in the complex plane, as required in the technique of asymptotics beyond all orders
in Section 3. So, taking the Fourier transform of Eq. (4), we obtain

η̂
1

ε
f (k̃) cosech

πk̃

2εγ
(25)

where

f (k̃) = 3k̃ + 15
2 k̃2 + · · · and k̃ = kε (26)

In the evaluation of Eq. (25), we have usedη̂0 = 3k cosech(πk/2γ ) andη̃2
0 = 3k(k2+4γ 2)cosech(πk/2γ ).

Now, taking the Fourier transform of Eq. (3) and substituting Eq. (25) in the resulting transformed equa-
tion, we see that, to the leading order inε, f (k̃) satisfies the following Volterra integral equation.

k̃2(k̃2 − 1)f (k̃) + 2
∫ k̃

0
f (l̃)f (k̃ − l̃) dl̃ = 0 (27)

It can be easily shown that, the solution of Eq. (27) can be expressed in the form of a power series

f (k̃) =
∞∑

m=0

bmk̃2m+1 (28)

where the coefficientsbm satisfy the recurrence relation

−(2m − 1)(2m + 6)

(2m + 3)(2m + 2)
bm + bm−1 + 2

m−1∑
r=1

(2m − 2r + 1)!(2r + 1)!

(2m + 3)!
brbm−r = 0, m ≥ 2 (29)

with b0 = 3, b1 = 15/2. As m → ∞, the non-linear term in Eq. (29) becomes less important. So, we
obtainbm ≈ bm−1 ≈ C asm → ∞, whereC is a constant. The value ofC can be obtained by evaluating
the values ofbm from Eq. (29) up to some large values ofm. It is found to beC = 29.96. So,C = K/2,
whereK = 59.91, as obtained in Section 3. Thus, the series (Eq. (28)) forf is seen to be convergent for
|k̃| < 1 and have pole singularities atk̃ = ±1. Therefore

f (k̃) ≈ Ck̃

1 − k̃2
as k̃ → ±1 ≈ − K

4(k̃ ∓ 1)
as k̃ → ±1 (30)

In view of Eqs. (25) and (30),̂η will have pole singularities atk = ±1/ε and will be given by

η̂ ≈ − K

4ε2(k ∓ 1/ε)
cosech

πk

2γ
as k → ±1

ε
≈ ∓ K

2ε2(k ∓ 1/ε)
e−π/2γ ε as k → ±1

ε
(31)

Taking the inverse transform ofη̂(k) given by Eqs. (25) and (31), we obtain

η(x) = PV
∫ ∞

−∞
η̂(k)eikx dk +

∫
C−1/ε

η̂(k)eikx dk +
∫

C1/ε

η̂(k)eikx dk (32)
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Fig. 2. Deformation of the integration path around the singularities atk = −1/ε andk = 1/ε in a clockwise direction.

whereC−1/ε andC1/ε represent the integration path (half circles) near the singularity at−1/ε and 1/ε,
respectively, as shown in Fig. 2. The first integral in Eq. (32) is the Cauchy principal value (PV) integral
which must agree with the asymptotic series (Eq. (4)). By the residue theorem, we obtain the second and
third integral in Eq. (32) as−(iπK/2ε2)e−π/2γ εe−ix/ε and(iπK/2ε2)e−π/2γ εeix/ε . Therefore, we obtain
Eq. (32) in the form

η(x) ≈ η0(x) + ε2

[
−10γ 2η0(x) + 5

2
η2

0(x)

]
+ · · · + πK

ε2
e−π/2γ ε sin

|x|
ε

(33)

Eq. (33) is the required non-local solitary wave solution of the sixth-order (singularly perturbed)
Boussinesq Eq. (1). Thus, we have the far-field oscillation in the formη(x) ≈ (πK/ε2)e−π/2γ ε sin(|x|/ε)
asx → ±∞. This estimate agrees with the estimate of Section 3 to the leading order.

5. Pseudospectral method

In this section, we solve Eq. (3) numerically using a pseudospectral (collocation) method. The spectral
basis functions are chosen suitably a combination of rational Chebychev and radiation basis functions to
get the correct solitary wave behavior (Eq. (4)) at the core (nearx = 0) and oscillatory behavior (Eq. (6))
in the far-field (asx → ±∞). Since the method is described in detail in Boyd [10], we only give an
outline here.

Since Eq. (3) is non-linear, it is solved iteratively. Supposeη(i)(x) is the solution at ith iterate andδη(i)(x)
is a correction toη(i)(x) such thatη(x) = η(i)(x) + δη(i)(x) satisfies Eq. (3). Substituting it in Eq. (3) and
linearizing the LHS, we get the following linear inhomogeneous ODE (known as Newton–Kantorovich
equation) for the iterative scheme.

((1 − c2) + 2η(i))δη(i) + δη(i)
xx + ε2δη(i)

xxxx = −[((1 − c2) + η(i))η(i) + η(i)
xx + ε2η(i)

xxxx] (34)
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This iteration procedure is repeated until the correctionδη(i)(x), or equivalently, the RHS of Eq. (34)
becomes negligibly small. The iteration procedure requires an initial guess. For small values, the solitary
wave solution (Eq. (4)) is taken as the initial guess. For large values ofε, the method of continuation is
used to find a suitable initial guess (see [10] for more detail). Now, if we write the solution at ith iterate as

η(i)(x) =
N−1∑
n=1

a(i)
n Φn(x) + Φrad(x; A(i)) (35)

then the correction to the solution at ith iterate will be given by

δη(i)(x) ≈
N−1∑
n=1

δa(i)
n Φn(x) + δA(i)Φrad,A(x; A(i)) (36)

The amplitudeA of the tail oscillations is obtained as a part of the solution along with the spectral
coefficientsan, n = 1, 2, . . . , N − 1. The spectral basis functionsΦn(x), n = 1, 2, . . . , N − 1 and
Φ rad(x; A) are constructed as follows (see [10] for more details).

Φn(x) = TB2n(x) − 1 = cos
[
2n cot−1 x

L

]
− 1, L = 2

γ
(37)

and

Φrad(x; A) = H(x)ηcn(x; A) + H(−x)ηcn(−x; A) (38)

Since the rational Chebychev functions TB2n(x) are even and asymptote to 1 asx → ±∞, the basis
functionsΦn(x) are even and decay down to zero at tail ends. Thus, the series

∑N−1
n anΦn(x) gives the

right behavior of the symmetric core solitary wave with peak atx = 0. The oscillatory behavior of the
solution at tail ends is visualized by the radiation basis functionΦrad(x; A) through its dependence on
cnoidal functionηcn(x; A) which is given by

ηcn(x; A) = A sin
[q

ε
x + φ

]
+ A2

[
C1 + C2 cos

[
2q

ε
x + φ

]]
+ A3C3 sin

[
3q

ε
x + φ

]
+ O(A4)

(39)

whereq = q0+A2q2+O(A4), q0 = (1+4ε2γ 2)1/2, q2 = ε4(C2−2C1)/(2q3
0 −q0), C1 = ε2/2(q2

0 −q2
0),

C2 = ε2/(30q4
0 − 6q2

0), C3 = ε4/48(50q8
0 − 15q4

0 + q2
0). Thus, the cnoidal functionηcn(x; A) agrees with

the form of the far-field solution (Eq. (6)) to the leading order inA. Therefore, it describe the far-field
behavior more accurately. The phase shift constantφ = 0 corresponds to the case in which both the core
solitary wave and the oscillatory tails are in phase. The smoothed step functionH(x) is suitably chosen in
order to have the asymptotic behaviorH(x) ∼ 1 asx → ∞ andH(x) ∼ 0 asx → −∞. For simplicity,
we choose

H(x) = 1
2[1 + tanh(γ (x + φ))] (40)

Since we are interested in obtaining symmetric non-local solitary wave solution of Eq. (3) with peak at
x = 0 and phase shift constantφ = 0, we choose theN spectral grid (collocation) points all on positive
real axis given by

xn = L cot
(2n − 1)π

4N
, n = 1, 2, . . . , N (41)
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At ith iterate,η(i), A(i) anda(i)
n are known. We need to compute the corresponding correctionsδA(i) and

δa(i)
n from the Newton–Kantorovich Eq. (34). Now, substituting the spectral series (Eq. (36)) into Eq. (34)

and demanding that the residual vanish atNcollocation points defined above, we obtain the matrix equation
JE = F , whereE = [δa(i)

1 , δa
(i)
2 , . . . , δa

(i)
N−1, δA

(i)]T, F = [F (i)
1 , F

(i)
2 , . . . , F

(i)
N ]T andJ = [J (i)

nj ] is the

Jacobian matrix of the resulting system of equations. ExplicitlyJ
(i)
nj andF (i)

n for n = 1, 2, . . . , N are
expressed as

J
(i)
nj =

{
[((1 − c2) + 2η(i))φj + φj,xx + ε2φj,xxxx]|x=xn

for j = 1, 2, . . . , N − 1
[((1 − c2) + 2η(i))φrad,A + φrad,Axx + ε2φrad,Axxxx]|x=xn

for j = N
(42)

and

F (i)
n = [((1 − c2) + η(i))η(i) + η(i)

xx + ε2η(i)
xxxx]|x=xn

(43)

The various derivatives of the basic functions involved in the calculation of Jacobian matrixJ through
Eq. (42) and RHS column vectorF through Eq. (43) can be obtained explicitly. The matrix equation
JE = F is solved forE using a direct numerical method such as Gaussian elimination with partial
pivoting. The spectral coefficients are corrected througha(i+1)

n = a(i)
n + δa(i)

n , n = 1, 2, . . . , N − 1 and
A(i+1) = A(i)+δA(i). Then the new solution, new Jacobian matrix and new RHS vector are evaluated using
the updated valuesa(i+1)

n andA(i+1). Then the matrix equation is solved again. The iteration procedure is
continued until the maximum (L∞) norm of the vectorE, or equivalently,F becomes negligibly small.

6. Numerical results

The analytical estimate of amplitudeA of the oscillatory tails for different values of the perturbation
parameterε2 and phase speedc is shown in Table 1. It is observed that, the amplitudeA of the oscillatory
tails is exponentially small as compared with the amplitude of the core which is approximately equal to
6γ 2 or 1.5(c2 − 1). Also it decreases exponentially fast as the value ofε andc decreases.

Table 1
Analytical estimate of the amplitudeA of the oscillatory tails for different values of the perturbation parameterε2 and phasec

ε2 c

1.05 1.10 1.15 1.20 1.25

0.0025 0.430405E− 80 0.206454E− 54 0.640770E− 43 0.520739E− 36 0.293631E− 31
0.0100 0.433390E− 38 0.295349E− 25 0.162456E− 19 0.458033E− 16 0.107685E− 13
0.0225 0.301413E− 24 0.106437E− 15 0.704676E− 12 0.138968E− 09 0.523737E− 08
0.0400 0.209484E− 17 0.529839E− 11 0.383407E− 08 0.199358E− 06 0.300032E− 05
0.0625 0.238900E− 13 0.310892E− 08 0.594467E− 06 0.138618E− 04 0.120067E− 03
0.0900 0.112281E− 10 0.201547E− 06 0.158387E− 04 0.216081E− 03 0.129365E− 02
0.1225 0.861493E− 09 0.374824E− 05 0.155859E− 03 0.144863E− 02 0.665788E− 02
0.1600 0.214244E− 07 0.321447E− 04 0.828458E− 03 0.577118E− 02 0.217482E− 01
0.2025 0.252448E− 06 0.165261E− 03 0.293416E− 02 0.163294E− 01 0.527304E− 01
0.2500 0.176862E− 05 0.595707E− 03 0.784714E− 02 0.364899E− 01 0.104153E+ 00
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Fig. 3. Left graph: comparison of the numerically computed amplitude (solid lines) of the oscillatory tails with that of the
analytical estimate (dashed lines). Right graph: plots for travelling wave solutions of the singularly perturbed (sixth-order)
Boussinesq equation forε2(c2 − 1) = 0.1 andε2(c2 − 1) = 0.0.

The numerical results are obtained for phase shift constantφ = 0 and various values of the pertur-
bation parameterε2 and phase speedc. However, the results are presented with respect to a combined
(group) parameterε2(c2 − 1). The numerically computed amplitude of the oscillatory tails is com-
pared with the corresponding analytical estimate in the left side graph of Fig. 3. This graph shows
the variation of 2ε2A with the group parameterε2(c2 − 1). It is observed that the numerically com-
puted amplitude of the far-field oscillations agrees well with the analytical estimate for small values

Fig. 4. The plots for traveling wave solutions of the singularly perturbed (sixth-order) Boussinesq equation forε2(c2 −1) = 0.05
andε2(c2 − 1) = 0.0. The left side graph of the figure shows the full plot, whereas, the right side graph of figure shows the
zoomed plot near the oscillatory tail.
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of ε2(c2 − 1). However, for larger values ofε2(c2 − 1), there is a small discrepancy between the two
estimates which is expected since the analytical estimate is based on the asymptotic analysis forε � 1.
Also, it is to be noted that the amplitude decreases exponentially fast as the value ofε2(c2 − 1) de-
creases.

The right side graph of Fig. 3 shows the numerically computed symmetric weakly non-local solitary
wave solution of the sixth-order Boussinesq Eq. (1) forε2(c2 − 1) = 0.1. For this moderate value of
ε2(c2 −1), the oscillatory tail is clearly visible. However, the oscillatory tail is very (exponentially) small
in comparison to the amplitude of the core solitary wave which is centered on the originx = 0. The
core in the neighborhood ofx = 0 is best described by the solution (Eq. (3)). As the value ofε2(c2 − 1)

decreases, the oscillatory tails decrease and collapse almost into the local solitary wave solution of the
fourth-order Boussinesq equation, as seen in the left side graph of Fig. 4. The oscillatory tails are there,
but are so small that they are invisible in comparison to the peak of the wave. However, if we zoom near
the tail, the oscillations are clearly visible as seen in the right side graph of Fig. 4.

7. Discussions and concluding remarks

In Daripa and Hua [1], a singularly perturbed (sixth-order) Boussinesq equation was introduced as a
dispersive regularization of the ill-posed classical (fourth-order) Boussinesq equation. We analyzed this
equation to find the traveling wave solutions. On the basis of far-field analyses and heuristic arguments,
we established that, unlike the classical solitary waves, the traveling wave solutions of this regularized
sixth-order Boussinesq equation cannot vanish in the far-field. Instead, such waves must possess small
amplitude fast oscillations at distances far from the core of the waves extending up to infinity. This
behavior confirms the numerical prediction of Daripa and Hua [1]. So, the traveling wave solutions of
this equation have the behavior of the weakly non-local solitary wave solutions of the singularly perturbed
(fifth-order) KdV equation ([5,6,10,14,15]), and the full non-linear water wave equations for 0< τ < 1/3
([16–19]).

We reviewed various analytical [6,14,15] and numerical [10] methods originally devised to obtain
this type of weakly non-local solitary wave solutions of the fifth-order (singular perturbed) KdV equa-
tion. Using these methods, we obtain the weakly non-local solitary wave solutions of the regularized
sixth-order (singularly perturbed) Boussinesq equations and provide the estimates of the amplitude
of oscillations which persist far from the core of the waves. The analytical estimate of the amplitude
agreed with that of the numerical estimate for small values of the perturbation parameter. Also, al-
though the analytical estimate of the tail oscillations is similar to that obtained by Akylas and Yang
[6], Grimshaw and Joshi [14] and Pomeau et al. [15] for the fifth-order KdV equation, the estimate
in the present case is different from their estimates because of the different estimate of the constant
K and different relation between the phase speedc of the wave and the core solitary wave width
parameterγ .
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